AU Class
AU Class
class - AU

A Case Study Using Autodesk Vault and Autodesk Construction Cloud Together

이 강의 공유하기

설명

In this session, the speaker will walk you through a customer's project showing how they effectively used Vault Professional software and Autodesk Construction Cloud, keeping them in sync with each other. See how we allow for both sides of the company—design and facilities—to effortlessly use the data at the same time with one source of truth.

주요 학습

  • Learn how to configure Vault to work with Autodesk Construction Cloud.
  • Learn how to configure Autodesk Construction Cloud to work with Vault.
  • Learn how the two environments are synchronized.
  • Review the tools used to make the two systems feel like one.

발표자

  • Kimberley Hendrix 님의 아바타
    Kimberley Hendrix
    Based in Tulsa, Oklahoma, Kimberley Hendrix provides custom solutions for lean engineering using Autodesk, Inc., products and industry knowledge to streamline design and engineering departments. Hendrix has worked in the manufacturing industry for over 30 years and she specialized in automated solutions for the heat exchanger industry. She has worked with Autodesk products since 1984. Hendrix is associated with D3 Technologies as the Manager of Data Management, focusing on data management, plant, automation, and mechanical issues
  • Andrew Waszak 님의 아바타
    Andrew Waszak
    Software Developer Intern for D3 Technologies
  • Chancellor Kurre
    Chancellor is currently a Senior Implementation Consultant with Team D3 based out of Springfield, MO. His focus lies primarily in Vault customization and automation, specifically in connecting Vault data with other systems. While in industry he had a focus on bringing the shop floor together with the engineering department and leveraging the power of automation to shorten lead times, decrease errors, and minimize repetitive tasks. Now with Team D3, he is able to bring the power of automation and integration to more people.
Video Player is loading.
Current Time 0:00
Duration 0:00
Loaded: 0%
Stream Type LIVE
Remaining Time 0:00
 
1x
  • Chapters
  • descriptions off, selected
  • subtitles off, selected
      Transcript

      KIMBERLEY HENDRIX: Hello, thanks for joining our class today. We're going to do a case study using Autodesk Vault and Autodesk Construction Cloud together. There'll be three of us speaking to you today. We'll get started. Who are we? Are all part of Team D3 based in the central part of the US. We'll each individually introduce ourselves. I'm Kimberley Hendrix. I'm the Director of Data Management with Team D3. I'm out of Oklahoma.

      I have four beautiful children. One recently got married. I play a lot of tennis with one of my daughters. And my fun fact is that I play the saxophone whenever I can, usually every weekend or so. And next up is Chancellor

      CHANCELLOR KURRE: Thanks, Kim. My name is Chancellor Kurre. Like Kim said, I'm a Senior Implementation Consultant with Team D3 based out of Missouri. As you can see there, I've got a couple lovely dogs. One of them is a little bit of a winker, only has one eye but absolutely adorable with that one eye. And when I'm not measuring myself up against an apple being super tall, you'll find me working on my Mazda Miata, big guy, tiny car.

      KIMBERLEY HENDRIX: Drew.

      DREW WASZAK: Hey, guys. I'm Drew Waszak based out of Missouri. I'm a software developer with Team D3. I've been with Team D3 for four years now. And my primary focus is around the-- or creating custom solutions in the Autodesk platform services stack. I've got a beautiful fiancee and dog, as you can see from my pictures there. And I spend most of my free time programming, playing video games, hanging out with family. Glad to be here.

      KIMBERLEY HENDRIX: Great. So what we're going to cover today, we're going to walk you through a project that we actually did with the customer showing how to effectively use Vault professional software with Autodesk Construction Cloud. We're going to keep them in sync with each other and show you how that we allow for both sides of the company, designs, facilities, external engineers to accurately use the data at the same time with one source of truth.

      So the pain, so when they called us, that's one of the first things that we want to get into is what pain are they experience? What are we trying to solve? And so we had many meetings and scoping sessions. And what we came up with was three main bullet points is must have a single source of truth. That's because they had many PDM systems across many different locations. And not only did they have many PDM systems, but those same files were in multiple places.

      So copies of the files were in facility locations or engineering sites or with another engineer or on a network drive or in a different PDM system. And nobody knew which one was the latest copy, where that file was, what the metadata around it, how to find it, which one to work on. Sometimes, they were working on it, two people at the same time doing two different projects. And then they had to go back and look at it to figure out how to put all that into a single source of truth later.

      The second point was they had to be able to collaborate both internally with their own people at their field offices and in their offices, control their data, and internally and one person having at a time controlling it with projects and then externally with outside contractors that actually edit the files. And then whatever we come up with, they had to have a two way communication between those two so that one thing controlled it all.

      So our original solution, and I talk about the original solution because as you'll see as we get through this that everything evolves. And this project also evolved. And so you'll see about halfway through this how we're evolving this solution. So I'm to start with the original and then Chancellor is going to talk about how we've changed some things. And then Drew's going to come in and show you all the hidden things behind the curtain.

      So our original solution was five products, Autodesk Vault Professional, Vault Data Standards, which comes with Vault Professional, the Desktop Connector, Autodesk Platform Services, formerly known as Forge, and the Autodesk Construction Cloud. Our two main products were Vault Professional and the Construction Cloud. The other three products is what hooked it all together and made everything work seamlessly. So I've got a little bit of an overview here.

      So on the top left, we have the Vault Pro. That's the client side. That's what the client works from. Everything that they do is inside of there, right? If they're an engineer or somebody that creates content, then they're working in Vault. On the far right, we have the Construction Cloud. And the people that are doing read only, using it, consuming it, checking, it doing things like that, they're in the Construction Cloud because they're not creating new content. There are exceptions to that. We'll get into that.

      And so a lot of this process runs through coolOrange powerJobs, which we'll talk about quite a bit through here, the Vault server, and then the middleware being some stuff that Team D3 has written, the Desktop Connector, coolOrange powerJobs, and then of course, the platform services. So that's just, I wanted to give you just a high level, 10,000 foot look of what we're doing so that as we get into the nitty gritty of this, it makes more sense as we get into these things.

      So let's talk about Vault Pro. Vault Pro was chosen because for them, it's on-prem. And by on-prem, it's a native US or Azure server in the cloud. But they control it. It's in-house PDM for them. It's controlled by their IT department. But it is the document of record. In other words, it's king, OK? So everything that you're looking for, it's going to be involved. And it's going to be involved unless an outside contractor is working on it, and we're done, it still comes back to Vault.

      So Vault is king. That's a single source of truth and everything else is fed from that. And so on the far right, we have the Construction Cloud. Obviously, it's in the cloud. And it's for external collaboration. Again, for people that are reading only read only out in the facilities, and they can use a web browser to get to and read files or for external contractors that actually Edit Sauce files, and we'll get into how we do that a little bit later. And then in the middle is how we connect it.

      Vault Data Standards is a big part of what we're using, coolOrange powerJobs, which is the wrapper around the out-of-the-box job processor is heavily used as well, the Desktop Connector to actually push and pull files back and forth for from Vault Pro and the Construction Cloud is used as well. And then some Autodesk Platform Services in conjunction with our Vault data standards to make the end user experience seamless like it was like it was always there.

      And so that's always our goal is to make it look like it was out-of-the-box, right? So that's the solution that we came up, the single source of truth with multiple access points. So I'm going to show you just a little bit of the Vault Data Standards that we did. So this, and not all of them that we used in this is showing in this presentation. But I picked on the publishing and closing of projects to show you the breadth of the stuff that we can do with Vault Data Standards and using all of those connectors.

      So the first two lines on this is location and active projects. Both of those are pulled from custom objects. If you're not familiar with custom objects, I did a class a few years ago called, well, there's two classes, What the Heck Are Custom Objects? And then a few years later, I did a Configure, Don't Customize Leveraging Custom Objects. And that will tell you how we use custom objects to pull data into our data standards.

      You have some checkbox whether you create a new project. If they check that box just for information, it creates a new project for them and actually writes the new custom object for them so that the next time they open this document that project is already there. They don't have to go someplace separate and fill in all that information to get the project and then come here and do it. We can do it for them automatically in one data box. Again, we want it to look like it was always there, like it was built for them.

      But the important part of this and the one I want to talk about the most is our resource type. And that dropdown box, I just typed them in on here, has two options, PDFs published to ACC and source files remain involved or source files published to ACC, and they're locked in Vault. So the first one is pretty self-explanatory. It means I'm going to assign this job to a project. That means I'm going to work on it.

      And when I'm done or to a point where it's ready to be consumed, my life cycle will then just take a PDF, publish it, and publish it out to the Construction Cloud for viewable purposes using a PDF. If I choose the second one, that means an outside contractor needs to edit those files. They're going to do some work for me, some subcontracting for me. And I'm going to send them bucket of files. And I'm going to put in Construction Cloud.

      They're going to consume them and work on them. And we're going to bring them back. Because remember, Vault's king. So we need everything back in Vault to maintain that continuity. We do some fun stuff later on that we can talk about when they bring it back, and we want them to know that file is now, that AutoCAD file or Inventor file is now in Vault. We have some placeholders that we put out there so they don't lose all their history in Construction Cloud. So that's the stuff we do. That's our two choices.

      We have assign it to a project. Once we assign it to a project, we work on it. We execute the button. Job is queued using coolOrange powerJobs. And it does those offline. So my user does his things, and he goes on to the next thing. And the job processor in the background creates a PDF, puts it in the publish folder. And it's set up to sync every eight hours using the Desktop Connector.

      If we're doing sending the source files, it does it via the Desktop Connector in the original file in the Vault gets set to a lifecycle state that says, "Assigned to ACC" so it's very clear that somebody outside the organization is working on that file. And it's set to read only so that nobody can edit that.

      OK, next slide. OK, so when we close a project, you get a very similar dialog box. Again, we pick the location and the active projects from our custom objects. And we select this Find Project Files. And that's going to go out and find all the associated project files that we assigned earlier. It's going to pull a list from Autodesk Construction Cloud using some of that cool stuff that Drew's going to show you after a while. And it brings in that list, and it will return those files back to Vault.

      And it sets them at review so that we don't rely on an outside contractor putting something in our Vault at a release date. So it requires a set of eyes to look at that. Anything to add on those two things, guys? We're good?

      CHANCELLOR KURRE: I think we're good on my end right now.

      KIMBERLEY HENDRIX: OK. I was going to mention one thing. Let me go back one slide. The eight hour delay on publishing files, that is not a Desktop Connector thing that we also use project sync inside a Vault.

      And that's its limitation is that it is every eight hours is as soon as you can do that. So that's where this eight hour sync comes into effect. It uses the Desktop Connector, but the project sync inside of Vault doesn't fire it except for every eight hours, so that's the limitation on that.

      So this is in play, and it is working for our customer. And then they asked for more, right? So all projects evolve, and they're like, what if? What if we do this? Can we do this? And so the next stage is some rework that we did. And I probably shouldn't have called it rework. I probably should have call it expanding, right, expanding on our same stuff. And I'm going to turn this over to Chancellor to talk about the next stage.

      CHANCELLOR KURRE: Thanks, Kim. Rework, expansion, improvements, like expansion or improvements, we can go ahead and go to the next slide. Just like Kim mentioned, all projects evolve. If you've been doing this long enough any length of time at all, you'll know that what you start out with isn't always what you get. There are improvements along the way that you have to make. And so some of these are exactly that.

      We thought that every eight hours wasn't going to be a huge limitation. And we thought it was going to work out just fine for us. But as we started working in this environment, we found that eight hours was kind of a long time to wait. You could come in the beginning of the day, make that transition, and it wouldn't be out in ACC until the end of the day, maybe even the next day depending on when you made that transition. So that was a limitation on us.

      We also were in talks of wanting to take metadata out to ACC. You've done this great job of gathering all this metadata. You've got maybe multiple titles populating your title block. You've got last person who checked it in, maybe the person who did a review on it, got all that valuable metadata. But it hasn't transitioned into ACC. It's not usable. And it's not searchable. So we were wanting to bring some of that in.

      And then kind of the nail in the coffin was the Desktop Connector limitation to 40 projects. This is one that didn't exist when we started, but came along after the fact. As we were working in well over 100 projects, a limitation of only 40 projects was a big nail in the coffin for us. Using the Desktop Connector and the job processor to move things around, you might think, well, let's just use multiple job processors with multiple instances of Desktop Connector. But that leads to a lot of complication and a lot of cleanup that really just isn't necessary.

      Let's go to the next slide. And with that in mind, let's take a look at, we'll call it the new solution. It's our improvement on the old.

      We're still going to use Vault Professional. It's still going to be the king of all the documents. And it's still going to be that source of truth for us. We're still going to use data standard for all of the custom dialogs. We're still moving everything out to ACC, out to Autodesk Construction Cloud. And we're still going to use Autodesk Platform Services but this time in a little bit bigger way.

      And in order to do that, we're going to get rid of Desktop Connector to get rid of some of those limitations for us. Let's go to the next slide. With that, we do have some functional requirements that we have to hit.

      We still need to send and receive files just like Desktop Connector was doing, still have to get those files moved. But we also do want to bring in that metadata like we talked about. This will allow us to search, reuse titles and all of that from Vault into ACC.

      And we want to bring that back as well so that if our contractors or our other people working on it make any changes, we can capture that metadata back into Vault. While it's entirely possible to gather a list of the files in ACC at runtime when the user is actually interacting with that dialogue, we found that it was quite resource intensive to do that. And we were a little bit concerned about security, specifically with client secrets and client IDs being on client machines, specifically working with Vault Data Standard and having those more or less in a plain text environment.

      So we decided to on-prem maintain our own list of all of the files in ACC. With the functional requirements out of the way, let's take a look at what changes for the user. You can want to go to the next slide. Again, since we're still using Vault Data Standard, we're still doing all of that the same. The user really doesn't have any changes to look at. The location and active projects are still populated by a custom objects. And we're still selecting our source type.

      The big change here is when we hit Assign to Project. I'll let you go to the next slide again. When we execute that Assign to Project, we're still going to cue a job. But this time, instead of letting the Desktop Connector move those files, we're going to cue another custom job that sends those files using some D3 written libraries. We're still publishing that PDF to the publish folder. We have to keep that location. That's one of the requirements that we had to hit.

      But again, we're using a custom job now to send those. And those libraries are piggybacking off of the ACC APIs to let us send those jobs-- send those files out. The other option is sending source files. Again, we're using a custom job for that to send those original files and then marking those as assign to ACC so that users in Vault don't accidentally make changes while they're out for edit elsewhere.

      Let's take a look at the close dialogue. Again, the close dialog looks pretty much the same, location and projects, again, still populated from custom objects. This time instead of using a find files at runtime, we're referencing a CSV. Like I said earlier, this is because of some security issues that we-- or security concerns that we had as well as trying to lighten up some resource allocation. And so we'll look at that CSV.

      The CSV in this case is stored on a network drive so that all machines have access to it. And that will return the list of files. And we'll populate that here so that a user can select the files they need to bring back. When they hit Close Project, we'll take a look at that. When they hit Close Project, we're going to cue another job. This job will return the source files to Vault instead of using Desktop Connector again, with the D3 libraries written on top of the ACC API.

      We're then going to set that lifecycle state to review so that our in-house users, our Vault users can review that, make any required notations, and they can be the ones to move it to a release. Now that we've seen all of the fun parts, all the parts that the user gets to interact with, I'll bring Drew in to show us what's behind the curtain. Really I think that's what's the fun part.

      DREW WASZAK: [LAUGHS] Thanks, Chancellor, appreciate it. So yeah, we're going to take a little peek behind the curtain here and talk about the architecture behind the integration of Vault and Autodesk Construction Cloud. Can you can go ahead, go to the next slide? So we have a simple flowchart up here to walk through to help you guys understand the key software players that are involved and how the data is being traversed through the system.

      Let's start on the far left side. We have the Vault clients that are communicating back and forth with the Vault server. That's everything that Vault does great, all your check-in and check-out processes. And then to the right there, we have a separate server that houses the Vault Job Processor. And the reason this is a separate server is so that we can offload that processing from the Vault server and the Vault client to keep those machines working at what they do best.

      Next, we have each of those custom jobs that Chancellor was mentioning there. And on the far right side, we have Autodesk Build or Autodesk Construction Cloud. All of the endpoints we've used in this integration are backwards compatible with BIM 360. Jumping back over to the Vault Job Processor, we're using that coolOrange middleware or wrapper called Power Jobs that gives us ease in integrating and iterating and implementing this solution.

      Because our client had such a complex case of having hundreds of projects, thousands of folders, and tens of thousands of files, we had the potential of dealing with millions of entities. The bottom hub file index job is there to offset and build some efficiencies into our system. This is a reoccurring job that lives on the Vault Job Processor. It can be run once a week, once a day, once an hour, any frequency that you would want.

      This hub file index captures all of the projects, all of the folders, and all of the files and stores that on the job processor for easy access so that the other jobs, when the other jobs are queued up, they don't have to make as many API calls and gather up all that data. That data is ready for them to grab on the machine. Jumping back over to the far left on the Vault client, that's where that data standards implementation that came in. Chancellor has been showing you guys. That's where that lives.

      And that gives us events that we can trigger on to then run these jobs on the job processor. So from the Vault client, they can initiate a job to upload their files to build. This will download that file to the job processor, upload that file, and it will also map and bring any assigned user defined properties in Vault as custom attributes within Build. Again, from that Vault client machine, they can request to download or retrieve that file from Build.

      It will download and check in the file to Vault and will also bring along those custom attributes and update any user-defined properties that have changed. We have a few other jobs that run in the background for maintenance. One of our other jobs is kind of a catch-up job. If you opt in to this process late, and your project is already running, we have the ability to resync all of your files and custom attributes for an entire project, basically iterates through that hub file list that we've stored on the job processor. Now, Kim, can you go to the next slide for me?

      CHANCELLOR KURRE: Real quick before we do, I've got a question for you on that slide. That hub file index job, we're going through hundreds of projects. How do we make sure that an error on, let's say project five doesn't impact the rest of the projects? Can we make sure the rest of those projects still index?

      DREW WASZAK: Absolutely, that's a great question. Thank you, Chancellor. So the way the job processor works is in a singleton, or we have single instances of all of these jobs running. For context, in our hub file index job, we queue up a job for each project that exists in that hub. So if one of them fail or doesn't conform to our folder structure or the requirements we have for the integration, it can progress past that and still keep indexing the rest.

      The same is true for uploading files. If you upload 10 drawings from Vault to Build, they're going to be single jobs within the job processor. And if one fails for whatever reason, the others can still go through. On top of that, if a job fails for whatever reason, that's tracked within the Vault Job Processor and is also tracked within the coolOrange logs so that you can troubleshoot and find a solution. All right, next slide, please.

      KIMBERLEY HENDRIX: Well, just real quickly on that, so it sounds like if you're listening to this, we're putting a lot of pressure on that job processor. And I just wanted to interject in here that we can have multiple job processors to work asynchronously together to run these jobs and pick them up like if there's four jobs, and there's four job processors, they could all run simultaneously to keep up with the path if we needed to. We've not run into that yet in this environment. But as they grow, and more transactions happen, we can just add more job processors to the list and continue those jobs. So I just wanted to interject that.

      DREW WASZAK: Absolutely. That's a great point, Kim. And to further on that, we have complete scalability. You can have your Vault job processor living on the server if you're in a low or a small enough instance. Or if you're in a large enough instance, we can spin up 10 or hundreds of them depending on whatever is required. Any other questions? All right.

      All right, so for any programmers or coders in the room here, I wanted to talk a little bit about how straightforward it is to build these scripts within PowerShell using Cool Orange, Power Vault and then RD3 Autodesk Platform Services libraries. The great thing about using both of these modules is they are maintained, so coolOrange maintains all the differences and the SDK versions between Vault. And D3 maintains all of the changes within Autodesk Platform Services APIs that we use in these libraries.

      So you can see here this is a fairly straightforward script. It's less than 50 lines of code, 53 if we include comments. And this is everything required to upload a file and its custom attributes from Vault to ACC. Also, we've also built in the ability to debug this instance or run it locally for troubleshooting or iterating and building upon it. So it's a great script, and the other ones are just as simple as this one. Thank you guys so much. I'll hand it back to Chancellor to keep talking about how this thing is working.

      CHANCELLOR KURRE: Absolutely. I'll give a high level overview of what it takes to get this going and all that. If you want more information on it, we do cover this in more detail in the handout. Gives you a little bit more of an insight as to what it might take. As far as hardware requirements go, there's nothing outside of the ordinary. Whatever it takes to get your Vault client going is what it's going to take to get this going, right. Your Vault client, your job processor, all, those hardware requirements cover this as well.

      As far as software goes, of course, you'll need Vault Client, Vault Server, powerVault, which is available from coolOrange, powerJobs also available from coolOrange. And we've got our D3 Autodesk Platform Services libraries. It's our 11 secret herbs and spices that we like to throw in there that help us along the way. Set up an installation, really just as simple as a standard data standard customization. If you've done adding your own data standard dialogues-- found the word-- your own data standard dialogues, and it's as straightforward as that.

      You will need to configure the workflow a little bit as far as making sure that jobs trigger on certain lifecycle state changes so that you can get files sent out and brought back at the correct life cycles. And then as far as actually using the integration day-to-day, just get some practice with it. Get comfortable. Make sure that the users are happy with it. And make sure that the job processor stays running.

      With as many jobs as there will be running on this job processor or job processors, if you need multiple, we want to make sure that we're on top of those so one failure doesn't cascade down the road. On that, I'll hand it back over to Kim.

      KIMBERLEY HENDRIX: So we will cover this in more detail on the software and hardware requirements to set up, how you put Vault Data Standards on it, how you manage the Vault Data Standards for a large implementation and how we use it and what it looks like in the handout. That's a bit of an eye chart for this. So we'll put that in the handout for everybody to have for reference. And with that, I believe we have our contact information if you have questions or stuff about that. And we look forward to seeing you.

      ______
      icon-svg-close-thick

      쿠기 기본 설정

      오토데스크는 고객의 개인 정보와 최상의 경험을 중요시합니다. 오토데스크는 정보를 사용자화하고 응용프로그램을 만들기 위해 고객의 본 사이트 사용에 관한 데이터를 수집합니다.

      오토데스크에서 고객의 데이터를 수집하고 사용하도록 허용하시겠습니까?

      오토데스크에서 사용하는타사 서비스개인정보 처리방침 정책을 자세히 알아보십시오.

      반드시 필요 - 사이트가 제대로 작동하고 사용자에게 서비스를 원활하게 제공하기 위해 필수적임

      이 쿠키는 오토데스크에서 사용자 기본 설정 또는 로그인 정보를 저장하거나, 사용자 요청에 응답하거나, 장바구니의 품목을 처리하기 위해 필요합니다.

      사용자 경험 향상 – 사용자와 관련된 항목을 표시할 수 있게 해 줌

      이 쿠키는 오토데스크가 보다 향상된 기능을 제공하고 사용자에게 맞는 정보를 제공할 수 있게 해 줍니다. 사용자에게 맞는 정보 및 환경을 제공하기 위해 오토데스크 또는 서비스를 제공하는 협력업체에서 이 쿠키를 설정할 수 있습니다. 이 쿠키를 허용하지 않을 경우 이러한 서비스 중 일부 또는 전체를 이용하지 못하게 될 수 있습니다.

      광고 수신 설정 – 사용자에게 타겟팅된 광고를 제공할 수 있게 해 줌

      이 쿠키는 사용자와 관련성이 높은 광고를 표시하고 그 효과를 추적하기 위해 사용자 활동 및 관심 사항에 대한 데이터를 수집합니다. 이렇게 데이터를 수집함으로써 사용자의 관심 사항에 더 적합한 광고를 표시할 수 있습니다. 이 쿠키를 허용하지 않을 경우 관심 분야에 해당되지 않는 광고가 표시될 수 있습니다.

      icon-svg-close-thick

      타사 서비스

      각 범주에서 오토데스크가 사용하는 타사 서비스와 온라인에서 고객으로부터 수집하는 데이터를 사용하는 방식에 대해 자세히 알아보십시오.

      icon-svg-hide-thick

      icon-svg-show-thick

      반드시 필요 - 사이트가 제대로 작동하고 사용자에게 서비스를 원활하게 제공하기 위해 필수적임

      Qualtrics
      오토데스크는 고객에게 더욱 시의적절하며 관련 있는 이메일 컨텐츠를 제공하기 위해 Qualtrics를 이용합니다. 이를 위해, 고객의 온라인 행동 및 오토데스크에서 전송하는 이메일과의 상호 작용에 관한 데이터를 수집합니다. 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID, 이메일 확인율, 클릭한 링크 등이 포함될 수 있습니다. 오토데스크는 이 데이터를 다른 소스에서 수집된 데이터와 결합하여 고객의 판매 또는 고객 서비스 경험을 개선하며, 고급 분석 처리에 기초하여 보다 관련 있는 컨텐츠를 제공합니다. Qualtrics 개인정보취급방침
      Akamai mPulse
      오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Akamai mPulse를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Akamai mPulse 개인정보취급방침
      Digital River
      오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Digital River를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Digital River 개인정보취급방침
      Dynatrace
      오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Dynatrace를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Dynatrace 개인정보취급방침
      Khoros
      오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Khoros를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Khoros 개인정보취급방침
      Launch Darkly
      오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Launch Darkly를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Launch Darkly 개인정보취급방침
      New Relic
      오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 New Relic를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. New Relic 개인정보취급방침
      Salesforce Live Agent
      오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Salesforce Live Agent를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Salesforce Live Agent 개인정보취급방침
      Wistia
      오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Wistia를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Wistia 개인정보취급방침
      Tealium
      오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Tealium를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Upsellit
      오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Upsellit를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. CJ Affiliates
      오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 CJ Affiliates를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Commission Factory
      Typepad Stats
      오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Typepad Stats를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Typepad Stats 개인정보취급방침
      Geo Targetly
      Autodesk는 Geo Targetly를 사용하여 웹 사이트 방문자를 가장 적합한 웹 페이지로 안내하거나 위치를 기반으로 맞춤형 콘텐츠를 제공합니다. Geo Targetly는 웹 사이트 방문자의 IP 주소를 사용하여 방문자 장치의 대략적인 위치를 파악합니다. 이렇게 하면 방문자가 (대부분의 경우) 현지 언어로 된 콘텐츠를 볼 수 있습니다.Geo Targetly 개인정보취급방침
      SpeedCurve
      Autodesk에서는 SpeedCurve를 사용하여 웹 페이지 로드 시간과 이미지, 스크립트, 텍스트 등의 후속 요소 응답성을 측정하여 웹 사이트 환경의 성능을 모니터링하고 측정합니다. SpeedCurve 개인정보취급방침
      Qualified
      Qualified is the Autodesk Live Chat agent platform. This platform provides services to allow our customers to communicate in real-time with Autodesk support. We may collect unique ID for specific browser sessions during a chat. Qualified Privacy Policy

      icon-svg-hide-thick

      icon-svg-show-thick

      사용자 경험 향상 – 사용자와 관련된 항목을 표시할 수 있게 해 줌

      Google Optimize
      오토데스크는 사이트의 새 기능을 테스트하고 이러한 기능의 고객 경험을 사용자화하기 위해 Google Optimize을 이용합니다. 이를 위해, 고객이 사이트를 방문해 있는 동안 행동 데이터를 수집합니다. 이 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID, 오토데스크 ID 등이 포함될 수 있습니다. 고객은 기능 테스트를 바탕으로 여러 버전의 오토데스크 사이트를 경험하거나 방문자 특성을 바탕으로 개인화된 컨텐츠를 보게 될 수 있습니다. Google Optimize 개인정보취급방침
      ClickTale
      오토데스크는 고객이 사이트에서 겪을 수 있는 어려움을 더 잘 파악하기 위해 ClickTale을 이용합니다. 페이지의 모든 요소를 포함해 고객이 오토데스크 사이트와 상호 작용하는 방식을 이해하기 위해 세션 녹화를 사용합니다. 개인적으로 식별 가능한 정보는 가려지며 수집되지 않습니다. ClickTale 개인정보취급방침
      OneSignal
      오토데스크는 OneSignal가 지원하는 사이트에 디지털 광고를 배포하기 위해 OneSignal를 이용합니다. 광고는 OneSignal 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 OneSignal에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 OneSignal에 제공하는 데이터를 사용합니다. OneSignal 개인정보취급방침
      Optimizely
      오토데스크는 사이트의 새 기능을 테스트하고 이러한 기능의 고객 경험을 사용자화하기 위해 Optimizely을 이용합니다. 이를 위해, 고객이 사이트를 방문해 있는 동안 행동 데이터를 수집합니다. 이 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID, 오토데스크 ID 등이 포함될 수 있습니다. 고객은 기능 테스트를 바탕으로 여러 버전의 오토데스크 사이트를 경험하거나 방문자 특성을 바탕으로 개인화된 컨텐츠를 보게 될 수 있습니다. Optimizely 개인정보취급방침
      Amplitude
      오토데스크는 사이트의 새 기능을 테스트하고 이러한 기능의 고객 경험을 사용자화하기 위해 Amplitude을 이용합니다. 이를 위해, 고객이 사이트를 방문해 있는 동안 행동 데이터를 수집합니다. 이 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID, 오토데스크 ID 등이 포함될 수 있습니다. 고객은 기능 테스트를 바탕으로 여러 버전의 오토데스크 사이트를 경험하거나 방문자 특성을 바탕으로 개인화된 컨텐츠를 보게 될 수 있습니다. Amplitude 개인정보취급방침
      Snowplow
      오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Snowplow를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Snowplow 개인정보취급방침
      UserVoice
      오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 UserVoice를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. UserVoice 개인정보취급방침
      Clearbit
      Clearbit를 사용하면 실시간 데이터 보강 기능을 통해 고객에게 개인화되고 관련 있는 환경을 제공할 수 있습니다. Autodesk가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. Clearbit 개인정보취급방침
      YouTube
      YouTube는 사용자가 웹 사이트에 포함된 비디오를 보고 공유할 수 있도록 해주는 비디오 공유 플랫폼입니다. YouTube는 비디오 성능에 대한 시청 지표를 제공합니다. YouTube 개인정보보호 정책

      icon-svg-hide-thick

      icon-svg-show-thick

      광고 수신 설정 – 사용자에게 타겟팅된 광고를 제공할 수 있게 해 줌

      Adobe Analytics
      오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Adobe Analytics를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Adobe Analytics 개인정보취급방침
      Google Analytics (Web Analytics)
      오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Google Analytics (Web Analytics)를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. AdWords
      Marketo
      오토데스크는 고객에게 더욱 시의적절하며 관련 있는 이메일 컨텐츠를 제공하기 위해 Marketo를 이용합니다. 이를 위해, 고객의 온라인 행동 및 오토데스크에서 전송하는 이메일과의 상호 작용에 관한 데이터를 수집합니다. 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID, 이메일 확인율, 클릭한 링크 등이 포함될 수 있습니다. 오토데스크는 이 데이터를 다른 소스에서 수집된 데이터와 결합하여 고객의 판매 또는 고객 서비스 경험을 개선하며, 고급 분석 처리에 기초하여 보다 관련 있는 컨텐츠를 제공합니다. Marketo 개인정보취급방침
      Doubleclick
      오토데스크는 Doubleclick가 지원하는 사이트에 디지털 광고를 배포하기 위해 Doubleclick를 이용합니다. 광고는 Doubleclick 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Doubleclick에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Doubleclick에 제공하는 데이터를 사용합니다. Doubleclick 개인정보취급방침
      HubSpot
      오토데스크는 고객에게 더욱 시의적절하며 관련 있는 이메일 컨텐츠를 제공하기 위해 HubSpot을 이용합니다. 이를 위해, 고객의 온라인 행동 및 오토데스크에서 전송하는 이메일과의 상호 작용에 관한 데이터를 수집합니다. 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID, 이메일 확인율, 클릭한 링크 등이 포함될 수 있습니다. HubSpot 개인정보취급방침
      Twitter
      오토데스크는 Twitter가 지원하는 사이트에 디지털 광고를 배포하기 위해 Twitter를 이용합니다. 광고는 Twitter 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Twitter에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Twitter에 제공하는 데이터를 사용합니다. Twitter 개인정보취급방침
      Facebook
      오토데스크는 Facebook가 지원하는 사이트에 디지털 광고를 배포하기 위해 Facebook를 이용합니다. 광고는 Facebook 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Facebook에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Facebook에 제공하는 데이터를 사용합니다. Facebook 개인정보취급방침
      LinkedIn
      오토데스크는 LinkedIn가 지원하는 사이트에 디지털 광고를 배포하기 위해 LinkedIn를 이용합니다. 광고는 LinkedIn 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 LinkedIn에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 LinkedIn에 제공하는 데이터를 사용합니다. LinkedIn 개인정보취급방침
      Yahoo! Japan
      오토데스크는 Yahoo! Japan가 지원하는 사이트에 디지털 광고를 배포하기 위해 Yahoo! Japan를 이용합니다. 광고는 Yahoo! Japan 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Yahoo! Japan에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Yahoo! Japan에 제공하는 데이터를 사용합니다. Yahoo! Japan 개인정보취급방침
      Naver
      오토데스크는 Naver가 지원하는 사이트에 디지털 광고를 배포하기 위해 Naver를 이용합니다. 광고는 Naver 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Naver에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Naver에 제공하는 데이터를 사용합니다. Naver 개인정보취급방침
      Quantcast
      오토데스크는 Quantcast가 지원하는 사이트에 디지털 광고를 배포하기 위해 Quantcast를 이용합니다. 광고는 Quantcast 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Quantcast에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Quantcast에 제공하는 데이터를 사용합니다. Quantcast 개인정보취급방침
      Call Tracking
      오토데스크는 캠페인을 위해 사용자화된 전화번호를 제공하기 위하여 Call Tracking을 이용합니다. 그렇게 하면 고객이 오토데스크 담당자에게 더욱 빠르게 액세스할 수 있으며, 오토데스크의 성과를 더욱 정확하게 평가하는 데 도움이 됩니다. 제공된 전화번호를 기준으로 사이트에서 고객 행동에 관한 데이터를 수집할 수도 있습니다. Call Tracking 개인정보취급방침
      Wunderkind
      오토데스크는 Wunderkind가 지원하는 사이트에 디지털 광고를 배포하기 위해 Wunderkind를 이용합니다. 광고는 Wunderkind 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Wunderkind에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Wunderkind에 제공하는 데이터를 사용합니다. Wunderkind 개인정보취급방침
      ADC Media
      오토데스크는 ADC Media가 지원하는 사이트에 디지털 광고를 배포하기 위해 ADC Media를 이용합니다. 광고는 ADC Media 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 ADC Media에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 ADC Media에 제공하는 데이터를 사용합니다. ADC Media 개인정보취급방침
      AgrantSEM
      오토데스크는 AgrantSEM가 지원하는 사이트에 디지털 광고를 배포하기 위해 AgrantSEM를 이용합니다. 광고는 AgrantSEM 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 AgrantSEM에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 AgrantSEM에 제공하는 데이터를 사용합니다. AgrantSEM 개인정보취급방침
      Bidtellect
      오토데스크는 Bidtellect가 지원하는 사이트에 디지털 광고를 배포하기 위해 Bidtellect를 이용합니다. 광고는 Bidtellect 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Bidtellect에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Bidtellect에 제공하는 데이터를 사용합니다. Bidtellect 개인정보취급방침
      Bing
      오토데스크는 Bing가 지원하는 사이트에 디지털 광고를 배포하기 위해 Bing를 이용합니다. 광고는 Bing 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Bing에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Bing에 제공하는 데이터를 사용합니다. Bing 개인정보취급방침
      G2Crowd
      오토데스크는 G2Crowd가 지원하는 사이트에 디지털 광고를 배포하기 위해 G2Crowd를 이용합니다. 광고는 G2Crowd 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 G2Crowd에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 G2Crowd에 제공하는 데이터를 사용합니다. G2Crowd 개인정보취급방침
      NMPI Display
      오토데스크는 NMPI Display가 지원하는 사이트에 디지털 광고를 배포하기 위해 NMPI Display를 이용합니다. 광고는 NMPI Display 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 NMPI Display에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 NMPI Display에 제공하는 데이터를 사용합니다. NMPI Display 개인정보취급방침
      VK
      오토데스크는 VK가 지원하는 사이트에 디지털 광고를 배포하기 위해 VK를 이용합니다. 광고는 VK 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 VK에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 VK에 제공하는 데이터를 사용합니다. VK 개인정보취급방침
      Adobe Target
      오토데스크는 사이트의 새 기능을 테스트하고 이러한 기능의 고객 경험을 사용자화하기 위해 Adobe Target을 이용합니다. 이를 위해, 고객이 사이트를 방문해 있는 동안 행동 데이터를 수집합니다. 이 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID, 오토데스크 ID 등이 포함될 수 있습니다. 고객은 기능 테스트를 바탕으로 여러 버전의 오토데스크 사이트를 경험하거나 방문자 특성을 바탕으로 개인화된 컨텐츠를 보게 될 수 있습니다. Adobe Target 개인정보취급방침
      Google Analytics (Advertising)
      오토데스크는 Google Analytics (Advertising)가 지원하는 사이트에 디지털 광고를 배포하기 위해 Google Analytics (Advertising)를 이용합니다. 광고는 Google Analytics (Advertising) 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Google Analytics (Advertising)에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Google Analytics (Advertising)에 제공하는 데이터를 사용합니다. Google Analytics (Advertising) 개인정보취급방침
      Trendkite
      오토데스크는 Trendkite가 지원하는 사이트에 디지털 광고를 배포하기 위해 Trendkite를 이용합니다. 광고는 Trendkite 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Trendkite에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Trendkite에 제공하는 데이터를 사용합니다. Trendkite 개인정보취급방침
      Hotjar
      오토데스크는 Hotjar가 지원하는 사이트에 디지털 광고를 배포하기 위해 Hotjar를 이용합니다. 광고는 Hotjar 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Hotjar에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Hotjar에 제공하는 데이터를 사용합니다. Hotjar 개인정보취급방침
      6 Sense
      오토데스크는 6 Sense가 지원하는 사이트에 디지털 광고를 배포하기 위해 6 Sense를 이용합니다. 광고는 6 Sense 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 6 Sense에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 6 Sense에 제공하는 데이터를 사용합니다. 6 Sense 개인정보취급방침
      Terminus
      오토데스크는 Terminus가 지원하는 사이트에 디지털 광고를 배포하기 위해 Terminus를 이용합니다. 광고는 Terminus 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Terminus에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Terminus에 제공하는 데이터를 사용합니다. Terminus 개인정보취급방침
      StackAdapt
      오토데스크는 StackAdapt가 지원하는 사이트에 디지털 광고를 배포하기 위해 StackAdapt를 이용합니다. 광고는 StackAdapt 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 StackAdapt에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 StackAdapt에 제공하는 데이터를 사용합니다. StackAdapt 개인정보취급방침
      The Trade Desk
      오토데스크는 The Trade Desk가 지원하는 사이트에 디지털 광고를 배포하기 위해 The Trade Desk를 이용합니다. 광고는 The Trade Desk 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 The Trade Desk에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 The Trade Desk에 제공하는 데이터를 사용합니다. The Trade Desk 개인정보취급방침
      RollWorks
      We use RollWorks to deploy digital advertising on sites supported by RollWorks. Ads are based on both RollWorks data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that RollWorks has collected from you. We use the data that we provide to RollWorks to better customize your digital advertising experience and present you with more relevant ads. RollWorks Privacy Policy

      정말 더 적은 온라인 경험을 원하십니까?

      오토데스크는 고객 여러분에게 좋은 경험을 드리고 싶습니다. 이전 화면의 범주에 대해 "예"를 선택하셨다면 오토데스크는 고객을 위해 고객 경험을 사용자화하고 향상된 응용프로그램을 제작하기 위해 귀하의 데이터를 수집하고 사용합니다. 언제든지 개인정보 처리방침을 방문해 설정을 변경할 수 있습니다.

      고객의 경험. 고객의 선택.

      오토데스크는 고객의 개인 정보 보호를 중요시합니다. 오토데스크에서 수집하는 정보는 오토데스크 제품 사용 방법, 고객이 관심을 가질 만한 정보, 오토데스크에서 더욱 뜻깊은 경험을 제공하기 위한 개선 사항을 이해하는 데 도움이 됩니다.

      오토데스크에서 고객님께 적합한 경험을 제공해 드리기 위해 고객님의 데이터를 수집하고 사용하도록 허용하시겠습니까?

      선택할 수 있는 옵션을 자세히 알아보려면 이 사이트의 개인 정보 설정을 관리해 사용자화된 경험으로 어떤 이점을 얻을 수 있는지 살펴보거나 오토데스크 개인정보 처리방침 정책을 확인해 보십시오.