AU Class
AU Class
class - AU

Closing the Design/Manufacturing Gap: How Informed Design Helps Both Manufacturers and Architects Build Better Buildings

このクラスを共有
ビデオ、プレゼンテーション スライド、配布資料のキーワードを検索する:

説明

Hear the story of how Cascadia Structural Timber Solutions went from being a small hand fabrication and truss manufacturer to a fast-growing glulam fabricator, looking to lead the way in new mass timber buildings using Informed Design in Inventor software. The mass timber industry is on the rise, and with it comes unique challenges on the jobsite. As many projects move to a hybrid of steel and wood, we need to be able to provide products that can be easily used and understood early in the design process. With Informed Design we can predefine structural members—from columns to beams to preassembled trusses—that can be added at the beginning of the design process. We can provide flexibility for our customers by giving them specific parameters they can change while still allowing the design to be easy to manufacture. With our push to implement lean manufacturing principles, these designs allow us to scale our business and increase profitability while providing a great experience for our customers.

主な学習内容

  • Discover why Lean Manufacturing and Design for Manufacturing is key for Industrialized Construction.
  • Learn how Informed Design gives designers the tools to create with pre-approved designs that have design for manufacturing and Lean Manufacturing built in.
  • See how Cascadia Structural Timber Solutions is using Informed Design for prefabricated Mass Timber Components.

スピーカー

  • Kyle Gilham
    Kyle Gilham has been around the Mass Timber since he was in high school working in the shop at Western Wood Structures Inc., the company his dad worked at, fabricating glulam bridges and buildings. When he went to college he decided to try a new industry and got his degree in Mechanical Engineering. After school he went to work for a heavy material handling company designing heavy duty winches and marine cranes for Navy ships. Here he learned the value of Design for Manufacturing, especially after designing a few unmachinable parts himself. After he had a short stint working at Daimler Trucks, designing components for Semi-Trucks. Here he learned how large companies integrated Design for Manufacturing with Lean Manufacturing and assembly lines to increase production and lower costs. After a little over a year, he switched over to software, working at Autodesk for the next 7 years. Here he started working with the Inventor and Revit teams and learning more about Industrialized Construction. He started to get his MBA from Willamette University and was halfway through when an opportunity came to help run a small timber fabrication company that Western Wood Structures had just bought. It was directly in the Industrialized Construction space and in Mas Timber which seemed like a perfect fit. For the past two years he has been working to shift this company, with a fantastic executive team, from a company with a machine to a true manufacturing company, realizing all the benefits associated with Industrialized Construction.
Video Player is loading.
Current Time 0:00
Duration 48:38
Loaded: 0.34%
Stream Type LIVE
Remaining Time 48:38
 
1x
  • Chapters
  • descriptions off, selected
  • en (Main), selected
Transcript

KYLE GILHAM: Hello, everyone. Welcome to AU 2024. Today, we're going to be talking about "Closing the Design and Manufacturing Gap; How Informed Design helps both manufacturers and architects build better buildings." My name is Kyle Gilham.

On the agenda today, we're going to do a quick introduction of who I am, and then we're going to go through our product design cycle as we use informed design. And so that informed design, product design cycle looks like identifying a problem that we see in the market, coming up with an idea to fix that problem, doing some R&D, doing some testing, and then going ahead and releasing that product.

Like I said, my name is Kyle Gilham. I work as a director of product development at Cascadia Structural Timber Solutions. Before I was working at Cascadia Structural, I actually worked at Autodesk for seven years. I started out on the inventor side as a mechanical engineer, but after that, worked with the Inventor/Revit Interop team. So I got to talk to a lot of customers that were in this building product space and the AEC space, and understanding the difficulties that happen when you're trying to go from the manufacturing space into the AEC space and the difficulties around what we would call the industrialized construction.

Before that, I was actually working in the manufacturing sector. So I worked there for four years as the design engineer. And that's where my background kind of comes from. So I bring a lot of the manufacturing experience from that side of the industry. And my background is in, actually, mechanical engineering.

So a little bit of background on Cascadia Structural. So we are a timber and glulam fabricator. So we fabricate glulam and heavy timber for the end user and do a lot of assembly on our side, too, before it's sent out to the job site.

Here's a video of one of the things that we can do. So here's one of our machines. We actually have four-- or three of these machines where we can go ahead and fabricate to the specifications that our customers are looking for. And you see on the left side, we've got Cambium, which is our cam software. On the right side, you can see the machine actually working on that software.

And then once we do that, we go ahead and assemble it if it's a truss, or we assemble the steel on it, and send it off to the job site to be installed.

So the first thing that we needed to do was we needed to identify the problems that we're seeing in the market. And we're actually going to split those off into three different problems. First was the problem of capacity. So when we came into this two years ago, we had had an issue with capacity because we were a manufacturer or a fabricator that was always at the tail end of the design chain. And so a lot of the problems or issues with the design would always come kind of downhill to our side of the ledger.

And the issue-- what happened with that was that everything that we ended up having to do was custom. And because of that customization, it really bogged down our capacity and our output. And so here you can see how we identify capacity problems in our plant is when you see these piles. And you can see all of the variation that you have in the different projects that we had. And this really limited the capacity that we were able to produce through our plant.

And we were able to get about 3,000 board feet per day, even with running two shifts. And so this was one of the main problems that we were having. 3,000 board feet, for those of you who don't, is about maybe a quarter of a truckload of material.

Another issue that we were running into is in our space, in our industry, which is the mass timber industry, we were seeing rapid growth, and even what you would consider exponential growth. Here you can see the graph of all the mass timber projects that are being worked on in the past, what seems like from 1998 to 2024. And you can see that exponential growth. So not only were we limited on capacity, but our demand was growing at an exponential rate.

And when we were competing against industries like the steel industry, we were competing against industries that already had products in place that were really easy for the engineers and architects to specify in their drawings, because a lot of that engineering had already been done for them. So this is an example of a pretty big steel manufacturer called Vulcraft. And you can see a lot of the products that they already have pre-engineered available to their customers, even with available load tables for the structural engineers to go ahead and specify those products, and understand the spacing that they could put those products in at a very easy-to-use level.

And then the last problem that we were kind of identifying was this issue that came with talking to architects. So a lot of architects, when they're in this-- when they're coming out of college, they're having these grand ideas of building something like this, like the Guggenheim. And so when we start talking to them about products, they always get this worried look in their face where they are asking, OK, I'm thinking I want to build something like this. And it seems like what you're doing is you're asking me to build something like this.

And so there's this disconnect when talking to architects and talking about products, where they automatically assume when you're talking about products that you're wanting to them to build tiny little boxes that are going to stifle their creativity, and kind of detract from the beauty of the building that they are wanting to build.

So what was the idea we came up with? So the idea we came up with is, how do we create a structural element in the material that we create or that we fabricate for the market that is continuously growing? And how do we create that in such a way that architects can use it in a way that allows them to have some creativity in the way that they place it in their building?

And so what we came up with is two different options, or two different design options. So the first is these options of trusses, or pre-engineered trusses. So we came up with pre-engineered trusses in five different categories. So you can see all the categories here.

And we did this at various lengths, various depths, and various sizes of members. And this really gives the end customer a wide range of things that they can pick from. And even though it's talked about in 10-foot increments, they can actually pick anywhere between that 40 feet and 120 feet that we allow them to see in the load table.

In addition, the mass timber industry is doing a lot with beams and columns, along with CLT panels. Now, we don't personally fabricate CLT panels. It's just part of that mass timber movement that we're talking about. But we do fabricate the columns and beams that you see here.

A lot of times these connections are going to be fabricated and the connecting hardware is going to be actually installed at our site. And so this is another area or product we can create where we can allow the end user to vary, say, the width, the depth, and the length. And they can also vary the different connectors.

These are two examples of connectors. On one side, you see the Ricon connector over in Europe, and the other side, you see the Simpson connector. There's a couple other variations on this, but we want to give the user, the end user, the ability to pick and choose what they're looking for, and then we can go ahead, manufacture it at our facility, install all of the parts that they need. And then all they need to do, again, is take it off the truck and assemble it on site.

But how are we going to communicate this to the architect? We're going to give you these components, but we're going to allow you to change them in such a way where you can still build a really interesting building. And so I like to use this analogy.

And so here you can see these are LEGO Technics. LEGO is ubiquitous in the manufacturing world as someone that makes very standardized parts, but they make quite a few variations of those standardized parts. And so the idea behind this is you can create something incredibly creative, and incredibly cool, incredibly interesting, while using these standardized parts.

And the example is this Bugatti that people have made. So this is a Bugatti that's actually a functioning Bugatti. It can't drive, obviously, at the 200 miles that a Bugatti can drive. But it is actually a drivable Bugatti that's made all out of LEGO Technics. So this is a great example that we can talk to the architects about that says, you can use these standardized products in a customized way in your building, and still have that ingenuity, that creativity that you want to have.

So that was the idea. How do we go about actually implementing this idea? Now, before we jump into the informed design, the first thing that we actually need to do is step back and do some of the engineering behind the design.

So the way that we did this is most structural engineers are probably going to understand this, but you're going to start with the design. So you're going to start with those 10-feet increments that we showed before. Once you have the design, you're going to design it a couple different times.

What Inventor allows you to do is change that design pretty easily, and then you move it into your load analysis software. That load analysis software is really going to take that design and understand what are the loads in each of those members.

Once you have the loads, you're going to move that down to the structural analysis. The structural analysis is going to tell you now that you have the load in that member, what's the stress in that member? Is that member overstressed or is it not? And do I need to change the loading in that truss in order to make the stress at a level that is OK for the structural analysis that we're doing?

Once you have the structural analysis, you go on to element detailing. And that's really understanding the connections between all the members, and making sure that those are designed in such a way to not overstress or overload the bolts that you're going to be using as the connecting elements.

Once you have that, you're going to move into the load table. And so this is something that you have created-- once you've created your-- once you've gone through all of the different engineering steps, and created loads for each of those different 10-foot increments and different depths that you see here.

So here you can see the 10-foot increments. You have a load table for these specific trusses. This really is helpful for the engineers that are specifying your product in their engineering, so they can understand the spacing that each truss is able to do, and the different loads of the different truss type levels.

Now, once you have that, now is when we start getting into this informed design, and creating something similar to what you're going to see here in this video, where you can go ahead and make some minor tweaks or a couple of different parameter changes. And it changes all of the different elements in your truss type.

The first way that we're going to do this is we're going to start with top level skeletal modeling. So skeletal modeling, for those who don't, is the ability to identify and control all of the assembly and parts at the top level assembly model. So this is a really simple way of looking at skeletal modeling.

I'm not going to get into too much depth in any of these slides, because you would have to go to other classes to get in depth. I'm just going to touch on real high level, how to do a couple of these things. If you want more information, there's other classes that you can talk about, or look up, and see how to do a lot of these things that I'm going to talk about. But I'll touch on most of these at a very high level.

So for skeletal modeling, the basics are you have a top level assembly. You're going to have a master sketch that sits in that top level assembly. That master sketch is going to have all of the basic components or all of the basic interfaces defined in that master sketch. It then gets derived into parts, and those parts then come back into the master assembly. That really gives you the ability to have all of those parameters that you're controlling that you saw in that video at that top level assembly, and push it down into the components that you're going to go ahead and modify.

Once you have the skeletal modeling set up, this is when you start talking about defining your parameters. So parameters are what is going to be allowed, or is what is going to allow your end user to control how they want the truss in this case, or the building product in your case to go ahead and be modified.

So the parameters that you want them to modify, you need to put in this parameter box on the top level assembly. So here you can see I've got a couple of parameters that I want them to control-- truss length, truss height, truss style, and column type.

But what you'll also notice, I have quite a few other parameters as well. Those are all going to be controlled through iLogic. And iLogic is going to be using those four parameters that I'm letting the end user control and driving all of these other user parameters that are super important.

So for me, the example would be the truss style right now is light. And that's actually driving a lot of the depths and widths of the member sizes. So here you can see that I have the bottom chord depth is 13.5. The bottom chord width is 5 and 1/8.

So if I change the column, not the column type, but the truss style to medium, the iLogic code is going to go in and then change the other parameters to 18 and 6 and 3/4. And that's because that's what I've defined there. So that's how you're going to set up your parameters. They all need to live in that top level assembly so they can all interact.

And then you're going to go ahead and push those parameters down to your master sketch. And the way you're going to do this is through this code that's called the parameter code. And this is the one area that I really wanted to point out.

Your iLogic code is going to be much more involved than just this one step. I'm just going to point out the one step that we found very useful. And this is the ability to push those parameters at the top level assembly down to your master sketch.

So once you have the upper level assembly parameters defined, you can push them to your master sketch. That master sketch then updates, which updates all your parts, which updates then your top level assembly. So this is a pretty important part of the code.

And then the other parts of the code I won't get into here, but what they're going to do is take those, again, parameters that you're allowing your end user to change, and they're going to change some of these other user parameters that you've created in your top level assembly.

Now that you've created your assembly, what we're going to do is take the BIM information and create some BIM properties. And these BIM properties are the identification that the end user is actually going to be able to see.

And what's really cool about this new BIM properties that's been added, I believe, in 2024 is the ability to add dynamic properties. So here you can see in my model parameter that it's grayed out because it's actually being driven by a parameter called part number. And that part number is actually being driven by the parameters that I've defined in this assembly.

And what's cool about that is that allows you to make something called a smart part number. So when your customer is ready to order, they're using a smart part number. That's going to tell me everything I need to know about the part that they're-- or the product that they're ordering so that it fully defines the product, that I can order it that much faster.

So here you can see we have DH, which stands for Double How, or for those baseball fans out there, Designated Hitter. But the other areas, so 4/12 is the pitch of the truss. And so if I went ahead and changed that in the iLogic code to a 5/12 truss, that part number would update, which means the model number would update. And so in the Revit file, that would also update. So pretty cool functionality that they've added.

And then the other cool added features that you can put in here are the manufacturer, which obviously for us is Cascadia Structural, and then the website. So they can go ahead and understand where they can order this product from. And so you can add a lot of that information so that end user is easily able to come back into your sales pipeline.

Once you've created your model, what I also recommend would be creating a semi-automated drawing. Now, fully automated drawings would be wonderful. What we found is those are really difficult and time consuming to make a fully automated drawing that is allowed to create the drawings without having a user touch it at the end.

What we found is a little bit easier is actually creating semi-automated, which means that time to actually create the code, but it takes away about 90% of the drafting work. And so here you can see an example. If I update this truss, my bill of materials is going to update for me. I might have to go in and maybe make some modifications to the bill of materials in terms of how I want to sort all of these bills of materials.

So say I wanted to move the bottom chord up so it looks a little bit more organized. You might have to do something like that. But the majority of the work is already done. So here is the first page. I actually have, it looks like, 17 pages in this drawing. And that's going to be not only the top level assembly, but all of the parts defined as well.

Now, when you update this, it could be that some of the dimensions that you have on those parts get broken. But that's where your drafter is going to come in and do some work in order to fix up the drawing, and make it look nice, and maybe organize it a little bit better. But the majority of the work is already done for them. So again, this is all about reducing the amount of time from that order process in order to get faster lead times in order-- to your final customer.

And lastly, what I want to encourage, my product designers and product manufacturers, is to use both Informed Design like we were talking about right now. I haven't even gotten into how you publish with Informed Design. It's actually a really simple way of publishing.

Once you have that iLogic code built in the publish workflow, I would just go up and see how you do it. They have a lot of information on how to publish. It's super simple. It takes a lot of your iLogic code already, and puts it into your informed design workflow.

But what I want to encourage you here is actually to not only use the Informed Design workflow, but also to use the RFA workflow. And the reason for that is kind of twofold. The first reason is the RFA workflow is still much faster on the architect side than is the informed design workflow.

And that's because your informed design workflow is, again, linked back to your fabrication. So it's going to be more accurate, but it's just not going to be as performant, whereas the RFA workflow is not as accurate. So there could be some discrepancies between the final RFA model and the final RFA product that you create.

But it's going to be most of the way there. So as they're maybe at the level of detail 100 or the level of detail 200, they can use the RFA. If everything's still changing, it allows for that change to happen much faster. But we're going to tell them, hey, you can use this for now, but you're not going to be able to use it when you're doing clash detection, because we can't guarantee the accuracy.

Once you start getting into clash detection, your project's solidified. You understand all of the different things that are going to go into the spacing. That's all been decided. This is when you bring in the Informed Design. And since that Informed Design, again, is linked to that fabrication model that you have, you can now use that Informed Design for that clash detection. Make sure that if you're running, say, HVAC through your trusses, it's not going to interfere. And you can really understand how that building is going to look in a more accurate way.

The second reason I really encourage us to use RFAs is because informed design is only available in 2024 and beyond. And Autodesk supports Revit back quite a ways before that. And so, again, as the product manufacturer, you're trying to sell to as many people as possible. So what that means is give them as many options to use your product in their models.

So RFAs are still a great way for them to-- if they're, say, on 2020, they can still use that RFA to go ahead and specify your product and order it from you. So it just gives your users that many more options.

So now that we have this product idea, we still have this one issue, which is I still have a capacity problem. And yes, making a product helps me in some way because it puts me at the front end of the design, but it doesn't help all the way.

And what it kind of feels like to us is it feels like we're back in the 1800s, still kind of cutting wheat the old-fashioned way with a scythe and bundling it up. And we want to get to this place where we're a combine driver, and we just have a tractor here, where we're just cutting down wheat like none other. So just spitting it out so that it can go out to the product, or it can go out to the field that much faster.

We're wanting to increase that capacity quite a bit. And we're just not able to get there yet with the current way that we're doing things. And so we're going to have to test out this product and understand how do we do this in a way that allows us to increase our production.

And there's really two ways that we're going about doing that right now. The first is the idea of adding design for manufacturing into the product, and informing our customers that are still doing that custom design how they can add this design for manufacturing into their products to make it that much easier for us to manufacture, which, again, increases our throughput, and decreases the cost to them.

So at a very high level, again, design for manufacturing, very simply is designing products in a way to make them easy to manufacture. Now, most of the time design engineers very-- it makes sense that design engineers are thinking not in terms of manufacturing, but they're thinking about the end design. So they're wanting to make sure that the building stands up. From an architecture standpoint, they want to make sure it looks good, and that it all fits together. And that's great.

What ends up not always happening, especially in the custom realm, is that they don't always think about, OK, how does this actually get manufactured? And some really small tweaks can be really helpful to us. And so what we would ask many of our customers, and what we're trying to build in to our products is this idea of design for manufacturing so that you understand, how can I make it so that I can do almost all of the work on the machine, so that off the machine, I don't have to do as much, and I can just go ahead, wrap it up, and send it to the job site.

So I'm going to go through a couple of examples of what this looks like to give you an idea of what the idea of design for manufacturing looks like in real life. So this is a really simple example. It doesn't necessarily change very much in terms of cost or lead times, but I want to show you just how simple a change can be to make it easier on us.

So here's a pretty simple and common type of beam to column connection. So you have the column. You have a steel plate that's installed on the column. And then you have the beam that's going to sit on that steel connecting plate.

And the idea is that you have this cutout on the bottom so that maybe you can put a plug, and that plug will go ahead and hide that steel plate so it looks like a more wood-to-wood connection, even though it's not. And you still have some steel there. So you're going to make that cutout in the bottom of the beam.

Now, for those of you who are in manufacturing, you might already see the issue here. But the issue that we see here is that those corners, because they're interior corners, and we're going to try and cut this on the machine, because they're square, they're not actually going to be able to be fully manufactured on the machine.

And the reason they can't be fully manufactured is the way that we actually make that feature is that we're going to use an end mill. That end mill is going to leave a rounded corner on that feature because the end mill is a cylinder. And so if you wanted a square corner, what I'm going to have to do is I'm going to have to have one of my operators go in with a multi-tool or a chisel as that piece comes out, and go ahead and add that feature.

Now, again, this isn't something that is very difficult for us to do, but what I want to show is that something as simple as just adding radiuses to the inside of that makes it one step easier for us to manufacture this for you. So instead of making it so it's square, you can make it so it's rounded. And the steel manufacturer is not going to care, because outside corners can be easily rounded. Whereas inside corners, it's much harder to have that square corner.

So that's one example. Here's another example that we saw. So this was a drawing that we were sent to bid on. And here it's kind of hard to see, and you don't necessarily have scale. So I will tell you that this is a column with a steel piece that's connected to the bottom column, and then connecting up to that top column.

And it's going through this beam. That beam, when it was defined, was a 3-foot tall beam. So the depth of that beam was 3 feet. And that's a weldment. That is a rectangular weldment.

So what they were asking us to do was to create a rectangular cutout through 3 feet of material. Now, I want you to just pause and think about, how am I going to create a rectangular hole through 3 feet? Think about 3 feet. It's like one of your kids. If you have kids, one of your kids is maybe as tall as 3 feet.

It's a very tall piece of wood. And when we were looking at this, we said, OK, I think we can do this. But one, it's going to take us a lot of time, and it's going to cost a lot of money because of how much time it's going to take.

Not only that, it might not actually look that good, because you either are going to need to get a specialty tool, because we don't have a tool that goes 3 feet, or even 1.5 feet. And even if it did, it would probably have some issues with tolerances. Or you're going to use something like a chainsaw. And so the finished product is not going to actually look that good.

Now, what we told them is if you can think of a way to actually remove this feature, let's try and do that, because we can actually save you quite a bit of time and lead time by removing that feature and doing a different type of design. And I think we had something around $100,000 deduction because they had about 50 to 100 beams that had this feature in them.

So that's what I'm talking about. Again, that might not be actually possible in this instance, but if it is possible, it's worth taking a little bit of time to understand, hey, if I change this a little bit, I can change the amount of lead time or change the lead time to the job site. And I can change the amount of cost. And not only that, that allows us as the manufacturers to, again, have that higher amount of capacity for the rest of the market.

So after design for manufacturing, the other thing that we were looking at implementing is the idea of lean manufacturing. Now, lean manufacturing has been around for a while in the manufacturing and mechanical engineering space, but it's relatively new to the building space. I think there are some building product manufacturers that are doing it. But it's still pretty new, and so it's still being implemented.

And it's still a little bit-- since we're not making just really simple widgets like a lot of mechanical engineering engineers do, it's a little bit harder to implement, but you can take a lot of the basics from lean manufacturing, and implement them. And it's still going to go ahead and increase that capacity for you in a really real and measurable way.

And so again, at a very high level, we're going to say, again, lean manufacturing is, by definition, the systemic and relentless elimination of waste and all of its forms in pursuit of highest quality, shortest lead time, and the lowest cost.

So when you're implementing lean manufacturing, what you're going to do is first you're going to identify where you're adding value to the product. And once you've figured out where you're adding value to the product, you're going to try and remove as much waste that you have in between those different times where you're adding values.

And this is a really basic, common idea of the eight wastes of lean manufacturing. And this helps you identify when you're looking at your production going through your shop. This helps you identify where you can see waste happening.

And so for an example, what we often do when we're going ahead and creating these features on these parts is we'll go ahead-- after it's all the way complete through the machine, we'll go ahead and sand it. And the reason we sand it is because sometimes there'll be scuff marks, or sometimes they want kind of a nice sand.

But what we found out what was happening, while the sanding to take off scuff marks is something that the customer is wanting, and willing to pay for, they're not wanting this really fine finish. They're not wanting cabinetry. This is a piece of structural element that's probably going up high somewhere. It's not going to be super visible. So again, they don't need something that it's super smooth to the touch. They're just wanting it to not look terrible and have black streaks on it.

So what we would often see is we would often see some of our fabricators sand that thing to a really fine finish, which is called extra processing. It's extra processing that the customer is not actually willing to pay for. And it slows down our entire production, because they don't actually want that. And we could have produced that much faster, because what we did was spend more time than the customer was actually wanting, producing that piece of material for them. So that's one example of ways that you can identify waste.

In addition, once you've identified where you're adding value, you can create these value streams. And then understand in the value streams, how you can create standardization. And here's an example of what standardization really gets you with lean manufacturing. And the idea behind standardization is not necessarily that all the products are standard. Again, what we're talking about is not necessarily standardizing or making it so that you have to fit in a really rigid box. We want a semi-flexible box.

But when we say standardization, what we mean is we want the processes that we're using to always be the exact same processes, and to be processes that we can mostly do again on our machines. And so if you can do it so that most of the standard processes are done on our machines, you can see the difference between a standard product that's going to go through our shop and a custom product that's going to go through our shop.

So again, to increase that capacity, if we can get your project into our standard glulam line or our standard truss fabrication line, we can get so much more capacity to you, which means that you get your product faster, and you get it cheaper because it costs us less when it goes through our shop that much faster.

So here you can see I can actually do four times as much capacity in my standard line as I can in my custom line. And this is really what allows us to increase that capacity that we're looking for, and really be that combine instead of the people out there with the size.

So how does this tie in to informed design and what Autodesk is trying to do? And I want to back up and show you this is what the informed design team has produced in terms of what is important to them, and what they're trying to do with informed design.

And so here I want to point out a couple of things and how it ties into what I've just been talking about in the testing side. So the first thing I want to point out is this process optimization and weight reduction. That's exactly what we're talking about when we're talking about lean manufacturing is optimization and waste reduction.

And then define products and guidelines for allowable variation-- DFMA stands for Design For Manufacturing and Assembly. That's, again, exactly what we're doing on those first slides. So they are trying to implement this and allow us as product manufacturers to add this into our products ahead of time so that's already in the product before it even goes out to the architects and design engineers. So they don't even have to think about it. They just are going to have it already available to them.

So how do we go about and do that in informed design? So the first thing that we can do is, one, in the informed design publishing process, you can add some code that allows you to message something that is manufacturing specific to your end user.

So you can see this is actually in Revit right now. And I'm messaging to the user that they've gone outside the bounds of what my manufacturing box is, and that I'm going to actually move them back into that 60 feet to 120 feet. So I'm telling them they can't make a truss outside of this length if they are using a medium style truss. And they're going to have to pick something else if they want a different type of length.

Or maybe I don't even create that for them. Maybe that's not even available. But it allows you to message that to the end user without you being right there in the room telling them what is available and not. So that's a really cool feature that allows you to inform your customer in a much more easily accessible way than what we were able to do before.

In addition, it allows you to standardize. So again, when you're creating these products, you're going to think about it from the same processing standpoint. And so what I want to show you is the difference between the products that we're developing currently and the products that we've been creating even in the past three months.

So these aren't trusses-- the next trusses I'm going to show you, these aren't trusses that have been developed in the past five years. We've done and manufactured these trusses probably in the past six months.

So here you can see the first truss that we had. This is an issue because it's not a standard bottom chord. You can see it's curved. That curve is going to cause some issues for us, because it can't go through our machine. So it has to be hand laid out and hand fabbed.

And in addition to that, it causes a lot of other issues with the kerfing, which is that slot that you create when you're trying to make sure those joints are all tight. You're going to go ahead and probably have to change some of those cuts in order to make sure that they follow that curve.

And any time you're actually carving wood, it's never the same each and every time. So each and every truss has to be done a little bit different, which, again, takes a lot of time on our side.

Here's another example. Now, this isn't a super complicated truss in terms of the shape of it or the installation. But there are some custom elements here, especially the steel, which do cause a lot of issues in terms of assembly, and in terms of cost.

So again, steel that is this large is going to be more expensive to you, and going to drive the price up. And again, it's just one more variation that we're going to have to do, which slows down our entire process.

In this last example of the custom trusses, this is just a huge truss that we did in the past three months. It's 36 tall. There's so many different connections. Again, they're all straight, so they all went through the machine. But it's just really complicated to try and inform your fabricators, OK, this is how we're going to have to build this. There's a lot more time that has to go up front into planning how to build this truss, planning where the space is going to be to build the truss, going ahead and building it, getting all of the learnings from it. So it's just a very time-consuming process.

Versus the trusses that we're creating right now for our new product. And those trusses look like this. Now, this is a double Howe truss. Here's what's called a Fink truss, and a scissor truss.

Now you can see that you get some variation. It looks a little bit different. So you allow your users, your end users, your architects, your engineers to have that ability to be a little bit more creative. And again, I can change those lengths. I can change the pitch. I have a little bit of variation.

But you can also notice that there's some similarities between these trusses, right? You can see that the plates are all on the outside. The drillings are all the same. All the members are straight. It's much simpler for me to have my fabricators do this over and over again, even if they're slightly different, because all the processes are exactly the same.

And this is what Informed Design allows you to do, is to push this out to the front end of the design to inform how you're going to design it at the beginning instead of trying to juggle all of the different issues that you see at the end once you've already solidified your design and sent it to your fabricator.

So let's make a comparison. Here's that truss I showed you at the very beginning. On the right side is a truss that we also fabricated in the past three months. And let's look at the difference between all of the processes that we had to do on the left side, the amount of time it took us, and the cost versus the right side.

So on the left side, of course, we had machining. Then we had kerfing. That's where we take a chainsaw, and we make those slots that you can see there for the steel. You had to drill out a bunch of the holes in that bottom chord. You had to do a lot of hand cutting.

So a lot of those webs didn't fit perfectly together on that bottom chord, again, because that curve is not always consistent between each bottom chord. And so you'd have to hand cut some of those members.

You have to do some shaping. So that bottom member is curved. So the cut has to be curved. So you have to do some shaping in order to make sure that it matches that bottom curve.

You have to do some counterboring. Again, that's just a manual process that you have to do on that bottom chord. Then you have to sand. You have to assemble. You have to pack.

The processing time for one truss is a little over 20 hours. And once you have that truss fully processed, the cost of that truss is around $22,000 to us. So obviously, we have to charge more to our customer.

Compare that to the right side. Again, this is something that we did recently. And so what you have to do here, all the members are straight. You have machining. Once it's machined, you've got to sand all the members.

You assemble them together-- super simple, because it's all outside plates. You pack up the truss, and you're done. So much simpler-- the processing time alone is only two-- a little over 2 hours, and the cost is almost a quarter of what the truss on the left. Basically, the same size truss. Actually, the one on the right might be a little bit bigger in terms of height and length, but so much simpler, so much easier.

Now, again, if you're going for pure aesthetics, maybe you want to pay that. But if it's something where you can compromise a little bit on the aesthetics and go with the more standard option, it's so much easier, and so much more cost effective to you. And again, it's looking at that lead time. So this is the product that we're really looking at going after and creating for you guys.

So where is Informed Design going and what are we kind of excited about that the team is working on right now? So I've been in talks with quite a few people on the Informed Design team. And it's really exciting, some of the things that they're coming out with.

So I want to talk about two that we're really excited about. And they really involve, how do I connect with my customer easier, and make it so it's easier for them to specify our product in their process? And so, first and foremost, these haven't been released, what I'm going to be talking about. So don't make any purchasing decisions based off what I'm showing you.

But the first thing that they were talking about doing is allowing the users to put in some sort of configurator on their website that points back to the Informed Design data that you've put up on the web. So Informed Design, you're going to publish right up to the Autodesk cloud.

And so it lives up there, and we're looking at, can we then allow our users to define the different parameters that we've given to them? And go ahead and push that up to the model up in the cloud, and download an RFA straight from our website. So again, this is just, how do we get that into the hands of our users that much easier?

In addition, not too long ago, Autodesk bought a company called UNIFI. And so UNIFI is the ability to organize your RFAs in a comprehensive way and go ahead and store them up on the cloud so they can be downloaded from anywhere. I'm not huge into the architecture space. So I think there's probably some more that goes into UNIFI. I don't want-- look into that yourself.

But what's really cool about UNIFI is because it was purchased by Autodesk, what they're looking at doing is allowing you to publish from Inventor onto the UNIFI platform so that your end users can just go up to UNIFI if they're already using it, see what your product is, take a look at it, and go ahead and download it directly from that. Again, just another platform that allows your users to access your products that much easier. Really cool stuff coming up. I'm really excited about it.

So to wrap up this case study, why are we doing all this work? What is the point of us going through all the labor of creating a product? Why don't we just let our users tell us what they want, architects, engineers tell us what they want? And it really comes down to a couple of different things.

So first, obviously, from our side, we're trying to increase our output, which increases our profit. So there's something for us, for sure. Increasing output, increasing profit, with the ability to implement something like lean manufacturing-- even without the productization, we're seeing huge amounts of gains in our output, which, obviously, every time you're increasing your output, your profit's going up as well. So we're seeing some really, really interesting and really encouraging signs that that's already working. And we're really excited to see as we launch this product, how much more we can do, because that output can continue to go up. So that's why we're doing it on our side.

From our user side, what they're going to see is they're going to see their lead times go down. So again, if we can create these products that much faster, that means the time to the job site is that much faster. And again, because it's industrialized construction, it's that much easier to actually assemble on site.

So when we were doing some of these projects before, we were seeing that if we were prefabricating it correctly, they could do a whole truck in less than a day. So if you're talking multiple trucks worth, and you can get that lead time down, you can get that assembly time down, it's just that much lower of a cost to you. So lead time's down.

The price per component or product is down. So obviously, the profits up for us, but the price per component is actually down for you, because I can produce them that much faster. So it's an advantage to you. And then, also, the effort to you. We're working in what was considered a very niche area.

So it used to be that the timber industry was very niche. It's becoming much more expansive. But one of the issues is that not every architect and engineer knows how to specify. So what Informed Design and some of this other stuff that we're doing behind the scenes of creating these load tables, this just decreases the effort that your end user really needs to have in order to implement and specify your product in their building.

So if we can reduce the effort, it's easier for them. They get a better price. They get a better lead time. Everyone, It's a huge win-win. So that's what we're really trying to do.

We're trying to give you the ability to use these standard components in a really unique way, understanding that you can still use standard components in a creative way and create beautiful products in the beginning-- from beginning to end.

______
icon-svg-close-thick

Cookieの設定

弊社にとって、お客様のプライバシーを守ることと最適な体験を提供することは、どちらも大変重要です。弊社では、お客様に合わせてカスタマイズした情報を提供し、並びにアプリケーションの開発に役立てることを目的に、本サイトのご利用方法についてのデータを収集しております。

そこで、お客様のデータの収集と使用を許可いただけるかどうかをお答えください。

弊社が利用しているサードパーティのサービスについての説明とプライバシー ステートメントも、併せてご確認ください。

サイト動作に必須:オートデスクのサイトが正常に動作し、お客様へサービスを提供するために必要な機能です

Cookie を有効にすることで、お客様の好みやログイン情報が記録され、このデータに基づき操作に対する応答や、ショッピング カートへの商品追加が最適化されます。

使用感が向上:お客様に最適な情報が表示されます

Cookie を有効にすることで、拡張機能が正常に動作し、サイト表示が個々に合わせてカスタマイズされます。お客様に最適な情報をお届けし、使用感を向上させるためのこうした設定は、オードデスクまたはサードパーティのサービス プロバイダーが行います。 Cookie が無効に設定されている場合、一部またはすべてのサービスをご利用いただけない場合があります。

広告表示をカスタマイズ:お客様に関連する広告が表示されます

Cookie を有効にすることで、サイトのご利用内容やご興味に関するデータが収集され、これに基づきお客様に関連する広告が表示されるなど、効率的な動作が可能になります。また、継続的にデータを収集することで、お客様のご興味にさらに関連する広告を配信することが可能になります。Cookie が無効に設定されている場合、お客様に関連しない広告が表示される可能性があります。

icon-svg-close-thick

サードパーティのサービス

それぞれの情報で弊社が利用しているサードパーティのサービスと、オンラインで収集するお客様のデータの使用方法を詳しく説明いたします。

icon-svg-hide-thick

icon-svg-show-thick

サイト動作に必須:オートデスクのサイトが正常に動作し、お客様へサービスを提供するために必要な機能です

Qualtrics
弊社はQualtricsを利用し、アンケート調査やオンライン フォームを通じてお客様が弊社にフィードバックを提供できるようにしています。アンケートの回答は無作為に選んだお客様にお願いしておりますが、お客様から自発的に弊社にフィードバックを提供することも可能です。データを収集する目的は、アンケートの回答前にお客様がとられた行動を、より正しく理解するためです。収集したデータは、発生していた可能性がある問題のトラブルシューティングに役立てさせていただきます。. Qualtrics プライバシー ポリシー
Akamai mPulse
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Akamai mPulseを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Akamai mPulse プライバシー ポリシー
Digital River
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Digital Riverを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Digital River プライバシー ポリシー
Dynatrace
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Dynatraceを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Dynatrace プライバシー ポリシー
Khoros
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Khorosを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Khoros プライバシー ポリシー
Launch Darkly
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Launch Darklyを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Launch Darkly プライバシー ポリシー
New Relic
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、New Relicを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. New Relic プライバシー ポリシー
Salesforce Live Agent
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Salesforce Live Agentを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Salesforce Live Agent プライバシー ポリシー
Wistia
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Wistiaを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Wistia プライバシー ポリシー
Tealium
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Tealiumを利用しています。データには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Tealium プライバシー ポリシー<>
Typepad Stats
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Typepad Statsを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Typepad Stats プライバシー ポリシー
Geo Targetly
当社では、Geo Targetly を使用して Web サイトの訪問者を最適な Web ページに誘導し、訪問者のいる場所に応じて調整したコンテンツを提供します。Geo Targetly は、Web サイト訪問者の IP アドレスを使用して、訪問者のデバイスのおおよその位置を特定します。このため、訪問者は (ほとんどの場合) 自分のローカル言語でコンテンツを閲覧できます。Geo Targetly プライバシー ポリシー
SpeedCurve
弊社は、SpeedCurve を使用して、Web ページの読み込み時間と画像、スクリプト、テキストなど後続の要素の応答性を計測することにより、お客様の Web サイト エクスペリエンスのパフォーマンスをモニタリングおよび計測します。SpeedCurve プライバシー ポリシー
Qualified
Qualified is the Autodesk Live Chat agent platform. This platform provides services to allow our customers to communicate in real-time with Autodesk support. We may collect unique ID for specific browser sessions during a chat. Qualified Privacy Policy

icon-svg-hide-thick

icon-svg-show-thick

使用感が向上:お客様に最適な情報が表示されます

Google Optimize
弊社はGoogle Optimizeを利用して、弊社サイトの新機能をテストし、お客様に合わせた方法で機能を使えるようにしています。そのため弊社では、弊社サイトにアクセスしているお客様から、行動に関するデータを収集しています。収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID などが含まれます。機能のテストの結果によっては、お客様がご利用のサイトのバージョンが変わったり、サイトにアクセスするユーザの属性に応じて、パーソナライズされたコンテンツが表示されるようになる場合があります。. Google Optimize プライバシー ポリシー
ClickTale
弊社は、弊社サイトをご利用になるお客様が、どこで操作につまづいたかを正しく理解できるよう、ClickTaleを利用しています。弊社ではセッションの記録を基に、ページの要素を含めて、お客様がサイトでどのような操作を行っているかを確認しています。お客様の特定につながる個人情報は非表示にし、収集も行いません。. ClickTale プライバシー ポリシー
OneSignal
弊社は、OneSignalがサポートするサイトに広告を配置するために、OneSignalを利用しています。広告には、OneSignalのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、OneSignalがお客様から収集したデータを使用する場合があります。OneSignalに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. OneSignal プライバシー ポリシー
Optimizely
弊社はOptimizelyを利用して、弊社サイトの新機能をテストし、お客様に合わせた方法で機能を使えるようにしています。そのため弊社では、弊社サイトにアクセスしているお客様から、行動に関するデータを収集しています。収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID などが含まれます。機能のテストの結果によっては、お客様がご利用のサイトのバージョンが変わったり、サイトにアクセスするユーザの属性に応じて、パーソナライズされたコンテンツが表示されるようになる場合があります。. Optimizely プライバシー ポリシー
Amplitude
弊社はAmplitudeを利用して、弊社サイトの新機能をテストし、お客様に合わせた方法で機能を使えるようにしています。そのため弊社では、弊社サイトにアクセスしているお客様から、行動に関するデータを収集しています。収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID などが含まれます。機能のテストの結果によっては、お客様がご利用のサイトのバージョンが変わったり、サイトにアクセスするユーザの属性に応じて、パーソナライズされたコンテンツが表示されるようになる場合があります。. Amplitude プライバシー ポリシー
Snowplow
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Snowplowを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Snowplow プライバシー ポリシー
UserVoice
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、UserVoiceを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. UserVoice プライバシー ポリシー
Clearbit
Clearbit を使用すると、リアルタイムのデータ強化により、お客様に合わせてパーソナライズされた適切なエクスペリエンスを提供できます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。Clearbit プライバシー ポリシー
YouTube
YouTube はビデオ共有プラットフォームで、埋め込まれたビデオを当社のウェブ サイトで表示および共有することができます。YouTube は、視聴者のビデオのパフォーマンスの測定値を提供しています。 YouTube 社のプライバシー ポリシー

icon-svg-hide-thick

icon-svg-show-thick

広告表示をカスタマイズ:お客様に関連する広告が表示されます

Adobe Analytics
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Adobe Analyticsを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Adobe Analytics プライバシー ポリシー
Google Analytics (Web Analytics)
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Google Analytics (Web Analytics)を利用しています。データには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Google Analytics (Web Analytics) プライバシー ポリシー<>
Marketo
弊社は、お客様に関連性のあるコンテンツを、適切なタイミングにメールで配信できるよう、Marketoを利用しています。そのため、お客様のオンラインでの行動や、弊社からお送りするメールへの反応について、データを収集しています。収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、メールの開封率、クリックしたリンクなどが含まれます。このデータに、他の収集先から集めたデータを組み合わせ、営業やカスタマー サービスへの満足度を向上させるとともに、高度な解析処理によって、より関連性の高いコンテンツを提供するようにしています。. Marketo プライバシー ポリシー
Doubleclick
弊社は、Doubleclickがサポートするサイトに広告を配置するために、Doubleclickを利用しています。広告には、Doubleclickのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Doubleclickがお客様から収集したデータを使用する場合があります。Doubleclickに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Doubleclick プライバシー ポリシー
HubSpot
弊社は、お客様に関連性のあるコンテンツを、適切なタイミングにメールで配信できるよう、HubSpotを利用しています。そのため、お客様のオンラインでの行動や、弊社からお送りするメールへの反応について、データを収集しています。収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、メールの開封率、クリックしたリンクなどが含まれます。. HubSpot プライバシー ポリシー
Twitter
弊社は、Twitterがサポートするサイトに広告を配置するために、Twitterを利用しています。広告には、Twitterのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Twitterがお客様から収集したデータを使用する場合があります。Twitterに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Twitter プライバシー ポリシー
Facebook
弊社は、Facebookがサポートするサイトに広告を配置するために、Facebookを利用しています。広告には、Facebookのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Facebookがお客様から収集したデータを使用する場合があります。Facebookに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Facebook プライバシー ポリシー
LinkedIn
弊社は、LinkedInがサポートするサイトに広告を配置するために、LinkedInを利用しています。広告には、LinkedInのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、LinkedInがお客様から収集したデータを使用する場合があります。LinkedInに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. LinkedIn プライバシー ポリシー
Yahoo! Japan
弊社は、Yahoo! Japanがサポートするサイトに広告を配置するために、Yahoo! Japanを利用しています。広告には、Yahoo! Japanのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Yahoo! Japanがお客様から収集したデータを使用する場合があります。Yahoo! Japanに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Yahoo! Japan プライバシー ポリシー
Naver
弊社は、Naverがサポートするサイトに広告を配置するために、Naverを利用しています。広告には、Naverのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Naverがお客様から収集したデータを使用する場合があります。Naverに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Naver プライバシー ポリシー
Quantcast
弊社は、Quantcastがサポートするサイトに広告を配置するために、Quantcastを利用しています。広告には、Quantcastのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Quantcastがお客様から収集したデータを使用する場合があります。Quantcastに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Quantcast プライバシー ポリシー
Call Tracking
弊社は、キャンペーン用にカスタマイズした電話番号を提供するために、Call Trackingを利用しています。カスタマイズした電話番号を使用することで、お客様は弊社の担当者にすぐ連絡できるようになり、弊社はサービスのパフォーマンスをより正確に評価できるようになります。弊社では、提供した電話番号を基に、サイトでのお客様の行動に関するデータを収集する場合があります。. Call Tracking プライバシー ポリシー
Wunderkind
弊社は、Wunderkindがサポートするサイトに広告を配置するために、Wunderkindを利用しています。広告には、Wunderkindのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Wunderkindがお客様から収集したデータを使用する場合があります。Wunderkindに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Wunderkind プライバシー ポリシー
ADC Media
弊社は、ADC Mediaがサポートするサイトに広告を配置するために、ADC Mediaを利用しています。広告には、ADC Mediaのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、ADC Mediaがお客様から収集したデータを使用する場合があります。ADC Mediaに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. ADC Media プライバシー ポリシー
AgrantSEM
弊社は、AgrantSEMがサポートするサイトに広告を配置するために、AgrantSEMを利用しています。広告には、AgrantSEMのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、AgrantSEMがお客様から収集したデータを使用する場合があります。AgrantSEMに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. AgrantSEM プライバシー ポリシー
Bidtellect
弊社は、Bidtellectがサポートするサイトに広告を配置するために、Bidtellectを利用しています。広告には、Bidtellectのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Bidtellectがお客様から収集したデータを使用する場合があります。Bidtellectに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Bidtellect プライバシー ポリシー
Bing
弊社は、Bingがサポートするサイトに広告を配置するために、Bingを利用しています。広告には、Bingのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Bingがお客様から収集したデータを使用する場合があります。Bingに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Bing プライバシー ポリシー
G2Crowd
弊社は、G2Crowdがサポートするサイトに広告を配置するために、G2Crowdを利用しています。広告には、G2Crowdのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、G2Crowdがお客様から収集したデータを使用する場合があります。G2Crowdに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. G2Crowd プライバシー ポリシー
NMPI Display
弊社は、NMPI Displayがサポートするサイトに広告を配置するために、NMPI Displayを利用しています。広告には、NMPI Displayのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、NMPI Displayがお客様から収集したデータを使用する場合があります。NMPI Displayに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. NMPI Display プライバシー ポリシー
VK
弊社は、VKがサポートするサイトに広告を配置するために、VKを利用しています。広告には、VKのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、VKがお客様から収集したデータを使用する場合があります。VKに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. VK プライバシー ポリシー
Adobe Target
弊社はAdobe Targetを利用して、弊社サイトの新機能をテストし、お客様に合わせた方法で機能を使えるようにしています。そのため弊社では、弊社サイトにアクセスしているお客様から、行動に関するデータを収集しています。収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID などが含まれます。機能のテストの結果によっては、お客様がご利用のサイトのバージョンが変わったり、サイトにアクセスするユーザの属性に応じて、パーソナライズされたコンテンツが表示されるようになる場合があります。. Adobe Target プライバシー ポリシー
Google Analytics (Advertising)
弊社は、Google Analytics (Advertising)がサポートするサイトに広告を配置するために、Google Analytics (Advertising)を利用しています。広告には、Google Analytics (Advertising)のデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Google Analytics (Advertising)がお客様から収集したデータを使用する場合があります。Google Analytics (Advertising)に提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Google Analytics (Advertising) プライバシー ポリシー
Trendkite
弊社は、Trendkiteがサポートするサイトに広告を配置するために、Trendkiteを利用しています。広告には、Trendkiteのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Trendkiteがお客様から収集したデータを使用する場合があります。Trendkiteに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Trendkite プライバシー ポリシー
Hotjar
弊社は、Hotjarがサポートするサイトに広告を配置するために、Hotjarを利用しています。広告には、Hotjarのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Hotjarがお客様から収集したデータを使用する場合があります。Hotjarに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Hotjar プライバシー ポリシー
6 Sense
弊社は、6 Senseがサポートするサイトに広告を配置するために、6 Senseを利用しています。広告には、6 Senseのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、6 Senseがお客様から収集したデータを使用する場合があります。6 Senseに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. 6 Sense プライバシー ポリシー
Terminus
弊社は、Terminusがサポートするサイトに広告を配置するために、Terminusを利用しています。広告には、Terminusのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Terminusがお客様から収集したデータを使用する場合があります。Terminusに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Terminus プライバシー ポリシー
StackAdapt
弊社は、StackAdaptがサポートするサイトに広告を配置するために、StackAdaptを利用しています。広告には、StackAdaptのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、StackAdaptがお客様から収集したデータを使用する場合があります。StackAdaptに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. StackAdapt プライバシー ポリシー
The Trade Desk
弊社は、The Trade Deskがサポートするサイトに広告を配置するために、The Trade Deskを利用しています。広告には、The Trade Deskのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、The Trade Deskがお客様から収集したデータを使用する場合があります。The Trade Deskに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. The Trade Desk プライバシー ポリシー
RollWorks
We use RollWorks to deploy digital advertising on sites supported by RollWorks. Ads are based on both RollWorks data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that RollWorks has collected from you. We use the data that we provide to RollWorks to better customize your digital advertising experience and present you with more relevant ads. RollWorks Privacy Policy

オンライン体験の品質向上にぜひご協力ください

オートデスクは、弊社の製品やサービスをご利用いただくお客様に、優れた体験を提供することを目指しています。これまでの画面の各項目で[はい]を選択したお客様については、弊社でデータを収集し、カスタマイズされた体験の提供とアプリケーションの品質向上に役立てさせていただきます。この設定は、プライバシー ステートメントにアクセスすると、いつでも変更できます。

お客様の顧客体験は、お客様が自由に決められます。

オートデスクはお客様のプライバシーを尊重します。オートデスクでは収集したデータを基に、お客様が弊社製品をどのように利用されているのか、お客様が関心を示しそうな情報は何か、オートデスクとの関係をより価値あるものにするには、どのような改善が可能かを理解するよう務めています。

そこで、お客様一人ひとりに合わせた体験を提供するために、お客様のデータを収集し、使用することを許可いただけるかどうかお答えください。

体験をカスタマイズすることのメリットにつきましては、本サイトのプライバシー設定の管理でご確認いただけます。弊社のプライバシー ステートメントでも、選択肢について詳しく説明しております。