AU Class
AU Class
class - AU

Automatic Cooling Circuit Generation for Injection Molding

このクラスを共有
ビデオ、プレゼンテーション スライド、配布資料のキーワードを検索する:

説明

The time it takes to cool an injection mold can often represent a large portion of the cycle time. If we can improve the cooling circuit layouts within the mold tool, then we can reduce cycle times, improve part quality, and maximize profits. In this presentation, we will discuss a novel optimization tool for fully automating the design, simulation, and optimization of the conformal cooling channels in plastic injection mold tools, using the Moldflow cooling simulation software. We'll show how you can use the software to test and improve existing designs, and how technologies like 3D printing (of the cooling circuits) can be used to significantly improve the mold tool performance, while including hybrid additive, drill, and plug manufacturing constraints.

主な学習内容

  • Learn how to create high-performance cooling channels for injection mold tools
  • Discover the advantages of 3D-printed conformal cooling circuit cw. traditional designs
  • Discover the advantages and impact of optimal cooling layouts cw traditional designs
  • See the state of the art for conformal cooling design

スピーカー

  • David Astbury さんのアバター
    David Astbury
    David Astbury has over 30 years’ experience in the fields of rheology, injection molding, software development, and quality assurance. He is the principle author of many optimization technologies within the Autodesk Moldflow software suite, including automatic injection time, molding window, design of experiments, runner sizing and balancing, gate location optimization, and process optimization. Recognising that to fully maximise part quality and to optimise cycle time for an injection mold you cannot look at only the filling and packing phases; you need to also look at the cooling phase as well optimal cooling line placement is critical is a key component of this. David and a team of engineers are currently developing software to automaticaly place and optimise cooling channels within the mold David is an expert programmer and Autodesk Moldflow API expert, and has produced many API scripts and examples to assist customers with integrating to external structural and optimization systems, producing custom results and reports, automating common tasks and extending the capabilities of the system. David has recently worked with the Fusion Generative team to enhance the capabilites and performance of the generative structural software and laying down the foundations for a generative fluids simulation.
  • Clinton Kietzmann
    Clinton Kietzmann is employed at Autodesk Australia Pty Ltd. He has been working in the engineering simulation industry for the last 20 years, working on Simulation Moldflow software products. He has mainly been a developer on the Autodesk cooling software relating to heat transfer in plastic injection molds. Clinton has also developed certain parts of the 3D Flow solver relating to the flow of hot molten plastic in injection molds. He was an author or co-author on numerous papers related to injection molding simulation, and he has worked on the Simulation CFD software solver. Clinton holds a master’s degree in mechanical engineering specializing in Computational Fluid Dynamics (CFD).
Video Player is loading.
Current Time 0:00
Duration 46:48
Loaded: 0.35%
Stream Type LIVE
Remaining Time 46:48
 
1x
  • Chapters
  • descriptions off, selected
  • en (Main), selected
Transcript

DAVID ASTBURY: Welcome to the session today, where Clinton Kietzmann and myself are going to take you through some of the work we've done over the past 12 months on the automatic cooling circuit generation for injection molding. This project started as an industrial partnership aimed at developing a generative solution for conformal cooling for plastic injection molding. It's been a partnership that's running about two years now between Autodesk and Panasonic. And the real objective is to try and make the design of optimal cooling circuits a lot less mysterious and trying to evolve really high performance cooling circuits with not a lot of knowledge from either a CA analyst or engineer.

So the objectives are really to improve part cycle time and part quality. This is an extension of the work that was presented last year at AU. There was a paper presented on generative design for mold cooling channels. And you can see some of the outcomes there, some of the different cooling circuits that were generated for that part of the project. Some limitations that we did find with that project was that for the approach that was being used, which was a Voxel solver, it was great for analyzing just inserts. But it didn't really scale to the whole mold. So this year we've changed our approach. And by using traditional flow solvers, we're attempting to look at the optimization of a cooling channel for a whole mold.

OK before we start let's think about, well, why does cooling matter. Basically, the main reason you want to have a good cooling circuit is it will increase the profitability of your part. And it does that in two ways. The first way is anything that reduces your cycle time means you can produce the part much more cost effectively or quicker. And the other aspect is part quality. If you have a hole for cooling or unoptimized cooling, you can get hot spots and cold spots in your mold. And that can contribute to things like warpage, increase your defect rates, and also increase your cycle time. So those two aspects are quite important in determining how profitable a tool is. OK?

There is a relationship between cycle time and product quality. They are linked, but it's in a very complex way. And generally, you can have one or the other. Only in optimal layouts can you generally get both. So you see some sort of compromise you'll need to make between the cycle time and the part quality.

OK. So let's get on to looking at the blueprints in terms of what you need to do to generate cooling circuits automatically. OK, there's really three parts to this. What we're trying to do is determine the optimal locations and geometric properties for cooling channels to maximize our part quality and minimize our production and tooling costs whilst respecting constraints due to the original part design, cavity layouts, mold construction method, mold tooling elements, and ancillary equipment. And I'll spend the next few slides just breaking down each of those three areas into what it really means.

OK. In terms of the scope of this project, we're going to reduce the design and optimization degrees of freedom. We're going to assume that the coolant inlet and outlet are in fixed locations and provided. We're going to assume that the coolant inlet temperature and coolant flow rates are constant. We're going to assume that the cooling circuits are circular, and have constant diameter, and there's no branching or bubbles and baffles. The algorithms that we have developed will account for those things. But in the time we have available, really what we're trying to do is just show the concept of how producing an optimal circuit layout gives a lot of benefit. And the last constraint here is we will be assuming that the model is 3D printed. And that's to allow us more degrees of freedom.

So if we look at what's in scope, then, really what we're trying to do is change location, the position, and the path of a circuit. So if we look at the case on the left there, that's probably the simplest circuit that we can have. Two circuits, one in the fixed half, one in the moving half. And you can see there's quite a bit of temperature variation across the cavity there. And by changing location, position, and path we can reduce that to a certain degree, and produce a more optimal design as seen on the right hand picture there.

So in terms of quality, what do we really mean? One of the quality measures we're trying to look at is the uniform temperature distribution across the part's surface. And if we minimize the part's surface temperature variation, we're going to get a higher quality part. Now the measure we use for this is the standard deviation of all the part's surface temperatures. So if we have every element, or every part, of the surface of the part being at the same temperature, then we'll have our optimal quality.

Now why is that important? If we have a temperature difference, then that can lead to volumetric shrinkage difference, which can lead to increased warpage. Also, if we have different temperatures on the surface of a part, it can lead to different gloss levels and visual defects on the surface of the part.

So if we look at a typical cavity, there's certain areas in the cavity where it's going to be difficult to keep the variation of the surface temperature small. If we look at things like ribs, if we look at the bottom of the rib we have effectively heat coming in into the corners of the ribs, so there's much more heat being put into a small area of the tool. And we'll end up with hotter areas in there. And this is why we need to get cooling into those areas, or maybe even use things like bubbles and baffles to help extract the heat in those areas.

If we look at edges, edges have the opposite effect, in that they're typically cooled from multiple sides so they tend to cool a lot quicker than the rest of the part, and that can introduce a temperature variation that way.

Bosses, generally quite thick and chunky, and therefore are going to take a lot of time to cool. Thickness change, everywhere we have a different thickness, it'll take a different amount of time to cool. So we really want to try and make sure that there's not a lot of surface temperature difference across our thickness changes.

Injection locations can cause problems because one, they're the greatest source of heat. There's a lot more heat gets introduced into the mold around where the injection point is. And also they create an obstacle which limits some of the places we can put our cooling. And the last one there is pockets or small thin areas where we really can't get any cooling into the cavity. And they can get quite hot, and can have a significant impact on the quality of the parts. So there's quite a number of areas within the cavity that need to be considered very carefully when locating cooling channels.

In terms of minimizing our cycle time, the strategy we're trying to employ here is to put our circuits as close as possible to the part to extract the heat as quickly as possible. And if we do that, that will improve our cycle time. So the measure that we're looking at here is area weighted average of the part surface temperature. So if we increase the-- sorry, if we decrease-- the average temperature, then we extract from the heat out of the part quicker, then run cycle time will decrease. OK.

Another aspect with respect to the tooling that we do need to consider, is that spending more time on an optimal cooling layout may be more cost effective over the life of tool. It might be a lot more expensive to create the tool. But if we can reduce the cycle time by two, three, or five seconds over the life of the tool, it may well be a good payoff. And another thing worth noting is there that cooling circuits that follow the shape of the part generally form better. The so-called conformal cooling circuits. They may be more expensive to build, but again, over the lifetime of the tool, they may help get our average temperature down and improve our cycle time, therefore being more inexpensive or cheaper to produce our parts, or we can produce our parts quicker.

So if we look at the impact of manufacturing method, if we consider a simple cavity here, using the drill and plug method on the left, we have just two simple circuits, our starting circuits, and part with a slight curve in it. To get the heat out as quickly as possible, we want to get the cooling circuits as close as possible to the part. So using a drill and plug method, that means that we're going to have to create bends or junctions or multiple drill holes to get those circuits as close as possible to the part. And that can be quite expensive.

If we look at doing the same sort of thing with 3D printing, effectively we can move any of the nodes or joints in the system. We can really get them quite close to the part and give us a much more optimal cooling pattern. And there's very little cost difference in printing with 3D, regardless of the cooling circuit layout that you choose.

So just to summarize how the manufacturing method can impact things, with drill and plug, the cost increases with every channel. With 3D printing, the cost is independent of the number of channels. With drill and plug, it may be quite difficult to introduce conformal cooling, whereas if you're using 3D printing it comes for free. Drill and plug may have better lifetime in the tools. Obviously 3D printed tools have a shorter tool life and issues of things like fouling of the cooling channels can be more common. With drill and plug, it's possible to add inserts. With 3D printing, some of the latest 3D printers do allow you to print with multiple mold materials. That opens up a whole heap of possibilities where you can graduate from one material to another and change the conductivity of the mold to redirect the heat pattern. And that's an area, I think, we'll be seeing a lot more in the next few years.

With the drill and plug you can support bubbles and baffles quite easy. With the 3D printing, you can't directly print a bubble or a baffle, but you can print your 3D circuit and then, in a post-processing operation, introduce bubbles and baffles into the tool. I think that's sort of the typical way things will go, maybe, in the future where there'll be the combination of 3D printing and other operations, afterwards, to put in devices such as 3D bubbles and baffles.

OK. In terms of the tool, there are many constraints. Within the actual tool itself, cooling circuits need to keep clear of the following feed systems, the ejection system. Generally you would put your ejection system in first and design your cooling channels around those, because if you can't eject your part, then that's going to create all sorts of problems. Core pins, mold edges. Obviously you need to keep a little bit of steel between the outer boundary of the mold and the cooling channel and similar part services, and to other cooling circuits and vents.

So really what we're suggesting is that a cooling circuit needs to be at least one times its diameter from any of the other mold components. So if a circuit was 5 millimeters, then you have to have at least 5 millimeters of steel around that. If it was 10 millimeters, at least 10 millimeters of steel around that. And that's to ensure that you don't have any issues, and to ensure that the structural integrity of the mold and mold assemblies is maintained.

The other constraint that we typically see is when you have multi cavities. Unless the system is completely symmetrical in terms of the cavities and the cooling, then you can get some cavity to cavity interactions which may lead to part to part variations. So if we look at the system here at the bottom right picture there, We can see that there's a 12 cavity system there. And we can see that the coldest cavity is the bottom left one, and the hottest cavity is the one that's on the top, second from the left. And the reason that cavity is hotter is because there's an interaction between one cavity and the other.

If we look at the top. left cavity, we can see it gets cool to the mold block on two sides, whereas the second from the left only gets cooled to the mold cavity from the top. And also the cooling channel that it's working with has a temperature rise across it. So in this case, there's a 5.2 degree temperature rise across the circuit. So that can lead to different volumetric shrinkage, and different part to part variation. OK? So in general, when you're designing a circuit, you really want to keep the coolant rise as low as possible. And definitely not more than 10 degrees Celsius. So the advice here is, where possible, use a symmetric cavity layout, and a symmetrical cooling layout. Easy to say, quite difficult to do, given all the considerations of the things that we need to work around or the obstacles within the tool. But

The other constraint we need to look at is the coolant inlet. So for a cooling channel to be effective, we need to make sure that the inlet flow rate, or the flow rate in the circuits. Is greater than 10,000 to maintain turbulent flow. This means we need to have sufficient pump capacity to generate turbulent flow. So, the pressure drop in a circuit is proportional to the length of the circuit and the number of bends in a circuit. So as we make circuits longer and have more and more bends and curves, the pressure, or the pump capacity, to require that Reynolds number, will increase.

The other constraint in terms of the inlets is typically you find that the coolant inlets and outlets are on one side. One side of the machine, is normally a wet side of the machine, and a dry side of the machine. And in some cases, they may be fixed to allow things like quick change mold systems to work correctly.

OK. So, in general, what are we trying to do? , Effectively we're trying to create something from nothing. So if we define an inlet and an outlet, and we take into account the constraints imposed by the part design, the cavity layer, the inlet boundary conditions, really what we're trying to do is determine how do we generate an optimal cooling circuit that gives us the best performance? So if we look at the picture there, we can see there's an area in the fixed half and an area in the moving half where we can place cooling circuits. So how do we really determine where the circuits should be placed?

OK. So I'm going to outline an approach that's based on geometry. So the principle here is to optimize heat removal by placing cooling circuits as close to the part as possible using different geometric methods and predefined patterns. So the aim is by getting the cooling circuits as close as possible, we're going to give the shortest possible cycle time. So, how does this method work? What we're doing is effectively employing draping.

So if you look at the part on the left, there, what we do is identify a parting plane, or in the case of a multi-plate tool or a stack tool, we identify the parting planes that we want to work with. And what we then do is we treat each of those areas separately and apply a different circuit pattern. So if we look in the middle, in the top, we're applying a certain type of pattern. And in the bottom, we're applying a different type of pattern. And then effectively, what we do is we drape those patterns onto the part to get our cooling channels close to the part. This has a good advantage in the respect that it ensures that the cooling circuits reach all the external boundaries of our cavity.

So what are the strengths of this method? The primary strength is it ensures that we get cooling to the part extremities. Computation is inexpensive, so it's quite quick to do. There are known, good, patterns that exist based on experience. And it's easy to evaluate many different designs in a generative way. So we can generate a number of different patterns of quite fundamentally different shapes, and see what impact that they have on the cooling circuit. And we can also paramatize patterns to introduce different layouts as well.

So in terms of patterns, what type of patterns are we looking to employ? The simplest is a single circuit, where we can crisscross backwards and forwards across the part, and drape that over cavity. We can, as in the second case there, have multiple circuits and drape that onto the cavity. And we can even do much more complicated circuits, like the hexagonal mesh, or even a spiral pattern to investigate the impact of each of those.

We can also look at things like orientation, whether we orientate the cooling circuit in different directions relative to the part can make a big difference to the effectiveness of the cooling. And we can also change things like the spacing, how close the cooling circuits are spaced together, and other parameters around that area.

So if we look at some examples, if we look at the example on the left there, at the mouse, we can see that the circuits follow the contours of the parts quite well. We can also extend the circuits out towards the edge of the cavity to help with the heat dissipation as well. Because we're 3D printing this part, or the aim is to 3D print it, we can use the whole mold tool, and it really doesn't cost any more to produce a circuit that goes to the edge of the part, or one that may be, traditionally, you would have just had the cavities crisscross nearer to the edge of the part. In this case, it will also have a very long cooling circuit help with the heat removal from the circuit as well.

If we look at the bottom right, there, we can see another example of a fan blade. And again, we can see it's quite a complex structure. And we can see that the circuits are very closely conforming to the pattern of the shape of the part. We can also add variance, like we've had hoses in the end of this case. And another example in the top center there. When we look at this case, we can see that our injection point there on the left is that the circuits have actually gone and avoided the ejection point. So we've made an allowance for that. So that's a typical example of how we can use this sort of draping approach to make sure that all our part is being covered adequately by a cooling channel.

There are some limitations with this approach. If we look at the glass in the center, there we can see that there are some areas of the glass where there's quite a lot of cooling. And we can see areas on the side where there's slightly less cooling due to the nature of the starting shape. So in that case, this sort of pattern may be non-optimal.

The other thing we need to be aware of when we're designing these sorts of circuits is that if we produce very long circuits, it does increase the pressure drop and it does increase the chance of having quite a high coolant temperature rise across the circuit. So we might see variation from one side of the part to the other because it's hotter on one side of the glass than the other.

So how can we avoid things like this? Maybe for this type of part where we have a deep, deep vessel, we might be better to employ the use of spiral circuits rather than a draping. So you can see an example on the right there, where we've deployed a spiral circuit on the inside and the outside. And that may well give us a better temperature variation, or lower average temperature, because we're getting the circuits a lot closer to the part and a lot more even in their distribution.

The other main limitation of this approach, is that there's no consideration for the part temperature distribution. Effectively, we're draping every part of the cooling circuit to the same distance from the part. And some areas of the part might have more heat, and some areas have less. So that will naturally increase the amount of temperature variation we may get across the part. It will most likely give us the optimum cycle time, but it may introduce some quality aspects.

So, now I'll hand over to Clinton, who's going to talk a little bit more about how we can optimize these type of patterns, with an optimization algorithm to further improve the quality.

CLINTON KIETZMANN: OK. Good day everyone. Thank you, David, for taking the presentation to this point. And from now on, I'll go on about, let's talk about the optimization.

So with this method, what we do with optimization, we begin with an initial layout, which David's just spoken about. And from that user supplied, or generated geometrically solution, with a defined coolant inlets and outlets, we'll take that model into the existing cooling boundary element solver. And what I will describe is the result, or the routines, that actually move the circuits to their optimum positions, and how we go ahead with that.

All right. So we'll begin with our algorithm. Like we said before, it's based on a boundary element method. And the main advantage of using the boundary element method, is that as successive iterations of models occur, you don't have to remesh the mold. If we use the finite element method or another method, the mold volume-- as the cooling circuits change, the mild volume would have to be remeshed again. With a boundary element method, this is not required.

So then after every design iteration, or every new geometry we get after an optimization, a full cool boundary element analysis is performed, like every other mode flow user would use. There's no shortcuts or assumptions. It's the full solution that will be used. And then from the results from that previous iteration, the temperature results, the optimization routine concentrates on moving the cooling channels to the hotter areas of the mold. And that is the mold that is in contact with the part. So the surface areas of the mode that are in contact with the part that are hotter than the average temperature of the mold in contact with the part, the cooling circuits will kind of gravitate towards those points slowly.

So when that happens, the solver analyzes these results of each iteration. And then, as David has spoken previously, the compromises with defined metrics, so that we can put the compromises into numbers. And we will use these metrics to compare the different analyses with each other.

Just a note, that with the boundary element method, for each iteration, the boundary integrals need to be recalculated for the new channel positions. So the boundary element method is dependent on the geometry, where every part is relative to the other. And as we're moving the cooling channels, these relationships need to be calculated again. And then once they've been moved and recalculated, the solver will solve each and every channel position in a new study for.

So the best way to describe this optimization algorithm is a directed search method, which is trying to solve the conflicting requirements. So it's trying to minimize the average mold temperature in contact with a part, which David has spoken about before. And in order to do that, you want to move the cooling channels closer to the part. But at the same time, you're trying to minimize the temperature difference across the part's surface. And that is to reduce the warpage, because the closer you move the cooling channels to the part, you might get cold spots which will increase the temperature difference across the surface of the part. So for that requirement, to minimize the temperature difference, you generally want to move the circuits further away from the part. So there's a conflict there.

What we define the average mold temperature matrix, the t metric by the average temperature of the mold in contact with a part, for whichever iteration you're on, divided by the average mold temperature in contact with the part with that initial geometry that we started off with. And then obviously, if that metric is less than 1, then we know we indicating an improvement. There's an improvement in the solution. If it gets bigger than 1, we actually getting hotter, which is probably not a good sign.

Similarly, with the temperature difference metric, we take the standard deviation, which David spoke about, on every iteration, and divide it by the standard deviation of the initial geometry that we started off with. Then once again, if it is decreasing-- if it's less than one, and it is decreasing-- then it is an improvement on its previous iteration. And once it starts increasing-- once that metric starts increasing, then we've probably passed the optimal point in order to minimize the temperature difference across the part.

We will now look at how we use these metrics, so the evaluation of the model. So as we said before, it's a balance of conflicting requirements and then a weighted sum method is chosen in order to deal with the dual objectives. So the equation is given by the metric is equal to the alpha times the temperature metric plus 1 minus alpha times the standard deviation metric, where the weighting parameter, alpha, is chosen by the user.

So if we just look at the formula again, if the user chooses a parameter of alpha equal to 1, that will mean that the final metric will just be totally dependent on the average temperature in contact with the part metric on the left hand side. And the standard deviation metric-- which deals with the average temperature difference across the surface of the part-- that side of the equation will change to zero, and it will only be dependent on the surface temperature metric. And vise versa, if we choose the alpha to be 0, then the final result will be entirely dependent on the standard temperature difference across the surface of the part metric. So whatever alpha the user chooses, which we have as a default is 0.5. So it gives each metric equal weighting. The aim is to minimize that metric.

So how the solver works. The solver will run a set number of iterations. And it can stop once the metric is minimized, as per the user's chosen value of alpha. So the metric will decrease, decrease, decrease as the designs get better. And then once the cooling channels start moving too close to the part, and generally the standard deviation metric starts decreasing, the metric starts increasing. And we can stop the solution there, or it will just run for a number of iterations, and then the user will have to make his own judgments on that.

So now we'll just look at a few examples. So as we said before, the circuits move to the hotter areas of the part in the mold. So if you look at the model animation in the bottom left hand corner, you will see over there that the part starts off with four initial circuits that are quite far from the part. And the inside of the box is quite hot. So with every iteration, it moves closer and closer into the part. And you can see in that diagram how the temperatures inside the box region are cooling down as the circuits move closer.

With this routine, as David mentioned before, we need to maintain a specified minimum distance away from the part and other circuits. If you look at the picture in the center of the bottom, you'll see that the part is modeled as a transparent body. And you can see, as the cooling circuits move, you can see them move inside the box region. And from that graphic, you can see the top circuit and the circuits inside the box as they move closer, they maintain a one diameter distance from the part. That one diameter distance can also be set by the user. So that is a parameter that the user can set. But we use one diameter as the default.

We also need to maintain symmetry of the cooling channels. Having said that, cooling is never purely symmetric in cooling, because there's always a rise in the coolant temperature inside the channel. So you can never guarantee perfect symmetry. But in the way the channels move, we move them in a symmetrical way. The algorithms have been optimized so that they move in a symmetric way.

And then if you look at the bottom right hand corner, as you see how the cooling channels move, obviously the center of this model is exactly, the origin is in the middle of the part. So it is symmetric around either axis, x, y-axes. So you can see that the two cooling channels, the top two move inwards, and the bottom two move inwards, in more or less a symmetric way. And then if you look at it once, they are one diameter away from the part, inside outside. You can see that the cooling channels are also one diameter separated from each other in the final shape. This current example, using a metric of 0.5, which gives equal weighting to the temperature and the standard deviation, that showed a 45% improvement over the starting shape, which one can expect because the initial circuits were quite far away.

And then, we come to the collision avoidance. For this example, is ejector pins, but the collision avoidance also takes care of parting planes, the split lines of parting planes. So the cooling channels will not intersect a parting plane, and will maintain the user specified, in this case one diameter, distance away from the parting planes and the parts and everything else.

For this model, we have this microwave dish on the right, the microwave dish lid, which we use injection molding. And this model has ejector pins in. If you look at the bottom left diagram, or the bottom right diagram, you'll see a graphic of the ejector pins in the mold, which are used to the part. And from that you'll see the initial cooling circuits that were used. They were a circumferential circuit, both inside and outside the part.

And they are on the outside. There is a cooling circuit on the outside of the part. And you can see, as the algorithm works, the cooling circuits move in closer to the part. If you look at the bottom left hand diagram. And if you look at the bottom center diagram, you can see how the circuits move inwards. And if you compare the bottom center diagram with the top center diagram, that is the equivalent plot if now ejector pins were used. So you can have a look at that one, the bottom one, and see how the ejector pins influence the final position of the cooling channels, as opposed to if there were no ejector pins on the one on the top.

If we look at the table in the top right hand corner, you will see that the first iteration has the metric one. So that is the initial condition, the initial circuits that we began with. And then you can see for 11 iterations, we've got the table in the red box. That is the optimum. If you have a look, the number reduced from 1 all the way down to 0.681. So that is the optimum position. The next iteration, the matrix starts increasing 0.682, 0.683. And so the model in the red box is the optimum one, where the analyses finished.

And if we just have a look at the table, you can see that the average mold temperature in contact with the part reduced from 49 degrees to 41 degrees, and the standard deviation reduced from 5.718 to 2.9987. If we look at the table for this model, we only ran 15 iterations, and stopped it. If you look at the temperature metric, which is the second column, you can see that the metric for the average mold temperature in contact with the part, is still reducing. After 15 iterations it still hasn't reached the minimum one. However the standard deviation metric actually bottomed out or optimized at 0.523, which was one iteration before the optimum. And from that point on, it started increasing. So that just tells you that if you move the cooling channels closer from that point, you're actually going to start getting severe hot spots and cold spots in the mold. So for the 0.5 mix, the model at 0.681 is the optimum.

And then finally, if we just look at the slide, in the bottom right hand corner you can see how the cooling channels move in the z-axis, how the bottom cooling channels move up slightly toward the part but the top cooling channels where the heat is more concentrated move Downward at a much, much faster pace, and how the ejector pins get avoided as it moves down. So they move down into the hollowed out section of the microwave dish lid.

The next slide will just look at the surface temperature of the mold in contact with a part on the moving half comparison. So this is the hotter part of the mold, traditionally this is the hotter part. If we can see there, it's got a red-hot section in the middle. And if we look at the approach from the one end to the other, you can see that temperatures go from 53 to almost 60 degrees at the same time. And the optimized version is the exact plot, but on the optimized model on the right. And you can see that they go from 47 degrees on the outer circle. And the center of the circle's actually 44 degrees, which is actually cooler than the center of the original model, the unoptimized one on that side. So, if you have a look, you can see that the optimized one is much, much cooler.

So if we look at the bottom, like we said before, it went from an initial temperature-- a mean of 49 degrees-- to 41 degrees on the right. The standard deviation went from 5.718 to 2.99. And also, the range, the temperature range, was 19 degrees, 19.285 on the original model. But the optimized one, the entire range even dropped from 15.072. The standard deviation accounts for outliers which would be captured in the range.

So just to summarize, the average temperature dropped by 7.956 degrees. And the optimization of the standard deviation dropped by 2.721.

This is the same picture but of the fixed half, the surface temperature of the fixed half comparison. And once again, you can see that the optimized one on the right is much, much cooler. The temperatures are much closer together than they were in the other one. So once again, the average temperature, same as the previous one dropped by 7.956, and the standard deviation by the same.

And I think it's at this point, I hand the presentation back to David.

DAVID ASTBURY: OK. So to summarize, from what you can see from the results, the automatic generation of cooling circuits is practical and possible. By employing geometric techniques, such as draping, we can get a good coverage of cooling channels over our part. And by using the optimization that Clinton described, we can refine that to produce an optimal result.

The second conclusion is really determining an optimal cooling circuit location is quite complex, with many design constraints and limitations which need to be considered. And if you think that we're just considering this paper the effect of moving the channel itself, there's extra complexity that can be introduced when we think about the changes you could make to the inlets. You could make changes to the geometry of the circuits, change the thickness of the circuit as it went through the cavity. You can look at things like introducing bubbles and baffles and all those things. So there's a lot more complexity that can be introduced. But in general, we find that if you get the cooling circuit layout correct, then you will have a better performing cooling circuit.

There's further research that will continue in this area. We have a lot more of the design options that we didn't talk about today to explore yet. And we'll continue to explore those with our industrial partner, Panasonic, over the next period. And maybe we'll present another paper next year on what we've found.

Thank you very much.

______
icon-svg-close-thick

Cookieの設定

弊社にとって、お客様のプライバシーを守ることと最適な体験を提供することは、どちらも大変重要です。弊社では、お客様に合わせてカスタマイズした情報を提供し、並びにアプリケーションの開発に役立てることを目的に、本サイトのご利用方法についてのデータを収集しております。

そこで、お客様のデータの収集と使用を許可いただけるかどうかをお答えください。

弊社が利用しているサードパーティのサービスについての説明とプライバシー ステートメントも、併せてご確認ください。

サイト動作に必須:オートデスクのサイトが正常に動作し、お客様へサービスを提供するために必要な機能です

Cookie を有効にすることで、お客様の好みやログイン情報が記録され、このデータに基づき操作に対する応答や、ショッピング カートへの商品追加が最適化されます。

使用感が向上:お客様に最適な情報が表示されます

Cookie を有効にすることで、拡張機能が正常に動作し、サイト表示が個々に合わせてカスタマイズされます。お客様に最適な情報をお届けし、使用感を向上させるためのこうした設定は、オードデスクまたはサードパーティのサービス プロバイダーが行います。 Cookie が無効に設定されている場合、一部またはすべてのサービスをご利用いただけない場合があります。

広告表示をカスタマイズ:お客様に関連する広告が表示されます

Cookie を有効にすることで、サイトのご利用内容やご興味に関するデータが収集され、これに基づきお客様に関連する広告が表示されるなど、効率的な動作が可能になります。また、継続的にデータを収集することで、お客様のご興味にさらに関連する広告を配信することが可能になります。Cookie が無効に設定されている場合、お客様に関連しない広告が表示される可能性があります。

icon-svg-close-thick

サードパーティのサービス

それぞれの情報で弊社が利用しているサードパーティのサービスと、オンラインで収集するお客様のデータの使用方法を詳しく説明いたします。

icon-svg-hide-thick

icon-svg-show-thick

サイト動作に必須:オートデスクのサイトが正常に動作し、お客様へサービスを提供するために必要な機能です

Qualtrics
弊社はQualtricsを利用し、アンケート調査やオンライン フォームを通じてお客様が弊社にフィードバックを提供できるようにしています。アンケートの回答は無作為に選んだお客様にお願いしておりますが、お客様から自発的に弊社にフィードバックを提供することも可能です。データを収集する目的は、アンケートの回答前にお客様がとられた行動を、より正しく理解するためです。収集したデータは、発生していた可能性がある問題のトラブルシューティングに役立てさせていただきます。. Qualtrics プライバシー ポリシー
Akamai mPulse
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Akamai mPulseを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Akamai mPulse プライバシー ポリシー
Digital River
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Digital Riverを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Digital River プライバシー ポリシー
Dynatrace
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Dynatraceを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Dynatrace プライバシー ポリシー
Khoros
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Khorosを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Khoros プライバシー ポリシー
Launch Darkly
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Launch Darklyを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Launch Darkly プライバシー ポリシー
New Relic
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、New Relicを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. New Relic プライバシー ポリシー
Salesforce Live Agent
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Salesforce Live Agentを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Salesforce Live Agent プライバシー ポリシー
Wistia
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Wistiaを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Wistia プライバシー ポリシー
Tealium
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Tealiumを利用しています。データには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Tealium プライバシー ポリシー<>
Typepad Stats
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Typepad Statsを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Typepad Stats プライバシー ポリシー
Geo Targetly
当社では、Geo Targetly を使用して Web サイトの訪問者を最適な Web ページに誘導し、訪問者のいる場所に応じて調整したコンテンツを提供します。Geo Targetly は、Web サイト訪問者の IP アドレスを使用して、訪問者のデバイスのおおよその位置を特定します。このため、訪問者は (ほとんどの場合) 自分のローカル言語でコンテンツを閲覧できます。Geo Targetly プライバシー ポリシー
SpeedCurve
弊社は、SpeedCurve を使用して、Web ページの読み込み時間と画像、スクリプト、テキストなど後続の要素の応答性を計測することにより、お客様の Web サイト エクスペリエンスのパフォーマンスをモニタリングおよび計測します。SpeedCurve プライバシー ポリシー
Qualified
Qualified is the Autodesk Live Chat agent platform. This platform provides services to allow our customers to communicate in real-time with Autodesk support. We may collect unique ID for specific browser sessions during a chat. Qualified Privacy Policy

icon-svg-hide-thick

icon-svg-show-thick

使用感が向上:お客様に最適な情報が表示されます

Google Optimize
弊社はGoogle Optimizeを利用して、弊社サイトの新機能をテストし、お客様に合わせた方法で機能を使えるようにしています。そのため弊社では、弊社サイトにアクセスしているお客様から、行動に関するデータを収集しています。収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID などが含まれます。機能のテストの結果によっては、お客様がご利用のサイトのバージョンが変わったり、サイトにアクセスするユーザの属性に応じて、パーソナライズされたコンテンツが表示されるようになる場合があります。. Google Optimize プライバシー ポリシー
ClickTale
弊社は、弊社サイトをご利用になるお客様が、どこで操作につまづいたかを正しく理解できるよう、ClickTaleを利用しています。弊社ではセッションの記録を基に、ページの要素を含めて、お客様がサイトでどのような操作を行っているかを確認しています。お客様の特定につながる個人情報は非表示にし、収集も行いません。. ClickTale プライバシー ポリシー
OneSignal
弊社は、OneSignalがサポートするサイトに広告を配置するために、OneSignalを利用しています。広告には、OneSignalのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、OneSignalがお客様から収集したデータを使用する場合があります。OneSignalに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. OneSignal プライバシー ポリシー
Optimizely
弊社はOptimizelyを利用して、弊社サイトの新機能をテストし、お客様に合わせた方法で機能を使えるようにしています。そのため弊社では、弊社サイトにアクセスしているお客様から、行動に関するデータを収集しています。収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID などが含まれます。機能のテストの結果によっては、お客様がご利用のサイトのバージョンが変わったり、サイトにアクセスするユーザの属性に応じて、パーソナライズされたコンテンツが表示されるようになる場合があります。. Optimizely プライバシー ポリシー
Amplitude
弊社はAmplitudeを利用して、弊社サイトの新機能をテストし、お客様に合わせた方法で機能を使えるようにしています。そのため弊社では、弊社サイトにアクセスしているお客様から、行動に関するデータを収集しています。収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID などが含まれます。機能のテストの結果によっては、お客様がご利用のサイトのバージョンが変わったり、サイトにアクセスするユーザの属性に応じて、パーソナライズされたコンテンツが表示されるようになる場合があります。. Amplitude プライバシー ポリシー
Snowplow
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Snowplowを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Snowplow プライバシー ポリシー
UserVoice
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、UserVoiceを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. UserVoice プライバシー ポリシー
Clearbit
Clearbit を使用すると、リアルタイムのデータ強化により、お客様に合わせてパーソナライズされた適切なエクスペリエンスを提供できます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。Clearbit プライバシー ポリシー
YouTube
YouTube はビデオ共有プラットフォームで、埋め込まれたビデオを当社のウェブ サイトで表示および共有することができます。YouTube は、視聴者のビデオのパフォーマンスの測定値を提供しています。 YouTube 社のプライバシー ポリシー

icon-svg-hide-thick

icon-svg-show-thick

広告表示をカスタマイズ:お客様に関連する広告が表示されます

Adobe Analytics
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Adobe Analyticsを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Adobe Analytics プライバシー ポリシー
Google Analytics (Web Analytics)
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Google Analytics (Web Analytics)を利用しています。データには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Google Analytics (Web Analytics) プライバシー ポリシー<>
Marketo
弊社は、お客様に関連性のあるコンテンツを、適切なタイミングにメールで配信できるよう、Marketoを利用しています。そのため、お客様のオンラインでの行動や、弊社からお送りするメールへの反応について、データを収集しています。収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、メールの開封率、クリックしたリンクなどが含まれます。このデータに、他の収集先から集めたデータを組み合わせ、営業やカスタマー サービスへの満足度を向上させるとともに、高度な解析処理によって、より関連性の高いコンテンツを提供するようにしています。. Marketo プライバシー ポリシー
Doubleclick
弊社は、Doubleclickがサポートするサイトに広告を配置するために、Doubleclickを利用しています。広告には、Doubleclickのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Doubleclickがお客様から収集したデータを使用する場合があります。Doubleclickに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Doubleclick プライバシー ポリシー
HubSpot
弊社は、お客様に関連性のあるコンテンツを、適切なタイミングにメールで配信できるよう、HubSpotを利用しています。そのため、お客様のオンラインでの行動や、弊社からお送りするメールへの反応について、データを収集しています。収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、メールの開封率、クリックしたリンクなどが含まれます。. HubSpot プライバシー ポリシー
Twitter
弊社は、Twitterがサポートするサイトに広告を配置するために、Twitterを利用しています。広告には、Twitterのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Twitterがお客様から収集したデータを使用する場合があります。Twitterに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Twitter プライバシー ポリシー
Facebook
弊社は、Facebookがサポートするサイトに広告を配置するために、Facebookを利用しています。広告には、Facebookのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Facebookがお客様から収集したデータを使用する場合があります。Facebookに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Facebook プライバシー ポリシー
LinkedIn
弊社は、LinkedInがサポートするサイトに広告を配置するために、LinkedInを利用しています。広告には、LinkedInのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、LinkedInがお客様から収集したデータを使用する場合があります。LinkedInに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. LinkedIn プライバシー ポリシー
Yahoo! Japan
弊社は、Yahoo! Japanがサポートするサイトに広告を配置するために、Yahoo! Japanを利用しています。広告には、Yahoo! Japanのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Yahoo! Japanがお客様から収集したデータを使用する場合があります。Yahoo! Japanに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Yahoo! Japan プライバシー ポリシー
Naver
弊社は、Naverがサポートするサイトに広告を配置するために、Naverを利用しています。広告には、Naverのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Naverがお客様から収集したデータを使用する場合があります。Naverに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Naver プライバシー ポリシー
Quantcast
弊社は、Quantcastがサポートするサイトに広告を配置するために、Quantcastを利用しています。広告には、Quantcastのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Quantcastがお客様から収集したデータを使用する場合があります。Quantcastに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Quantcast プライバシー ポリシー
Call Tracking
弊社は、キャンペーン用にカスタマイズした電話番号を提供するために、Call Trackingを利用しています。カスタマイズした電話番号を使用することで、お客様は弊社の担当者にすぐ連絡できるようになり、弊社はサービスのパフォーマンスをより正確に評価できるようになります。弊社では、提供した電話番号を基に、サイトでのお客様の行動に関するデータを収集する場合があります。. Call Tracking プライバシー ポリシー
Wunderkind
弊社は、Wunderkindがサポートするサイトに広告を配置するために、Wunderkindを利用しています。広告には、Wunderkindのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Wunderkindがお客様から収集したデータを使用する場合があります。Wunderkindに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Wunderkind プライバシー ポリシー
ADC Media
弊社は、ADC Mediaがサポートするサイトに広告を配置するために、ADC Mediaを利用しています。広告には、ADC Mediaのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、ADC Mediaがお客様から収集したデータを使用する場合があります。ADC Mediaに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. ADC Media プライバシー ポリシー
AgrantSEM
弊社は、AgrantSEMがサポートするサイトに広告を配置するために、AgrantSEMを利用しています。広告には、AgrantSEMのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、AgrantSEMがお客様から収集したデータを使用する場合があります。AgrantSEMに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. AgrantSEM プライバシー ポリシー
Bidtellect
弊社は、Bidtellectがサポートするサイトに広告を配置するために、Bidtellectを利用しています。広告には、Bidtellectのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Bidtellectがお客様から収集したデータを使用する場合があります。Bidtellectに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Bidtellect プライバシー ポリシー
Bing
弊社は、Bingがサポートするサイトに広告を配置するために、Bingを利用しています。広告には、Bingのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Bingがお客様から収集したデータを使用する場合があります。Bingに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Bing プライバシー ポリシー
G2Crowd
弊社は、G2Crowdがサポートするサイトに広告を配置するために、G2Crowdを利用しています。広告には、G2Crowdのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、G2Crowdがお客様から収集したデータを使用する場合があります。G2Crowdに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. G2Crowd プライバシー ポリシー
NMPI Display
弊社は、NMPI Displayがサポートするサイトに広告を配置するために、NMPI Displayを利用しています。広告には、NMPI Displayのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、NMPI Displayがお客様から収集したデータを使用する場合があります。NMPI Displayに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. NMPI Display プライバシー ポリシー
VK
弊社は、VKがサポートするサイトに広告を配置するために、VKを利用しています。広告には、VKのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、VKがお客様から収集したデータを使用する場合があります。VKに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. VK プライバシー ポリシー
Adobe Target
弊社はAdobe Targetを利用して、弊社サイトの新機能をテストし、お客様に合わせた方法で機能を使えるようにしています。そのため弊社では、弊社サイトにアクセスしているお客様から、行動に関するデータを収集しています。収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID などが含まれます。機能のテストの結果によっては、お客様がご利用のサイトのバージョンが変わったり、サイトにアクセスするユーザの属性に応じて、パーソナライズされたコンテンツが表示されるようになる場合があります。. Adobe Target プライバシー ポリシー
Google Analytics (Advertising)
弊社は、Google Analytics (Advertising)がサポートするサイトに広告を配置するために、Google Analytics (Advertising)を利用しています。広告には、Google Analytics (Advertising)のデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Google Analytics (Advertising)がお客様から収集したデータを使用する場合があります。Google Analytics (Advertising)に提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Google Analytics (Advertising) プライバシー ポリシー
Trendkite
弊社は、Trendkiteがサポートするサイトに広告を配置するために、Trendkiteを利用しています。広告には、Trendkiteのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Trendkiteがお客様から収集したデータを使用する場合があります。Trendkiteに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Trendkite プライバシー ポリシー
Hotjar
弊社は、Hotjarがサポートするサイトに広告を配置するために、Hotjarを利用しています。広告には、Hotjarのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Hotjarがお客様から収集したデータを使用する場合があります。Hotjarに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Hotjar プライバシー ポリシー
6 Sense
弊社は、6 Senseがサポートするサイトに広告を配置するために、6 Senseを利用しています。広告には、6 Senseのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、6 Senseがお客様から収集したデータを使用する場合があります。6 Senseに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. 6 Sense プライバシー ポリシー
Terminus
弊社は、Terminusがサポートするサイトに広告を配置するために、Terminusを利用しています。広告には、Terminusのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Terminusがお客様から収集したデータを使用する場合があります。Terminusに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Terminus プライバシー ポリシー
StackAdapt
弊社は、StackAdaptがサポートするサイトに広告を配置するために、StackAdaptを利用しています。広告には、StackAdaptのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、StackAdaptがお客様から収集したデータを使用する場合があります。StackAdaptに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. StackAdapt プライバシー ポリシー
The Trade Desk
弊社は、The Trade Deskがサポートするサイトに広告を配置するために、The Trade Deskを利用しています。広告には、The Trade Deskのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、The Trade Deskがお客様から収集したデータを使用する場合があります。The Trade Deskに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. The Trade Desk プライバシー ポリシー
RollWorks
We use RollWorks to deploy digital advertising on sites supported by RollWorks. Ads are based on both RollWorks data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that RollWorks has collected from you. We use the data that we provide to RollWorks to better customize your digital advertising experience and present you with more relevant ads. RollWorks Privacy Policy

オンライン体験の品質向上にぜひご協力ください

オートデスクは、弊社の製品やサービスをご利用いただくお客様に、優れた体験を提供することを目指しています。これまでの画面の各項目で[はい]を選択したお客様については、弊社でデータを収集し、カスタマイズされた体験の提供とアプリケーションの品質向上に役立てさせていただきます。この設定は、プライバシー ステートメントにアクセスすると、いつでも変更できます。

お客様の顧客体験は、お客様が自由に決められます。

オートデスクはお客様のプライバシーを尊重します。オートデスクでは収集したデータを基に、お客様が弊社製品をどのように利用されているのか、お客様が関心を示しそうな情報は何か、オートデスクとの関係をより価値あるものにするには、どのような改善が可能かを理解するよう務めています。

そこで、お客様一人ひとりに合わせた体験を提供するために、お客様のデータを収集し、使用することを許可いただけるかどうかお答えください。

体験をカスタマイズすることのメリットにつきましては、本サイトのプライバシー設定の管理でご確認いただけます。弊社のプライバシー ステートメントでも、選択肢について詳しく説明しております。