AU Class
AU Class
class - AU

Using the Autodesk New Beta CIM API for Sustainability and Client Delivery

このクラスを共有
ビデオ、プレゼンテーション スライド、配布資料のキーワードを検索する:

説明

The way how we work is constantly changing, not only in engineering and construction but also in software development. In this class, we will show how in collaboration with Autodesk we have developed a tool that forms the data standardization backbone and client delivery at Arcadis. To establish this, we leverage 10+ APIs, where the new beta CIM API from Autodesk is crucial in bringing data from different sources together with Artificial Intelligence (AI) and delivering quick sustainability- and cost insights & client delivery.

主な学習内容

  • Master the utilization of graph databases on Azure.
  • Develop expertise in mapping ontology in graph databases within the AEC industry.
  • Familiarize yourself with the new Autodesk Platform Services AEC DM API.
  • Explore how machine learning can optimize and automate the standardization process.

スピーカー

  • Amy Cai さんのアバター
    Amy Cai
    I'm Amy Cai, Arcadis' lead software developer, boasting 3 years of cloud expertise and holding the title of Microsoft Certified Azure Solution Architect Expert. I have a passion for reading books and traveling, immersing myself in local cultures, and connecting with people from all walks of life.
  • Josha Van Reij さんのアバター
    Josha Van Reij
    Innovation is important, but is it not just as important that these innovative ideas are properly implemented? An implementation that means a gain from ordering to delivery and from cooperation to maintenance. I am a consultant and my passion is helping companies in their search for innovative techniques and ideas for their business. It is my goal to investigate, implement, and optimally integrate it into the entire business. Some of the subjects that I engage with are enterprise architecture (EA), building information modeling (BIM), IT Governance, and data management. In combination with practical solutions like virtual reality, augmented reality, 3D printing, and machine learning.
Video Player is loading.
Current Time 0:00
Duration 37:51
Loaded: 0.44%
Stream Type LIVE
Remaining Time 37:51
 
1x
  • Chapters
  • descriptions off, selected
  • en (Main), selected
Transcript

AMY CAI: Welcome to the digital adventure. Please grab your favorite caffeinated beverage and find a comfy chair or a beanbag if you're feeling extra fancy. Let's dive headfirst into the wonderful world of online learning.

Today, in this class, we will explore the data standardization in AEC industry with new AEC data model API from Autodesk and discover how machine learning can help to handle the more tedious aspect of this whole progress. I trust this will provide you with fresh insights into this API. And most importantly, I hope you will enjoy this journey we are about to embark on together.

So let's begin. Before we dive into the class, let's have a quick round of meeting the speaker. I'm Amy. And I'm the Technical Lead for the Digital Solution in Arcadis.

I relocated to Netherlands four years ago. I love the culture, heritage, and the tulips in Netherlands. My passion for coding matches my love for reading, but I don't think I've earned the title of nerd just yet. Together with my colleague, Josha, who is the product owner of the OTL solution, we will guide you through this class.

So this class, it's about data standardization. And we keep talking about data standardization, data quality. Why is it so important to standardize the data?

So let me share with you a painful story that happened in 1999. It's so-called the costly conversion mistake from NASA. So in September 1999, NASA's Mars Climate Orbiter was launched on a mission to study the Martian atmosphere and climate. The spacecraft was expected to enter orbit around Mars and provide crucial data for the future mission in the-- including the Mars Polar Lander.

However, the mission ended in failure. And Mars Climate Orbiter was lost in the space. The root cause of this catastrophic failure was a data quality issue, specifically a unit conversion error.

So the NASA Propulsion Lab was responsible for sending those commands to the spacecraft. And they used the metric system, like meter, kilometers, for its calculation and measurements. Well, the contractor who built the spacecraft is using the imperial system, like feet, pounds. So throughout the mission, those two units of measurement were not reconciled properly, which rendered the mission a total loss. So as we quote here, "you can have all the fancy technology you want, but if the data quality is poor it will lead to a train wreck."

So with that said, let me briefly present today's agenda to you. First, Josha will give you a demo about the solution we built for the data standardization. Then, I will walk you through the data architecture behind this solution, how we connect the ontology into the solution database. And next to that, I will share with you the implementation of the AEC Data Model API in OTL, see how it helped to improve the workflow and extract the quantity data from the model. Finally, I will touch on the machine learning, see how that drive this solution further.

So from this class, what you will acquire is-- you will learn how to utilize the ontology in AEC with the graph database on Azure, and then you will also learn to use the new Autodesk Platform Services with AEC Data Model API. And there will also be hands-on experience with the machine learning. So, Josha, could you give us a bit background of this application and show us how it's working?

JOSHA VAN REIJ: So maybe to start with Arcadis as a company. Very short. Of course, I'm not going to go through all these digits.

But most of you might know Arcadis, a large engineering company. But maybe a fun fact to mention is that Arcadis stands for-- comes from Arcadia, which originates from the Greek methodology, and which stands for well-being and wellness. And it's also one of the reasons, of course, why our company keeps growing.

And due to the size of our company, I can imagine many of you will also encounter these challenges, is we have a lot of fragmented data standardization, which results in not having cross-project data insights. And to get those data out of there, we have a lot of manual extractions of the data, so that we can use it for analytics and for client delivery. And with all the different engineers having different local engineering applications, we have a huge amount of different applications and high time investment to actually process low quality of data.

So this is the main challenge we were encountering the past years. And as Amy mentioned, I'll do a quick demo of the application where we try to solve these challenges before Amy goes into technical depth.

First maybe, what the OTL? What is the Arcadis OTL? Well, actually, it's an ontology. And you could compare it to basically a recipe. So you could see a lasagna, these are there different asset types within the company. And you have the different ingredients, which are the information requirements and the structure of the recipe.

Well, within Arcadis, we have the Object Type Library, which is very similar. It contains different asset types. And those different asset types contains different information requirements and structures.

So in this example, you can see the bridge decomposition, the bridge ontology, where you see that we have defined certain object types and information requirements for that bridge. And in our case, information requirements is used for sustainability and cost management. So that's the standardization within Arcadis, but of course, we apply that project specifically. And for that, we created the OTL Optimizer, formerly known as PIMS, where you can make that ontology project specific. And that's where a part of this class will be about, how Amy applied to different technologies of Autodesk in this optimizer solution.

And looking in more depth to this optimizer solution, and specifically the part where this class is about, that is-- this example shows the bridge model inside our cloud-based optimizer solution, where this model has been OTL-standardized. So geometry in this model has been classified with certain object types from the Arcadis ontology. And by using the APIs of Autodesk, we're extracting or analyzing this model and extracting the different geometry elements. And we do that based on a parameter in the model called the Arc OTL object type.

And based on the information that we find, we create different instances within this optimizer project. So that's what you currently see happening is creating the different instances, and applying the project structure, and assigning the different object types to those instances. So if you click on one of those instances, you'll see that the information requirements are gathered and you could actually fill that information inside, in this case, curve one.

But, of course, we want to automate that. So inside the edit project settings, we have a calculation configuration, where we configure the mapping between the attributes from our ontology from our project specific decomposition and information requirements and map it to the parameters inside the 3D model. So in this sample, we have mapped a couple. And it's a standard that you can reuse for upcoming projects.

And after you have accomplished that mapping, we can cloud-based extract all the quantities from this model inside the different instances as you can see right here by clicking on calculate button. So you see it's now extracting all the quantities. So why do we need this information?

Well, that's basically for using the data for all kinds of purposes within Arcadis, so we connected this data through our common data platform within Arcadis to have sustainability insights, cost estimates, asset management, and many more. And with these estimates, we can do project overarching and cross project analytics and do actually the client delivery itself to the client. With how we have done that technically is something that Amy will now show in the next part of this session.

AMY CAI: Now, you have seen the application and how it extract the quantitative value from the model and feeding those model information in the right block. But how is the data mapping behind the scene? How do we map the ontology into the solution?

Here is an architect overview showing how the ontology was being constructed. So within Arcadis-- in the previous video, you probably would see that within Arcadis, we have different assets that's being created, like a bridge, road, and building. And here is a simple bridge ontology showing you how everything is connected with each other.

So for example, suspension bridge, it's a type of bridge. It can connect to a certain project and has multiple documents. And it has its own function. And every bridge would have their own part, like a deck, foundation, beam. And each part would have their own sub part, like a pavement for example. And each part would also have their own other attributes like, a sensor, the movement data, and would have its own geometry 3D shape.

And then, each part would also have its own material. And the material can have quantity attributes, like volume for example. So with this bridge ontology, we're also mapping this ontology in our database, so then we can support the solution to be project specific.

So here is the database architecture we have for the OTL solution. In OTL solution, we're using the Azure Cosmos DB together with the [INAUDIBLE] API. So here is where the data start. First, we have a project node. This project node, it contain project-related information, like a project name and version.

And then on the left side here, you see two blue node here, that stands for the calculation configuration that you see in the previous video. So these two will configure how the attribute would actually map in with the model parameters.

And then, connected with the project, you also see these two green nodes. That's related to the project unit system basically to configure a certain attributes, like length, width, which metric system-- which unit system they would use. They could be meter, centimeter, or the other units.

And then every project, we also have the option of model storage. So the model storage is the purple node here that you see. It can be the ACC storage. It can also be the local storage. We also support the project wise storage. And each storage can also have multiple models within that storage.

Now on the yellow nodes, you see here that's related with the project decomposition. So each project can have the project attributes, as you can see here on the button. And each project will contain a list of objects. They are ordered by the project decomposition. And every object would have their own parts, which is another object, as you can see-- you can compare that from the previous ontology architecture.

And every object would have their own material and their own attributes, like length, width for example, and the activity, more like a transportation information. So that's the data architecture overview of it.

Now, I want to expand the database structure that support the calculation functionality, especially related with the 3D geometry. So how do we establish the connection between OTL instance and model? So in the previous video, you see that we have the connection established. But how do we manage it to do that?

We're using the unique ID from the object to maintain the relationship between model and OTL instance. And reason being is because this unique ID here, it will not change even when the object is updated. So let's say if a model object is updated, the object information, of course, it's also updated. Because we have this connection here, it will also update the attribute fill for those OTL instance.

Yeah, so that was the data architecture behind the solution. And how did we actually extract those quantity value, quantity information from the model and input into the attribute field for each object in the OTL project? Before I start introduction about the AEC Data Model API, which is what we use to extract the quantity value, I would like to share with you the outflow, how it actually work before we integrate this API.

So here is the OTL old architecture overview before we integrate the AEC Data Model API. In the past, we have this website on the cloud that include more general functionality, like user management, project configuration, and project decomposition. We didn't have the calculation functionality on the cloud.

And that's because this calculation functionality can only be developed on the local to extract the information from the model and do the calculation work. And that's why you see on top here, we have a different connector developed. Now with the integration of AEC Data Model API, we are able to bring this local functionality to the cloud, which will reduce our development effort on maintaining the different connectors separately, as well as improve the user experience. And based on this, we can build more functionality on the cloud now.

So yeah, I've briefly mentioned that we integrate AEC Data Model API. But what it is-- AEC Data Model API, it is an API that allows developers to read, write, and extend the subset of models through the cloud-based workflows. So in other words, you can query the model information by however you want.

And here is this architect overview of this API. You will find the same overview from the API documentation. So from this overview, you can see that it starts from AEC Data Model. It starts from a design. And each design that's stored in ACC will have a different version, which means that you can also create a different version as well.

And each design, of course, they contain many, many objects. Here, they also called it element. And each element would have its associated property and a property definition. So by writing the query, you can query either one element-- however you want the subset of the model.

And together with the API, they also develop this Data Model Explorer. It's an interactive browser-based user interface, which I use very often to generate my own query and validate the result before I implement it in the code. I believe there is another class to talk more detail about this API, so I won't dive further here. But before you start using the API, I'd like to mention about the API preparation itself.

So this API works for the Revit 2024 model that is uploaded to the ACC. So before you use API, you might need to have the model ready on the ACC first, and then you can retrieve the model information. So yeah, that was the introduction about the API itself.

And about OTL tooling, where do we use this API? And how do we use it? So within OTL, we developed three queries for retrieving the model information.

The first query you see here is basically retrieving the project models, or in other words called project designs, with the project ID. So on the left [INAUDIBLE], you see that I have a project ID provided. And then on the right side, you see that I retrieved the model information with the model ID. So with this model ID, I can go to the second query, which use the model ID that I retrieved from the previous query. I can get all of the elements from this specific model.

So if you remember, recall back from the overview of the design, now I'm retrieving all of the elements from the certain design of certain model. And one of the important information here is this external ID. Because in the data architect part, I mentioned that we establish the connection between object-- between OTL object and model with this unique ID. So that's the ID that we're retrieving here and use it to establish the connection.

Now with this ID, I can go to the third query here. Under the filter, I can filter down to a specific element and retrieve all of the quantity value that bonded to this object as you can see on the right side, which is the result. Now, what I really like about this AEC Data Model API is its powerful filtering functionality.

You already see me using it in the previous query. With this filter functionality, you can narrow the model information to any subset type you want. And you can also create your own searching functionality with this filter functionality.

So I've show you how we extract the model information and mapping them on the right place for each object. Is that it for this whole data standardization progress? No, we also went further with the automation together with the machine learning and the AEC Data Model API. We come to the next step.

So in a previous video, you see that we have used-- we have two manual step. One is basically input a customized parameter in a model to specify the specific OTL type. And the other manual step is the calculation mapping. Now with a machine learning, we have developed an AI model-- type recognition model that we can predict a certain project to be a certain OTL type based on the project feature. How do we train this type recognition model?

So here is how we did it. So first, we gather the standardized model data with the AEC Data Model API. So those manual input data that you see in the model, we get all of the object with its type, and then we utilize the machine learning to train the model for recognizing the type based on what it studied, and then we deploy this model and use it in the other solutions.

So to show you to-- to share with you the first implementation of this AI model-- we are still learning it by the way. But currently, we have integrate the first version of it. I'll share with you in this video.

So the flow works same as what you see in the previous video. But with this type of recognition model integrated, we now can go to a project, and then select the model that we want to use this type recognition. So for example, I'm selecting a building here. And in this building, I don't have any manual step to input a specific parameter type to say, OK, this object should belong to this OTL type. That step, it's now replaced by this AI model recognition.

So with that, it scans the whole model, and then determine which object to be which type of OTL type, and then it creates the whole list of instance based on the information it retrieved from the model and established the connection automatically between the OTL object and the model. So all of the green color you see here is basically that we have this model recognized the type from this object. And the rest, it remained the same.

So then, the next step for us is to also automate this calculation configuration mapping, so we can continue with the machine learning. So how do we actually train this type recognition model? Here is the process I use. First, I ask myself, OK, for this type recognition model, what's my goal? What's the purpose for this model?

And once the goal is clear, I start to retrieve the data from the different platform, gather all the data information. Once the data information is there, I select a certain algorithm fitting the algorithm with the data that I prepared. And then, I start training the model, and then test model to see if it's indeed accurate or close to the accuracy that I set from the beginning.

So asking the right question, what to ask. Here, I have three steps to help you also define your own goal. So first, I ask myself, what's the main target? So for this type recognition model, my target is to generate a predictive model that's capable of forecasting the data type.

And next question is, what is the scope? What is the scope of those type? So for me, in my case, it's the scope is just to recognizing the OTL ontology object types. And then the last question is, what is the performance target you want to achieve? So for me, it was at least 80% of occurrences when forecasting.

So with all of the question being asked, I come to the training statement, which is utilizing the machine learning workflow to preprogress the Arcadis 3D model data, generating a predictive model that's capable of forecasting OTL types with accuracy of at least 80%. This is a statement that it's providing a guidance throughout this whole model training progress. So once the goal is set, the next step is to prepare the data.

At the beginning, I didn't believe that the data preparation would consume anywhere from 50% to 80% of the time. But now, I can be assured that the estimation is correct. So here is the data preparation progress. First, I collect all of the data from the different platform.

And in my case, I just store all the data in the Excel sheet first. And then next to that, I start the data cleaning, because all of the data that we collected-- all of the data that we collected, it's a contained error data or no information. Those has to be removed from the model, from the data sheet first.

And then, next step is data transformation, which is basically encoding those categorical, variable, and performing other data transformation to make it suitable. So once the data is cleaned up, we will move to the next step. But before move to next step, I would like to mention about two principle for data cleaning up.

The first one is dealing with the new data. And the second one is about the co-related data removal. So dealing with the co-related data, it is an important consideration in the data analytics and modeling. As highly co-related feature will impact the performance of the model that you are training, there are numerous of techniques to talk about this [INAUDIBLE] How to handle this co-related data. So I won't dive into the great detail here.

However, I would like to share with you some common methods of handling the null data. So here, I have an example of the numerical data. As you can see in the second row here, Bob's age is null. So there are three common way to handle this null data.

First way is you can remove the entire row here, so then it won't appear in your data set. Second way is if you have a domain specific expert with you, they can advise a certain value for those new data. And the third way is if you don't have the expert with you, you can replace those missing value by mean, or median, or mode imputation. So how does that work?

Take this as an example. If I take the mean imputation for replacing this new value, it will basically taking all of the known age, and then divide by 3. In my case, I have three known age, so I add up 25, 28, 30, and then divided by 3, I get this result of 27.67. So that's the value I can use to replace the null value.

And another way to deal with it is using the median imputation, which is you list-- you sorted all of the known age in an order. And then, the middle value, for me, it's 28, so then I will replace 28 in this null space. Now, this is the example of a numerical data. What about the categorical data? How do we deal with those null values?

So in this example, you see that I have two columns, name and gender, on the left side table. Bob's gender was missing, so we can use the mode imputation, which checking this whole gender column, see which value actually happened more often. So in my case, it's female, so then we fill in the female in the gender column for Bob.

Yeah, so that was about the data preparation. And now with the data collected and prepared, we come to the third progress in this whole machine learning. We need to select the candidate algorithms. And there are so many algorithms already exist. How do we select that?

I believe there are many different opinions talking about which factors are more important when it come to the algorithm selection. I'm sure you will also develop your own factors by experience. And from my experience, I have three factors help me to narrow down the algorithm selection.

So the first factor here is the learning type. When I start the training of this type recognition, I asked myself, which learning type it is, it a supervised learning type or it's unsupervised learning type? So for the type recognition model, we provide a list of data with a certain OTL type, so that is supervised learning type.

And then, second factor is I ask myself, what is the result I want to get from this predictive model? Is it a Boolean or is it a category? So in my case, it was category.

And the third factor is the complexity of the algorithm. You can start with the basic algorithm. You can also start with an enhanced algorithm. So for me, I start with a basic algorithm. With all these factors taking into consideration, I narrow down my algorithm to three candidate algorithm.

So once the algorithm-- candidate algorithm is certain, I can start training the model. And here is the training progress. So first, I need to split the data that I prepared and cleaned into two sets. For me, in my case, I split the data training set of data into 70% and testing into 30%.

However, you can also divide the data set into 80% to 20% or 90% to 10% depending on your scenario. And you can also have an extra data set for the validation. And after that, I start training the model, and then start to evaluate this model if it's close to the goal that I set from the beginning.

So here is the code that I have for this whole model training. I have-- I trained this model in the Jupyter Notebook. So for those people who are new to machine learning, Jupyter Notebook might sound very new to you. It's basically an open source web application that allows you to create and share documents containing the live code or virtualization.

And it's widely used for tasks like data cleaning, data transforming, and machine learning. So JupyterLab, which I'm using, it's an evolution of Jupyter Notebook. You can find more information on their official documents.

So let's have a look at the code here. So in my data set, I have this Excel that consists of four column-- name, parameter, type name, and OTL object type. The first three column is basically the feature of each object. And the feature defines which type it belongs to. So then with that, I would call this function called get_dummies to do one-hot encoding for the feature column.

Once that's done, I split the data into 70% and 30%. That's why you see the test size equals to 0.3 means the testing data set is 30%. And then, I have this random state equals 42 is set up the random state which will be used for the reproducibility. Once that's done, I also reshape my training data, because that was required for the algorithm that I selected.

So once the data split is done, I have the other actual code to verify if the data was actually split in the percentage I wanted. And once that's done, I start with the first candidate algorithm. In my case, it's a RandomForestClassifier. I use this algorithm to start with the training. And yeah, once the training process is done, I come to the final part of validating this whole type of recognition model, see if the occurrence is close to the goal I set from the beginning.

So we have come to the end of this class now. You now learn how to utilize the graph database on Azure for the ontology in the AEC. And you now also able to apply the AEC Data Model API in your own solution. And you also know where to start with machine learning.

I hope this class was helpful. And I look forward for a future session with you. Thank you.

______
icon-svg-close-thick

Cookieの設定

弊社にとって、お客様のプライバシーを守ることと最適な体験を提供することは、どちらも大変重要です。弊社では、お客様に合わせてカスタマイズした情報を提供し、並びにアプリケーションの開発に役立てることを目的に、本サイトのご利用方法についてのデータを収集しております。

そこで、お客様のデータの収集と使用を許可いただけるかどうかをお答えください。

弊社が利用しているサードパーティのサービスについての説明とプライバシー ステートメントも、併せてご確認ください。

サイト動作に必須:オートデスクのサイトが正常に動作し、お客様へサービスを提供するために必要な機能です

Cookie を有効にすることで、お客様の好みやログイン情報が記録され、このデータに基づき操作に対する応答や、ショッピング カートへの商品追加が最適化されます。

使用感が向上:お客様に最適な情報が表示されます

Cookie を有効にすることで、拡張機能が正常に動作し、サイト表示が個々に合わせてカスタマイズされます。お客様に最適な情報をお届けし、使用感を向上させるためのこうした設定は、オードデスクまたはサードパーティのサービス プロバイダーが行います。 Cookie が無効に設定されている場合、一部またはすべてのサービスをご利用いただけない場合があります。

広告表示をカスタマイズ:お客様に関連する広告が表示されます

Cookie を有効にすることで、サイトのご利用内容やご興味に関するデータが収集され、これに基づきお客様に関連する広告が表示されるなど、効率的な動作が可能になります。また、継続的にデータを収集することで、お客様のご興味にさらに関連する広告を配信することが可能になります。Cookie が無効に設定されている場合、お客様に関連しない広告が表示される可能性があります。

icon-svg-close-thick

サードパーティのサービス

それぞれの情報で弊社が利用しているサードパーティのサービスと、オンラインで収集するお客様のデータの使用方法を詳しく説明いたします。

icon-svg-hide-thick

icon-svg-show-thick

サイト動作に必須:オートデスクのサイトが正常に動作し、お客様へサービスを提供するために必要な機能です

Qualtrics
弊社はQualtricsを利用し、アンケート調査やオンライン フォームを通じてお客様が弊社にフィードバックを提供できるようにしています。アンケートの回答は無作為に選んだお客様にお願いしておりますが、お客様から自発的に弊社にフィードバックを提供することも可能です。データを収集する目的は、アンケートの回答前にお客様がとられた行動を、より正しく理解するためです。収集したデータは、発生していた可能性がある問題のトラブルシューティングに役立てさせていただきます。. Qualtrics プライバシー ポリシー
Akamai mPulse
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Akamai mPulseを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Akamai mPulse プライバシー ポリシー
Digital River
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Digital Riverを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Digital River プライバシー ポリシー
Dynatrace
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Dynatraceを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Dynatrace プライバシー ポリシー
Khoros
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Khorosを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Khoros プライバシー ポリシー
Launch Darkly
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Launch Darklyを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Launch Darkly プライバシー ポリシー
New Relic
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、New Relicを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. New Relic プライバシー ポリシー
Salesforce Live Agent
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Salesforce Live Agentを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Salesforce Live Agent プライバシー ポリシー
Wistia
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Wistiaを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Wistia プライバシー ポリシー
Tealium
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Tealiumを利用しています。データには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Tealium プライバシー ポリシー<>
Typepad Stats
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Typepad Statsを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Typepad Stats プライバシー ポリシー
Geo Targetly
当社では、Geo Targetly を使用して Web サイトの訪問者を最適な Web ページに誘導し、訪問者のいる場所に応じて調整したコンテンツを提供します。Geo Targetly は、Web サイト訪問者の IP アドレスを使用して、訪問者のデバイスのおおよその位置を特定します。このため、訪問者は (ほとんどの場合) 自分のローカル言語でコンテンツを閲覧できます。Geo Targetly プライバシー ポリシー
SpeedCurve
弊社は、SpeedCurve を使用して、Web ページの読み込み時間と画像、スクリプト、テキストなど後続の要素の応答性を計測することにより、お客様の Web サイト エクスペリエンスのパフォーマンスをモニタリングおよび計測します。SpeedCurve プライバシー ポリシー
Qualified
Qualified is the Autodesk Live Chat agent platform. This platform provides services to allow our customers to communicate in real-time with Autodesk support. We may collect unique ID for specific browser sessions during a chat. Qualified Privacy Policy

icon-svg-hide-thick

icon-svg-show-thick

使用感が向上:お客様に最適な情報が表示されます

Google Optimize
弊社はGoogle Optimizeを利用して、弊社サイトの新機能をテストし、お客様に合わせた方法で機能を使えるようにしています。そのため弊社では、弊社サイトにアクセスしているお客様から、行動に関するデータを収集しています。収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID などが含まれます。機能のテストの結果によっては、お客様がご利用のサイトのバージョンが変わったり、サイトにアクセスするユーザの属性に応じて、パーソナライズされたコンテンツが表示されるようになる場合があります。. Google Optimize プライバシー ポリシー
ClickTale
弊社は、弊社サイトをご利用になるお客様が、どこで操作につまづいたかを正しく理解できるよう、ClickTaleを利用しています。弊社ではセッションの記録を基に、ページの要素を含めて、お客様がサイトでどのような操作を行っているかを確認しています。お客様の特定につながる個人情報は非表示にし、収集も行いません。. ClickTale プライバシー ポリシー
OneSignal
弊社は、OneSignalがサポートするサイトに広告を配置するために、OneSignalを利用しています。広告には、OneSignalのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、OneSignalがお客様から収集したデータを使用する場合があります。OneSignalに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. OneSignal プライバシー ポリシー
Optimizely
弊社はOptimizelyを利用して、弊社サイトの新機能をテストし、お客様に合わせた方法で機能を使えるようにしています。そのため弊社では、弊社サイトにアクセスしているお客様から、行動に関するデータを収集しています。収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID などが含まれます。機能のテストの結果によっては、お客様がご利用のサイトのバージョンが変わったり、サイトにアクセスするユーザの属性に応じて、パーソナライズされたコンテンツが表示されるようになる場合があります。. Optimizely プライバシー ポリシー
Amplitude
弊社はAmplitudeを利用して、弊社サイトの新機能をテストし、お客様に合わせた方法で機能を使えるようにしています。そのため弊社では、弊社サイトにアクセスしているお客様から、行動に関するデータを収集しています。収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID などが含まれます。機能のテストの結果によっては、お客様がご利用のサイトのバージョンが変わったり、サイトにアクセスするユーザの属性に応じて、パーソナライズされたコンテンツが表示されるようになる場合があります。. Amplitude プライバシー ポリシー
Snowplow
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Snowplowを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Snowplow プライバシー ポリシー
UserVoice
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、UserVoiceを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. UserVoice プライバシー ポリシー
Clearbit
Clearbit を使用すると、リアルタイムのデータ強化により、お客様に合わせてパーソナライズされた適切なエクスペリエンスを提供できます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。Clearbit プライバシー ポリシー
YouTube
YouTube はビデオ共有プラットフォームで、埋め込まれたビデオを当社のウェブ サイトで表示および共有することができます。YouTube は、視聴者のビデオのパフォーマンスの測定値を提供しています。 YouTube 社のプライバシー ポリシー

icon-svg-hide-thick

icon-svg-show-thick

広告表示をカスタマイズ:お客様に関連する広告が表示されます

Adobe Analytics
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Adobe Analyticsを利用しています。収集する情報には、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Adobe Analytics プライバシー ポリシー
Google Analytics (Web Analytics)
弊社は、弊社サイトでのお客様の行動に関するデータを収集するために、Google Analytics (Web Analytics)を利用しています。データには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。このデータを基にサイトのパフォーマンスを測定したり、オンラインでの操作のしやすさを検証して機能強化に役立てています。併せて高度な解析手法を使用し、メールでのお問い合わせやカスタマー サポート、営業へのお問い合わせで、お客様に最適な体験が提供されるようにしています。. Google Analytics (Web Analytics) プライバシー ポリシー<>
Marketo
弊社は、お客様に関連性のあるコンテンツを、適切なタイミングにメールで配信できるよう、Marketoを利用しています。そのため、お客様のオンラインでの行動や、弊社からお送りするメールへの反応について、データを収集しています。収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、メールの開封率、クリックしたリンクなどが含まれます。このデータに、他の収集先から集めたデータを組み合わせ、営業やカスタマー サービスへの満足度を向上させるとともに、高度な解析処理によって、より関連性の高いコンテンツを提供するようにしています。. Marketo プライバシー ポリシー
Doubleclick
弊社は、Doubleclickがサポートするサイトに広告を配置するために、Doubleclickを利用しています。広告には、Doubleclickのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Doubleclickがお客様から収集したデータを使用する場合があります。Doubleclickに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Doubleclick プライバシー ポリシー
HubSpot
弊社は、お客様に関連性のあるコンテンツを、適切なタイミングにメールで配信できるよう、HubSpotを利用しています。そのため、お客様のオンラインでの行動や、弊社からお送りするメールへの反応について、データを収集しています。収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、メールの開封率、クリックしたリンクなどが含まれます。. HubSpot プライバシー ポリシー
Twitter
弊社は、Twitterがサポートするサイトに広告を配置するために、Twitterを利用しています。広告には、Twitterのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Twitterがお客様から収集したデータを使用する場合があります。Twitterに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Twitter プライバシー ポリシー
Facebook
弊社は、Facebookがサポートするサイトに広告を配置するために、Facebookを利用しています。広告には、Facebookのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Facebookがお客様から収集したデータを使用する場合があります。Facebookに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Facebook プライバシー ポリシー
LinkedIn
弊社は、LinkedInがサポートするサイトに広告を配置するために、LinkedInを利用しています。広告には、LinkedInのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、LinkedInがお客様から収集したデータを使用する場合があります。LinkedInに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. LinkedIn プライバシー ポリシー
Yahoo! Japan
弊社は、Yahoo! Japanがサポートするサイトに広告を配置するために、Yahoo! Japanを利用しています。広告には、Yahoo! Japanのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Yahoo! Japanがお客様から収集したデータを使用する場合があります。Yahoo! Japanに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Yahoo! Japan プライバシー ポリシー
Naver
弊社は、Naverがサポートするサイトに広告を配置するために、Naverを利用しています。広告には、Naverのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Naverがお客様から収集したデータを使用する場合があります。Naverに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Naver プライバシー ポリシー
Quantcast
弊社は、Quantcastがサポートするサイトに広告を配置するために、Quantcastを利用しています。広告には、Quantcastのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Quantcastがお客様から収集したデータを使用する場合があります。Quantcastに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Quantcast プライバシー ポリシー
Call Tracking
弊社は、キャンペーン用にカスタマイズした電話番号を提供するために、Call Trackingを利用しています。カスタマイズした電話番号を使用することで、お客様は弊社の担当者にすぐ連絡できるようになり、弊社はサービスのパフォーマンスをより正確に評価できるようになります。弊社では、提供した電話番号を基に、サイトでのお客様の行動に関するデータを収集する場合があります。. Call Tracking プライバシー ポリシー
Wunderkind
弊社は、Wunderkindがサポートするサイトに広告を配置するために、Wunderkindを利用しています。広告には、Wunderkindのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Wunderkindがお客様から収集したデータを使用する場合があります。Wunderkindに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Wunderkind プライバシー ポリシー
ADC Media
弊社は、ADC Mediaがサポートするサイトに広告を配置するために、ADC Mediaを利用しています。広告には、ADC Mediaのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、ADC Mediaがお客様から収集したデータを使用する場合があります。ADC Mediaに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. ADC Media プライバシー ポリシー
AgrantSEM
弊社は、AgrantSEMがサポートするサイトに広告を配置するために、AgrantSEMを利用しています。広告には、AgrantSEMのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、AgrantSEMがお客様から収集したデータを使用する場合があります。AgrantSEMに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. AgrantSEM プライバシー ポリシー
Bidtellect
弊社は、Bidtellectがサポートするサイトに広告を配置するために、Bidtellectを利用しています。広告には、Bidtellectのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Bidtellectがお客様から収集したデータを使用する場合があります。Bidtellectに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Bidtellect プライバシー ポリシー
Bing
弊社は、Bingがサポートするサイトに広告を配置するために、Bingを利用しています。広告には、Bingのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Bingがお客様から収集したデータを使用する場合があります。Bingに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Bing プライバシー ポリシー
G2Crowd
弊社は、G2Crowdがサポートするサイトに広告を配置するために、G2Crowdを利用しています。広告には、G2Crowdのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、G2Crowdがお客様から収集したデータを使用する場合があります。G2Crowdに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. G2Crowd プライバシー ポリシー
NMPI Display
弊社は、NMPI Displayがサポートするサイトに広告を配置するために、NMPI Displayを利用しています。広告には、NMPI Displayのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、NMPI Displayがお客様から収集したデータを使用する場合があります。NMPI Displayに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. NMPI Display プライバシー ポリシー
VK
弊社は、VKがサポートするサイトに広告を配置するために、VKを利用しています。広告には、VKのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、VKがお客様から収集したデータを使用する場合があります。VKに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. VK プライバシー ポリシー
Adobe Target
弊社はAdobe Targetを利用して、弊社サイトの新機能をテストし、お客様に合わせた方法で機能を使えるようにしています。そのため弊社では、弊社サイトにアクセスしているお客様から、行動に関するデータを収集しています。収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID、お客様の Autodesk ID などが含まれます。機能のテストの結果によっては、お客様がご利用のサイトのバージョンが変わったり、サイトにアクセスするユーザの属性に応じて、パーソナライズされたコンテンツが表示されるようになる場合があります。. Adobe Target プライバシー ポリシー
Google Analytics (Advertising)
弊社は、Google Analytics (Advertising)がサポートするサイトに広告を配置するために、Google Analytics (Advertising)を利用しています。広告には、Google Analytics (Advertising)のデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Google Analytics (Advertising)がお客様から収集したデータを使用する場合があります。Google Analytics (Advertising)に提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Google Analytics (Advertising) プライバシー ポリシー
Trendkite
弊社は、Trendkiteがサポートするサイトに広告を配置するために、Trendkiteを利用しています。広告には、Trendkiteのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Trendkiteがお客様から収集したデータを使用する場合があります。Trendkiteに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Trendkite プライバシー ポリシー
Hotjar
弊社は、Hotjarがサポートするサイトに広告を配置するために、Hotjarを利用しています。広告には、Hotjarのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Hotjarがお客様から収集したデータを使用する場合があります。Hotjarに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Hotjar プライバシー ポリシー
6 Sense
弊社は、6 Senseがサポートするサイトに広告を配置するために、6 Senseを利用しています。広告には、6 Senseのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、6 Senseがお客様から収集したデータを使用する場合があります。6 Senseに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. 6 Sense プライバシー ポリシー
Terminus
弊社は、Terminusがサポートするサイトに広告を配置するために、Terminusを利用しています。広告には、Terminusのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、Terminusがお客様から収集したデータを使用する場合があります。Terminusに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. Terminus プライバシー ポリシー
StackAdapt
弊社は、StackAdaptがサポートするサイトに広告を配置するために、StackAdaptを利用しています。広告には、StackAdaptのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、StackAdaptがお客様から収集したデータを使用する場合があります。StackAdaptに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. StackAdapt プライバシー ポリシー
The Trade Desk
弊社は、The Trade Deskがサポートするサイトに広告を配置するために、The Trade Deskを利用しています。広告には、The Trade Deskのデータと、弊社サイトにアクセスしているお客様から弊社が収集する行動に関するデータの両方が使われます。弊社が収集するデータには、お客様がアクセスしたページ、ご利用中の体験版、再生したビデオ、購入した製品やサービス、お客様の IP アドレスまたはデバイスの ID が含まれます。この情報に併せて、The Trade Deskがお客様から収集したデータを使用する場合があります。The Trade Deskに提供しているデータを弊社が使用するのは、お客様のデジタル広告体験をより適切にカスタマイズし、関連性の高い広告をお客様に配信するためです。. The Trade Desk プライバシー ポリシー
RollWorks
We use RollWorks to deploy digital advertising on sites supported by RollWorks. Ads are based on both RollWorks data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that RollWorks has collected from you. We use the data that we provide to RollWorks to better customize your digital advertising experience and present you with more relevant ads. RollWorks Privacy Policy

オンライン体験の品質向上にぜひご協力ください

オートデスクは、弊社の製品やサービスをご利用いただくお客様に、優れた体験を提供することを目指しています。これまでの画面の各項目で[はい]を選択したお客様については、弊社でデータを収集し、カスタマイズされた体験の提供とアプリケーションの品質向上に役立てさせていただきます。この設定は、プライバシー ステートメントにアクセスすると、いつでも変更できます。

お客様の顧客体験は、お客様が自由に決められます。

オートデスクはお客様のプライバシーを尊重します。オートデスクでは収集したデータを基に、お客様が弊社製品をどのように利用されているのか、お客様が関心を示しそうな情報は何か、オートデスクとの関係をより価値あるものにするには、どのような改善が可能かを理解するよう務めています。

そこで、お客様一人ひとりに合わせた体験を提供するために、お客様のデータを収集し、使用することを許可いただけるかどうかお答えください。

体験をカスタマイズすることのメリットにつきましては、本サイトのプライバシー設定の管理でご確認いただけます。弊社のプライバシー ステートメントでも、選択肢について詳しく説明しております。