AU Class
AU Class
class - AU

HVAC System Selection with Generative Design

Share this class

Description

Selecting the best HVAC system for a given building is impossible. Why? Because each design is measured with several contradicting metrics. With computational design, a holistic set of rules can be used to find a range of potential design solutions. The computers then generate and evaluate a vast number of designs. A building's owner can then review these solutions, measuring and visualizing pros and cons. This session will explore this idea, using generative design to evaluate different mechanical systems for a given building. We’ll start exploring methods for gathering Revit software’s geometry and defining parametric rules for other system arrangements. Next, we’ll take things to the next level by building a Generative Design in Revit workflow that evaluates each design option. Architects and engineers will leave inspired, understanding the generative design buzz and ready to use this new way of thinking to disrupt the current design process.

Key Learnings

  • Gain an understanding of what generative design is and where it can be utilized
  • Explore how computational design techniques can be used to solve practical challenges commonly found in MEP system design
  • Discover how to define rules and measure success for generative design analysis
  • Learn how to use Autodesk’s newest generative design through HVAC system selection process

Speaker

  • Avatar for Sean Fruin
    Sean Fruin
    Sean Fruin is a Mechanical Engineer and Mechanical Applications Product Owner at IMEG, a full-service engineering firm with over 60 offices throughout the US. He is fascinated with automation and exploring computational design solutions for MEP design. He has had the opportunity to learn many aspects of the design industry, working in manufacturing as an MEP designer and consulting for General Contracting around the globe, specializing in BIM Management and Autodesk Revit development. Sean is living his dream, playing with the latest technologies, acquiring the knowledge to innovate, improving efficiency, and sharing his insights with the AEC community.
Video Player is loading.
Current Time 0:00
Duration 34:16
Loaded: 0.48%
Stream Type LIVE
Remaining Time 34:16
 
1x
  • Chapters
  • descriptions off, selected
  • en (Main), selected
Transcript

SEAN FRUIN: Hi everybody. Welcome to Generative Design for HVAC System Selection. So this all comes around this big challenge that I had at the beginning of the year when I joined this startup called iBuilt. They are a modular construction company-- or were a modular construction company-- and we had a really ambitious CEO. And it was all about standards, and repeatability, and stuff like that, kind of typical.

So what this meant for us is we got this straight line now. So procurement first. So let's know what fans we're buying. Let's know what pumps we're buying. Easy installation was a big thing that we're worried about. We want these modules to be able to connect really quickly out in the field. So we're looking at quick connections and all this ambitious stuff.

We want it to be really cheap, a developer mindset. We want a one size fits all solution. And that's almost impossible. And then, of course, we want it to be beautiful.

So a lot of these things are kind of contradictory. Add on top of that, I was assigned the universal of alternatives for HVAC system selection. Now this was a phrase they used all the time. And what it meant was we need to find all the possibility of alternatives. No rules of thumbs. We actually need to calculate cost. And we need to calculate the space requirements.

So this is a pretty overwhelming task. If you're familiar with HVAC, you'll know that there's so many different combinations of equipment. We could use radiators for bedrooms for heating, could just use diffusers with a furnace and an MEP closet, could use VRF systems.

Could use electric baseboard heaters. For exhaust fans, right, we could exhaust directly out. Granted that won't be that beautiful. Or you can exhaust all the way out to the ceiling. That won't be that cheap.

There's a whole bunch of different ways you can arrange stuff inside of a cubby, in each unit. Or you can go with these big central plants and have area down in the basement and infrastructure, more infrastructure running through the structure, and maybe up to the ceiling, to condensing units, et cetera.

So many options. On top of that, all of these different systems come with a different infrastructure alternatives, which all come with a different cost, different labor cost, material cost. And then even then, we can go deeper. And then for each type of pipe or duct, there's different types of fittings.

Are we going to use braised fittings? Or we use these expensive quick connect fittings? Make sure you take in account special things for VRF systems. And again, all these take different time to install, different upfront cost, a lot. So I was completely overwhelmed trying to do this.

After all, we were a startup. And I was also the only engineer. So this was all on my shoulders. Literally I could not comprehend all the data, overwhelmed by all the calculations that would need to be done. My brain hurt thinking about all the different configurations and how to organize the data.

I didn't have enough knowledge. And I definitely don't have enough time. We were trying to move quick. I literally actually took a week of leave off because I was going crazy. I felt like my brain ran out of RAM. If you use Dynamo a lot, you'll know what that means. So in that week I thought about it, collected my thoughts.

And I realized, hey stick with what you're good at, what you've been working on for four years. And that's what you can use, right? So this idea of generative design, computational design, using data, algorithmic thinking, using this we can organize everything in a really clear way.

We can articulate trade offs now that we have a system. We'll get into that. And then I can express concerns that I had with proof. In other words, I wasn't just using rules of thumb now. I actually had this system to show these things.

So that's what we're going to talk about today, my kind of journey of building this and formulating this idea of using HVAC, generative design for HVAC selection. So first we're going to get kind of understand what generative design is, the foundational concepts. We're then going to identify how to define rules for a successful generative design analysis.

Then we're going to explore running Generative Design inside Dynamo and Revit. Then we're going to take all this and we're going to apply it to MEP System design.

So Generative Design 101. So really generative design, it's a buzz word and it's getting bad rap. So you could probably summon what is algorithmic design? What is computational design? What is programming, probably many more. But here's my definition of generative design.

Last year I gave it to Ryan from TestFit. This year I'm going to take a stab at the simple definition. Generative design is the combination of data, some type of algorithmic logic, that encompasses our design ideas. Then by combining all these, we deliver a method for optimization of our design problems.

This isn't something that you can just go get off the shelf. Typically, there are some examples. And many startups are trying to get in this space. But really the framework that Autodesk has built is to start with data, right? This could be out of Revit. This could be of Excel, cvs files, JPEG images, json files, and the list goes on.

Then we have to build-- take that data and build a computational design system, a series of instructions, right, combinations of rules, and algorithms, and data, and geometry that hopefully produces more than just one solution. So then we start getting up there. And this where the Generative Design-- used to be Project Fractal right, comes in.

That's where we can start to move all these sliders and explore the design space. Then from last year, I added a section to this pyramid. And it is the optimization section. So this is really what the Generative Design in Revit is all about. Not just single optimization, but a way to really understand multi objective optimization. And you have a whole bunch of contradicting constraints. And you want to outweigh and see the contrast and comparison.

All right, so let's build this thing up. So I always go to food, used to cook, makes sense to me. So it's just like cooking, right? So if you're making a meal, you really want to start off with what do I want to cook? And that's your starting point, right? What's our goals? We need to go to the store and then get those ingredients. Do I even go off the recipe or make up our own recipe? So there's variables there, right?

What's our temperatures of things? How much are we measuring out? How long is stuff in the oven? All these are variables that could change the outcome. And then usually these ingredients go through a process of dicing, cooking, rolling out, straining. And out of it, we get this delicious meal that can then be evaluated for things like-- how's it taste? How's the presentation? Is there a variety of flavors?

And then with that feedback, right, you could go back in this feedback loop and make this recipe better, and better, and better. So that's really the idea-- is we build out this algorithm, this process. And we can make it better, explore design ideas.

So let's formulate the goals. So usually you start off with these vague, more vague ideas. You want to ask questions about are there any competing characteristics in my design constraints? Am I looking to maximize or minimize anything? Now we need to figure out a way to take those goals, or those ideas, and then evaluate them using a mathematical means.

Once we've established our valuations and our goals-- again, starting with the end-- I like to go back and get my ingredients, or get my static data inputs. What data goes into this recipe?

So once we've done that, we can then start to think about the geometry system. What levers can I pull and stretch to make different options change, and distort, and explore a bigger space. So once that's done, then we really get into the Generative Design part, which is where we can start to analyze, visualize this information.

Then we can really rely on the Generative Design in Revit tools to evaluate it and give it a feedback loop to where now we're using genetic algorithms which will help guide it to optimal solutions.

So I always think it's helpful to start off with a good simple example. So I hope we can all relate to this one at least a little bit. So when I was doing some research on multiple objective problems, a car kept on coming in. So then I thought, hey, I need a data set. Hey Mario Kart.

So if you've played any of the newer Mario Karts recently, you have to pick a character. Then you collect a kart. Then you collect wheels. And then you pick a guider. And all that shifts, right? So your speed might go up, but with cost to your acceleration, or cost to your weight. So there's an optimal that you're trying to find.

So when I found this data-- and this kind of brings up some conversation, right? So when I found this data online, I looked into the chats and I found some interesting comments that I think perfectly describe the whole why we're doing this optimization process. So if you don't want to read all of them, we have SegaBlueSky. To sum it up he says, there's too much data to understand. There's too many combinations.

Zyrac says the balance set is key. We've got to have balance. Therefore you're ready for everything. Then finally you have-- you always lose one, you always gain one. So just it is what it is. So I question, are these assumptions true? And how would you disprove or prove this?

So let's take that framework again. So we're playing Mario Kart. What is our goal? Do we just want to win? And that might be a little bit too simple, right? So you want to ask questions to start to get a better understanding, right? So does the track have a lot of turns that might affect my handling? Can I fall off the track? If I can fall off, maybe I want my weight to be really high. Can I stay on the track? Am I a beginner, or am I a pro?

So some of this is given. But now let's go to the data collection. So I always like to say, if you can get it into Excel, you can get it into Dynamo. So I hopped on like I said to a quick Google search. And I found all the stats that I needed to build this geometry system, to measure and optimize all the possible combinations of characters, karts, wheels, gliders, and tires.

Simply getting that information into Excel, and then using some Dynamo. And we can get this into the Data Remember Node. And so now we have all this information to build our thing. Data Remember Node, by the way, is really cool. So it doesn't have to be connected. It actually caches the information. And so that's a way that you can use it, not only for Generative Design but a way to hold on to information and share information. So I recommend you look into that.

So then built in to Mario Kart is already these evaluators and variables. So again we're looking at speed, how fast are we going. Acceleration, how fast do I accelerate when I get hit by a shell or when I go off the edge? Do I speed up quickly? What's my weight? Am I able to get knocked over off the edge?

How is my handling? Is it hard to make turns? How's my traction if I can't stay on the road in dirt and ice. So these are all the evaluators that come out of our selection of variables. So we have 16 different characters, 40 different karts, 21 different tires, and 14 different gliders. So when you add-- when you put this all together, the different options I think it's 100,300 and something, if I remember. So it's a lot, right?

So maybe it is too much data to really wrap your head around. But again, that's right where computation comes in. So let's build this system. So here we took that data. And now you can see by just running through these sliders, we can start to visually see what's going on. We have a little geometry system there to make the cart. And we have this nice spider graph to see the give and take of all these variables.

And then of course Luigi is our output, Baby Peach, the clown Koopa car, the sports Koopa car, so all these different options.

So now let's take this idea and into Generative Design. So for this first one, I'm going to say let's just maximize speed-- so single optimization. And very quickly you'll see it's going to go through, so only 10 different sets. And there we have the fastest possible combination in Mario Kart for speed.

But look how low you are on other things. Maybe not an ideal solution. So that's where this multi objective-- and really the Holy Grail of Generative Design-- a way to check all the different solutions.

So in this one, I did a cross product. And you can see there's 100,000 different solutions. I didn't grab quite all of them, but almost all of them. And so it's just a lot, right?

So we can start to use different tools to navigate it. We have the parallel coordinates down there. We have all the different things, images that come out Dynamo that we can use. And then we have this, right, tabulated form. We can just maximize and minimize. Again, there's our really high speed but a really low acceleration.

What about turbo speed? I read somewhere that that's-- you want to maximize turbo speed-- in this very important research. And then maybe the best one, you have the plot down here. So here we have speed on the y-axis and then acceleration on the z-axis. And this lets us start looking and comparing to different combinations, right?

And so if you'll notice too, the ones I'm clicking on right there-- those are the good solutions. The ones below that are really bad solutions. Why would you do that? If I can have a kart that's just as fast but has less acceleration, why would I pick that? So you really only want the solutions that are on top there.

And you can mess around with this with the relationship. Notice that the data is really clean. It's just how it's structured in the game. All right, we can get a good idea.

So now let's go back to our lovely conversation on the internet. So remember we had SegaBlueSky-- too much data to understand. I'm going to say that's false. Using Generative Design with Revit, we have all these different ways to take all this information and make sense out of it.

Balance set up is the key in all situations. So he's saying, right, you want to be right in the middle there. Again, I'm going to say this is false. We can analyze the data. We can find combinations that are better for a beginner, someone that is going to find themselves off the road often and needs really good handling to get around turns.

And on the opposite end of the spectrum, we're going to have to find the optimal for the pro guy, the guy that's going to stay on the road, drift those turns. And it's not just the performer, right, it's the track too. Are you going to be on a track that's straight? Are you going to be on a track with a lot of turns? As you see, we can start to make sense out of this.

And of course, the last one. You always lose one and gain one. And that is absolutely false, right? So we really again only want the green solutions. All the red solutions, they are trash. Why would I pick that? Again why would I want a car that has the same accelerations on the y-axis, higher acceleration but lower speed, when I can get one with higher acceleration and higher speed?

So this is really the power of Generative Design-- trying to make sense out of large data sets, big design spaces.

So now let's take this and look at it for HVAC system selection and see if we can solve the problem that I had with the universal alternatives. So I joined iBuilt because I was really excited, right, with their foundation of automation.

We can eliminate data drops. So we had this system, right, configurator for apartments combined with standardized layouts for apartments. I could get to that information really quick, no need to look at architects' space naming. I knew what the namings were going to be.

No need to ask questions about their families. No need to ask about thermal properties. Again, no data drops, amazing. The standard buying process. Again big ones. This let us really constrain an algorithm enough to be able to do it. So we're going to run through the corridors. We're going to run through these MEP holes.

Really help constrain the algorithm. Procurement first, another huge benefit, right? So we're actually designing for very specific equipment. So if I have a whole bunch of equipment, I can go in there and find the best one and pull it out. And then I have all my data right away, whether it's for energy analysis, whether it's for calculating the weight, the volumes, right?

I know all that up front. Therefore I'm able to calculate some of those requirements, like area. So all of this leads to automation.

This is why I think modular construction is a huge deal. This is why I think standardization is a big deal. These things lead to automation and where we're headed.

So let's look at the evaluators. So again if you go back-- remember some of the constraints. We wanted it to be cheap. We want it to be easy to install. We want it to be-- hit our tight space requirements. We want one size fits all. And we want it to be beautiful.

And so how can we take those and then turn them into measurable evaluators? Well cheap, right, so we want to minimize material cost. We want to minimize the labor cost. Maybe you want to maximize factory labor cost-- at least against field labor cost, right, because those would be at a different rate.

We want to minimize unit mechanical area, minimize horizontal area. And I'll dig into what these mean. But in other words, we could take and find the areas of everything, right? Again, minimize our shaft area, minimize plant area. Maybe we want to minimize weight. Maybe we only have a certain weight that we can hit that needs to be built in an algorithm.

Maybe there's limits would VRF that need to be built into the algorithm. So again all this design knowledge-- constraints and everything need to be built in and go in. And then figuring out a way to measure it. So the best one-- how are we going to measure architecture aesthetics?

So if there's a louver on the side of the building, maybe we take the square area of the louver, times that by something, right? It's those ones that are harder to find a good cost function for.

Let's break it down. So if we're having labor costs, right, and let's say we have pipes, ducts, PVC pipe, we can get to the cost by if we know all the length of pipe that we need. We know long how long it takes to install that pipe. And we know how much it costs, the rate per hour of the labor in that pipe. We can now get the labor cost for installing the pipe, right?

Same idea for fittings. So how many fittings do we have? How long does it take to install the fitting? What's our labor cost? But see we need to know all this data first. We need to gather all this data beforehand.

Evaluating areas. So let's take ducts. If we know the CFM, then we can go into a data table. So here's a little bit of advice on creating algorithms.

So rather than using a ductulator for the CFM for getting the sizes, I created a data table. It's a lot more computationally less expensive. It helped with our standardization. And it's just a lot simpler. So we built-- so we have CFM come in. We look it up in a data table. That can even give us our costs, our labor-- all in that one data table.

With that, we can get the areas of the duct, again standard sizes. Then we can start to pack that stuff in. And then we get the square area using a [? packing ?] algorithm.

So now let's take a look at the static inputs for this problem. So the hardest thing was how do we define different systems and collect all that data?

So we came up with a whole bunch of different systems configurations that all have different rules and layouts. Maybe it goes out to the side. Maybe it goes into the corridor. Definitely need some type of heating and cooling in the bedrooms. Definitely need ventilation in the units. Definitely need exhaust in the bathrooms, et cetera, et cetera.

So we had all these different system types. Another static input is again our different apartment layouts. So with this, we know the layout. Where are the bedrooms? Where the kitchens? Where is my MEP closet for units? Where are my exterior walls for these units?

Then again, no data drop. Another big one is we had standardization on our thermal properties for walls, windows, ceilings. So we knew the glazing. We knew the R values, the U values. All right for automation.

So those I call the global. The ones before that are the global. It doesn't matter which project. Those stay the same.

And then we had the static inputs for project specific. So our configure air might bring in any shape. And we need to figure out the heating and cooling modes to that.

So to do that, we can take in these mass objects, apply our kit of parts for apartments. And then within an afternoon, run Revit systems analysis to be able to calculate our heating cooling peak loads. Pretty cool stuff.

And then of course that's a static input into our algorithm. Of course there's other stuff like building code, [INAUDIBLE] but I want to keep it simple.

So now let's go into the Geometry System. So really we have-- Geometry System is really just a combination of different algorithms that you can probably find on the Dynamo forum. Of course, there's huge community, not just in our space but in other industries, with all these proven simple algorithms.

So we can cluster points, we can group points, graph theory-- I think it's absolutely critical for MEP because we're able to calculate those flows, get those CFMs to go into the lookup table. And so that's what we do, right?

So we have this building. And we really want to make a graph representation of all the possibilities that the MEP systems could take. So we have our shafts, right? We always know we're going to be running the corridor. So we have our mains running through the corridor. There's mains always go into an MEP cubby in the space, or into the unit.

Each unit has spaces, right, some exhaust, some that need heating and cooling, some that need ventilation. Notice we built all the possibilities. So we also could go directly outside with exhaust. We also have nodes notice going through the different walls of the units. Those make up the different modules. So at some point we're going to have to cross a module.

So that would be a node. And I keep on saying nodes and edges because this is the representation with graph theory. You either have nodes or edges. Edges connect nodes. We can propagate flow by using this data structure.

So maybe our final Geometry System takes a clustering algorithm to find the shafts. Then we add a system definition. And then figure out the routing of the graph. And then we do our lookup table to get the sizes of whether it's PVC pipe, flex pipe, ducts. We can get the labor costs from those lookup tables. And we can go straight back to our evaluators.

Then we need a way to flex it, right? So like I said maybe the number of shafts is a variable. System types or system definitions-- just like the carts in Mario Kart, right? We have 40 different system types. Let's cycle through them.

The number of plants, are we going to do plants every floor? One major central plant, two major central plants, one major cooling plant.

What type of fittings are we going to use. Are we going to use those primo quick connect fittings that are going to cut down our labor? Is it worth it? I don't know. Are we going to use those cheap brazing? That's more cheaper but more labor intensive. That's the whole idea here is we can find that.

So if you look at the whole Geometry System as a whole, so stuff comes in. We have the architectural Geometry System. We have our apartment layouts. We make masses out of that.

We're able to do load calculations. We're able to bring in our system definitions table, do some clustering, calculate flow using graph theory, bring in our infrastructure data tables. From our graph we can find the length of copper, the number of fittings, and then calculate stuff like material and our labor cost.

So here I'm going to do--

[BARKING]

SEAN FRUIN: Pardon the dog. So time for the demo. In the Q&A I was going to do the demo. If you also want to dig into the graph a little bit more, look at the white paper. And

Just to kind of wrap this up on forward thinking. So I hope that you realize Generative Design is a way to discover new designs. We can really start to articulate the trade off between different parameters. It's really a goal oriented way of thinking, different in a way.

And then, of course it is a co-designer between humans and computers. The computer is not just going to do it. You need to put in data. You need to put in your knowledge. And that gets me over here to the triforce of knowledge.

So I think one of the hard things, and one of the things that I built-- Katara, these companies failed at, is they had a lot of technology, right? But they underestimated some of the engineering and definitely from my experience, some of the construction knowledge.

So to really pull this all off how I see it, right, you need engineering, architecture knowledge. You need construction. How is this stuff built? How is it connected? How does it come together? What's the electrical building code for this area of the country?

And then you need that technology. How are we going to organize this data? How are we going to build the algorithms to make all this stuff flow?

I do love the quote-- most people overestimate what could they can do in a year but underestimate what they can do in 10 years. So I think we're on this exponential thing. And what I really see-- the end being in sight-- and we're, at least I'm thinking about and going to. And of course the world needs it right with climate change, and the migration, and just the housing shortage now. You hear about the stats all the time.

I dream of the day that the algorithms, the building code, the procurement comes together with the architectural algorithm, and the MEP, and the fabrication, all in one algorithm. Then that goes out to the field and then the feedback loop happens, right? So taking all of our knowledge from all the different sectors and bringing them all together I think is really the future of design. And again finding multiple objective optimization of all these contradicting constraints. Thank you.

______
icon-svg-close-thick

Cookie preferences

Your privacy is important to us and so is an optimal experience. To help us customize information and build applications, we collect data about your use of this site.

May we collect and use your data?

Learn more about the Third Party Services we use and our Privacy Statement.

Strictly necessary – required for our site to work and to provide services to you

These cookies allow us to record your preferences or login information, respond to your requests or fulfill items in your shopping cart.

Improve your experience – allows us to show you what is relevant to you

These cookies enable us to provide enhanced functionality and personalization. They may be set by us or by third party providers whose services we use to deliver information and experiences tailored to you. If you do not allow these cookies, some or all of these services may not be available for you.

Customize your advertising – permits us to offer targeted advertising to you

These cookies collect data about you based on your activities and interests in order to show you relevant ads and to track effectiveness. By collecting this data, the ads you see will be more tailored to your interests. If you do not allow these cookies, you will experience less targeted advertising.

icon-svg-close-thick

THIRD PARTY SERVICES

Learn more about the Third-Party Services we use in each category, and how we use the data we collect from you online.

icon-svg-hide-thick

icon-svg-show-thick

Strictly necessary – required for our site to work and to provide services to you

Qualtrics
We use Qualtrics to let you give us feedback via surveys or online forms. You may be randomly selected to participate in a survey, or you can actively decide to give us feedback. We collect data to better understand what actions you took before filling out a survey. This helps us troubleshoot issues you may have experienced. Qualtrics Privacy Policy
Akamai mPulse
We use Akamai mPulse to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, and your Autodesk ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. Akamai mPulse Privacy Policy
Digital River
We use Digital River to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, and your Autodesk ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. Digital River Privacy Policy
Dynatrace
We use Dynatrace to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, and your Autodesk ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. Dynatrace Privacy Policy
Khoros
We use Khoros to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, and your Autodesk ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. Khoros Privacy Policy
Launch Darkly
We use Launch Darkly to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, and your Autodesk ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. Launch Darkly Privacy Policy
New Relic
We use New Relic to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, and your Autodesk ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. New Relic Privacy Policy
Salesforce Live Agent
We use Salesforce Live Agent to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, and your Autodesk ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. Salesforce Live Agent Privacy Policy
Wistia
We use Wistia to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, and your Autodesk ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. Wistia Privacy Policy
Tealium
We use Tealium to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. Tealium Privacy Policy
Upsellit
We use Upsellit to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. Upsellit Privacy Policy
CJ Affiliates
We use CJ Affiliates to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. CJ Affiliates Privacy Policy
Commission Factory
We use Commission Factory to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. Commission Factory Privacy Policy
Google Analytics (Strictly Necessary)
We use Google Analytics (Strictly Necessary) to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, and your Autodesk ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. Google Analytics (Strictly Necessary) Privacy Policy
Typepad Stats
We use Typepad Stats to collect data about your behaviour on our sites. This may include pages you’ve visited. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our platform to provide the most relevant content. This allows us to enhance your overall user experience. Typepad Stats Privacy Policy
Geo Targetly
We use Geo Targetly to direct website visitors to the most appropriate web page and/or serve tailored content based on their location. Geo Targetly uses the IP address of a website visitor to determine the approximate location of the visitor’s device. This helps ensure that the visitor views content in their (most likely) local language.Geo Targetly Privacy Policy
SpeedCurve
We use SpeedCurve to monitor and measure the performance of your website experience by measuring web page load times as well as the responsiveness of subsequent elements such as images, scripts, and text.SpeedCurve Privacy Policy
Qualified
Qualified is the Autodesk Live Chat agent platform. This platform provides services to allow our customers to communicate in real-time with Autodesk support. We may collect unique ID for specific browser sessions during a chat. Qualified Privacy Policy

icon-svg-hide-thick

icon-svg-show-thick

Improve your experience – allows us to show you what is relevant to you

Google Optimize
We use Google Optimize to test new features on our sites and customize your experience of these features. To do this, we collect behavioral data while you’re on our sites. This data may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, your Autodesk ID, and others. You may experience a different version of our sites based on feature testing, or view personalized content based on your visitor attributes. Google Optimize Privacy Policy
ClickTale
We use ClickTale to better understand where you may encounter difficulties with our sites. We use session recording to help us see how you interact with our sites, including any elements on our pages. Your Personally Identifiable Information is masked and is not collected. ClickTale Privacy Policy
OneSignal
We use OneSignal to deploy digital advertising on sites supported by OneSignal. Ads are based on both OneSignal data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that OneSignal has collected from you. We use the data that we provide to OneSignal to better customize your digital advertising experience and present you with more relevant ads. OneSignal Privacy Policy
Optimizely
We use Optimizely to test new features on our sites and customize your experience of these features. To do this, we collect behavioral data while you’re on our sites. This data may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, your Autodesk ID, and others. You may experience a different version of our sites based on feature testing, or view personalized content based on your visitor attributes. Optimizely Privacy Policy
Amplitude
We use Amplitude to test new features on our sites and customize your experience of these features. To do this, we collect behavioral data while you’re on our sites. This data may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, your Autodesk ID, and others. You may experience a different version of our sites based on feature testing, or view personalized content based on your visitor attributes. Amplitude Privacy Policy
Snowplow
We use Snowplow to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, and your Autodesk ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. Snowplow Privacy Policy
UserVoice
We use UserVoice to collect data about your behaviour on our sites. This may include pages you’ve visited. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our platform to provide the most relevant content. This allows us to enhance your overall user experience. UserVoice Privacy Policy
Clearbit
Clearbit allows real-time data enrichment to provide a personalized and relevant experience to our customers. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID.Clearbit Privacy Policy
YouTube
YouTube is a video sharing platform which allows users to view and share embedded videos on our websites. YouTube provides viewership metrics on video performance. YouTube Privacy Policy

icon-svg-hide-thick

icon-svg-show-thick

Customize your advertising – permits us to offer targeted advertising to you

Adobe Analytics
We use Adobe Analytics to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, and your Autodesk ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. Adobe Analytics Privacy Policy
Google Analytics (Web Analytics)
We use Google Analytics (Web Analytics) to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. Google Analytics (Web Analytics) Privacy Policy
AdWords
We use AdWords to deploy digital advertising on sites supported by AdWords. Ads are based on both AdWords data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that AdWords has collected from you. We use the data that we provide to AdWords to better customize your digital advertising experience and present you with more relevant ads. AdWords Privacy Policy
Marketo
We use Marketo to send you more timely and relevant email content. To do this, we collect data about your online behavior and your interaction with the emails we send. Data collected may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, email open rates, links clicked, and others. We may combine this data with data collected from other sources to offer you improved sales or customer service experiences, as well as more relevant content based on advanced analytics processing. Marketo Privacy Policy
Doubleclick
We use Doubleclick to deploy digital advertising on sites supported by Doubleclick. Ads are based on both Doubleclick data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that Doubleclick has collected from you. We use the data that we provide to Doubleclick to better customize your digital advertising experience and present you with more relevant ads. Doubleclick Privacy Policy
HubSpot
We use HubSpot to send you more timely and relevant email content. To do this, we collect data about your online behavior and your interaction with the emails we send. Data collected may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, email open rates, links clicked, and others. HubSpot Privacy Policy
Twitter
We use Twitter to deploy digital advertising on sites supported by Twitter. Ads are based on both Twitter data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that Twitter has collected from you. We use the data that we provide to Twitter to better customize your digital advertising experience and present you with more relevant ads. Twitter Privacy Policy
Facebook
We use Facebook to deploy digital advertising on sites supported by Facebook. Ads are based on both Facebook data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that Facebook has collected from you. We use the data that we provide to Facebook to better customize your digital advertising experience and present you with more relevant ads. Facebook Privacy Policy
LinkedIn
We use LinkedIn to deploy digital advertising on sites supported by LinkedIn. Ads are based on both LinkedIn data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that LinkedIn has collected from you. We use the data that we provide to LinkedIn to better customize your digital advertising experience and present you with more relevant ads. LinkedIn Privacy Policy
Yahoo! Japan
We use Yahoo! Japan to deploy digital advertising on sites supported by Yahoo! Japan. Ads are based on both Yahoo! Japan data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that Yahoo! Japan has collected from you. We use the data that we provide to Yahoo! Japan to better customize your digital advertising experience and present you with more relevant ads. Yahoo! Japan Privacy Policy
Naver
We use Naver to deploy digital advertising on sites supported by Naver. Ads are based on both Naver data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that Naver has collected from you. We use the data that we provide to Naver to better customize your digital advertising experience and present you with more relevant ads. Naver Privacy Policy
Quantcast
We use Quantcast to deploy digital advertising on sites supported by Quantcast. Ads are based on both Quantcast data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that Quantcast has collected from you. We use the data that we provide to Quantcast to better customize your digital advertising experience and present you with more relevant ads. Quantcast Privacy Policy
Call Tracking
We use Call Tracking to provide customized phone numbers for our campaigns. This gives you faster access to our agents and helps us more accurately evaluate our performance. We may collect data about your behavior on our sites based on the phone number provided. Call Tracking Privacy Policy
Wunderkind
We use Wunderkind to deploy digital advertising on sites supported by Wunderkind. Ads are based on both Wunderkind data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that Wunderkind has collected from you. We use the data that we provide to Wunderkind to better customize your digital advertising experience and present you with more relevant ads. Wunderkind Privacy Policy
ADC Media
We use ADC Media to deploy digital advertising on sites supported by ADC Media. Ads are based on both ADC Media data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that ADC Media has collected from you. We use the data that we provide to ADC Media to better customize your digital advertising experience and present you with more relevant ads. ADC Media Privacy Policy
AgrantSEM
We use AgrantSEM to deploy digital advertising on sites supported by AgrantSEM. Ads are based on both AgrantSEM data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that AgrantSEM has collected from you. We use the data that we provide to AgrantSEM to better customize your digital advertising experience and present you with more relevant ads. AgrantSEM Privacy Policy
Bidtellect
We use Bidtellect to deploy digital advertising on sites supported by Bidtellect. Ads are based on both Bidtellect data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that Bidtellect has collected from you. We use the data that we provide to Bidtellect to better customize your digital advertising experience and present you with more relevant ads. Bidtellect Privacy Policy
Bing
We use Bing to deploy digital advertising on sites supported by Bing. Ads are based on both Bing data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that Bing has collected from you. We use the data that we provide to Bing to better customize your digital advertising experience and present you with more relevant ads. Bing Privacy Policy
G2Crowd
We use G2Crowd to deploy digital advertising on sites supported by G2Crowd. Ads are based on both G2Crowd data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that G2Crowd has collected from you. We use the data that we provide to G2Crowd to better customize your digital advertising experience and present you with more relevant ads. G2Crowd Privacy Policy
NMPI Display
We use NMPI Display to deploy digital advertising on sites supported by NMPI Display. Ads are based on both NMPI Display data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that NMPI Display has collected from you. We use the data that we provide to NMPI Display to better customize your digital advertising experience and present you with more relevant ads. NMPI Display Privacy Policy
VK
We use VK to deploy digital advertising on sites supported by VK. Ads are based on both VK data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that VK has collected from you. We use the data that we provide to VK to better customize your digital advertising experience and present you with more relevant ads. VK Privacy Policy
Adobe Target
We use Adobe Target to test new features on our sites and customize your experience of these features. To do this, we collect behavioral data while you’re on our sites. This data may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, your Autodesk ID, and others. You may experience a different version of our sites based on feature testing, or view personalized content based on your visitor attributes. Adobe Target Privacy Policy
Google Analytics (Advertising)
We use Google Analytics (Advertising) to deploy digital advertising on sites supported by Google Analytics (Advertising). Ads are based on both Google Analytics (Advertising) data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that Google Analytics (Advertising) has collected from you. We use the data that we provide to Google Analytics (Advertising) to better customize your digital advertising experience and present you with more relevant ads. Google Analytics (Advertising) Privacy Policy
Trendkite
We use Trendkite to deploy digital advertising on sites supported by Trendkite. Ads are based on both Trendkite data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that Trendkite has collected from you. We use the data that we provide to Trendkite to better customize your digital advertising experience and present you with more relevant ads. Trendkite Privacy Policy
Hotjar
We use Hotjar to deploy digital advertising on sites supported by Hotjar. Ads are based on both Hotjar data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that Hotjar has collected from you. We use the data that we provide to Hotjar to better customize your digital advertising experience and present you with more relevant ads. Hotjar Privacy Policy
6 Sense
We use 6 Sense to deploy digital advertising on sites supported by 6 Sense. Ads are based on both 6 Sense data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that 6 Sense has collected from you. We use the data that we provide to 6 Sense to better customize your digital advertising experience and present you with more relevant ads. 6 Sense Privacy Policy
Terminus
We use Terminus to deploy digital advertising on sites supported by Terminus. Ads are based on both Terminus data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that Terminus has collected from you. We use the data that we provide to Terminus to better customize your digital advertising experience and present you with more relevant ads. Terminus Privacy Policy
StackAdapt
We use StackAdapt to deploy digital advertising on sites supported by StackAdapt. Ads are based on both StackAdapt data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that StackAdapt has collected from you. We use the data that we provide to StackAdapt to better customize your digital advertising experience and present you with more relevant ads. StackAdapt Privacy Policy
The Trade Desk
We use The Trade Desk to deploy digital advertising on sites supported by The Trade Desk. Ads are based on both The Trade Desk data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that The Trade Desk has collected from you. We use the data that we provide to The Trade Desk to better customize your digital advertising experience and present you with more relevant ads. The Trade Desk Privacy Policy
RollWorks
We use RollWorks to deploy digital advertising on sites supported by RollWorks. Ads are based on both RollWorks data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that RollWorks has collected from you. We use the data that we provide to RollWorks to better customize your digital advertising experience and present you with more relevant ads. RollWorks Privacy Policy

Are you sure you want a less customized experience?

We can access your data only if you select "yes" for the categories on the previous screen. This lets us tailor our marketing so that it's more relevant for you. You can change your settings at any time by visiting our privacy statement

Your experience. Your choice.

We care about your privacy. The data we collect helps us understand how you use our products, what information you might be interested in, and what we can improve to make your engagement with Autodesk more rewarding.

May we collect and use your data to tailor your experience?

Explore the benefits of a customized experience by managing your privacy settings for this site or visit our Privacy Statement to learn more about your options.