AU Class
AU Class
class - AU

Addressing the Productivity Crisis in Construction

このクラスを共有
ビデオ、プレゼンテーション スライド、配布資料のキーワードを検索する:

説明

The productivity crisis is well known, and numerous industry reports identify the issues and scale of the opportunity. Boosting productivity is the greatest chance the sector has to transform itself—it’s the one lever that would automatically help address sustainability, the skills gap, rising costs, and pressure on resources. This session will cover dramatic advances in business outcomes that are now being made by combining technologies. Algorithmic and computational design, industrialized construction, use of robotics, and on-site automation are being deployed together, already demonstrating how schedules can be halved using far fewer operatives, achieving higher quality and safety, with lower carbon. However, this has required new relationships and procurement strategies. As well as showing real-world examples, this session will also consider how roles, business models, incentives, and value propositions will need to adapt if the industry is to make the necessary change.

主な学習内容

  • Learn about what productivity really means in construction, and why comparisons to, for example, manufacturing aren't always relevant.
  • See which approaches, digital tools, and automation technologies are having the greatest impact in transforming outcomes.
  • Learn about procurement approaches, risk management, and delivery models that are bringing clients closer to their supply chains.
  • Have a better understanding of how the future of construction will need to be shaped, and who the key players will need to be.

スピーカー

  • Jaimie Johnston MBE さんのアバター
    Jaimie Johnston MBE
    Jaimie joined Bryden Wood – an integrated practice of architects, analysts, engineers, creative technologists and industrial designers – shortly after its formation in 1995. Jaimie leads the application of systems to the delivery and operation of high performing assets. This includes design for manufacture and assembly (DfMA) solutions and new data-led, digital workflows for government and private sector clients in the UK, US, Europe and Asia. Jaimie was the co-author of the benchmark strategy documents, ‘Delivery Platforms for Government Assets’, and ‘Platforms: Bridging the gap between construction + manufacturing’. These have been adopted as a foundation for the UK Government’s initiative to create a more productive, value-driven construction sector. Jaimie is the Design Lead for the Construction Innovation Hub, which was established to drive innovation and technological advances in the UK construction and infrastructure sectors. In June 2021 Jaimie was awarded an MBE for Services to Construction.
Video Player is loading.
Current Time 0:00
Duration 35:25
Loaded: 0.47%
Stream Type LIVE
Remaining Time 35:25
 
1x
  • Chapters
  • descriptions off, selected
  • en (Main), selected
Transcript

JAIMIE JOHNSTON: Hi, all. My name is Jamie Johnston. I'm a board director at Bryden Wood who are an integrated design consultancy. And I'm going to be talking about addressing the productivity crisis in construction. So I'm sure most people have probably seen this slide. It was published as part of one of the McKinsey reports a few years ago. And it shows how productivity has dramatically increased in almost every other sector apart from construction.

And quite rightly, construction gives itself a hard time about this. And it's definitely one of the things that, as an industry, we need to address. But there's something quite interesting in this graph. If you look at how they actually measure it, it's the value add per employee. So you take some raw material, you process it, you turn it into a product, and the cost difference defines the productivity.

So certain sectors have had a massive leg up because traditionally, things like oil and gas or pharmaceuticals couldn't help but be highly productive. They took relatively low cost feedstock, processed it, turned into things that are much more expensive. And so they've traditionally had a massive leg up in terms of productivity. So we don't quite have that benefit.

So whilst there is definitely enormous benefit in being more productive and McKinsey in one of their other reports said there's a potentially 5 to 10 times boost available if we could become more like manufacturing, there's certain things that mean we can't simply copy manufacturing. And construction will probably never look like manufacturing. So I'm going to explore some of the blockers and what are some of the things that we've been doing, certainly in the UK, and increasingly, North America now, to try and shift into this much more manufacturing style production system as McKinsey call it.

So the first or obvious question, why aren't we more like manufacturing? So industry has been talking about this for decades. There are definitely some blockers that we need to address at first. So the key one is repeatability.

So I'm sure everyone knows, every construction project typically is a prototype. So we form a new design team. They develop a design from first principles. We deliver a project. If there's any learning, it doesn't typically get disseminated because that team gets disbanded and move on to another project.

The first thing that automotive did to really get the hang of this was get the hang of repeatability. So prior to Henry Ford and the Model-T Ford, every car was a handmade, luxury, bespoke item, much like construction. The key thing that Ford did was say, well, if we made them all the same, suddenly productivity gets much higher because repeatability of processes, of components, of the whole system is what's going to start to unleash this.

The first thing automotive did was get the hang of repeatability. That's going to be absolutely crucial for us. This is a mental picture that lots of people have of the future of construction. So I think people tend to imagine we'll replicate manufacturing. We'll have six-axis robots making components. I'm not sure that's ever going to be quite true.

So there's an interesting thing, I think, in manufacturing that typically the process is bigger than the products. If you're making a phone or a car or something, you can have a process which is bigger than the component you're making. Buildings aren't like. That they're typically much bigger scale.

We're not going to have 200-story high, six-axis robots making buildings. So there's definitely a place for automation, but it's probably not as much in the factory space as certain people think. The obvious exception to that big in the process or big in the product is aerospace where a Boeing 777 is the size of a building, but it costs about $200 million.

So the other blocker is cost density. So buildings are mostly air and commodity materials. If you had a cubic meter of iPhones, it would be worth about $14 million. A cubic meter of concrete is about $150. There's about 100,000 times more cost density in an iPhone than concrete.

And that's quite an extreme example. But again, it tells you something about what we should be doing. So trying to move everything into a factory, if you take a very low-cost material, handle it a bunch of times in the factory, and bring it to site, you've actually massively increase the cost without necessarily increasing the value to the end user. So these sort of combinations of trying to be more repeatable, working out what to place in factories and what not to put in factories, and how to get automation properly on a construction site to manage these things-- that's where we think this is going to head. And that's why probably construction never quite looks like manufacturing.

So the approach that's been taken, particularly in the UK and particularly driven by central government is to stop thinking about individual programs or projects and start thinking much more broadly. So I talked about that repeatability point earlier-- the fact that every sector focuses on why it's special, why it's different, that's a huge blocker. What we started to do here was say, well, if you look for commonality across sectors, started to identify common kits of parts, that's how you might start to address some of these things and how you might start to make this shift.

Probably the best example of an existing platform is IKEA. So everyone knows when you go to IKEA, the interfaces are the same. The process is always the same. The book's always the same. You only ever need a hex key and a screwdriver.

So IKEA has taken all furniture, it's boiled it down into a very small number of repeatable components and processes, and it means that whatever you're making, whether it's a bed or a chest of drawers or a bookshelf or a kitchen cupboards, you're always using the same components, the same process, the same tools. And thus, that's transformed the furniture industry from something that was quite bespoke, quite handmade, quite trade-intensive like construction, suddenly, they completely deskilled it and almost anyone can make furniture now.

So the platform thinking was, what does that look like for construction? Could we get down to small number of components and processes and start to massively repeat them? So this is the terminology the UK government used. I did a talk on this at AU last year. I'll put a load of links in the class handout that have all the previous documents that we've spoken about.

But the key principle was this idea of looking for commonality. So to give you an example, lots of buildings have about an 8-meter span. That's because, at the height of the person, you can get natural light about 8 meters into a building. And that's why schools and healthcare wards and apartment buildings have quite common structural spans. It's nothing to do with sector. It's everything to do with people.

So the thinking started to say, well, if you could identify more of those repeatable features, it would reveal a kit of parts that would reveal the things that you could start to do across sectors. And suddenly, you get into the sorts of numbers that manufacturing likes. That's how you start to make this big shift into a much more manufacturing-like industry. If you had that, you'd then have a library of digital components that could be configured by design teams on the right-hand side.

If you had the rule for those components, you could probably automate that. So on the right-hand side, you start to get into autoconfiguration. You start to get into higher productivity in the design phase without necessarily relinquishing any kind of site specificity or quality of design. On the left-hand side of this diagram, you then have your physical components, which could be manufactured by a broad diverse supply chain, assembled by teams of people.

So it's not mechanics or engineers who make cars anymore. It's people who have been trained to assemble components. Again, you start to deploy automation, and this is how you start to get a more productive process through the design, manufacture, and assembly process, again, without reducing the quality of the design while still getting quite site-specific assets. So we've been developing a number of these platforms now-- the numbers we use just to describe the kind of spanning characteristics.

So platform naught, which is our low-cost, rapid accommodation. Platform 1 is cellular accommodation for things like cells for the Ministry of Justice here. It's for single-living accommodation for the army, student accommodation. Platform 2 is our mid-span, up to 8-meter platform that we've used for education, healthcare, residential. Platform 3 I'm going to show you an example of is the next scale up. It does a 9-by-9-meter grid.

Platform 4 is for much bigger span-- sheds for distribution warehouses, those sorts of things. But one of the key things for us is that we use the same components and the same processes across a whole range of these. So I talked earlier about IKEA using the same components for beds and chests of drawers and wardrobes. We use the same components for schools and healthcare facilities in offices.

What it means is as soon as we've learnt something in one sector, we can almost instantly deploy it in other sectors, which means all of these sectors are moving much, much quicker. All of the learning from one project gets built back into that digital kit of parts, physical kit of parts, and improved upon for the next project. So this is how we get into that continuous improvement cycle that manufacturing's been so good at.

So one of the things that's allowed manufacturing to keep getting better and better is the accumulation of loads of incremental gains. So every component gets slightly better. Every assembly process gets slightly better. And over decades, that adds up to enormous improvements in productivity. So I mentioned that repeatability thing earlier. This is why we've never been able to get into that continuous improvement because construction has typically constant reinvention.

So by having a more stable kit of parts, a more repeatable set of assembly processes, this is how we start to really over time improve these. And this is how we start to move learning between sectors very quickly. And this is potentially how we start to shift the entire industry.

So I'm going to show you what this looks like in practice. Again, I've spoke a little bit about this project last year. So this is an update. The project is nearly complete now.

It's an office block, commercial office, that we've done for a client called Landsec. They're the biggest private developer in the UK. This building was actually designed traditionally, initially, got planning consent, and then we retrofitted a platform kit of parts to this building. So you can see here, it's very, very site-specific.

So the quality of the design is very responsive to its context. The site is actually between Tate Modern and The Shard if you know London. It's opposite St Paul's Cathedral on the south of the river. It's a very high-profile site, lots of very high-profile neighbors and stakeholders. So we couldn't have a design which was not high quality on this site.

So I think that's a sort of proof point for platforms that we've, again, not compromised the quality of design, but we've used a kit of parts that we've developed in other sectors, applied it to this building, and I'll show you some of the metrics we're getting out of it. So we broadly focused on superstructure, facade, mechanical electrical systems, and fit out.

You'll see for us, we've got superstructure in the middle of this diagram not because it's the biggest cost element, by any means, but it's the enabler of these other things. So you can already buy perfect millimeter perfect facade systems. You can already buy prefabricated mechanical electrical systems.

What we were seeing is that the benefit of that prefabrication gets massively diluted if you bring a millimeter perfect thing to site and you have to interface it with a traditionally built superstructure, which can be plus or minus two, three inches in terms of location of columns and things. So what we were seeing was lots of these potentially very prefabricated systems were never achieving their full potential benefit because of the time taken to measure and fill in the gaps between the manufactured thing and the traditionally built thing.

So we said, if we can get the superstructure to be super quick, super accurate, then it's really believable that everything else kind of installs the kit of parts. So again, it's exactly what automotive does. So they take a single sheet of metal, it gets pressed in a huge stamp. It turns it into the car chassis, and that's then the structure and the setting out and the carrier frame for all these other components that then get assembled onto it.

So if you think about the superstructure as your car chassis, it's a carrier frame for all these other systems. That's where we put the most effort, and it enables all these other things that are already happening out in the industry. So this is obviously time lapse of the building going together. What you'll notice here is firstly, the site's incredibly constrained.

Central London site-- there's virtually no laydown space. And so having this prekitted kit of parts. Think of your IKEA wardrobe. When it turns up, it's in a box. You can take it straight into the house. You don't build it in the garden or the garage. You actually take your kit of parts to point of view. So logistically very controlled site. You can see the speed. Obviously, sped up, but you get a sense of how fast these components are coming together. And again, this is our first iteration of construction as manufacturing.

So to take you through those key components, the superstructure, the facade, the MEP, I'll show you how we assemble them and I'll show you some really interesting metrics that started to come out from this project. So the superstructure was actually 90% of it, 80% of it was using a kit of parts we originally developed for the Ministry of Justice.

So I talked earlier about this idea of transferring things between sectors. We developed a very lean kit of parts for Justice primarily for their mid-span buildings of their education buildings, their healthcare buildings, some of their offices, added one component to get these bigger spans. And we've already taken a thing which developed for the public sector, given it to the private sector who have now picked it up and refined the design and have moved it forward.

And the next thing we'll be doing is handing back all of the benefits from the Landsec project back into the public sector for the next iteration of public-sector buildings. So we took a kit of parts we'd previously developed. I mentioned earlier that digital library of the components. So because we had all of the components already modeled, in many instances, we didn't actually need to draw them.

So we were able to send our files directly to the supply chain. So this is a place where I think robotics has a part to play. It's not in the construction of entire assets, but it's probably in the fabrication of these highly repeatable components. So we literally sent our files to the supply chain. They were laser cut, laser welded, robotically welded, which means that they're submillimeter accurate. They're incredibly precise. And again, this is how we start to get this accuracy that's currently lacking in construction.

So then on site, this was our prototyping facility, but this is how we deliver the building. We were then looking to see whether we could take the construction process and, again, like IKEA, turn it into a very simple set of very repeatable tasks. So you'll see here very few people. We're measuring things in minutes. All of these assembly tasks are very, very straightforward.

They're all very repeatable because they're using laser cut components. They're are all super accurate. And this was looking to see whether we could install the entire superstructure from the floor below. So if we could build a superstructure without ever needing to work at height. So slip, trips, and falls are still one of the biggest health and safety risks. We thought if we could remove that and turn the whole process into something you do from the floor below, you get much safer working, much more productive working, and you can see here with a handful of people, a little bit of automation, not six-axis robots, these are pieces of equipment that are common in the distribution warehouse logistics industry.

We've just appropriated that technology. And it shows that you can potentially build a building half as quick with half the number of people. We also prototyped it. So you can see this was our prototyping center. So again, a thing that manufacturing does very well, it tests things, iterates things, refines them before it puts them into a line environment.

So by the time we arrived at the construction site, this process was well understood, the metrics were well understood. We knew how to put these components together very, very quickly. Some of the benefits that came out of that because of the repeatability of the individual components, we could put an awful lot of effort into optimizing each component and the system as a whole.

So one part of that was we took out an awful lot of materials. So there's 30% less embodied carbon in the building. Because of the prekitting, the logistics was very, very highly controlled, as you saw from that time lapse. And the overall impact was, for this project, we took out 30% of the carbon. It's the first commercial building in the UK to be certified by the UK Green Building Council as net zero in embodied and operational carbon.

And we're on track to get a five-star rating on the Neighbors UK scheme. So enormous sustainability benefits. And again, you imagine multiplying the scale of that benefit by the scale of the UK public sector. You can see how this approach could dramatically address some of our big climate crisis issues.

We then had a team led by Dr. Danny Murgia at the University of Cambridge. So we had a number of PhD students crawling all over this project. So they had access to the site eye. They had access to all the Gantt charts, the day records of what happened, people's time sheets. So they were able to break down what happened and start to really dig into what happened on site and what could have happened on site.

So normally, of course, on a construction project, there's so much noise it's very hard to actually see what's happening and definitely to tell what could have happened. The enormous benefit here was because we have this repeatable kit of parts and we have these repeatable processes, we can actually measure things quite accurately. And we could see in quite a lot of detail what was happening on different floors with the different activities and actually how the project was unfolding as it got built.

So of the two buildings, you can see here that's the visualization. Block A was the bigger building. We focused on that because it had the biggest chance of getting people into a flow of activity. So these are the average rates we got on this project. So the productivity, about 330 pounds an hour. Install was about half a square meter per operative hour in terms of the superstructure.

So we had a benchmark of typically how the project was performing, which was probably slightly better than traditional construction. Not surprising, particularly, given that this is the first project where some of these things have been brought to bear. So we're expecting a learning curve. We're expecting to at least do as well as traditional construction, but hopefully, show that if done consistently, this approach would have dramatic impact, which is what we found.

So looking at the individual levels of the building. Level three was one of the bigger levels. It was the second level using the proper platform kit of parts. So the initial learning curve has been achieved. We're starting to get consistency.

The floor plates actually get smaller as we go up the building, which is why the numbers drop. But level three gave you an insight into what was very, very definitely achievable with a bit of practice. The really interesting thing, it showed that had that level of productivity being maintained, you could potentially have built the building 40% quicker. So you could have got a potentially 40% increase in productivity not by going quicker, not by doing anything much better, just by consistently getting those rates.

So we know they're achievable because they did them on one of the floors. What it shows is that you need to get consistency. And suddenly, there's potentially massive impact just ready to get your hands on. So again, this is why we think the platform approach has got a potential long life because you can see here that just on the first project, we're getting these numbers. If we kept doing this and got better and rehearsed it more, these numbers would get much, much better.

And it also showed you that one of the key things that got in the way was variability. So you can see here in terms of putting up the steel, the best day they had, they put 12 pieces of steel up. But on seven days, they didn't put any up. So again, it shows you don't have to be quick, necessarily. If you were just consistent and kept on your average rate, actually the boat would go faster, the whole building process would go faster.

Found the same thing in the common floor, which is the down stand beams. Again, massive variability between 13 days where none went up and one day where 10 went up. If they'd just maintained at a average rate of five a day, you could have been more than twice as quick in terms of delivering these things. We get the same thing in the shuttering, which is the stuff we pour the concrete onto.

Again, best day, 18 pieces a day. Number of days where none happened. If you just maintained the average, you could have taken out 26% of the program. The other way that Cambridge visualized this data for us was in a thing called flow lines where they show installation of components and the gaps in between is where nothing happened.

So these are the days where either they were off doing other activities or they ran out of components or the logistics team hadn't kept up. But you can see for the primary steel, about a third of the time was inactive and for the common floor, about a quarter of the time. So again, normally, it's impossible to see these sorts of things on site. Suddenly, we've got a real insight into the measures that we can take to improve productivity aren't necessarily about going faster. It's just now about can we plan those activities better.

Now we know how long they take, can we ensure that the teams are geared up to do them? Can we plan the building around these install rates? And potentially, you get much, much better results.

And the other thing Cambridge did was they looked at the way the phasing on the building worked. So they said, actually, if you had rezoned the building into smaller zones with teams that cycled quicker, without doing anything quicker, you could have built the building potentially 43% quicker. So this range of numbers from 25% to 40% is definitely readily achievable if we'd known this ahead of time. And obviously, the benefit of platforms is now we do know this. You can plan the next projects around this.

MEP, we then, having installed the superstructure, it was designed that all the bays were the same. All of the fixing points for the MEP were already cast into the slab. And then we worked with the supply chain. And this time a company called NG Bailey. And said, if you knew that the superstructure was designed in such a way that all the bays were the same, that there was this massive rationality, what could you do about it or how would that improve your processes in the factory?

So they actually set up benchtops with the same adapter frame, they called it, on every bench. They could drop the MEP mechanical electrical systems onto those frames, stuck up a series of cassettes. These aren't volumetric cassettes. This is actually three, four, five, six cassettes with a little spacer.

And they set their entire factory process up around churning these things out. They put little wheels on them, and then they literally wheeled them out of their factory onto the truck, wheeled them onto the floor plate, and then on the right-hand side, you can see we had specially adapted forklift trucks that would pick up five or six or seven of these things at a time, lift them up. The fixing points are already there. So they staple them in, move on to the next one.

And literally, a single operative or a couple of operatives, again, a little bit of automation, not complex automation, not robotics, but an adaption of an existing piece of equipment, and suddenly, you're getting much, much higher levels of installation rates. So suddenly, they're moving much, much quicker. And it looks incredible. It looks like a machine inside.

So we're able to integrate the MEP and the superstructure very, very closely integrated whilst designing in all the maintainability, and the flexibility, and the ability to adapt things in the future. Because we have the fixing point grid, it means that we've already got latent fixing points for the next generation of MEP whenever they need to refurbishment. And because it was so closely integrated with the superstructure, it meant that the floor-to-floor heights in this building were quite low for very good floor-to-ceiling heights.

So that reduced the entire building volume, and therefore, the amount of air that we need to heat and treat, and therefore, the running cost, the operational costs, the operational carbon. So all of these things start to contribute to a leaner, more sustainable, more material-sensitive building. And you can see in the foreground here, that's a series of those cassettes ready to be installed.

When you walk around this building now, it feels incredibly well-organized. It feels very integrated. They're exposing the surfaces. And you can see here the impact of having that equipment.

So to start with, on the left-hand side of that graph, that's industry best practice using genie lifts to move these cassettes around. Once we designed and adapted the forklifts, you can see what happens to the install times. They plummeted from 150 minutes in some instances by at least a third some. Things came down by 90%. So you're suddenly into much, much more productive working-- one or two operatives doing large areas of MEP.

And normally, a lot of the package plant would be prefabricated. The risers would be prefabricated, maybe the main horizontal runs. But typically, with mechanical electrical systems, once you get away from those, you start to do things trade by trade. Because of that rationality, we're able to do these multi-trade cassettes, do most of that work in the factory.

And you can see here, Bailey reckoned that took out 30,000 hours of site labor. And that's work at height, and it's work in quite painful conditions, working overhead. So that's a dramatic improvement in the working conditions of the people on site who absolutely love this way of working.

The final key element for us was the facade. So as with the rest of the building, we designed the facade as a super rational kit of parts. It wasn't a special facade in some sense. We went out to the normal facade supply chain.

But because of the rationality of the design and because they could see that the superstructure would enable them to work better, they actually gave us a cost reduction. So they said as a facade manufacturer, 40% of your time on site is spent in measuring and shimming and bracketing and masticking and-- we talked about earlier-- filling the gaps between your millimeter perfect unitized system and the traditional piece of concrete that sits behind it. So they immediately gave us a cost reduction simply because they could see they wouldn't have to work around it.

On 9-by-9 meter bays, we were at plus or minus five millimeters on the superstructure. So that's a level of accuracy which is very common obviously in things like manufacturing. It's very uncommon in construction. But it enabled the facade supply chain to give us a fantastic deal simply because they knew the facade would fit. It would be much easier to install.

They actually got down to seven and a half minutes of panels. The original program showed seven panels in a shift. So that's about an hour a panel. And at peak, just before Christmas, they managed to do 90 in an hour and a half. So that's like the difference between someone changing a tire using a pump jack and taking 45 minutes and a Formula One team turning up and zipping these things on. So that when they did the 19 in an hour and a half, they then had to leave site because they ran out of panels.

So it tells you that now these rates are achievable, logistics has to be able to keep up or you'll keep diluting the benefit. And that was one of the key things for us was now we know these rates are achievable, firstly, could we improve them. Secondly, let's make sure the logistics and just-in-time and the delivery is there to support that kind of level of working.

And again, same thing. We got the same sorts of results. And the variability was quite large. If they'd just kept their average, you could potentially clad the building nearly twice as fast. But again, no one ever believed that at the time. And so logistics just weren't in place to support that speed of working.

So final couple of slides for me. So what it shows, what the Cambridge data shows is that without even going quicker than we currently did, if you just got that consistency, if you could just deliver day by day by day the same sorts of rates of work, this number keeps coming up. There's a 40% reduction, 40% improvement in productivity readily available.

So you don't have to do anything better at this stage, you just have to get that consistency. And I think that was mirrored by talking to people on site. People on site wants to have productive days. They want to come to work and they want to know what they're going to do. They don't want to have these days where they're hampered by lack of materials or lack of information or lack of tooling or whatever it is or they can't get into their work zone.

So there's something interesting here around there's a way of building buildings much quicker that's also much more satisfying for the people doing it and gives them a much better way of working. And it's really easily achievable. We don't need to do anything much better at this stage. If we just got consistency right, then potentially, we could be building things much, much quicker.

So key things for us that we're looking at next is logistics. You can see here actually Gantt charts aren't as much use to us as we thought. Now that we've seen this Cambridge data and the piece count and the flow lines, you could start to plan the entire building like that. You could start to get into discrete event simulation and using all of these tools that manufacturing does to get this continuous improvement.

So first thing for us is we could now start to plan building in terms of component numbers and assembly times and really start to plan things much more carefully and therefore support the logistics. And consistency is much more powerful than speed at the moment. So we don't need to get quicker, but if we could just be consistent, that would be the first big leap.

Future steps that are coming, as I said, the learning from this project has been fed back into the public sector. The learning from this will go into things like our new hospitals program here in the UK. We're already getting interest from clients in North America, in US and Canada, as to how to start to adopt a platform approach over there. So there's nothing in this approach which is in any way UK-specific.

The idea was always, if these systems work, they work in any geography. So the potential is there for the industry to really pick this up, to run with it, to propagate it more widely and really make that transformational shift into something like manufacturing. And what we're hoping we're going to see over the course of the next couple of years is as we start to get more into this, as more programs and projects start to use it, we'll work out more about what to use in terms of automation.

Clearly, once you've got into that space are very repeatable tasks, you don't need trades in quite the same way. Not that we're going to automate people out of jobs, but some of the big challenges facing construction are skills gap and aging demographic. So as I'm sure most people know, in the next 10, 15 years, a big chunk of our skill base is about to retire. And we're not getting enough young people coming in.

The idea that you could turn construction into those very simple, very repeatable processes means that we could potentially train people very quickly. And we've actually built pharmaceuticals facilities using ex-British army. We've built bits of the prisons program using prisoners. We built bits of airports in the UK using people from a local job center.

So this is one of the reasons governments are really interested in this idea that we could set up training and competencies. And suddenly, our construction labor force is comprised of ex-unemployed, ex-services, ex-prisoners. We resolve the skills gap. These are the sorts of things that I think are going to make a big, big impact in the industry in the next few years.

There's definitely a place for logistics in all of this. So current construction logistics gets things pretty much designed pretty much at the right day. We're miles away from that just in time manufacturing-type mindset. But you can see things like the facade. When they do 19 panels in an hour and a half, you want to get the next set of panels turning up in the afternoon.

So suddenly, logistics becomes super important. And it's going to be the biggest next barrier that we have to overcome. And yeah, I've already talked about this, but the idea that all of the learning from this gets put back into the next iteration of components, puts back into the next iteration of the digital library. We've really got a repository and a place for all this learning to go.

So yeah, we're very excited about this. Hopefully, that's been interesting and hopefully we'll be back next year to talk about the next steps and how the platform approach is continuing to move apace with some examples from North America. So that's all for me. Thanks for your time. Thanks for your attention.

As I say, there will be links in the class handout to the videos, to the animations, to documents we published on this. Hopefully, it's a topic that will keep expanding over time. And hopefully that's been an interesting half an hour. Thank you.

______
icon-svg-close-thick

Cookieの設定

弊社にとって、お客様のプライバシーを守ることと最適な体験を提供することは、どちらも大変重要です。弊社では、お客様に合わせてカスタマイズした情報を提供し、並びにアプリケーションの開発に役立てることを目的に、本サイトのご利用方法についてのデータを収集しております。

そこで、お客様のデータの収集と使用を許可いただけるかどうかをお答えください。

弊社が利用しているサードパーティのサービスについての説明とプライバシー ステートメントも、併せてご確認ください。

サイト動作に必須:オートデスクのサイトが正常に動作し、お客様へサービスを提供するために必要な機能です

Cookie を有効にすることで、お客様の好みやログイン情報が記録され、このデータに基づき操作に対する応答や、ショッピング カートへの商品追加が最適化されます。

使用感が向上:お客様に最適な情報が表示されます

Cookie を有効にすることで、拡張機能が正常に動作し、サイト表示が個々に合わせてカスタマイズされます。お客様に最適な情報をお届けし、使用感を向上させるためのこうした設定は、オードデスクまたはサードパーティのサービス プロバイダーが行います。 Cookie が無効に設定されている場合、一部またはすべてのサービスをご利用いただけない場合があります。

広告表示をカスタマイズ:お客様に関連する広告が表示されます

Cookie を有効にすることで、サイトのご利用内容やご興味に関するデータが収集され、これに基づきお客様に関連する広告が表示されるなど、効率的な動作が可能になります。また、継続的にデータを収集することで、お客様のご興味にさらに関連する広告を配信することが可能になります。Cookie が無効に設定されている場合、お客様に関連しない広告が表示される可能性があります。

icon-svg-close-thick

サードパーティのサービス

それぞれの情報で弊社が利用しているサードパーティのサービスと、オンラインで収集するお客様のデータの使用方法を詳しく説明いたします。

icon-svg-hide-thick

icon-svg-show-thick

サイト動作に必須:オートデスクのサイトが正常に動作し、お客様へサービスを提供するために必要な機能です

Qualtrics
弊社はQualtricsを利用し、アンケート調査やオンライン フォームを通じてお客様が弊社にフィードバックを提供できるようにしています。アンケートの回答は無作為に選んだお客様にお願いしておりますが、お客様から自発的に弊社にフィードバックを提供することも可能です。データを収集する目的は、アンケートの回答前にお客様がとられた行動を、より正しく理解するためです。収集したデータは、発生していた可能性がある問題のトラブルシューティングに役立てさせていただきます。. Qualtrics プライバシー ポリシー
Akamai mPulse
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Akamai mPulseを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Akamai mPulse プライバシー ポリシー
Digital River
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Digital Riverを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Digital River プライバシー ポリシー
Dynatrace
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Dynatraceを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Dynatrace プライバシー ポリシー
Khoros
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Khorosを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Khoros プライバシー ポリシー
Launch Darkly
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Launch Darklyを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Launch Darkly プライバシー ポリシー
New Relic
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、New Relicを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. New Relic プライバシー ポリシー
Salesforce Live Agent
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Salesforce Live Agentを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Salesforce Live Agent プライバシー ポリシー
Wistia
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Wistiaを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Wistia プライバシー ポリシー
Tealium
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Tealiumを利用しています。データには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Tealium プライバシー ポリシー<>
Typepad Stats
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Typepad Statsを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Typepad Stats プライバシー ポリシー
Geo Targetly
当社では、Geo Targetly を使用して Web サイトの訪問者を最適な Web ページに誘導し、訪問者のいる場所に応じて調整したコンテンツを提供します。Geo Targetly は、Web サイト訪問者の IP アドレスを使用して、訪問者のデバイスのおおよその位置を特定します。このため、訪問者は (ほとんどの場合) 自分のローカル言語でコンテンツを閲覧できます。Geo Targetly プライバシー ポリシー
SpeedCurve
弊社は、SpeedCurve を使用して、Web ページの読み込み時間と画像、スクリプト、テキストなど後続の要素の応答性を計測することにより、お客様の Web サイト エクスペリエンスのパフォーマンスをモニタリングおよび計測します。SpeedCurve プライバシー ポリシー
Qualified
Qualified is the Autodesk Live Chat agent platform. This platform provides services to allow our customers to communicate in real-time with Autodesk support. We may collect unique ID for specific browser sessions during a chat. Qualified Privacy Policy

icon-svg-hide-thick

icon-svg-show-thick

使用感が向上:お客様に最適な情報が表示されます

Google Optimize
弊社はGoogle Optimizeを利用して、弊社サイトの新機能をテストし、お客様に合わせた方法で機能を使えるようにしています。そのため弊社では、弊社サイトにアクセスしているお客様から、行動に関するデータを収集しています。収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID などが含まれます。機能のテストの結果によっては、お客様がご利用のサイトのバージョンが変わったり、サイトにアクセスするユーザの属性に応じて、パーソナライズされたコンテンツが表示されるようになる場合があります。. Google Optimize プライバシー ポリシー
ClickTale
弊社は、弊社サイトをご利用になるお客様が、どこで操作につまづいたかを正しく理解できるよう、ClickTaleを利用しています。弊社ではセッションの記録を基に、ページの要素を含めて、お客様がサイトでどのような操作を行っているかを確認しています。お客様の特定につながる個人情報は非表示にし、収集も行いません。. ClickTale プライバシー ポリシー
OneSignal
弊社は、OneSignalがサポートするサイトに広告を配置するために、OneSignalを利用しています。広告には、OneSignalのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、OneSignalがお客様から収集したデータを使用する場合があります。OneSignalに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. OneSignal プライバシー ポリシー
Optimizely
弊社はOptimizelyを利用して、弊社サイトの新機能をテストし、お客様に合わせた方法で機能を使えるようにしています。そのため弊社では、弊社サイトにアクセスしているお客様から、行動に関するデータを収集しています。収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID などが含まれます。機能のテストの結果によっては、お客様がご利用のサイトのバージョンが変わったり、サイトにアクセスするユーザの属性に応じて、パーソナライズされたコンテンツが表示されるようになる場合があります。. Optimizely プライバシー ポリシー
Amplitude
弊社はAmplitudeを利用して、弊社サイトの新機能をテストし、お客様に合わせた方法で機能を使えるようにしています。そのため弊社では、弊社サイトにアクセスしているお客様から、行動に関するデータを収集しています。収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID などが含まれます。機能のテストの結果によっては、お客様がご利用のサイトのバージョンが変わったり、サイトにアクセスするユーザの属性に応じて、パーソナライズされたコンテンツが表示されるようになる場合があります。. Amplitude プライバシー ポリシー
Snowplow
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Snowplowを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Snowplow プライバシー ポリシー
UserVoice
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、UserVoiceを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. UserVoice プライバシー ポリシー
Clearbit
Clearbit を使用すると、リアルタイムのデータ強化により、お客様に合わせてパーソナライズされた適切なエクスペリエンスを提供できます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。Clearbit プライバシー ポリシー
YouTube
YouTube はビデオ共有プラットフォームで、埋め込まれたビデオを当社のウェブ サイトで表示および共有することができます。YouTube は、視聴者のビデオのパフォーマンスの測定値を提供しています。 YouTube 社のプライバシー ポリシー

icon-svg-hide-thick

icon-svg-show-thick

広告表示をカスタマイズ:お客様に関連する広告が表示されます

Adobe Analytics
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Adobe Analyticsを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Adobe Analytics プライバシー ポリシー
Google Analytics (Web Analytics)
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Google Analytics (Web Analytics)を利用しています。データには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Google Analytics (Web Analytics) プライバシー ポリシー<>
Marketo
弊社は、お客様に関連性のあるコンテンツを、適切なタイミングにメールで配信できるよう、Marketoを利用しています。そのため、お客様のオンラインでの行動や、弊社からお送りするメールへの反応について、データを収集しています。収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、メールの開封率、クリックしたリンクなどが含まれます。このデータに、他の収集先から集めたデータを組み合わせ、営業やカスタマー サービスへの満足度を向上させるとともに、高度な解析処理によって、より関連性の高いコンテンツを提供するようにしています。. Marketo プライバシー ポリシー
Doubleclick
弊社は、Doubleclickがサポートするサイトに広告を配置するために、Doubleclickを利用しています。広告には、Doubleclickのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Doubleclickがお客様から収集したデータを使用する場合があります。Doubleclickに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Doubleclick プライバシー ポリシー
HubSpot
弊社は、お客様に関連性のあるコンテンツを、適切なタイミングにメールで配信できるよう、HubSpotを利用しています。そのため、お客様のオンラインでの行動や、弊社からお送りするメールへの反応について、データを収集しています。収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、メールの開封率、クリックしたリンクなどが含まれます。. HubSpot プライバシー ポリシー
Twitter
弊社は、Twitterがサポートするサイトに広告を配置するために、Twitterを利用しています。広告には、Twitterのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Twitterがお客様から収集したデータを使用する場合があります。Twitterに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Twitter プライバシー ポリシー
Facebook
弊社は、Facebookがサポートするサイトに広告を配置するために、Facebookを利用しています。広告には、Facebookのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Facebookがお客様から収集したデータを使用する場合があります。Facebookに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Facebook プライバシー ポリシー
LinkedIn
弊社は、LinkedInがサポートするサイトに広告を配置するために、LinkedInを利用しています。広告には、LinkedInのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、LinkedInがお客様から収集したデータを使用する場合があります。LinkedInに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. LinkedIn プライバシー ポリシー
Yahoo! Japan
弊社は、Yahoo! Japanがサポートするサイトに広告を配置するために、Yahoo! Japanを利用しています。広告には、Yahoo! Japanのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Yahoo! Japanがお客様から収集したデータを使用する場合があります。Yahoo! Japanに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Yahoo! Japan プライバシー ポリシー
Naver
弊社は、Naverがサポートするサイトに広告を配置するために、Naverを利用しています。広告には、Naverのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Naverがお客様から収集したデータを使用する場合があります。Naverに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Naver プライバシー ポリシー
Quantcast
弊社は、Quantcastがサポートするサイトに広告を配置するために、Quantcastを利用しています。広告には、Quantcastのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Quantcastがお客様から収集したデータを使用する場合があります。Quantcastに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Quantcast プライバシー ポリシー
Call Tracking
弊社は、キャンペーン用にカスタマイズした電話番号を提供するために、Call Trackingを利用しています。カスタマイズした電話番号を使用することで、お客様は弊社の担当者にすぐ連絡できるようになり、弊社はサービスのパフォーマンスをより正確に評価できるようになります。弊社では、提供した電話番号を基に、サイトでのお客様の行動に関するデータを収集する場合があります。. Call Tracking プライバシー ポリシー
Wunderkind
弊社は、Wunderkindがサポートするサイトに広告を配置するために、Wunderkindを利用しています。広告には、Wunderkindのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Wunderkindがお客様から収集したデータを使用する場合があります。Wunderkindに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Wunderkind プライバシー ポリシー
ADC Media
弊社は、ADC Mediaがサポートするサイトに広告を配置するために、ADC Mediaを利用しています。広告には、ADC Mediaのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、ADC Mediaがお客様から収集したデータを使用する場合があります。ADC Mediaに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. ADC Media プライバシー ポリシー
AgrantSEM
弊社は、AgrantSEMがサポートするサイトに広告を配置するために、AgrantSEMを利用しています。広告には、AgrantSEMのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、AgrantSEMがお客様から収集したデータを使用する場合があります。AgrantSEMに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. AgrantSEM プライバシー ポリシー
Bidtellect
弊社は、Bidtellectがサポートするサイトに広告を配置するために、Bidtellectを利用しています。広告には、Bidtellectのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Bidtellectがお客様から収集したデータを使用する場合があります。Bidtellectに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Bidtellect プライバシー ポリシー
Bing
弊社は、Bingがサポートするサイトに広告を配置するために、Bingを利用しています。広告には、Bingのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Bingがお客様から収集したデータを使用する場合があります。Bingに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Bing プライバシー ポリシー
G2Crowd
弊社は、G2Crowdがサポートするサイトに広告を配置するために、G2Crowdを利用しています。広告には、G2Crowdのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、G2Crowdがお客様から収集したデータを使用する場合があります。G2Crowdに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. G2Crowd プライバシー ポリシー
NMPI Display
弊社は、NMPI Displayがサポートするサイトに広告を配置するために、NMPI Displayを利用しています。広告には、NMPI Displayのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、NMPI Displayがお客様から収集したデータを使用する場合があります。NMPI Displayに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. NMPI Display プライバシー ポリシー
VK
弊社は、VKがサポートするサイトに広告を配置するために、VKを利用しています。広告には、VKのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、VKがお客様から収集したデータを使用する場合があります。VKに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. VK プライバシー ポリシー
Adobe Target
弊社はAdobe Targetを利用して、弊社サイトの新機能をテストし、お客様に合わせた方法で機能を使えるようにしています。そのため弊社では、弊社サイトにアクセスしているお客様から、行動に関するデータを収集しています。収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID などが含まれます。機能のテストの結果によっては、お客様がご利用のサイトのバージョンが変わったり、サイトにアクセスするユーザの属性に応じて、パーソナライズされたコンテンツが表示されるようになる場合があります。. Adobe Target プライバシー ポリシー
Google Analytics (Advertising)
弊社は、Google Analytics (Advertising)がサポートするサイトに広告を配置するために、Google Analytics (Advertising)を利用しています。広告には、Google Analytics (Advertising)のデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Google Analytics (Advertising)がお客様から収集したデータを使用する場合があります。Google Analytics (Advertising)に提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Google Analytics (Advertising) プライバシー ポリシー
Trendkite
弊社は、Trendkiteがサポートするサイトに広告を配置するために、Trendkiteを利用しています。広告には、Trendkiteのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Trendkiteがお客様から収集したデータを使用する場合があります。Trendkiteに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Trendkite プライバシー ポリシー
Hotjar
弊社は、Hotjarがサポートするサイトに広告を配置するために、Hotjarを利用しています。広告には、Hotjarのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Hotjarがお客様から収集したデータを使用する場合があります。Hotjarに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Hotjar プライバシー ポリシー
6 Sense
弊社は、6 Senseがサポートするサイトに広告を配置するために、6 Senseを利用しています。広告には、6 Senseのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、6 Senseがお客様から収集したデータを使用する場合があります。6 Senseに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. 6 Sense プライバシー ポリシー
Terminus
弊社は、Terminusがサポートするサイトに広告を配置するために、Terminusを利用しています。広告には、Terminusのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Terminusがお客様から収集したデータを使用する場合があります。Terminusに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Terminus プライバシー ポリシー
StackAdapt
弊社は、StackAdaptがサポートするサイトに広告を配置するために、StackAdaptを利用しています。広告には、StackAdaptのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、StackAdaptがお客様から収集したデータを使用する場合があります。StackAdaptに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. StackAdapt プライバシー ポリシー
The Trade Desk
弊社は、The Trade Deskがサポートするサイトに広告を配置するために、The Trade Deskを利用しています。広告には、The Trade Deskのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、The Trade Deskがお客様から収集したデータを使用する場合があります。The Trade Deskに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. The Trade Desk プライバシー ポリシー
RollWorks
We use RollWorks to deploy digital advertising on sites supported by RollWorks. Ads are based on both RollWorks data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that RollWorks has collected from you. We use the data that we provide to RollWorks to better customize your digital advertising experience and present you with more relevant ads. RollWorks Privacy Policy

オンライン体験の品質向上にぜひご協力ください

オートデスクは、弊社の製品やサービスをご利用いただくお客様に、優れた体験を提供することを目指しています。これまでの画面の各項目で[はい]を選択したお客様については、弊社でデータを収集し、カスタマイズされた体験の提供とアプリケーションの品質向上に役立てさせていただきます。この設定は、プライバシー ステートメントにアクセスすると、いつでも変更できます。

お客様の顧客体験は、お客様が自由に決められます。

オートデスクはお客様のプライバシーを尊重します。オートデスクでは収集したデータを基に、お客様が弊社製品をどのように利用されているのか、お客様が関心を示しそうな情報は何か、オートデスクとの関係をより価値あるものにするには、どのような改善が可能かを理解するよう務めています。

そこで、お客様一人ひとりに合わせた体験を提供するために、お客様のデータを収集し、使用することを許可いただけるかどうかお答えください。

体験をカスタマイズすることのメリットにつきましては、本サイトのプライバシー設定の管理でご確認いただけます。弊社のプライバシー ステートメントでも、選択肢について詳しく説明しております。