AU Class
AU Class
class - AU

AI-Powered Workflows in Maya: Leveraging Large Language Models for Intuitive Interactions

Compartir esta clase

Descripción

With recent advances in generative models, many industries must adapt to offer more-intuitive solutions to interact with their expert software. The challenge ahead is to combine this expert knowledge with artificial intelligence (AI) to include more-natural ways of interacting with our tools while remaining precise and controllable. In this talk, we will discuss our solution to achieve this for content creation in Maya software. We'll present a high-level overview of the architecture to better understand the integration of the Microsoft Azure OpenAI services in our product. Then, we will discuss how we improved the inference model bridging the gap between research and production. We'll also show a demo of our plug-in in Maya software on a complex scene. You'll leave this session knowing how to prepare a proper data set for code generation from prompt, how to design a structured context improving the accuracy of the generated response, and how to maximize custom embeddings to handle more-complex use cases.

Aprendizajes clave

  • Learn about the Azure OpenAI services.
  • Learn how to prepare and augment your data set for prompt-to-code generation purposes.
  • Learn how to design the proper context for prompt engineering.
  • Learn how to maximize custom structures using embeddings for more-complex use cases.

Orador

  • Bruno Roy
    Bruno Roy is a Principal Research Scientist at the Autodesk AI Lab in Montreal. His research focuses primarily on current challenges in computer graphics by combining machine learning with numerical methods. Prior to joining Autodesk, Bruno's involvement in the computer graphics community was reflected through various experiences in industrial and academic research in the media and entertainment (M&E) space. Bruno holds a Ph.D. in Computer Science from the University of Montreal, where he explored ways to improve numerical simulations for particle-based fluids by leveraging hybrid and data-driven methods using iterative solvers.
Video Player is loading.
Current Time 0:00
Duration 20:55
Loaded: 0.79%
Stream Type LIVE
Remaining Time 20:55
 
1x
  • Chapters
  • descriptions off, selected
  • en (Main), selected
Transcript

BRUNO ROY: All right. Hello, everyone, and thanks for attending our session on AI-powered workflows in Maya. In this talk, actually, we're going to discuss how we leverage large language models for content creation and how powerful these models are, even when scratching the surface of their potential.

In this session, we will present our work from last year in collaboration with the Acceleration Studio team at Microsoft. Our first proof of concept was presented during the Microsoft Build conference in 2022. Seeing our work included into the CEO keynote was great for the visibility of this project and to give a rough idea of what these foundation models are capable of.

In this video, we show a brief demo of how we manage to interact with Maya using exclusively English sentences as inputs. Using your own words, you can control, edit, create content in Maya without the requirement of knowing the software or any technical language used in the field.

So here's our agenda for this presentation today. First, I will briefly cover the context and motivations to better position this project. A brief architectural overview of the approach will be presented. Then, we will discuss in more details about several experiments and the data used with them. We will showcase a quick demo of how it is used in Maya. And lastly, we're going to highlight a few promising avenues for future work.

So let me first introduce a fundamental concept and a few of them behind this project. Our goal is to leverage natural language processing and AI to offer more intuitive input methods, such as text and voice, for content creation. These two combined are extremely powerful when used with our expert knowledge, such as in 3D. With recent advances on large language models, such as GPT and ChatGPT, we can finally develop more generalized and flexible solutions.

Although GPT was initially intended to generate text, other derived models, such as DALL-E, have been introduced to combine different modalities, such as text and images. And more closely to our work, and as opposed to GPT, Codex is a model that has been trained and purposed to translate natural language to code. GitHub Copilot is the first commercial use of that model.

Our work, which was initially called Maya Codex, lies between DALL-E and Codex in a sense that we're taking advantage of the ability of these models to generate code in order to create content. So in summary, our goals with this project are to, first, generate more intuitive tools using text-based methods, as opposed to traditional ways with mouse and keyboard.

Second, encourage learning along the way. So with this plugin, you can also show the generated code by our model, and then reuse it in different projects. And lastly, it's to enable automation with this kind of model. So basically, to facilitate repetitive task and tedious task and focus on creating content.

So how are we connecting the dots to make all of this happen? In this project, we demonstrate how you can combine your cloud-based service to Azure's and offer capabilities in your products. For instance, in this project, through a Maya plugin, we're able to interact with a service layer, linking the Forge microservice and that of Azure OpenAI.

So let's quickly deep dive into the Azure OpenAI services to better understand how we use, evaluate, and update our model. So here's an overview of the pipeline we use in this project to adapt our model to the content creation task in Maya. Based on the feedback service at the entrance stage, we update our data sets to improve our model. That updated data set is actually used with different experiments to evaluate the performances of the model.

Once we are satisfied with the model's performance, we stage the new version of it and replace the current one in place. This part can also be automated to improve low-performing use cases not covered in the deploy model. So essentially, to make our model more resilient and flexible to unseen scenarios using, for example, different phrasing and technical jargons.

One simple example of the ins and outs of this project. So it goes something like this. The user types in add a cube to the scene. Our model returns to the polyCube command, which is actually the one executed by our plugin to create geometry. As our follow up action, the user types rotate the cube 45 degrees on the x-axis, and our plugin returns and execute the corresponding command with the proper arguments.

Without any surprise high-quality data is crucial for the success of this type of capability. Creating a proper evaluation data set is important to measure your progress with these models. Our evaluation set is composed of pairs of natural language prompts and commands, covering supported use cases, which are, essentially, camera, materials primitive, and what we call whole-object manipulations.

These sample pairs are naturally reviewed by field experts to make sure that they produce the expected results. And as shown on the top right table, most of our collected samples are one-to-one, meaning that for one prompt, we have a single command generated.

Naturally, for validation and fine tuning purposes, we need to grow our data set with more variations. For that, we use the synthetic data generation framework, where samples are parsed and converted as more generic and customizable expressions. These generic expressions are then used to generate synthetic data of the natural language prompts, using synonym, different values, and so on. Corresponding code is generated alongside them to produce new pairs of samples for training.

So in the next few slides, we will discuss throughout experiments how we achieve an acceptable level of accuracy for production and also to highlight what can be accomplished with these large language models without the need of fine tuning. Providing meaningful samples along the prompt, often called few-shot learning, has proven to improve the accuracy of the response at the inference stage.

Since finding the meaningful ones can be tricky in some cases, we also provide a previous request as what we call a historical context. Something interesting to highlight in this table is the fact that, regardless of the model used, historical context seems more impactful than few-shot's on the model's precision. And when combining the few shot examples in historical context, you get an even more performing model, as shown at the bottom part of this level table.

As shown in this chart, we achieve above 80% precision in all supported categories, compared to 50% with the out-of-the-box GPT-3.5 for the supported categories and also in this specific task. Being able to measure how good your model is performing in production is essential. So in this project, we use the exact match and other distance metrics to measure the similarities between the expected and generated code.

As shown in this example, these two significantly different commands can produce the same outcome showing how important text normalization is. Meaning that, even with a low score on the exact match metric, you might end up with the right outcome. It also shows the importance of sample and realization for training and validation.

Also, as we use few-shot learning to guide the predicted command, we have looked into different experiments to better identify the closest samples to the one requested by the user. Without surprise, high-level categories have been revealed to be too broad for such a task. Command-level categories are also biased as our data set is extremely imbalanced. This is mostly due to the differences in complexity of each command.

As a result, we've used a density-based spatial clustering method to encourage natural grouping in the data. So that way, we end up with a more fitting clusters for this task, especially to find the closest, actually, command to the one requested by the user.

Remember when I mentioned that most of our samples are one-to-one? Well, it turns out that, in many cases, a task can be too complex to be represented with a single command, even when enriched with few-shot samples. So instead of predicting code using the Maya API, we learn on using what we call the high-level APIs to encapsulate more complex tasks. In short, we add these high-level API samples to the few-shot bank.

So like in this example on the right, where you can replace a three command task with a single call from our high-level API. So for example, on this task of changing the color of an object, which usually requires, one, creating new material, two, assigning that material to the object, and lastly, changing the color of the assigned material. We can only predict the call to the high-level API change color with the proper arguments,

Something else we did to improve the precision of our model is to use Docstrings as context. Docstrings provide the function signature, description, flag descriptions for a particular command. Similarly to few-shot learning, we provide the information with the request.

So to summarize, here's an overview of how we design the prompt sent to our inference model. The high-level context is inserted on top with the prompt to focus on Maya Python API code, making sure that our model predicts the right API and the latest version of it.

In addition, we use an extended context layer as guidance with our prompt. The extended context includes task descriptions, such as command Docstrings, few examples similar to the request task of the user prompt, and lastly, is to recall contexts, such as previous commands, session history, and scene description.

So in this demo, we will show a few capabilities of our current plugin on a complex scene graciously provided by KitBash3D. Almost every interaction in Maya presented in this demo are performed by typing natural language inputs in our plugin. So everything I'm going to describe is, basically, how I phrased it using this plugin. So as I will show a few lightning-related features, let me first enable the light in the scene. So we're going to be in pitch black first before adding any light sources.

But first, let me add a sun by typing into our plugin, add a sun in the scene, and rename it sun. Something pretty cool about this is the fact that I don't need to know what you're actually asking for, which is like a directional light simulating the very distant light source. You can also ask to rotate that light source 90 degrees to make that nice lighting on the facade and also to make it down a little bit 15 degrees to simulate how the sun would rise on this scene.

And also, it can ask something like, can you reduce the brightness to 50%, without knowing where to go to change these parameters and to highlight other light source later. So let me create a camera and show you how I created it. So I ask, actually, create a camera from the current viewpoint, without knowing what are the actual manipulation to do so in Maya, which is pretty cool.

And I'm going to ask them to move it in front of the streetlamp on the ground, just in front of this building. There you go. And then I'm going to ask this plug-in to point that camera towards that front door structure, so I can have a nice frame to play with. There you go. So now let's see through it to see if we have something good. Seems good. All right. And I might ask to hide that streetlamp in front of us just because it's occluding my current view. I might replace it later.

And then, of course, I'm going to add more light sources, especially on these walls. So I'm going to add light sources, especially spotlights directly on the lamp on the wall. All right. Adding the spotlight. And then I'm going to ask to duplicate that spotlight, so I can add a different one on the other side of that column, the right. And rename it spotlight on this corner right. Then move it on the right position here, without knowing the actual position of this object. There we go.

And it's already pointing up. So that's good. And then I'm going to ask to change the color of the left. I'm going to go look back at the camera and ask to change the color of the left spotlight to red. This one. All right. Cool. And do the same. And ask exactly do the same for the right spotlight, so it knows what to do here. All right. It works.

Maybe make them 10 times brighter, without knowing where to actually change this. OK. It seems to work. I'm going to show you in the Attribute Editor here where the change has been made. We can see it worked. So you can see the value 10. So basically, the default value is 1 for these slides. And then I'm going to ask maybe to change the material of the front faces here.

So basically, what I want to do is assign a material existing in this scene from the column to those faces. And there you go. Just something pretty. This is a very good example of a few lines generated out of a single prompt.

And lastly, I'm going to bring back the streetlamp. Maybe move it a little bit on the left and rotate it 90 degrees on its right just to frame that door and duplicate that light to add the same in front of the right column, the right, on the right of the door, right.

You can probably see here in the explorer of the objects. And then I'm going to ask move it to the right. There we go. Again, maybe a little bit more. And there you have it. And lastly, rotated 180 degrees on its left. And there you go. Let me show you the scene here. Yep. So here you have it, like a fully edited scene using only natural language, without any knowledge of this software, which is something very cool to do with these foundation models.

All right. So let me give you a brief recap and open up on promising avenues. So we presented a generative approach tailored especially for content creation. But this kind of model can be applied to different use cases, which is something very interesting with these models. Our approach is fully controllable with natural language. And again, we only scratched the surface of what is possible for creators. Much more to come. It shows how powerful our tools can become when combined with data-driven methods.

And yes, Maya was an excellent first candidate to demonstrate a concrete use case of the Azure OpenAI services. We also showcased the benefits of using custom data structures to avoid the necessity of fine tuning with these models, which can be pretty expensive.

As future work, we will actually look into different ways to infer a better understanding of the 3D scene to our model. Among other things, we plan to use the USD format to learn the scene hierarchy. And of course, by leveraging various modalities available to us, such as geometry and various viewport buffers. By combining our current model with such data, we can enrich the possibilities for creation.

We also plan to propose multiple completion in form of similar suggestions, so basically providing different historical use cases that other user did or how they phrased it. We also want to enable autocompletion to provide insightful suggestions as you type in, so basically knowing what would be the natural next step in your workflow.

And for now, as I mentioned earlier, the supported use cases referred to as phase 1 and extended phase 1.1 mostly cover the camera, the lighting, materials, and object manipulation, which is basically moving, using rigid transformation on these objects in the scene, or browsing these objects, or knowing where they are compared to a different hierarchy.

But in future phases, we plan to include more complex use cases, such as rendering UI layouts and, hopefully, animation and modeling. And yeah, something cool is that we already have a functional plugin available through a private beta program. So please come talk to me or reach out to get any more details on this if you're interested.

And yeah, with that, thank you very much for joining us today, and I'm now ready for your questions.

______
icon-svg-close-thick

Preferencias de cookies

Su privacidad es muy importante para nosotros y esperamos que su experiencia sea la mejor posible. Cuando recopilamos los datos sobre el uso que hace de este sitio, lo hacemos para personalizar la información y para crear aplicaciones.

¿Podemos recopilar y usar sus datos?

Obtenga más información acerca de los servicios de terceros que usamos y de nuestra Declaración de privacidad.

Estrictamente necesarias: Obligatorias para que nuestro sitio funcione y podemos ofrecerle nuestros servicios

Estas cookies nos permiten registrar sus preferencias o su información de inicio de sesión, responder a sus solicitudes o gestionar la compra de los artículos de su carrito de la compra.

Mejora de la experiencia: Nos permite mostrar la información relevante

Estas cookies nos permiten ofrecerle funcionalidades y personalización mejoradas. Las podemos establecer nosotros, asi como los proveedores terceros cuyos servicios se utilizan para proporcionar información y experiencias adaptadas a sus necesidades. Si no acepta estas cookies, es posible que todos estos servicios o parte de ellos no estén disponibles.

Personalización de la publicidad: Nos permite ofrecer publicidad dirigida

Estas cookies recopilan datos sobre usted en función de sus actividades e intereses para mostrar los anuncios relevantes y realizar un seguimiento de su eficacia. Al recopilar estos datos, los anuncios que le mostraremos se adaptarán mejor a sus intereses. Si no acepta estas cookies, la publicidad que verá será de menos interés para usted.

icon-svg-close-thick

SERVICIOS DE TERCEROS

Obtenga más información sobre los servicios de terceros que utilizamos en cada categoría, y sobre el uso que hacemos de los datos que recopilamos de usted en Internet.

icon-svg-hide-thick

icon-svg-show-thick

Estrictamente necesarias: Obligatorias para que nuestro sitio funcione y podemos ofrecerle nuestros servicios

Qualtrics
Utilizamos los servicios de Qualtrics para que pueda enviarnos sus comentarios a través de encuestas o formularios de Internet. Puede participar en una encuesta tras ser seleccionado al azar o puede decidir enviarnos sus comentarios voluntariamente. Recopilamos datos para comprender mejor la actividad que ha llevado a cabo antes de rellenar una encuesta. Esto nos ayuda a solucionar problemas que haya podido encontrar. Política de privacidad de Qualtrics
Akamai mPulse
Utilizamos los servicios de Akamai mPulse para recopilar datos acerca de su actividad en nuestros sitios. Estos datos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado, su dirección IP o ID de dispositivo, y su ID de Autodesk. Utilizamos estos datos para poder medir el rendimiento de nuestro sitio web y determinar el grado de facilidad de su experiencia en Internet a fin de mejorar nuestras características. También empleamos sistemas avanzados de análisis para optimizar su experiencia con los servicios de correo electrónico, atención al cliente y ventas. Política de privacidad de Akamai mPulse
Digital River
Utilizamos los servicios de Digital River para recopilar datos acerca de su actividad en nuestros sitios. Estos datos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado, su dirección IP o ID de dispositivo, y su ID de Autodesk. Utilizamos estos datos para poder medir el rendimiento de nuestro sitio web y determinar el grado de facilidad de su experiencia en Internet a fin de mejorar nuestras características. También empleamos sistemas avanzados de análisis para optimizar su experiencia con los servicios de correo electrónico, atención al cliente y ventas. Política de privacidad de Digital River
Dynatrace
Utilizamos los servicios de Dynatrace para recopilar datos acerca de su actividad en nuestros sitios. Estos datos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado, su dirección IP o ID de dispositivo, y su ID de Autodesk. Utilizamos estos datos para poder medir el rendimiento de nuestro sitio web y determinar el grado de facilidad de su experiencia en Internet a fin de mejorar nuestras características. También empleamos sistemas avanzados de análisis para optimizar su experiencia con los servicios de correo electrónico, atención al cliente y ventas. Política de privacidad de Dynatrace
Khoros
Utilizamos los servicios de Khoros para recopilar datos acerca de su actividad en nuestros sitios. Estos datos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado, su dirección IP o ID de dispositivo, y su ID de Autodesk. Utilizamos estos datos para poder medir el rendimiento de nuestro sitio web y determinar el grado de facilidad de su experiencia en Internet a fin de mejorar nuestras características. También empleamos sistemas avanzados de análisis para optimizar su experiencia con los servicios de correo electrónico, atención al cliente y ventas. Política de privacidad de Khoros
Launch Darkly
Utilizamos los servicios de Launch Darkly para recopilar datos acerca de su actividad en nuestros sitios. Estos datos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado, su dirección IP o ID de dispositivo, y su ID de Autodesk. Utilizamos estos datos para poder medir el rendimiento de nuestro sitio web y determinar el grado de facilidad de su experiencia en Internet a fin de mejorar nuestras características. También empleamos sistemas avanzados de análisis para optimizar su experiencia con los servicios de correo electrónico, atención al cliente y ventas. Política de privacidad de Launch Darkly
New Relic
Utilizamos los servicios de New Relic para recopilar datos acerca de su actividad en nuestros sitios. Estos datos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado, su dirección IP o ID de dispositivo, y su ID de Autodesk. Utilizamos estos datos para poder medir el rendimiento de nuestro sitio web y determinar el grado de facilidad de su experiencia en Internet a fin de mejorar nuestras características. También empleamos sistemas avanzados de análisis para optimizar su experiencia con los servicios de correo electrónico, atención al cliente y ventas. Política de privacidad de New Relic
Salesforce Live Agent
Utilizamos los servicios de Salesforce Live Agent para recopilar datos acerca de su actividad en nuestros sitios. Estos datos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado, su dirección IP o ID de dispositivo, y su ID de Autodesk. Utilizamos estos datos para poder medir el rendimiento de nuestro sitio web y determinar el grado de facilidad de su experiencia en Internet a fin de mejorar nuestras características. También empleamos sistemas avanzados de análisis para optimizar su experiencia con los servicios de correo electrónico, atención al cliente y ventas. Política de privacidad de Salesforce Live Agent
Wistia
Utilizamos los servicios de Wistia para recopilar datos acerca de su actividad en nuestros sitios. Estos datos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado, su dirección IP o ID de dispositivo, y su ID de Autodesk. Utilizamos estos datos para poder medir el rendimiento de nuestro sitio web y determinar el grado de facilidad de su experiencia en Internet a fin de mejorar nuestras características. También empleamos sistemas avanzados de análisis para optimizar su experiencia con los servicios de correo electrónico, atención al cliente y ventas. Política de privacidad de Wistia
Tealium
Utilizamos los servicios de Tealium para recopilar datos acerca de su actividad en nuestros sitios. Estos datos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado y su dirección IP o ID de dispositivo. Utilizamos estos datos para poder medir el rendimiento de nuestro sitio web y determinar el grado de facilidad de su experiencia en Internet a fin de mejorar nuestras características. También empleamos sistemas avanzados de análisis para optimizar su experiencia con los servicios de correo electrónico, atención al cliente y ventas. Política de privacidad de Tealium
Upsellit
Utilizamos los servicios de Upsellit para recopilar datos acerca de su actividad en nuestros sitios. Estos datos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado y su dirección IP o ID de dispositivo. Utilizamos estos datos para poder medir el rendimiento de nuestro sitio web y determinar el grado de facilidad de su experiencia en Internet a fin de mejorar nuestras características. También empleamos sistemas avanzados de análisis para optimizar su experiencia con los servicios de correo electrónico, atención al cliente y ventas. Política de privacidad de Upsellit
CJ Affiliates
Utilizamos los servicios de CJ Affiliates para recopilar datos acerca de su actividad en nuestros sitios. Estos datos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado y su dirección IP o ID de dispositivo. Utilizamos estos datos para poder medir el rendimiento de nuestro sitio web y determinar el grado de facilidad de su experiencia en Internet a fin de mejorar nuestras características. También empleamos sistemas avanzados de análisis para optimizar su experiencia con los servicios de correo electrónico, atención al cliente y ventas. Política de privacidad de CJ Affiliates
Commission Factory
Utilizamos los servicios de Commission Factory para recopilar datos acerca de su actividad en nuestros sitios. Estos datos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado y su dirección IP o ID de dispositivo. Utilizamos estos datos para poder medir el rendimiento de nuestro sitio web y determinar el grado de facilidad de su experiencia en Internet a fin de mejorar nuestras características. También empleamos sistemas avanzados de análisis para optimizar su experiencia con los servicios de correo electrónico, atención al cliente y ventas. Política de privacidad de Commission Factory
Google Analytics (Strictly Necessary)
Utilizamos los servicios de Google Analytics (Strictly Necessary) para recopilar datos acerca de su actividad en nuestros sitios. Estos datos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado, su dirección IP o ID de dispositivo, y su ID de Autodesk. Utilizamos estos datos para poder medir el rendimiento de nuestro sitio web y determinar el grado de facilidad de su experiencia en Internet a fin de mejorar nuestras características. También empleamos sistemas avanzados de análisis para optimizar su experiencia con los servicios de correo electrónico, atención al cliente y ventas. Política de privacidad de Google Analytics (Strictly Necessary)
Typepad Stats
Utilizamos los servicios de Typepad Stats para recopilar datos acerca de su actividad en nuestros sitios. Estos datos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado, su dirección IP o ID de dispositivo, y su ID de Autodesk. Utilizamos estos datos para poder medir el rendimiento de nuestro sitio web y determinar el grado de facilidad de su experiencia en Internet a fin de mejorar nuestras características. También empleamos sistemas avanzados de análisis para optimizar su experiencia con los servicios de correo electrónico, atención al cliente y ventas. Política de privacidad de Typepad Stats
Geo Targetly
Usamos Geo Targetly para dirigir a los visitantes del sitio web a la página web más adecuada y/u ofrecer contenido personalizado según su ubicación. Geo Targetly utiliza la dirección IP de los visitantes del sitio web para determinar la ubicación aproximada del dispositivo de los mismos. Esto ayuda a garantizar que los visitantes vean el contenido en el que probablemente es su idioma local.Política de privacidad de Geo Targetly
SpeedCurve
Utilizamos SpeedCurve para supervisar y medir el rendimiento de su experiencia con el sitio web midiendo los tiempos de carga de la página web, así como la capacidad de respuesta de elementos posteriores como imágenes, secuencias de comandos y texto.Política de privacidad de SpeedCurve
Qualified
Qualified is the Autodesk Live Chat agent platform. This platform provides services to allow our customers to communicate in real-time with Autodesk support. We may collect unique ID for specific browser sessions during a chat. Qualified Privacy Policy

icon-svg-hide-thick

icon-svg-show-thick

Mejora de la experiencia: Nos permite mostrar la información relevante

Google Optimize
Utilizamos los servicios de Google Optimize para probar nuevas características en nuestros sitios y ofrecerle una experiencia personalizada con esas características. Para ello, recopilamos datos de comportamiento mientras visita nuestros sitios. Estos datos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado, su dirección IP o ID de dispositivo, y su ID de Autodesk, entre otros. Puede que acceda a una versión diferente de nuestros sitios debido a las pruebas de características que hacemos, o que vea contenido personalizado en función de su perfil de visitante. Política de privacidad de Google Optimize
ClickTale
Utilizamos los servicios de ClickTale para entender mejor en qué áreas de nuestros sitios puede experimentar problemas. Grabamos las sesiones para ver cómo interactúa con nuestros sitios, incluido cualquier elemento de las páginas. Su información personal identificable se enmascara y no se recopila. Política de privacidad de ClickTale
OneSignal
Utilizamos los servicios de OneSignal para mostrar publicidad digital en sitios respaldados por OneSignal. Los anuncios se basan tanto en datos de OneSignal como en datos de comportamiento que recopilamos mientras visita nuestros sitios. Los datos que recopilamos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado y su dirección IP o ID de dispositivo. Esta información puede combinarse con los datos que OneSignal haya recopilado de usted. Utilizamos los datos que suministramos a OneSignal para personalizar aún más su experiencia con la publicidad digital y mostrarle anuncios más relevantes. Política de privacidad de OneSignal
Optimizely
Utilizamos los servicios de Optimizely para probar nuevas características en nuestros sitios y ofrecerle una experiencia personalizada con esas características. Para ello, recopilamos datos de comportamiento mientras visita nuestros sitios. Estos datos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado, su dirección IP o ID de dispositivo, y su ID de Autodesk, entre otros. Puede que acceda a una versión diferente de nuestros sitios debido a las pruebas de características que hacemos, o que vea contenido personalizado en función de su perfil de visitante. Política de privacidad de Optimizely
Amplitude
Utilizamos los servicios de Amplitude para probar nuevas características en nuestros sitios y ofrecerle una experiencia personalizada con esas características. Para ello, recopilamos datos de comportamiento mientras visita nuestros sitios. Estos datos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado, su dirección IP o ID de dispositivo, y su ID de Autodesk, entre otros. Puede que acceda a una versión diferente de nuestros sitios debido a las pruebas de características que hacemos, o que vea contenido personalizado en función de su perfil de visitante. Política de privacidad de Amplitude
Snowplow
Utilizamos los servicios de Snowplow para recopilar datos acerca de su actividad en nuestros sitios. Estos datos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado, su dirección IP o ID de dispositivo, y su ID de Autodesk. Utilizamos estos datos para poder medir el rendimiento de nuestro sitio web y determinar el grado de facilidad de su experiencia en Internet a fin de mejorar nuestras características. También empleamos sistemas avanzados de análisis para optimizar su experiencia con los servicios de correo electrónico, atención al cliente y ventas. Política de privacidad de Snowplow
UserVoice
Utilizamos los servicios de UserVoice para recopilar datos acerca de su actividad en nuestros sitios. Estos datos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado, su dirección IP o ID de dispositivo, y su ID de Autodesk. Utilizamos estos datos para poder medir el rendimiento de nuestro sitio web y determinar el grado de facilidad de su experiencia en Internet a fin de mejorar nuestras características. También empleamos sistemas avanzados de análisis para optimizar su experiencia con los servicios de correo electrónico, atención al cliente y ventas. Política de privacidad de UserVoice
Clearbit
Clearbit permite el enriquecimiento de datos en tiempo real para proporcionar una experiencia personalizada y relevante a nuestros clientes. Los datos que recopilamos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado y su dirección IP o ID de dispositivo. Política de privacidad de Clearbit
YouTube
YouTube es una plataforma de uso compartido de videos que permite a los usuarios ver y compartir vídeos insertados en nuestros sitios web. YouTube proporciona métricas de audiencia sobre el rendimiento de los vídeos. Política de privacidad de YouTube

icon-svg-hide-thick

icon-svg-show-thick

Personalización de la publicidad: Nos permite ofrecer publicidad dirigida

Adobe Analytics
Utilizamos los servicios de Adobe Analytics para recopilar datos acerca de su actividad en nuestros sitios. Estos datos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado, su dirección IP o ID de dispositivo, y su ID de Autodesk. Utilizamos estos datos para poder medir el rendimiento de nuestro sitio web y determinar el grado de facilidad de su experiencia en Internet a fin de mejorar nuestras características. También empleamos sistemas avanzados de análisis para optimizar su experiencia con los servicios de correo electrónico, atención al cliente y ventas. Política de privacidad de Adobe Analytics
Google Analytics (Web Analytics)
Utilizamos los servicios de Google Analytics (Web Analytics) para recopilar datos acerca de su actividad en nuestros sitios. Estos datos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado y su dirección IP o ID de dispositivo. Utilizamos estos datos para poder medir el rendimiento de nuestro sitio web y determinar el grado de facilidad de su experiencia en Internet a fin de mejorar nuestras características. También empleamos sistemas avanzados de análisis para optimizar su experiencia con los servicios de correo electrónico, atención al cliente y ventas. Política de privacidad de Google Analytics (Web Analytics)
AdWords
Utilizamos los servicios de AdWords para mostrar publicidad digital en sitios respaldados por AdWords. Los anuncios se basan tanto en datos de AdWords como en datos de comportamiento que recopilamos mientras visita nuestros sitios. Los datos que recopilamos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado y su dirección IP o ID de dispositivo. Esta información puede combinarse con los datos que AdWords haya recopilado de usted. Utilizamos los datos que suministramos a AdWords para personalizar aún más su experiencia con la publicidad digital y mostrarle anuncios más relevantes. Política de privacidad de AdWords
Marketo
Utilizamos los servicios de Marketo para enviarle contenido más relevante y oportuno por correo electrónico. Para ello, recopilamos datos sobre su actividad en Internet y el modo en que interactúa con los correos electrónicos que enviamos. Los datos recopilados pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado, su dirección IP o ID de dispositivo, la tasa de apertura de correos y los vínculos seleccionados, entre otros. Puede que combinemos estos datos con datos obtenidos a través de otras fuentes a fin de mejorar su experiencia de compra o con el servicio de atención al cliente, además de ofrecerle contenido más relevante en función de procesos avanzados de análisis. Política de privacidad de Marketo
Doubleclick
Utilizamos los servicios de Doubleclick para mostrar publicidad digital en sitios respaldados por Doubleclick. Los anuncios se basan tanto en datos de Doubleclick como en datos de comportamiento que recopilamos mientras visita nuestros sitios. Los datos que recopilamos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado y su dirección IP o ID de dispositivo. Esta información puede combinarse con los datos que Doubleclick haya recopilado de usted. Utilizamos los datos que suministramos a Doubleclick para personalizar aún más su experiencia con la publicidad digital y mostrarle anuncios más relevantes. Política de privacidad de Doubleclick
HubSpot
Utilizamos los servicios de HubSpot para enviarle contenido más relevante y oportuno por correo electrónico. Para ello, recopilamos datos sobre su actividad en Internet y el modo en que interactúa con los correos electrónicos que enviamos. Los datos recopilados pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado, su dirección IP o ID de dispositivo, la tasa de apertura de correos y los vínculos seleccionados, entre otros. Política de privacidad de HubSpot
Twitter
Utilizamos los servicios de Twitter para mostrar publicidad digital en sitios respaldados por Twitter. Los anuncios se basan tanto en datos de Twitter como en datos de comportamiento que recopilamos mientras visita nuestros sitios. Los datos que recopilamos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado y su dirección IP o ID de dispositivo. Esta información puede combinarse con los datos que Twitter haya recopilado de usted. Utilizamos los datos que suministramos a Twitter para personalizar aún más su experiencia con la publicidad digital y mostrarle anuncios más relevantes. Política de privacidad de Twitter
Facebook
Utilizamos los servicios de Facebook para mostrar publicidad digital en sitios respaldados por Facebook. Los anuncios se basan tanto en datos de Facebook como en datos de comportamiento que recopilamos mientras visita nuestros sitios. Los datos que recopilamos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado y su dirección IP o ID de dispositivo. Esta información puede combinarse con los datos que Facebook haya recopilado de usted. Utilizamos los datos que suministramos a Facebook para personalizar aún más su experiencia con la publicidad digital y mostrarle anuncios más relevantes. Política de privacidad de Facebook
LinkedIn
Utilizamos los servicios de LinkedIn para mostrar publicidad digital en sitios respaldados por LinkedIn. Los anuncios se basan tanto en datos de LinkedIn como en datos de comportamiento que recopilamos mientras visita nuestros sitios. Los datos que recopilamos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado y su dirección IP o ID de dispositivo. Esta información puede combinarse con los datos que LinkedIn haya recopilado de usted. Utilizamos los datos que suministramos a LinkedIn para personalizar aún más su experiencia con la publicidad digital y mostrarle anuncios más relevantes. Política de privacidad de LinkedIn
Yahoo! Japan
Utilizamos los servicios de Yahoo! Japan para mostrar publicidad digital en sitios respaldados por Yahoo! Japan. Los anuncios se basan tanto en datos de Yahoo! Japan como en datos de comportamiento que recopilamos mientras visita nuestros sitios. Los datos que recopilamos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado y su dirección IP o ID de dispositivo. Esta información puede combinarse con los datos que Yahoo! Japan haya recopilado de usted. Utilizamos los datos que suministramos a Yahoo! Japan para personalizar aún más su experiencia con la publicidad digital y mostrarle anuncios más relevantes. Política de privacidad de Yahoo! Japan
Naver
Utilizamos los servicios de Naver para mostrar publicidad digital en sitios respaldados por Naver. Los anuncios se basan tanto en datos de Naver como en datos de comportamiento que recopilamos mientras visita nuestros sitios. Los datos que recopilamos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado y su dirección IP o ID de dispositivo. Esta información puede combinarse con los datos que Naver haya recopilado de usted. Utilizamos los datos que suministramos a Naver para personalizar aún más su experiencia con la publicidad digital y mostrarle anuncios más relevantes. Política de privacidad de Naver
Quantcast
Utilizamos los servicios de Quantcast para mostrar publicidad digital en sitios respaldados por Quantcast. Los anuncios se basan tanto en datos de Quantcast como en datos de comportamiento que recopilamos mientras visita nuestros sitios. Los datos que recopilamos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado y su dirección IP o ID de dispositivo. Esta información puede combinarse con los datos que Quantcast haya recopilado de usted. Utilizamos los datos que suministramos a Quantcast para personalizar aún más su experiencia con la publicidad digital y mostrarle anuncios más relevantes. Política de privacidad de Quantcast
Call Tracking
Utilizamos los servicios de Call Tracking para proporcionar números de teléfono personalizados como parte de nuestras campañas. De este modo, podrá acceder más rápido a nuestros agentes y ayudarnos a medir mejor nuestro rendimiento. Puede que recopilemos datos acerca de su actividad en nuestros sitios en función del número de teléfono facilitado. Política de privacidad de Call Tracking
Wunderkind
Utilizamos los servicios de Wunderkind para mostrar publicidad digital en sitios respaldados por Wunderkind. Los anuncios se basan tanto en datos de Wunderkind como en datos de comportamiento que recopilamos mientras visita nuestros sitios. Los datos que recopilamos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado y su dirección IP o ID de dispositivo. Esta información puede combinarse con los datos que Wunderkind haya recopilado de usted. Utilizamos los datos que suministramos a Wunderkind para personalizar aún más su experiencia con la publicidad digital y mostrarle anuncios más relevantes. Política de privacidad de Wunderkind
ADC Media
Utilizamos los servicios de ADC Media para mostrar publicidad digital en sitios respaldados por ADC Media. Los anuncios se basan tanto en datos de ADC Media como en datos de comportamiento que recopilamos mientras visita nuestros sitios. Los datos que recopilamos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado y su dirección IP o ID de dispositivo. Esta información puede combinarse con los datos que ADC Media haya recopilado de usted. Utilizamos los datos que suministramos a ADC Media para personalizar aún más su experiencia con la publicidad digital y mostrarle anuncios más relevantes. Política de privacidad de ADC Media
AgrantSEM
Utilizamos los servicios de AgrantSEM para mostrar publicidad digital en sitios respaldados por AgrantSEM. Los anuncios se basan tanto en datos de AgrantSEM como en datos de comportamiento que recopilamos mientras visita nuestros sitios. Los datos que recopilamos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado y su dirección IP o ID de dispositivo. Esta información puede combinarse con los datos que AgrantSEM haya recopilado de usted. Utilizamos los datos que suministramos a AgrantSEM para personalizar aún más su experiencia con la publicidad digital y mostrarle anuncios más relevantes. Política de privacidad de AgrantSEM
Bidtellect
Utilizamos los servicios de Bidtellect para mostrar publicidad digital en sitios respaldados por Bidtellect. Los anuncios se basan tanto en datos de Bidtellect como en datos de comportamiento que recopilamos mientras visita nuestros sitios. Los datos que recopilamos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado y su dirección IP o ID de dispositivo. Esta información puede combinarse con los datos que Bidtellect haya recopilado de usted. Utilizamos los datos que suministramos a Bidtellect para personalizar aún más su experiencia con la publicidad digital y mostrarle anuncios más relevantes. Política de privacidad de Bidtellect
Bing
Utilizamos los servicios de Bing para mostrar publicidad digital en sitios respaldados por Bing. Los anuncios se basan tanto en datos de Bing como en datos de comportamiento que recopilamos mientras visita nuestros sitios. Los datos que recopilamos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado y su dirección IP o ID de dispositivo. Esta información puede combinarse con los datos que Bing haya recopilado de usted. Utilizamos los datos que suministramos a Bing para personalizar aún más su experiencia con la publicidad digital y mostrarle anuncios más relevantes. Política de privacidad de Bing
G2Crowd
Utilizamos los servicios de G2Crowd para mostrar publicidad digital en sitios respaldados por G2Crowd. Los anuncios se basan tanto en datos de G2Crowd como en datos de comportamiento que recopilamos mientras visita nuestros sitios. Los datos que recopilamos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado y su dirección IP o ID de dispositivo. Esta información puede combinarse con los datos que G2Crowd haya recopilado de usted. Utilizamos los datos que suministramos a G2Crowd para personalizar aún más su experiencia con la publicidad digital y mostrarle anuncios más relevantes. Política de privacidad de G2Crowd
NMPI Display
Utilizamos los servicios de NMPI Display para mostrar publicidad digital en sitios respaldados por NMPI Display. Los anuncios se basan tanto en datos de NMPI Display como en datos de comportamiento que recopilamos mientras visita nuestros sitios. Los datos que recopilamos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado y su dirección IP o ID de dispositivo. Esta información puede combinarse con los datos que NMPI Display haya recopilado de usted. Utilizamos los datos que suministramos a NMPI Display para personalizar aún más su experiencia con la publicidad digital y mostrarle anuncios más relevantes. Política de privacidad de NMPI Display
VK
Utilizamos los servicios de VK para mostrar publicidad digital en sitios respaldados por VK. Los anuncios se basan tanto en datos de VK como en datos de comportamiento que recopilamos mientras visita nuestros sitios. Los datos que recopilamos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado y su dirección IP o ID de dispositivo. Esta información puede combinarse con los datos que VK haya recopilado de usted. Utilizamos los datos que suministramos a VK para personalizar aún más su experiencia con la publicidad digital y mostrarle anuncios más relevantes. Política de privacidad de VK
Adobe Target
Utilizamos los servicios de Adobe Target para probar nuevas características en nuestros sitios y ofrecerle una experiencia personalizada con esas características. Para ello, recopilamos datos de comportamiento mientras visita nuestros sitios. Estos datos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado, su dirección IP o ID de dispositivo, y su ID de Autodesk, entre otros. Puede que acceda a una versión diferente de nuestros sitios debido a las pruebas de características que hacemos, o que vea contenido personalizado en función de su perfil de visitante. Política de privacidad de Adobe Target
Google Analytics (Advertising)
Utilizamos los servicios de Google Analytics (Advertising) para mostrar publicidad digital en sitios respaldados por Google Analytics (Advertising). Los anuncios se basan tanto en datos de Google Analytics (Advertising) como en datos de comportamiento que recopilamos mientras visita nuestros sitios. Los datos que recopilamos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado y su dirección IP o ID de dispositivo. Esta información puede combinarse con los datos que Google Analytics (Advertising) haya recopilado de usted. Utilizamos los datos que suministramos a Google Analytics (Advertising) para personalizar aún más su experiencia con la publicidad digital y mostrarle anuncios más relevantes. Política de privacidad de Google Analytics (Advertising)
Trendkite
Utilizamos los servicios de Trendkite para mostrar publicidad digital en sitios respaldados por Trendkite. Los anuncios se basan tanto en datos de Trendkite como en datos de comportamiento que recopilamos mientras visita nuestros sitios. Los datos que recopilamos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado y su dirección IP o ID de dispositivo. Esta información puede combinarse con los datos que Trendkite haya recopilado de usted. Utilizamos los datos que suministramos a Trendkite para personalizar aún más su experiencia con la publicidad digital y mostrarle anuncios más relevantes. Política de privacidad de Trendkite
Hotjar
Utilizamos los servicios de Hotjar para mostrar publicidad digital en sitios respaldados por Hotjar. Los anuncios se basan tanto en datos de Hotjar como en datos de comportamiento que recopilamos mientras visita nuestros sitios. Los datos que recopilamos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado y su dirección IP o ID de dispositivo. Esta información puede combinarse con los datos que Hotjar haya recopilado de usted. Utilizamos los datos que suministramos a Hotjar para personalizar aún más su experiencia con la publicidad digital y mostrarle anuncios más relevantes. Política de privacidad de Hotjar
6 Sense
Utilizamos los servicios de 6 Sense para mostrar publicidad digital en sitios respaldados por 6 Sense. Los anuncios se basan tanto en datos de 6 Sense como en datos de comportamiento que recopilamos mientras visita nuestros sitios. Los datos que recopilamos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado y su dirección IP o ID de dispositivo. Esta información puede combinarse con los datos que 6 Sense haya recopilado de usted. Utilizamos los datos que suministramos a 6 Sense para personalizar aún más su experiencia con la publicidad digital y mostrarle anuncios más relevantes. Política de privacidad de 6 Sense
Terminus
Utilizamos los servicios de Terminus para mostrar publicidad digital en sitios respaldados por Terminus. Los anuncios se basan tanto en datos de Terminus como en datos de comportamiento que recopilamos mientras visita nuestros sitios. Los datos que recopilamos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado y su dirección IP o ID de dispositivo. Esta información puede combinarse con los datos que Terminus haya recopilado de usted. Utilizamos los datos que suministramos a Terminus para personalizar aún más su experiencia con la publicidad digital y mostrarle anuncios más relevantes. Política de privacidad de Terminus
StackAdapt
Utilizamos los servicios de StackAdapt para mostrar publicidad digital en sitios respaldados por StackAdapt. Los anuncios se basan tanto en datos de StackAdapt como en datos de comportamiento que recopilamos mientras visita nuestros sitios. Los datos que recopilamos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado y su dirección IP o ID de dispositivo. Esta información puede combinarse con los datos que StackAdapt haya recopilado de usted. Utilizamos los datos que suministramos a StackAdapt para personalizar aún más su experiencia con la publicidad digital y mostrarle anuncios más relevantes. Política de privacidad de StackAdapt
The Trade Desk
Utilizamos los servicios de The Trade Desk para mostrar publicidad digital en sitios respaldados por The Trade Desk. Los anuncios se basan tanto en datos de The Trade Desk como en datos de comportamiento que recopilamos mientras visita nuestros sitios. Los datos que recopilamos pueden incluir páginas que haya visitado, versiones de prueba que haya iniciado, vídeos que haya reproducido, compras que haya efectuado y su dirección IP o ID de dispositivo. Esta información puede combinarse con los datos que The Trade Desk haya recopilado de usted. Utilizamos los datos que suministramos a The Trade Desk para personalizar aún más su experiencia con la publicidad digital y mostrarle anuncios más relevantes. Política de privacidad de The Trade Desk
RollWorks
We use RollWorks to deploy digital advertising on sites supported by RollWorks. Ads are based on both RollWorks data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that RollWorks has collected from you. We use the data that we provide to RollWorks to better customize your digital advertising experience and present you with more relevant ads. RollWorks Privacy Policy

¿Está seguro de que desea disfrutar de una experiencia limitada en Internet?

Nos gustaría proporcionarle una experiencia óptima. Si selecciona “Sí” para las categorías que aparecían en la pantalla anterior, recopilaremos y utilizaremos sus datos para personalizar su experiencia y desarrollar mejores aplicaciones. Para cambiar su configuración en cualquier momento, consulte nuestra declaración de privacidad

Su experiencia. Su elección.

Nos importa su privacidad. Los datos que recopilamos nos ayudan a comprender la forma en que se usan nuestros productos, la información que le podría interesar y lo que podemos mejorar para que su interacción con Autodesk le resulte más provechosa.

¿Podemos recopilar y usar sus datos para adaptar su experiencia?

Explore las ventajas de una experiencia personalizada mediante la administración de la configuración de privacidad de este sitio o visite nuestra Declaración de privacidad para conocer mejor las distintas opciones.