AU Class
AU Class
class - AU

Journey Towards Data-Centricity with Autodesk Platform Services

このクラスを共有
ビデオ、プレゼンテーション スライド、配布資料のキーワードを検索する:

説明

Unlock the transformative power of data centricity in the architecture, engineering, and construction (AEC) industry at Autodesk University! In this session, we'll explore how Autodesk Platform Services and Autodesk Construction Cloud can support your organization's journey toward data centricity. Discover how to capitalize on advanced data management, visualization, and collaboration tools to enhance decision-making, streamline workflows, and drive project success. Through real-world case studies and practical demonstrations, we'll guide you on the path to becoming a data-centered AEC firm. Don't miss this opportunity to revolutionize your approach to data and gain a competitive edge in the industry.

主な学習内容

  • Learn how to harness the power of Autodesk Platform Services to centralize and manage project data for enhanced collaboration and decision.
  • Implement data visualization tools to gain valuable insights, identify patterns, and optimize project performance.
  • Learn how to streamline workflows and eliminate data silos by integrating Autodesk Construction Cloud into your data-centered processes.
  • Gain practical knowledge and learn about actionable steps to embark on the journey toward data-centricity in your AEC engineering firm.

スピーカー

  • Puria Safari Hesari
    Puria Safari is a computational designer turned to the world of digital transformation and change management, currently lending his expertise to Ramboll. With a foundation in structural engineering and as a self-taught software developer, Puria has crafted a unique path. His journey began with prominent projects like the Tottenham Hotspur Football Club and The Factory by OMA, before embracing the challenge of guiding large consultancies toward becoming digital trailblazers. Puria's academic engagements span student workshops and papers delving into the intricacies of shell structures.
  • Giulio Pagan さんのアバター
    Giulio Pagan
    I am an Aeronautical engineer by training with more than 26 years of experience in software engineering and solution architecture. I work closely with the development ecosystem, partners, customers, and the data platform community to design innovative, value-driven, cloud-based solutions.
  • Adriano Parodi
    Experience in Manufacturing execution systems and integration with Enterprise PLM systems. Experience in programming, business analysis and design of solution architectures. Experience in Manufacturing industry
Video Player is loading.
Current Time 0:00
Duration 45:18
Loaded: 0.36%
Stream Type LIVE
Remaining Time 45:18
 
1x
  • Chapters
  • descriptions off, selected
  • en (Main), selected
Transcript

GIULIO PAGAN: Hello, everybody, and welcome to this presentation about Ramboll's journey towards data centricity with Autodesk Platform Services. My name is Giulio, and I will take you through-- I'll introduce myself. I have here a representative from Ramboll, which we will introduce to you in a moment.

We're going to go through the problem statement, and we'll talk about the data-centric journey we are embarking in. And we'll cover some basic concepts, and we'll explain what we've been doing through demo scenarios, which we will follow by some conclusions.

So, without further ado, I will just show you briefly the safe harbor statement. I won't keep it for long. And, after that, I'm going to introduce you-- tell you a little bit more about myself. I'm a principal solution architect working for Autodesk.

By training, I'm a aeronautical engineer, but I've been practicing software engineering and solution architecture for over 26 years. And I like working with developers, partners, and customers alike developing solutions which are innovative and value-driven. And, now, I will let Puria introduce himself.

PURIA SAFARI HESARI: Thanks, Giulio, and thanks for having us. My name is Puria, and I am, by background, a structural engineer and a computational designer which have come to work with digital transformation for the past years and change management. And am currently leading Ramboll's computational design transformation program.

I have, during my years in the industry, become a software developer, self-taught software developer, and had the opportunity to work with development in the AEC apps and tools but also great projects like the Tottenham Hotspur Football Club, among others, during my previous position.

So what is it that we're going to dive into in today's session? Well, in Ramboll, we have, during many years, had realized what using files and not having a data-centric approach to project deliverables-- and how that can affect our employees and our projects.

Basically, the usual statement that we hear is that my data is locked in so many files. We have difficulties finding the right files that we're looking for. We cannot really trust the data. Is the data that I see correct? Is the data that I receive from my colleague-- is it the latest one? Has it been modified?

So this is really what the problem is about. And it affects us daily. We have information loss. We have reduced accuracy. We have security concerns, quality, trust, and lead time.

So why is this happening? Well, business units create projects or buy products to respond to a specific need with a deadline. KPIs, such as data control, quality, or reusable architecture are underestimated. And data repositories are created to respond to the needs of the application layer, application-centric approach, which is really hindering us from working from a single data lake.

So, now, I will tell you a bit more about the Ramboll's project data management and data centricity journey, which is the collaboration that we're doing together with Autodesk. So short about Ramboll-- we're architecture, engineering, and consultancy company founded in 1945 in Denmark.

We're present in 35 countries, but our strongest presence is in the Nordics. And we have over more than 18,000 employees. And you can just imagine how a data-centric approach would help all these employees to become more efficient in the way they collaborate and communicate with their data and design, but also with our clients.

And so what is the vision here? What is the big idea? Well, we want, in Ramboll, by 2025, to have widely adopted a data-centric approach to projects-- or to project delivery-- in which data is an open resource not tied to a specific application, that the data is readily accessible through a single source of truth, the data is easily exchanged across application, the data is suitable to support sustainability metrics for analytics, and that the data is actively managed and controlled.

And so the expected outcome that we're looking for here can be divided into short-term, medium-term, and long-term. And the short-term expected outcomes are basically improved interoperability and data handover in projects, improved collaboration and teamwork in projects.

The medium-term expected outcomes are sustainability metrics are embedded in our design in a consistent way, that we have improved quality and reliability in our deliverables, and that we have enforced standardization of production and delivery environment. The long-term ones here are opportunities created for expanded and diversified services and a common and trusted source provided for analytics and best practice sharing.

And so looking at this slide, I just wanted to take you through the roadmap here, and how it looks like, and where we are, and where we want to be. So looking at the five different columns here, we have the files and at the first stage, and then you might move over to working with data, basically, objects. And then you work with more richer objects, and you start utilizing the information on that.

And at the next stage here, you're starting to share knowledge and start to gain a lot of insight in terms of your data. And that can help you to make better decisions.

So talking about utilizing AI and machine learning for decision-making-- the end of this spectrum is where we want to move. And looking in terms of Ramboll and where we are, I mean, the landscape is really diverse in terms of Ramboll.

We can definitely have projects that could be around data and information columns. And we could definitely have projects where-- that we can [INAUDIBLE] the data. But we really want to find and utilize this program and this collaboration here, together, get towards the last columns.

GIULIO PAGAN: OK. Thank you, Puria. I guess it's a little bit of my turn to talk to you a bit about the kind of solution we've been discussing with Ramboll. But before we dive a little bit more in the details, I would like to tell you a few words about the concept of data centricity and also to show you a very high-level architecture which displays how-- if you want the anatomy of a digital data centric solution.

So, first of all, what about data centricity? Well, let's talk about a data-centric organization. A data-centric organization is one which would put a lot of effort, and it would invest resources into generating that relevant information-- so churning data into relevant information, which then they can effectively share to enable collaboration across the organization.

So, clearly, the focus, even in this definition, is on data, from which the term data-centric really comes from. And the reason why this model can bring benefits is because applications are effectively transitory. But the data, especially when you have the right data, data stays. It stays there for a long time.

So at the heart of a data-centric approach, there is importance which really gives to our major asset, which is data. And if things are done in the right way, then you can reap the benefits of such approach, which you can see here in this kind of donut.

You can certainly hope to eliminate or reduce the number of data silos, reduce data redundancy, facilitate a more effective access to data, but also more secure, compliant to certain constraints. You can simplify applications and simplify upgrades, make data more accessible, eliminate complex data transformation-- which is a specific scenario which we started exploring at Ramboll-- reduce data errors and inconsistencies, improve quality, and then, in general, also streamline data management.

So this sounds great, doesn't it? Obviously, it's the reason why it is a journey. And it is a journey that starts from the center, and this is very important. Now, how does a data-centric solution look like?

Well, a data-centric solution is also focused on collaboration. And it's a solution which provides an integrated environment which is capable of managing different types of data. And, in here, there is a summary of the kind of data you would expect to find in this context.

So we would have product-related information. It would be library of objects, for example or other product information which is associated to the design or manufacturing of buildings. Then you have information which is associated to a project, which is vital to the project execution.

Any relevant standard could be found in the-- managed by the block. You can have digital assets, status associated to each to each digital asset. Or, traditionally, that would be associated to a file. But this is a thing. In here, we hope to go beyond that and have-- enable, for example, the management of transactional data, like IoT data.

And another aspect which you would expect to be managed by the platform is data orchestration-- so the movement of data across the different parts. So this is a good opportunity to state that we should not-- while data is at the center of this, we are not suggesting here that all data will have to sit in the same repository.

And what we're talking about here is more the need for a single data model, which basically implies a unified and integrated vision around data. This is important. And the data-centric approach, also, is not to be confused with a purely data-driven approach. A data-centric approach is, in fact, complementary, I would say, to a data-driven approach, which existed already for many years, while the data-centric approach requires changes at all levels, not just the technology level.

So what's the vision? I'm mirroring here what we have already seen on this slide. Let me go back to it in a second. So you may recall this slide. And, now, I'm showing you here another cartoon which is showing, instead, how we want to change the sentiment of these users towards data we have to deal with.

So you may still have the same data input. But, now, the platform will help the users to regain trust with data. And that would help happen because the access to data is easier, so we don't necessarily need to download, for example, entire model.

We don't need to replicate data. We don't necessarily need to transform data all the time. And they can attach metadata to the entities, and they can also share, in an easy way, data with suppliers, for example.

Now, that sounds great. But let's now start to talk about what could be the first steps to move towards this vision.

Well, as a starter, we want to move-- so if you look at these bullet points in this slide, we want to move from a universe-- if these bubbles are the situation where we are-- they represent the present and maybe the ideal future-- you can see that we want to go from a scenario where we have low granularity, situation where it's hard to find data, where you have lots of proprietary and application-centric scenarios-- we want to move from there to a scenario where we have a finer, granular access to data. It's easy to find the data.

We have more data-- product-agnostic approach. And, now, you can see the relationship between the current scenario, the current situation in the future and the fact that, today, we are primarily shuffling files around. So we will hear, mostly, talking about this product model data or that product model data. And the data comes out depending on the applications you're using.

So we want to transition to a scenario where we talk more about individual type of entities and instances of doors and instances of reports or work panels. So everything is an object, and everything can be potentially related to another object.

Having said that, the files will not disappear for a long time. And, chances are, your best-case scenario, your platform may have to interact with other platforms. But, in some cases, you may have to import files into your platform and export files in the way that you have are dealing with that today. But at least, within an organization, you should be able to reap the benefits of the data-centric approach in your own little bubble.

Now, I want to also emphasize the importance of other aspects, which go beyond the way you organize the data. So we discussed so far the granular access to the data. But two other fundamental pillars to this are the journey towards having a more harmonized data.

We mentioned the need for a single data model. It might be necessary to invest into mapping external models to your model. But the reality is that a single data model is what will accelerate the journey, and it will allow you to really reap the benefits.

And in order to, again, to create a stable platform that also doesn't cost too much over time, it's necessary to keep an eye on the status of application landscape. So as we said before, the approach here is that the application layer should be built around the data layer. And this has to be reflected in the choices of applications.

So the applications should be chosen because of their ability to more easily interact with the data platform. And the purpose is to provide the core capabilities which you see listed at the top. So you want to be able to exchange data, by the way, access data, manage your asset lifecycle, manage your asset metadata-- so data about data-- and so on.

Now, this was a bit of an introduction in generic terms. And we're going to now start to talk about how we started the journey by talking more specifically about interoperability. And what do we mean with that? We mean trying to leverage a selected set of services for the purpose of facilitating vendor-neutral data exchange.

So, therefore, the solutions that we've been looking at so far is focused mostly on reusability, increasing the-- make it easy to access the data and make it easy for applications to exchange data. And you can see in this slide, this is a one-slide summary of, basically, what we've been focusing on. So you can see, on the right side, also, the list of the technology which we've been more specifically looking at.

And there is ACC, Autodesk Construction Cloud, as a flavor of software as a service. But we've been focusing our attention on how Autodesk AEC Data Model and the Autodesk Data Exchange and the number of data connectors can help to turn this vision into reality.

And we are doing this. Since the beginning, we have ambitious target, which we hope to achieve with our cooperation. It is a drastic reduction in process lead time, remove almost completely the danger of having accidental data losses caused by data transformations, improve significantly the trust in data, and, also, convince the other parts of the business that data has to live in the cloud for purpose of leveraging the cloud.

So, now, let's try to understand this in practice by looking at one of the first-- we picked a couple of scenarios. So we covered a few scenarios in our engagement, but we picked two of them for the purpose of this presentation.

The first one is about detecting changes of quantities across different versions of a Revit model. So what you're looking at here is a revised version of a model. Currently, when we [INAUDIBLE] process-- so the as-is process.

If it's as-is process, it's difficult to achieve this comparison. And we wanted to show that by using the platform services. This could be greatly simplified. So how does it work in practice?

The data is shared by different parties on ACC. And the data is extracted using the AEC data model API, which makes it fairly easy to compare elements from different versions of the files.

The comparison results are stored in a database, which then can be used for analytics. So in the initial demonstrations and prototypes, what we'll be doing is populating a database, which then we use to populate Power BI dashboards.

Now, a few words about the technology-- for those that don't know what I'm referring to, I'm sure you heard about this before. But the reason why AEC cloud information model has been picked here is because, while it would be possible to use other API, the AEC data model is really the newest, more intriguing and innovating way to have a cloud-based source of truth for building and construction.

And why is it so promising? Because it provides a great tool for developers through dedicated, also, interfaces, like GraphQL. It allows you to access data in an easy way, so data is, effectively, easier to access. And it provides a repository of objects.

So if you remember my slide about explaining the need to move away from files, it's a great technology that helps moving in that direction. So as you can see from this picture here, your model is effectively turned into a graph of objects which you then can access via the API. And the use of the API is facilitated, also, by data connectors, which will mature in time.

Now, how does the solution look like from a conceptual point of view? So the models are updating ACC, as I mentioned before. The interesting aspect is the ACC model will grow in terms of compatibility with multiple platforms.

This specific solution here has been tested against the Revit file versions, but the specific business cases could change without necessarily impacting this architecture, which is the interesting thing. So there is a reusability in the architecture here at play.

Now, the models versions are compared, and this is done by querying the data. So, for the first time, it's actually almost there-- the possibility to treat ACC as a database of objects, which is why this API is particularly interesting.

And we also use the Schema Editor available from Tandem to create a reference asset classification. And this validation tool, which you see here-- what it does is to compare the content in terms of values of properties and is checking whether the property exists in first place in the reference schema.

It can also calculate-- within the dashboard or up front, it can calculate quantities and the quantities of error reported on a dashboard. And you're going to see two demo videos. The first one will show this solution in an automated way, and the output is shown in a dashboard.

So the idea is to periodically run this process to validate to make sure that the models across versions don't have significant differences. But you also see how you can create a web application to perform a same analysis on demand. I'm going to kick off this first video, and we'll provide some comments.

So this is the-- we're going to load the model in Revit, first of all. And what we're going to do is to make some changes to the geometry. So for this specific example, we use some test data.

So you can see here, the master bedroom. I'm making a small change in the geometry. And after that, I'm saving the model, which gets stored in ACC as a new version.

So what happens under the scene is that this data becomes available for extraction via the AEC data model API. Now, what you can see here is the user configuring a Power Automate script to point to a specific order in project and account hub.

And it's using a JSON file to specify what exactly is-- from wherever data is extracted and which versions are to be compared. So this is-- and, also, there is something called elements properties filter element, here, which is an example of how it's also possible to confine, for example, the comparison to certain properties when comparing that.

Then the workflow is executed automatically. And this could be triggered, for example, when a file is dropped in the folder. Or, in this case, it's just manually triggered. When the workflow is successfully executed, an email is sent to the user, and the data is stored in timestamps in an SQL system.

And from that moment on, the data becomes historical data, which is available for analysis purpose. And you can see a very simple dashboard here which shows different rooms which have been analyzed. And the system detected that there are differences in the values of the area and perimeter and [INAUDIBLE].

This is a process which, in some scenario, is not tackled at all. And that can lead at big issues. And although this problem can be solved in different ways, the approach here is particularly interesting because of the possibility to work in a way which is effectively independent from the original data products-- products they use to generate data.

OK, now, I'm going to show you a different demo, which is basically using the same services. But, in this case, the analysis of the two versions is going to be fed directly to the website that you can see here in this slide.

So I'm selecting from a portal, in this case, the models to be compared. So this would come from ACC, the list. And then, also from ACC, I would get a list of versions, and I will be able to choose the ones I want to compare.

And the difference here is that, instead of relying on automation, I would execute directly a comparison of two models. I would use the services of the platform to, here, load in the same scene two versions. And in the table below, you can see the comparison results.

The models are aggregated in the scene, so you see them overlap. You can see many differences because the differences are small. But, now, if I click, I can also-- yeah, I can see where the values are different, but I can also click on an object and find the object there.

And if you pay attention, you also see, to the right of the object, also, some elements which are different in geometry across versions. Yeah, exactly.

And so this is basically how to compare, with a fairly straightforward website, two versions. And you can then accelerate the fixing of the problem.

And now I'm going to describe a second workflow which I will let Puria demonstrate. This workflow, we've been investigating the use of another emerging API, which is actually fairly mature at this point in time. It is just Data Exchange, Autodesk Data Exchange API.

And this API grants access to the data, which can be stored in ACC in something called Data Exchange. So in this workflow here, what we're going to do is update or create a model, identify which parts of a model we want to export, create certain views which represent the elements which we want to extract.

And this will allow us to create data exchange, which is shared via the platform. And you can actually see exchange in ACC, and you can view it before the data goes anywhere else. But what you can also do is when the other engineer-- in this scenario, an external engineer could-- or an architect, in this case-- can open their application can connect to ACC, browse to the data which has been exchanged, and import the data in Rhino.

Also, this is a fragment of a workflow. But the specific scenario which we studied is, basically, the round-tripping of this. So starting, actually, from Rhino-- you're going to see in a minute-- we send it to the Revit and back.

The technology we use, as mentioned, is Data Exchange, which is built on top of our platform. It provides an API, but it also provides several out of the box connectors, which we leveraged to do the first evaluation.

Yeah, at conceptual level, the architecture is pretty simple because, basically, we are-- in this first phase, we simply used the out of the box connectors to send the data from Rhino to Revit and back. Now, I will let Puria explain what he has been focusing on with Rhino and Revit.

PURIA SAFARI HESARI: Thanks, Giulio. So looking into this work flow, while the video is starting, I think it's also-- we have really tried to push this workflow to its limits.

We have also tried, as Giulio described, sending data in both directions, going from Revit to Rhino and back, but, also, from Rhino and Revit and then go back but, also, at the same time, receiving data from Revit in Rhino and then referencing that data in Grasshopper and manipulate it and then send it back to exchange to the Revit model, et cetera. So it allows for a lot of flexibility.

And to take you through the video and how we've done that-- and so we're basically here, starting with the massing model in Revit. And this could be a scenario in the very early stages when we're evaluating different design options and architectural disciplines.

And so what we do-- we're sending this data through the Data Exchange and allow other designers to tap into this and to utilize what already exists as kind of a starting point or as a reference geometry to start building up other parts of the system.

So here, for example, we have a facade engineer, where he, in Rhino, and loads that exchange which has been uploaded to Data Exchange and get that data here in Rhino for the reference geometry.

And so what the facade engineer and designer can now do is to reference the geometry here to a Grasshopper script and easily generate different variations and different options and create multiple versions of this and upload those to the Data Exchange for the rest of the team to review and to test out and evaluate.

So here, for example, we have a triangulated facade, where sails are randomly placed on some of the rectangles. And that can be varied back and forth. So we can create different exchanges, if we would like to. But, here, we're only just sending one, the one that we just created and looked at. So we're creating a new exchange here using Grasshopper.

Once we've done that, there is a reference to the exchange. And, now, we use the Send component and send the data, basically. And this is basically what I mean with the flexibility that it allows. You can take any route you want with the different Data Exchange connectors.

And now coming back here, we can see the facade geometry being loaded to Data Exchange from Grasshopper. And so what we can do is, basically, again, go back to Revit and load that geometry here. And if you would have multiple versions or would get a later version, another version in a later stage, it's just to switch that and reload a new exchange here.

All right, so this sums up the demos and the scenarios and a few of the scenarios that we have worked on that we wanted to share with you guys. But, moving forward, I would also like to share some conclusions that we've come to and challenges and the benefits that we have found and share that with you during this journey, which has just started.

So the benefits from our candidates here and the people that we have worked with in different projects that have been testing these different scenarios and workflows-- we want them, and they believe that, by us adopting data-centric platform services, and Ramboll will be able to achieve 50% less time spent searching for data issues, 80% data quality increased, less than 30% shorter lead time by bringing forward the problem detection, 30% to 50% reduction in process lead time, virtually remove accidental data loss caused by data transformation, 100% increase in data trust, and 100% migrated to the cloud.

So by adopting the data-centric platform services, we can definitely achieve a lot of great values here. So what was the objectives that we set up starting this, and what was the achievements here?

So we wanted to understand the challenges and evaluate the benefit of a data-centric solution for better project data management. And we also wanted to demonstrate the current capabilities together with Autodesk of the Autodesk Platform Services to support project delivery. So what did we achieve?

We have successfully managed to demonstrate how Autodesk Platform Services can make data-centric project data management a reality. We explored how granular data-- granular access to data benefits both interoperability and data validation quality. And we have, in this initial phase, provided an effective way to better understand the needs, promote cross-vendor cooperation, identify new opportunities, and influence the product roadmaps.

GIULIO PAGAN: And if I may add, Puria, to this--

PURIA SAFARI HESARI: Of course.

GIULIO PAGAN: --this first phase, which was an exploratory one, it was also particularly useful for us. So I work for Autodesk Consulting, and it was a really great cooperation, also, with the platform team, which is working hard to help customers. And it was a great way to see a close collaboration to make sure that the product goes in the right direction.

PURIA SAFARI HESARI: And so looking at some challenges we had and some feedback that we've gathered from the people that we have worked on from the project teams and when they have tested out the workflows that we have suggested-- I mean, the overall feeling and the feedback is great. They're really happy to be a part of this journey, to be a part of setting the new standards in terms of working in a data-centric way.

And what we have achieved so far-- it's, overall, promising experience for easily round-tripping data between applications, which we saw in the last demo video, exporting data for data analytics and visualization, right?

But we also want to be clear about the Autodesk Data Exchange and AEC Data Model are in beta stages. So there are sometimes some issues to be expected. But that is something that we hoping to be able to collaborate together closely with Autodesk to mitigate as we go forward part of this collaboration.

We have had a great conversation with the Autodesk Consulting and the Autodesk Data Platform Team so far. We have already started discussing some of the issues that we're talking about-- for example, loading data exchanges can sometimes take time. They're listening to that feedback and taking it seriously, looking into this, which we really appreciate.

And there might sometimes be limitations when we exchange data types across different applications. And in the Rhino-Revit scenario that we looked into, we have had some reports from some of our users that tested the workflow that objects sometimes are only available as direct shapes, which can be a limiting factor.

And so, as mentioned, we're early in this journey. We're testing the cutting-edge stuff out there. And some of these tools and the platforms and the services that we use, they're in beta stage. So that's really to keep in mind. But, still, we're-- I think, from my side-- have come a really, really far way already this year and, specifically, working with [INAUDIBLE].

Well, thanks a lot for listening. It's been a pleasure to present what we've done during the last year to you guys. Yeah, thanks for joining in, and thanks, Giulio, for-- thank you for doing the presentation.

GIULIO PAGAN: And thank you very much for myself, as well. Thank you, Puria, for your very encouraging comments. And I'm looking forward to keep helping you guys in your challenging but rewarding journey towards data centricity. Thanks. Thank you, everybody. Bye.

______
icon-svg-close-thick

Cookieの設定

弊社にとって、お客様のプライバシーを守ることと最適な体験を提供することは、どちらも大変重要です。弊社では、お客様に合わせてカスタマイズした情報を提供し、並びにアプリケーションの開発に役立てることを目的に、本サイトのご利用方法についてのデータを収集しております。

そこで、お客様のデータの収集と使用を許可いただけるかどうかをお答えください。

弊社が利用しているサードパーティのサービスについての説明とプライバシー ステートメントも、併せてご確認ください。

サイト動作に必須:オートデスクのサイトが正常に動作し、お客様へサービスを提供するために必要な機能です

Cookie を有効にすることで、お客様の好みやログイン情報が記録され、このデータに基づき操作に対する応答や、ショッピング カートへの商品追加が最適化されます。

使用感が向上:お客様に最適な情報が表示されます

Cookie を有効にすることで、拡張機能が正常に動作し、サイト表示が個々に合わせてカスタマイズされます。お客様に最適な情報をお届けし、使用感を向上させるためのこうした設定は、オードデスクまたはサードパーティのサービス プロバイダーが行います。 Cookie が無効に設定されている場合、一部またはすべてのサービスをご利用いただけない場合があります。

広告表示をカスタマイズ:お客様に関連する広告が表示されます

Cookie を有効にすることで、サイトのご利用内容やご興味に関するデータが収集され、これに基づきお客様に関連する広告が表示されるなど、効率的な動作が可能になります。また、継続的にデータを収集することで、お客様のご興味にさらに関連する広告を配信することが可能になります。Cookie が無効に設定されている場合、お客様に関連しない広告が表示される可能性があります。

icon-svg-close-thick

サードパーティのサービス

それぞれの情報で弊社が利用しているサードパーティのサービスと、オンラインで収集するお客様のデータの使用方法を詳しく説明いたします。

icon-svg-hide-thick

icon-svg-show-thick

サイト動作に必須:オートデスクのサイトが正常に動作し、お客様へサービスを提供するために必要な機能です

Qualtrics
弊社はQualtricsを利用し、アンケート調査やオンライン フォームを通じてお客様が弊社にフィードバックを提供できるようにしています。アンケートの回答は無作為に選んだお客様にお願いしておりますが、お客様から自発的に弊社にフィードバックを提供することも可能です。データを収集する目的は、アンケートの回答前にお客様がとられた行動を、より正しく理解するためです。収集したデータは、発生していた可能性がある問題のトラブルシューティングに役立てさせていただきます。. Qualtrics プライバシー ポリシー
Akamai mPulse
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Akamai mPulseを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Akamai mPulse プライバシー ポリシー
Digital River
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Digital Riverを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Digital River プライバシー ポリシー
Dynatrace
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Dynatraceを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Dynatrace プライバシー ポリシー
Khoros
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Khorosを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Khoros プライバシー ポリシー
Launch Darkly
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Launch Darklyを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Launch Darkly プライバシー ポリシー
New Relic
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、New Relicを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. New Relic プライバシー ポリシー
Salesforce Live Agent
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Salesforce Live Agentを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Salesforce Live Agent プライバシー ポリシー
Wistia
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Wistiaを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Wistia プライバシー ポリシー
Tealium
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Tealiumを利用しています。データには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Tealium プライバシー ポリシー<>
Typepad Stats
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Typepad Statsを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Typepad Stats プライバシー ポリシー
Geo Targetly
当社では、Geo Targetly を使用して Web サイトの訪問者を最適な Web ページに誘導し、訪問者のいる場所に応じて調整したコンテンツを提供します。Geo Targetly は、Web サイト訪問者の IP アドレスを使用して、訪問者のデバイスのおおよその位置を特定します。このため、訪問者は (ほとんどの場合) 自分のローカル言語でコンテンツを閲覧できます。Geo Targetly プライバシー ポリシー
SpeedCurve
弊社は、SpeedCurve を使用して、Web ページの読み込み時間と画像、スクリプト、テキストなど後続の要素の応答性を計測することにより、お客様の Web サイト エクスペリエンスのパフォーマンスをモニタリングおよび計測します。SpeedCurve プライバシー ポリシー
Qualified
Qualified is the Autodesk Live Chat agent platform. This platform provides services to allow our customers to communicate in real-time with Autodesk support. We may collect unique ID for specific browser sessions during a chat. Qualified Privacy Policy

icon-svg-hide-thick

icon-svg-show-thick

使用感が向上:お客様に最適な情報が表示されます

Google Optimize
弊社はGoogle Optimizeを利用して、弊社サイトの新機能をテストし、お客様に合わせた方法で機能を使えるようにしています。そのため弊社では、弊社サイトにアクセスしているお客様から、行動に関するデータを収集しています。収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID などが含まれます。機能のテストの結果によっては、お客様がご利用のサイトのバージョンが変わったり、サイトにアクセスするユーザの属性に応じて、パーソナライズされたコンテンツが表示されるようになる場合があります。. Google Optimize プライバシー ポリシー
ClickTale
弊社は、弊社サイトをご利用になるお客様が、どこで操作につまづいたかを正しく理解できるよう、ClickTaleを利用しています。弊社ではセッションの記録を基に、ページの要素を含めて、お客様がサイトでどのような操作を行っているかを確認しています。お客様の特定につながる個人情報は非表示にし、収集も行いません。. ClickTale プライバシー ポリシー
OneSignal
弊社は、OneSignalがサポートするサイトに広告を配置するために、OneSignalを利用しています。広告には、OneSignalのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、OneSignalがお客様から収集したデータを使用する場合があります。OneSignalに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. OneSignal プライバシー ポリシー
Optimizely
弊社はOptimizelyを利用して、弊社サイトの新機能をテストし、お客様に合わせた方法で機能を使えるようにしています。そのため弊社では、弊社サイトにアクセスしているお客様から、行動に関するデータを収集しています。収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID などが含まれます。機能のテストの結果によっては、お客様がご利用のサイトのバージョンが変わったり、サイトにアクセスするユーザの属性に応じて、パーソナライズされたコンテンツが表示されるようになる場合があります。. Optimizely プライバシー ポリシー
Amplitude
弊社はAmplitudeを利用して、弊社サイトの新機能をテストし、お客様に合わせた方法で機能を使えるようにしています。そのため弊社では、弊社サイトにアクセスしているお客様から、行動に関するデータを収集しています。収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID などが含まれます。機能のテストの結果によっては、お客様がご利用のサイトのバージョンが変わったり、サイトにアクセスするユーザの属性に応じて、パーソナライズされたコンテンツが表示されるようになる場合があります。. Amplitude プライバシー ポリシー
Snowplow
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Snowplowを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Snowplow プライバシー ポリシー
UserVoice
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、UserVoiceを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. UserVoice プライバシー ポリシー
Clearbit
Clearbit を使用すると、リアルタイムのデータ強化により、お客様に合わせてパーソナライズされた適切なエクスペリエンスを提供できます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。Clearbit プライバシー ポリシー
YouTube
YouTube はビデオ共有プラットフォームで、埋め込まれたビデオを当社のウェブ サイトで表示および共有することができます。YouTube は、視聴者のビデオのパフォーマンスの測定値を提供しています。 YouTube 社のプライバシー ポリシー

icon-svg-hide-thick

icon-svg-show-thick

広告表示をカスタマイズ:お客様に関連する広告が表示されます

Adobe Analytics
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Adobe Analyticsを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Adobe Analytics プライバシー ポリシー
Google Analytics (Web Analytics)
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Google Analytics (Web Analytics)を利用しています。データには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Google Analytics (Web Analytics) プライバシー ポリシー<>
Marketo
弊社は、お客様に関連性のあるコンテンツを、適切なタイミングにメールで配信できるよう、Marketoを利用しています。そのため、お客様のオンラインでの行動や、弊社からお送りするメールへの反応について、データを収集しています。収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、メールの開封率、クリックしたリンクなどが含まれます。このデータに、他の収集先から集めたデータを組み合わせ、営業やカスタマー サービスへの満足度を向上させるとともに、高度な解析処理によって、より関連性の高いコンテンツを提供するようにしています。. Marketo プライバシー ポリシー
Doubleclick
弊社は、Doubleclickがサポートするサイトに広告を配置するために、Doubleclickを利用しています。広告には、Doubleclickのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Doubleclickがお客様から収集したデータを使用する場合があります。Doubleclickに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Doubleclick プライバシー ポリシー
HubSpot
弊社は、お客様に関連性のあるコンテンツを、適切なタイミングにメールで配信できるよう、HubSpotを利用しています。そのため、お客様のオンラインでの行動や、弊社からお送りするメールへの反応について、データを収集しています。収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、メールの開封率、クリックしたリンクなどが含まれます。. HubSpot プライバシー ポリシー
Twitter
弊社は、Twitterがサポートするサイトに広告を配置するために、Twitterを利用しています。広告には、Twitterのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Twitterがお客様から収集したデータを使用する場合があります。Twitterに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Twitter プライバシー ポリシー
Facebook
弊社は、Facebookがサポートするサイトに広告を配置するために、Facebookを利用しています。広告には、Facebookのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Facebookがお客様から収集したデータを使用する場合があります。Facebookに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Facebook プライバシー ポリシー
LinkedIn
弊社は、LinkedInがサポートするサイトに広告を配置するために、LinkedInを利用しています。広告には、LinkedInのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、LinkedInがお客様から収集したデータを使用する場合があります。LinkedInに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. LinkedIn プライバシー ポリシー
Yahoo! Japan
弊社は、Yahoo! Japanがサポートするサイトに広告を配置するために、Yahoo! Japanを利用しています。広告には、Yahoo! Japanのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Yahoo! Japanがお客様から収集したデータを使用する場合があります。Yahoo! Japanに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Yahoo! Japan プライバシー ポリシー
Naver
弊社は、Naverがサポートするサイトに広告を配置するために、Naverを利用しています。広告には、Naverのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Naverがお客様から収集したデータを使用する場合があります。Naverに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Naver プライバシー ポリシー
Quantcast
弊社は、Quantcastがサポートするサイトに広告を配置するために、Quantcastを利用しています。広告には、Quantcastのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Quantcastがお客様から収集したデータを使用する場合があります。Quantcastに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Quantcast プライバシー ポリシー
Call Tracking
弊社は、キャンペーン用にカスタマイズした電話番号を提供するために、Call Trackingを利用しています。カスタマイズした電話番号を使用することで、お客様は弊社の担当者にすぐ連絡できるようになり、弊社はサービスのパフォーマンスをより正確に評価できるようになります。弊社では、提供した電話番号を基に、サイトでのお客様の行動に関するデータを収集する場合があります。. Call Tracking プライバシー ポリシー
Wunderkind
弊社は、Wunderkindがサポートするサイトに広告を配置するために、Wunderkindを利用しています。広告には、Wunderkindのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Wunderkindがお客様から収集したデータを使用する場合があります。Wunderkindに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Wunderkind プライバシー ポリシー
ADC Media
弊社は、ADC Mediaがサポートするサイトに広告を配置するために、ADC Mediaを利用しています。広告には、ADC Mediaのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、ADC Mediaがお客様から収集したデータを使用する場合があります。ADC Mediaに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. ADC Media プライバシー ポリシー
AgrantSEM
弊社は、AgrantSEMがサポートするサイトに広告を配置するために、AgrantSEMを利用しています。広告には、AgrantSEMのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、AgrantSEMがお客様から収集したデータを使用する場合があります。AgrantSEMに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. AgrantSEM プライバシー ポリシー
Bidtellect
弊社は、Bidtellectがサポートするサイトに広告を配置するために、Bidtellectを利用しています。広告には、Bidtellectのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Bidtellectがお客様から収集したデータを使用する場合があります。Bidtellectに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Bidtellect プライバシー ポリシー
Bing
弊社は、Bingがサポートするサイトに広告を配置するために、Bingを利用しています。広告には、Bingのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Bingがお客様から収集したデータを使用する場合があります。Bingに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Bing プライバシー ポリシー
G2Crowd
弊社は、G2Crowdがサポートするサイトに広告を配置するために、G2Crowdを利用しています。広告には、G2Crowdのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、G2Crowdがお客様から収集したデータを使用する場合があります。G2Crowdに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. G2Crowd プライバシー ポリシー
NMPI Display
弊社は、NMPI Displayがサポートするサイトに広告を配置するために、NMPI Displayを利用しています。広告には、NMPI Displayのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、NMPI Displayがお客様から収集したデータを使用する場合があります。NMPI Displayに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. NMPI Display プライバシー ポリシー
VK
弊社は、VKがサポートするサイトに広告を配置するために、VKを利用しています。広告には、VKのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、VKがお客様から収集したデータを使用する場合があります。VKに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. VK プライバシー ポリシー
Adobe Target
弊社はAdobe Targetを利用して、弊社サイトの新機能をテストし、お客様に合わせた方法で機能を使えるようにしています。そのため弊社では、弊社サイトにアクセスしているお客様から、行動に関するデータを収集しています。収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID などが含まれます。機能のテストの結果によっては、お客様がご利用のサイトのバージョンが変わったり、サイトにアクセスするユーザの属性に応じて、パーソナライズされたコンテンツが表示されるようになる場合があります。. Adobe Target プライバシー ポリシー
Google Analytics (Advertising)
弊社は、Google Analytics (Advertising)がサポートするサイトに広告を配置するために、Google Analytics (Advertising)を利用しています。広告には、Google Analytics (Advertising)のデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Google Analytics (Advertising)がお客様から収集したデータを使用する場合があります。Google Analytics (Advertising)に提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Google Analytics (Advertising) プライバシー ポリシー
Trendkite
弊社は、Trendkiteがサポートするサイトに広告を配置するために、Trendkiteを利用しています。広告には、Trendkiteのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Trendkiteがお客様から収集したデータを使用する場合があります。Trendkiteに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Trendkite プライバシー ポリシー
Hotjar
弊社は、Hotjarがサポートするサイトに広告を配置するために、Hotjarを利用しています。広告には、Hotjarのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Hotjarがお客様から収集したデータを使用する場合があります。Hotjarに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Hotjar プライバシー ポリシー
6 Sense
弊社は、6 Senseがサポートするサイトに広告を配置するために、6 Senseを利用しています。広告には、6 Senseのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、6 Senseがお客様から収集したデータを使用する場合があります。6 Senseに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. 6 Sense プライバシー ポリシー
Terminus
弊社は、Terminusがサポートするサイトに広告を配置するために、Terminusを利用しています。広告には、Terminusのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Terminusがお客様から収集したデータを使用する場合があります。Terminusに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Terminus プライバシー ポリシー
StackAdapt
弊社は、StackAdaptがサポートするサイトに広告を配置するために、StackAdaptを利用しています。広告には、StackAdaptのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、StackAdaptがお客様から収集したデータを使用する場合があります。StackAdaptに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. StackAdapt プライバシー ポリシー
The Trade Desk
弊社は、The Trade Deskがサポートするサイトに広告を配置するために、The Trade Deskを利用しています。広告には、The Trade Deskのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、The Trade Deskがお客様から収集したデータを使用する場合があります。The Trade Deskに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. The Trade Desk プライバシー ポリシー
RollWorks
We use RollWorks to deploy digital advertising on sites supported by RollWorks. Ads are based on both RollWorks data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that RollWorks has collected from you. We use the data that we provide to RollWorks to better customize your digital advertising experience and present you with more relevant ads. RollWorks Privacy Policy

オンライン体験の品質向上にぜひご協力ください

オートデスクは、弊社の製品やサービスをご利用いただくお客様に、優れた体験を提供することを目指しています。これまでの画面の各項目で[はい]を選択したお客様については、弊社でデータを収集し、カスタマイズされた体験の提供とアプリケーションの品質向上に役立てさせていただきます。この設定は、プライバシー ステートメントにアクセスすると、いつでも変更できます。

お客様の顧客体験は、お客様が自由に決められます。

オートデスクはお客様のプライバシーを尊重します。オートデスクでは収集したデータを基に、お客様が弊社製品をどのように利用されているのか、お客様が関心を示しそうな情報は何か、オートデスクとの関係をより価値あるものにするには、どのような改善が可能かを理解するよう務めています。

そこで、お客様一人ひとりに合わせた体験を提供するために、お客様のデータを収集し、使用することを許可いただけるかどうかお答えください。

体験をカスタマイズすることのメリットにつきましては、本サイトのプライバシー設定の管理でご確認いただけます。弊社のプライバシー ステートメントでも、選択肢について詳しく説明しております。