AU Class
AU Class
class - AU

Accelerating Industrialized Construction Through Configurators for pDfMA

이 강의 공유하기
동영상, 발표 자료 및 배포 자료에서 키워드 검색:

설명

In 2017, the U.K. government funded an analysis of the various costs associated with a typical construction project, and identified that for every pound spent, just more than 51% results in residual asset value for the client. The Construction Innovation Hub (CIH) was subsequently established with the vision to cause change and demonstrate better solutions to deliver the U.K. government £35 billion pipeline. The chosen strategy was to develop, prototype, and test platform solutions (pDFMA), with a common “kit of parts.” This would demonstrate the delivery of better outcomes for social infrastructure. Integral to the strategy was the use of a new digital toolchain to unlock the approach. Grimshaw Architects, Buro Happold engineers, and Mace Construction were commissioned to develop a new suite of configurators to enable the "kit of parts” approach during procurement and delivery.

주요 학습

  • Learn about the nature and applicability of design configurators in the construction industry.
  • Learn the relationship between generative design and configurators in industrialized construction.
  • Learn how to mobilize configurators to accelerate the adoption of industrialized construction in your construction projects.
  • Learn about the "Platform DFMA" approach and how it enables DFMA to be deployed at industry scale.

발표자

  • Alain Waha
    Alain is the Chief Technology Officer at Buro Happold. He convenes the Technology Board and steers several technology initiatives, including AI and industrialised Construction. He also co-founded Cogital, a Digital Transformation Agency working with Ventures and Funds in #proptech and #buildtech. Alain is a regular invited speaker on Digital Transformation at industry events with leading institutions such as Stanford CIFE in California, AMCA in Australia, ICE in the UK, BBRI in Belgium, and many others: BUILTWorlds, AutoDesk Futures Symposium. Alain also sits on several VC and Digital advisory boards, including the Construction Innovation Hub's Digital Working group, 3Drepo.io, Kinship.io, VU.City, Xinaps.com, and the Building Ventures Investment network. Alain joined the construction industry in 2008 after a career in Aerospace and Automotive. In the AEC sector, he has held roles as CEO of VC backed venture Atlas Industries and Satellier inc. His experience spans the AEC supply chain, across Europe, US and Asia.
  • Andy Watts
    Andy is the Director of Design Technology at Grimshaw and leads the practice's global Design Technology team, overseeing digital disciplines such as computational design, BIM, extended reality, urban computation, applications development and environmental performance. As a qualified architect with a background in computational design, Andy has an interest in problem-solving, regardless of scale or platform. From low-key computational tinkering to digital transformation on a practice-scale, his passion lies in making the lives of architects and designers easier through the use of technology. Andy is a proponent of open and equitable access to technology. Within Grimshaw he has sought to break down the silos between technologies, allowing for the cross-pollination of expertise to be available to any project within the practice. In the wider industry, Andy has continued to drive for an open approach to technology, through engagement in industry-wide research consortia such as the Construction Innovation Hub, participation in public events, and playing a role in groups driving for industry change such as the Open Letter Group. Andy is also actively involved in academia, has taught at the Architectural Association and University of Westminster, and has also lectured and critiqued at the Pratt Institute, Melbourne University, Dundee University, RCA, UCL and others.
Video Player is loading.
Current Time 0:00
Duration 0:00
Loaded: 0%
Stream Type LIVE
Remaining Time 0:00
 
1x
  • Chapters
  • descriptions off, selected
  • subtitles off, selected
      Transcript

      ANDY WATTS: Hello, and welcome to the session on Accelerating Industrialized Construction Through the use of Configurators. My name is Andy Watts. I'm the director of design technology at Grimshaw, but I've also been part of the Digital Working Group at the Construction Innovation Hub alongside Alain.

      ALAIN WAHA: And hello. I am the chief technology officer at Buro Happold, and with Andy, have been working in the Digital Working Group at the Construction Innovation Hub in the UK.

      ANDY WATTS: During this session, we will be covering a few different topics. One is a background to platform approach to design for manufacture and assembly, the work that we've done on the Construction Innovation Hub, our work with the common configurator framework, the return on investment for this type of approach, and then lastly, how you can get involved in the future. I'll now pass over to Alain.

      ALAIN WAHA: So yes, it may seem strange to start with talking about platforms, but I think it is essential to explain the context of the work that we've been undertaking. And so we'll just spend a few minutes on this concept of platform and how they apply to construction. Next.

      So the UK government launched this idea of a platform for construction, and going back to what are platforms. And they can be product platforms, they can be industry platforms, they can be business models. And this is very well codified. I've taken this diagram from the Business of Platform book from Annabelle Gawer, and I really invite people to go back in this analysis.

      And this is the central approach that we're trying to apply to construction. So on the next slide, why we are trying to do this is because traditional construction relies on many firms coming together and delivering a project. And in the pursuit of industrialization, what firms have done is to vertically integrate. And what we understand from platform business models is that that's very stable, but that vertical integration comes with many problems.

      First, you have to do it all yourself-- and you can see it on the left of the slide-- but also, as soon as you own your own factory or you are geographically located in a single place, you buy yourself into all sorts of problems relating to factory loading and having to have the factories that produce the product. So you need quite a big pipeline and that pipeline, geographically, cannot be too dispersed because otherwise, you incur very high logistics costs. And in construction, that really puts a limit to what industrialized construction can deliver in a vertically integrated approach.

      And the idea of a platform is that, actually, we would create different suppliers that would produce locally, parts, assembly, subassemblies that would come together to create a building. And that is a platform approach.

      And if we go to the next slide, this approach has been developed over time by many researchers here. Make a call out to Daniel Hall at ETH and SCIFI and trying to understand how this fits into an industrialized construction context. And you can see that product platform is one way forward to try to organize your supply chain. And a lot of business model analysis and supply chain analysis was put forward by the UK Research program called Transforming Construction, and they came up with a little video to try to explain in simpler words what the platform might look like in construction.

      [VIDEO PLAYBACK]

      - Platforms underpin many of the world's most valuable firms. Google and Apple have technology platforms, for example, and manufacturers, like Tesla, use product platforms. But what are platforms, and what have they got to do with construction?

      There are different types of platforms, but all of them have three things in common. First, a set of core assets that doesn't change a lot. Think of the chassis of a car. Second, a set of peripheral components that can be combined with the chassis to create different variations of the same car. Third, a stable interface that enables the components to connect.

      A platform can be digital or physical or both and is a way for companies to offer a variety of products and services, while still benefiting from economies of scale. At Transforming Construction Network Plus, we found that product platforms can be useful for the construction industry. Already common in manufacturing, product platforms are helpful in construction because they produce physical objects.

      Think how much more efficient things could be if you could customize buildings with different cladding and roofing, the peripherals; using a standardized connector, the interface; to attach them to an appropriate structural frame, the core. By standardizing the interface, product platforms enable companies to create new product offerings for new markets without disrupting core production.

      So how do companies develop a new product platform? There are two main approaches, top down or bottom up. A top-down process starts with customer requirements and develops a family of products to create a modular product platform. A bottom-up process, on the other hand, takes an existing product and deconstructs it into its separate components before recombining them into a product platform.

      Adopting a platform model offers huge long-term benefits for construction, enabling companies to create variety, respond to market demand, reduce development time, and improve the way they learn over time. But it is challenging. It requires rethinking the way companies engage with their suppliers, clients, and the market, and that requires rethinking their business model.

      To find out more about developing a platform, download a copy of our digest, Platform thinking for construction. Transforming Construction Network Plus, transforming the way buildings are designed, built, and managed.

      [END PLAYBACK]

      ALAIN WAHA: So there you are. You're now world experts on platform and how they apply to construction. And with that knowledge, what happened about four years ago is that the government in the UK analyzed, with the help of its advisor, Bryden Wood, in this case, on how could we procure and create product platform for Demings. And the hypothesis was, we can serve the British government's procured assets from the Ministry of Justice through the Ministry of Education that buy schools, through the army that buys training facilities, through this product platform, and we should attempt to make this become a reality.

      And I'll hand over now to Andy to take over the story from here.

      ANDY WATTS: So following that work that was done with the government, that really provided the inception of the Construction Innovation Hub, which is a UK government and Innovate UK-funded research consortium within the United Kingdom. The CIH covers a range of different topics, including manufacturing and products, through the standards of compliance information management and security as part of digital endeavors there, but also, looking at how various outcomes from the Construction Innovation Hub can really start to further transform the UK construction industry.

      And so we were part of a program within the Construction Innovation Hub that brought together a real cross-section to the UK industry. That covered three core bodies of the Center for Digital Built Britain, Manufacturing Technology Center, and BRE, or Building Research England. But it also really did something that a lot of these research consortia don't necessarily do, which is really embrace industry partners en masse.

      So what we ended up having is a real cross-section through the industry with industry partners right through the entire supply chain from design and engineering through to tier 1 contractors and including suppliers and manufacturers as well. But also, a key part is that we also had a client in mind for this as part of the Construction Innovation Hub, which is we were give them mandates to define an outcome that could be used for social infrastructure moving forward across six government departments, including transport, education, health care, justice, defense, and housing.

      And so the Construction Innovation Hub covered a wide range of different areas of which ourselves at Grimshaw and Buro Happold were a small part of. And there were four integrated projects within the CIH. There was the value toolkit work, which you may have seen the work from [INAUDIBLE] more recently really promoting that. The platform program does work around information management in concert with CTBB, and then there was an international program of engagement as well.

      And it's that second point there at the platform program, which we are talking about today, and Alain is going to go into that in more detail now.

      ALAIN WAHA: So bringing this all alive and before jumping into the digital part that's coming in a moment, so the idea here is all these clients want to procure spaces, essentially, because they repeat. If you think about a hospital, it's just a number of spaces, some are teaching spaces, some are receptions, some are kitchens, some are corridors. There are some specific spaces to hospital, but many of them repeat, and you'll find them in schools. And you'll find them in research facilities or defense facilities.

      And so rethinking what the overall demand for these spaces might be was our next step. So if we go to the next slide, a huge piece of work was undertaken to understand of the 35 billion pounds that the UK government was going to procure in the following five years, so 7 billion a year, how much of it was actually spaces that fundamentally repeat and could be thought of as subassemblies of buildings and themselves being created from paths that were going to come together.

      And we found there we're about 13 billion worth of assets that were going to be procured and that could be delivered through a product platform. But what was really interesting is we found quite a few other things, and going back to one slide just to signal that, we talk about standardization and say, well, we've seen industrialized construction. And it's always an oversimplification. And you say, yes, but actually, there's a lot of diversity and complexity that's unnecessary.

      And so this 104 number is actually the number of different ways that the UK government described a space that you and I know as a toilet. Now, I wouldn't disagree that you want to have diversity, but is it really necessary to have 104 different way to specify a toilet? Maybe 20 is enough. And so this unnecessary complexity is what creates complexity in an environment that if we could reduce that unnecessary complexity, we would be able to start creating more stable supply chain.

      And really interesting that we found that 50% of the spaces have nothing to do specifically to what the client is, a hospital or a school. And on top of that, many of those spaces that the government procure are also spaces that the private sector wants to procure. So if you unlock the supply chain or platform with the government procure spaces, you also do it for the rest of the industry. Move on to the next slide.

      And so you want to put yourself into a situation where what we're doing here is understand what is the overall demand for space, part subassemblies, then create a platform system that allows you to create these spaces by defining them in abstract way, partition how many linear meter partition, how many linear meter of corridor, circulation spaces, classrooms do you need to buy. And then define a product platform that allows you to configure all these subassemblies and deliver the assets that you want, and then they would be deployed by a very diverse supply chain, but in a repeatable way.

      And that's what is shown in the blue. What's the demand? The orange, creating the product platform, and then the green, each time configuring those subassemblies into the actual asset building that you are delivering.

      Now, if you move to the next slide, making this non-trivial and using computer and computational thinking to actually manage those interfaces and allow you to configure interesting buildings. Because we can all do it with simple trivial cases, but that's not of interest. What we want to do is great schools, not boxy schools. What we want to do is great student accommodation, not just boxy one.

      And so how can we let that diversity that we need through technology? And that becomes the exam question for Andy.

      ANDY WATTS: So then as part of our work with the Construction Innovation Hub and as Alain alluded to, we were set the brief of we need a configurator. That was what we were told we needed to do, and we thought, OK, let's take a step back from just being told we need a configurator for a kit of parts and think actually how can we make this a real kind of useful tool, not just as a one off within the CIH, but as something that can be used across industry, hopefully.

      So first of all, we take a step back and think, OK, what our configurators? So they're quite a buzzword in the industry at the moment. People are getting excited. People are wanting to configurator for various different purposes. But essentially, when it comes down to it, a configurator is a method of providing the user with the ability to manipulate a design within a preset range of parameters and constraints, all within a usable interface that essentially, removes a lot of the overwhelming potential of the computation in the back end.

      And it's something that we started to see within the industry as well. This is a real trend that's permeating the AEC industry. And what we started to notice, anybody who's been aware of what's going on beyond their own practices is there's a rich ecosystem of configurators starting to be produced and publicized and made available.

      But in doing so, it starts to really replicate the same challenge that we have within the industry as a whole, this idea that we are a very fragmented and siloed industry, and we see this with these configurations as well. They don't speak to each other, they don't share information, and there is a lot of potential there for reinvention of wheels going on.

      And so this forms the basis of our task, our exam question, so to speak. How can we look at providing an environmental framework within which all of these kind of flourish and speak to one another and we as an industry can, hopefully, move forward in this particular realm? And so to summarize that with configurators, wandering cannot rule them all. So the power has come out recently, so that had to go in there.

      The construction industry is naturally distributed and fragmented. There's a wide range of relationships to manage there. And that, essentially, then takes us on to the second point. Now, there are a lot of existing varieties and versions of configurators out there. They might be web based, they may be bespoke plug-ins, or they may be platforms in their own right.

      Now, how do we make them start to speak to one another and essentially, remove a lot of the entropy that we can see in these efforts? And so with that said, we came up with the idea of this common configurator framework. So this was undertaken as part of the Construction Innovation Hub platform design program, and it was a joint effort between technology teams at Grimshaw and Buro Happold. We were very lucky at Grimshaw to be working with Dr. Al Fisher, who's the head of computational development and Alessio Lombardi, and then our own team of Georgios, Justyna, Natalia, and myself.

      And so in looking across the industry and also performing user requirements capture within the program, we came up with a set of principles of how we would need a common and configurator framework to function. The real idea here was that we needed to allow communication between and the combination of multiple, discrete configurations. And from that, we were able to then extract four key principles.

      One is that we need interoperability between configurators, we need the composability of exchange data, and we need the extensibility of an object schema, or of those objects and their functionality. Now, those three are pretty standard. Anybody who's interfaced with interoperability and these solutions out there will be aware of those.

      The key one for us, as part of this idea for configurators and this idea that there is a design space within which you configure is the need to provide design verification through common object specification. So that was the point that we were really adding in there to make this contextualized towards configuration.

      So looking at the basics of what we understand the configurator to be, it is fundamentally based on a standard input process, output, diagram or flow, but with two key additions, which really start to differentiate it from any computational task into something that is more open to an end user, and that is the addition of a user interface to which a user can start to manipulate inputs and the computation and a graphical view to provide some feedback on what those different decisions are resulting in.

      And so as part of our exercise, we came up with a-- let's say a glossary, so to speak, of the constituent parts of a common configurator framework. There's our objects, or our parts. There's our object specifications, which can be the set of rules that govern those parts. There's the common object schema. So this is the language that all of this is based on, and that can be, I wouldn't say anything, but it can be a predefined schema that everybody has agreed to in preparation for this.

      And it's a key thing to note that as part of this exercise with the CIH, we are not defining the exact schema itself, but more outlining the schema should be agreed, and we've seen examples of this in the industry in the past, things like speckle, things like the BOM from Buro Happold, and other such initiatives going on.

      Moving on, we've then got common repositories, which is where these objects and specifications live, we have our users, and then we have the configurator themselves. And so looking at that as a diagram of bringing all of this together, as you can see, we've got our schema on the left-hand side. From that, we're able to build out our repositories of objects and specifications from which we actually pull the data themselves. We combine that into a configurator with the user being able to then interact with it.

      So then the configurator itself then starts to push out objects and specifications itself. And from that, you can start to understand, OK, then those can, obviously, be used as input into a future configurator as well. So this is really what we were trying to push for is that ability to have a network of configurators. So rather than one configurator being able to do everything, there's a real need that modularize the process as we move forward.

      And so as part of our work, we developed a framework that really allowed that transfer of information, as structured data represented parts of a building, but also, it means to verify those parts to ensure that they meet set standards. Now, those standards may be coming from the project brief, from contextual factors, or from the manufacturers and construction partners as well, so parts of the building and those encoded rules and specifications.

      Now, the top part is something that is really known within the industry at the moment. We are used to referring to building elements as object. The idea of object-oriented design as fundamental to BIM, as we all know, and so this becomes our kit of parts.

      The second part around object specifications, or let's say architect rules is providing encoded rules against each of those objects. This is how we look at the question about how we verify and validate our objects against predefined conditions. And so in summary, those specifications come down to filter and check conditions on our database of parts.

      So those parts of the building, we then looked at how we can strategically organize those into a hierarchical system, so going from a building level, down to subassemblies, down to Interfaces, and then down to components. And each of those will have their own rules, so you can imagine at a building level, this is where the project brief comes into play, whereas at the component level, this might come down to material or manufacturing tolerances and capabilities.

      So then those design requirements-- and the coordinator set of specifications for anybody who's aware of systems thinking, this can then be applied into an iterative process or this B diagram, which allows us to apply the specifications and then perform verification and validation against them, following that same hierarchical approach that we applied to our kit of parts.

      And so when we look at bringing this together into a process, it really allows for a decoupling of the rules and parts. On the left-hand side, we have our kit of rules, our object specifications. On the right, we have our parts. Based on what we've already said about that not being one configuration that fits all, we can assume that from this, at least two different types of configuration going on, there's design configurations, and there's part configurations.

      On the left, we have our design team defining the design of a project of a building as they see fit to meet their brief and any other constraints. And then on the right, our manufacturers and suppliers can come in, and they can start to configure their parts to meet that brief. And obviously, there's a meeting of the minds here, but in broad terms, that is how we can see that decoupling.

      So then moving on from this, you start to see that actually, there is, again, that hierarchy of design configurator just as there is that hierarchy of part configurators as well. And so in an ideal world, you would end up with this kind of approach, looking all neat and tidy. We go down from the building level M specification, you're defining that need, defining what the building is, to sub assembly interfaces and components, and you would then verify and validate that going the same way.

      This is the dream, as you can see then, there's also cutoff points at which we can look for that configure-to-order and engineer-to-order approaches as well. As we all know within the AC industry, the reality is much more complicated and bespoke than that. So we start to see a lot of recursion going on, some iterative processes.

      And so this diagram we've got on screen is just a very small sample that we started to put together around a reference implementation based on some of the thinking that was going on elsewhere within the platform design program. But it's really there to demonstrate that we can, in fact, go ahead and modularized the configuration process rather than trying to build out one tool that can do everything.

      And so from this, a set of prototypical configurations with that developed by the teams at Buro Happold and Grimshaw, along with this, a set of accompanying reports. These have been made publicly available, and there is a repository on GitHub of some of the work that was done in the back end to start to build out some of this framework, but it is all very prototypical at this point.

      With that, that's the end of the work that we did on CIH, and I'll now pass over to Alain for the ROI.

      ALAIN WAHA: Right. I think there was a lot to take in there. In fact, that was the central part of this industry talk, so I would encourage everyone to reach out back to Andy and Fisher. And this was a research program in the UK, so it's publicly funded, and it's publicly available. Just wanting to celebrate this amazing work.

      And I'm glad that at the end, it all looks very graphical and very simple, and we come back to, ah, yes, now, I can start seeing buildings again. But I think it is built on something that is very fundamentally different, and maybe that's why we have this section on ROI and then the follow-on section.

      So what have we unlocked? What's the hypothesis here? And the idea here is that with this framework, you have composable configurators. So it's highly extensible, and we've gone way beyond saying, well, it's interoperability I'm sharing information.

      No, you're sharing rules, and you are making things react to each other in a controlled way, and you are, for the first time, invited to say, look, you will not do the master configurator. I think, Andy, you called it the God particle of configurators. It just does not exist.

      And so we now can get back to work and say, look, this is a composability. And so in the same way as we were talking about creating product platforms that compose and we can compose to create an asset, here you are able to compose-- I think that's how you present it, Andy is that we also do that with the digital toolchain that needs to be configured to deliver an asset, and I think that's hugely exciting.

      And if we go to the next slide, it says, OK, so in summary, what we're saying is we've got composable platforms, so digital platform. We've got composable platform in terms of systems thinking and product platform. And this unlocks new platform business models, which is also in itself highly exciting.

      And if we move to the next slide, it's often being asked, what are the possible future scenario for a digitally transformed industry? And I want to shout out the excellent work done in Finland on this topic. And they understood that there are possible scenarios where either the industry is more concentrated or more distributed.

      And it's more captured by closed system or captured by open interoperable composable system. And what we are proposing here is this scenario C that they proposed, where the industry, because of its nature of being distributed geographically, but culturally as well and all the parties that are required to come together to make a project come to life are distributed, then internet of buildings scenario is the more probable one to happen.

      But for that internet of buildings market scenario to happen, you needed these composable configurations or rule or solvers, and that is what has been unlocked because with that approach, what we can start thinking is, indeed, industrialization of those subassemblies that repeats and can be produced in a predictable way and procured in a predictable way in a sustainable way means that we can start to envisage that, indeed, buildings are made in factories and assembled outside.

      ANDY WATTS: And so moving on from this, we wanted to talk about what is next for this work and how we are looking across the industry for involvement, for engagement, and essentially, like-minded partners to start thinking about how this can be pushed forward. The work that we did on the construction innovation hub, it was prototypical work, and we're now, in our respective practices. For Alain and myself, we're looking at how we can start to move forward with potential real-world examples and applications of this thinking.

      So we're doing work, potentially, with the NEOM IBA, with the School Infrastructure in New South Wales, and the work that Buro are doing with the IC tool kit at CREE. But also, in a slightly more academic sense, we are continuing conversations with collaborators at the construction innovation hub and other potential initiatives such as NEOM, about how we can start to really coalesce some thinking around these ideas.

      But something that's really given some impetus to this is the fact that the transforming infrastructure performance, the roadmap to 2030 was launched by the UK Government Infrastructure and Projects Authority. And in this, they said that one of their focus areas was addressing the need for social infrastructure using a platform approach.

      So you can see that already, the UK government is buying into this, but as part of that, they were very clear in defining their platform approach constitutes, I think I'm paraphrasing at this point, kit of parts, a kit of rules, and a configuration layer. So that's all the terminology that we're embracing as part of this work, but also, this fundamental to the work that we've taken, and we believe that this work, particularly around the common configuration framework, is going to be vital to actually enabling this as an industry-wide piece of work.

      And so with that said, we are looking for collaborators. We are looking for people to start to bounce ideas off and feed into this. So like-minded partners within the industry, within architecture engineering, and anywhere across the supply chain to work with us, bring some thinking to the table, and try and drive this forward. But likewise, we are also looking for those real-world examples to act as our case studies, our catalysts, further developments to actually really add to the proof of concept for some of the thinking that we're trying to drive forward.

      And then underpinning all of this because it is an incredibly digitally-enabled piece of work, we are looking for technology partners to help define and shape that ecosystem. We don't want it to be one silo. It can't just be one partner. We're looking to embrace as much of the industry as possible. So if any of you out there are interested in getting involved, please get in touch with either myself or Alain. We would love to hear from you.

      And with that said, thank you very much for taking the time to listen to Alain and myself. And yes, please reach out. Thank you.

      태그

      산업 분야
      주제
      ______
      icon-svg-close-thick

      쿠기 기본 설정

      오토데스크는 고객의 개인 정보와 최상의 경험을 중요시합니다. 오토데스크는 정보를 사용자화하고 응용프로그램을 만들기 위해 고객의 본 사이트 사용에 관한 데이터를 수집합니다.

      오토데스크에서 고객의 데이터를 수집하고 사용하도록 허용하시겠습니까?

      오토데스크에서 사용하는타사 서비스개인정보 처리방침 정책을 자세히 알아보십시오.

      반드시 필요 - 사이트가 제대로 작동하고 사용자에게 서비스를 원활하게 제공하기 위해 필수적임

      이 쿠키는 오토데스크에서 사용자 기본 설정 또는 로그인 정보를 저장하거나, 사용자 요청에 응답하거나, 장바구니의 품목을 처리하기 위해 필요합니다.

      사용자 경험 향상 – 사용자와 관련된 항목을 표시할 수 있게 해 줌

      이 쿠키는 오토데스크가 보다 향상된 기능을 제공하고 사용자에게 맞는 정보를 제공할 수 있게 해 줍니다. 사용자에게 맞는 정보 및 환경을 제공하기 위해 오토데스크 또는 서비스를 제공하는 협력업체에서 이 쿠키를 설정할 수 있습니다. 이 쿠키를 허용하지 않을 경우 이러한 서비스 중 일부 또는 전체를 이용하지 못하게 될 수 있습니다.

      광고 수신 설정 – 사용자에게 타겟팅된 광고를 제공할 수 있게 해 줌

      이 쿠키는 사용자와 관련성이 높은 광고를 표시하고 그 효과를 추적하기 위해 사용자 활동 및 관심 사항에 대한 데이터를 수집합니다. 이렇게 데이터를 수집함으로써 사용자의 관심 사항에 더 적합한 광고를 표시할 수 있습니다. 이 쿠키를 허용하지 않을 경우 관심 분야에 해당되지 않는 광고가 표시될 수 있습니다.

      icon-svg-close-thick

      타사 서비스

      각 범주에서 오토데스크가 사용하는 타사 서비스와 온라인에서 고객으로부터 수집하는 데이터를 사용하는 방식에 대해 자세히 알아보십시오.

      icon-svg-hide-thick

      icon-svg-show-thick

      반드시 필요 - 사이트가 제대로 작동하고 사용자에게 서비스를 원활하게 제공하기 위해 필수적임

      Qualtrics
      오토데스크는 고객에게 더욱 시의적절하며 관련 있는 이메일 컨텐츠를 제공하기 위해 Qualtrics를 이용합니다. 이를 위해, 고객의 온라인 행동 및 오토데스크에서 전송하는 이메일과의 상호 작용에 관한 데이터를 수집합니다. 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID, 이메일 확인율, 클릭한 링크 등이 포함될 수 있습니다. 오토데스크는 이 데이터를 다른 소스에서 수집된 데이터와 결합하여 고객의 판매 또는 고객 서비스 경험을 개선하며, 고급 분석 처리에 기초하여 보다 관련 있는 컨텐츠를 제공합니다. Qualtrics 개인정보취급방침
      Akamai mPulse
      오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Akamai mPulse를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Akamai mPulse 개인정보취급방침
      Digital River
      오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Digital River를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Digital River 개인정보취급방침
      Dynatrace
      오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Dynatrace를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Dynatrace 개인정보취급방침
      Khoros
      오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Khoros를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Khoros 개인정보취급방침
      Launch Darkly
      오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Launch Darkly를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Launch Darkly 개인정보취급방침
      New Relic
      오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 New Relic를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. New Relic 개인정보취급방침
      Salesforce Live Agent
      오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Salesforce Live Agent를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Salesforce Live Agent 개인정보취급방침
      Wistia
      오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Wistia를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Wistia 개인정보취급방침
      Tealium
      오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Tealium를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Upsellit
      오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Upsellit를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. CJ Affiliates
      오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 CJ Affiliates를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Commission Factory
      Typepad Stats
      오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Typepad Stats를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Typepad Stats 개인정보취급방침
      Geo Targetly
      Autodesk는 Geo Targetly를 사용하여 웹 사이트 방문자를 가장 적합한 웹 페이지로 안내하거나 위치를 기반으로 맞춤형 콘텐츠를 제공합니다. Geo Targetly는 웹 사이트 방문자의 IP 주소를 사용하여 방문자 장치의 대략적인 위치를 파악합니다. 이렇게 하면 방문자가 (대부분의 경우) 현지 언어로 된 콘텐츠를 볼 수 있습니다.Geo Targetly 개인정보취급방침
      SpeedCurve
      Autodesk에서는 SpeedCurve를 사용하여 웹 페이지 로드 시간과 이미지, 스크립트, 텍스트 등의 후속 요소 응답성을 측정하여 웹 사이트 환경의 성능을 모니터링하고 측정합니다. SpeedCurve 개인정보취급방침
      Qualified
      Qualified is the Autodesk Live Chat agent platform. This platform provides services to allow our customers to communicate in real-time with Autodesk support. We may collect unique ID for specific browser sessions during a chat. Qualified Privacy Policy

      icon-svg-hide-thick

      icon-svg-show-thick

      사용자 경험 향상 – 사용자와 관련된 항목을 표시할 수 있게 해 줌

      Google Optimize
      오토데스크는 사이트의 새 기능을 테스트하고 이러한 기능의 고객 경험을 사용자화하기 위해 Google Optimize을 이용합니다. 이를 위해, 고객이 사이트를 방문해 있는 동안 행동 데이터를 수집합니다. 이 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID, 오토데스크 ID 등이 포함될 수 있습니다. 고객은 기능 테스트를 바탕으로 여러 버전의 오토데스크 사이트를 경험하거나 방문자 특성을 바탕으로 개인화된 컨텐츠를 보게 될 수 있습니다. Google Optimize 개인정보취급방침
      ClickTale
      오토데스크는 고객이 사이트에서 겪을 수 있는 어려움을 더 잘 파악하기 위해 ClickTale을 이용합니다. 페이지의 모든 요소를 포함해 고객이 오토데스크 사이트와 상호 작용하는 방식을 이해하기 위해 세션 녹화를 사용합니다. 개인적으로 식별 가능한 정보는 가려지며 수집되지 않습니다. ClickTale 개인정보취급방침
      OneSignal
      오토데스크는 OneSignal가 지원하는 사이트에 디지털 광고를 배포하기 위해 OneSignal를 이용합니다. 광고는 OneSignal 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 OneSignal에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 OneSignal에 제공하는 데이터를 사용합니다. OneSignal 개인정보취급방침
      Optimizely
      오토데스크는 사이트의 새 기능을 테스트하고 이러한 기능의 고객 경험을 사용자화하기 위해 Optimizely을 이용합니다. 이를 위해, 고객이 사이트를 방문해 있는 동안 행동 데이터를 수집합니다. 이 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID, 오토데스크 ID 등이 포함될 수 있습니다. 고객은 기능 테스트를 바탕으로 여러 버전의 오토데스크 사이트를 경험하거나 방문자 특성을 바탕으로 개인화된 컨텐츠를 보게 될 수 있습니다. Optimizely 개인정보취급방침
      Amplitude
      오토데스크는 사이트의 새 기능을 테스트하고 이러한 기능의 고객 경험을 사용자화하기 위해 Amplitude을 이용합니다. 이를 위해, 고객이 사이트를 방문해 있는 동안 행동 데이터를 수집합니다. 이 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID, 오토데스크 ID 등이 포함될 수 있습니다. 고객은 기능 테스트를 바탕으로 여러 버전의 오토데스크 사이트를 경험하거나 방문자 특성을 바탕으로 개인화된 컨텐츠를 보게 될 수 있습니다. Amplitude 개인정보취급방침
      Snowplow
      오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Snowplow를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Snowplow 개인정보취급방침
      UserVoice
      오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 UserVoice를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. UserVoice 개인정보취급방침
      Clearbit
      Clearbit를 사용하면 실시간 데이터 보강 기능을 통해 고객에게 개인화되고 관련 있는 환경을 제공할 수 있습니다. Autodesk가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. Clearbit 개인정보취급방침
      YouTube
      YouTube는 사용자가 웹 사이트에 포함된 비디오를 보고 공유할 수 있도록 해주는 비디오 공유 플랫폼입니다. YouTube는 비디오 성능에 대한 시청 지표를 제공합니다. YouTube 개인정보보호 정책

      icon-svg-hide-thick

      icon-svg-show-thick

      광고 수신 설정 – 사용자에게 타겟팅된 광고를 제공할 수 있게 해 줌

      Adobe Analytics
      오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Adobe Analytics를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Adobe Analytics 개인정보취급방침
      Google Analytics (Web Analytics)
      오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Google Analytics (Web Analytics)를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. AdWords
      Marketo
      오토데스크는 고객에게 더욱 시의적절하며 관련 있는 이메일 컨텐츠를 제공하기 위해 Marketo를 이용합니다. 이를 위해, 고객의 온라인 행동 및 오토데스크에서 전송하는 이메일과의 상호 작용에 관한 데이터를 수집합니다. 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID, 이메일 확인율, 클릭한 링크 등이 포함될 수 있습니다. 오토데스크는 이 데이터를 다른 소스에서 수집된 데이터와 결합하여 고객의 판매 또는 고객 서비스 경험을 개선하며, 고급 분석 처리에 기초하여 보다 관련 있는 컨텐츠를 제공합니다. Marketo 개인정보취급방침
      Doubleclick
      오토데스크는 Doubleclick가 지원하는 사이트에 디지털 광고를 배포하기 위해 Doubleclick를 이용합니다. 광고는 Doubleclick 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Doubleclick에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Doubleclick에 제공하는 데이터를 사용합니다. Doubleclick 개인정보취급방침
      HubSpot
      오토데스크는 고객에게 더욱 시의적절하며 관련 있는 이메일 컨텐츠를 제공하기 위해 HubSpot을 이용합니다. 이를 위해, 고객의 온라인 행동 및 오토데스크에서 전송하는 이메일과의 상호 작용에 관한 데이터를 수집합니다. 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID, 이메일 확인율, 클릭한 링크 등이 포함될 수 있습니다. HubSpot 개인정보취급방침
      Twitter
      오토데스크는 Twitter가 지원하는 사이트에 디지털 광고를 배포하기 위해 Twitter를 이용합니다. 광고는 Twitter 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Twitter에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Twitter에 제공하는 데이터를 사용합니다. Twitter 개인정보취급방침
      Facebook
      오토데스크는 Facebook가 지원하는 사이트에 디지털 광고를 배포하기 위해 Facebook를 이용합니다. 광고는 Facebook 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Facebook에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Facebook에 제공하는 데이터를 사용합니다. Facebook 개인정보취급방침
      LinkedIn
      오토데스크는 LinkedIn가 지원하는 사이트에 디지털 광고를 배포하기 위해 LinkedIn를 이용합니다. 광고는 LinkedIn 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 LinkedIn에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 LinkedIn에 제공하는 데이터를 사용합니다. LinkedIn 개인정보취급방침
      Yahoo! Japan
      오토데스크는 Yahoo! Japan가 지원하는 사이트에 디지털 광고를 배포하기 위해 Yahoo! Japan를 이용합니다. 광고는 Yahoo! Japan 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Yahoo! Japan에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Yahoo! Japan에 제공하는 데이터를 사용합니다. Yahoo! Japan 개인정보취급방침
      Naver
      오토데스크는 Naver가 지원하는 사이트에 디지털 광고를 배포하기 위해 Naver를 이용합니다. 광고는 Naver 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Naver에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Naver에 제공하는 데이터를 사용합니다. Naver 개인정보취급방침
      Quantcast
      오토데스크는 Quantcast가 지원하는 사이트에 디지털 광고를 배포하기 위해 Quantcast를 이용합니다. 광고는 Quantcast 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Quantcast에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Quantcast에 제공하는 데이터를 사용합니다. Quantcast 개인정보취급방침
      Call Tracking
      오토데스크는 캠페인을 위해 사용자화된 전화번호를 제공하기 위하여 Call Tracking을 이용합니다. 그렇게 하면 고객이 오토데스크 담당자에게 더욱 빠르게 액세스할 수 있으며, 오토데스크의 성과를 더욱 정확하게 평가하는 데 도움이 됩니다. 제공된 전화번호를 기준으로 사이트에서 고객 행동에 관한 데이터를 수집할 수도 있습니다. Call Tracking 개인정보취급방침
      Wunderkind
      오토데스크는 Wunderkind가 지원하는 사이트에 디지털 광고를 배포하기 위해 Wunderkind를 이용합니다. 광고는 Wunderkind 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Wunderkind에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Wunderkind에 제공하는 데이터를 사용합니다. Wunderkind 개인정보취급방침
      ADC Media
      오토데스크는 ADC Media가 지원하는 사이트에 디지털 광고를 배포하기 위해 ADC Media를 이용합니다. 광고는 ADC Media 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 ADC Media에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 ADC Media에 제공하는 데이터를 사용합니다. ADC Media 개인정보취급방침
      AgrantSEM
      오토데스크는 AgrantSEM가 지원하는 사이트에 디지털 광고를 배포하기 위해 AgrantSEM를 이용합니다. 광고는 AgrantSEM 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 AgrantSEM에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 AgrantSEM에 제공하는 데이터를 사용합니다. AgrantSEM 개인정보취급방침
      Bidtellect
      오토데스크는 Bidtellect가 지원하는 사이트에 디지털 광고를 배포하기 위해 Bidtellect를 이용합니다. 광고는 Bidtellect 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Bidtellect에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Bidtellect에 제공하는 데이터를 사용합니다. Bidtellect 개인정보취급방침
      Bing
      오토데스크는 Bing가 지원하는 사이트에 디지털 광고를 배포하기 위해 Bing를 이용합니다. 광고는 Bing 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Bing에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Bing에 제공하는 데이터를 사용합니다. Bing 개인정보취급방침
      G2Crowd
      오토데스크는 G2Crowd가 지원하는 사이트에 디지털 광고를 배포하기 위해 G2Crowd를 이용합니다. 광고는 G2Crowd 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 G2Crowd에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 G2Crowd에 제공하는 데이터를 사용합니다. G2Crowd 개인정보취급방침
      NMPI Display
      오토데스크는 NMPI Display가 지원하는 사이트에 디지털 광고를 배포하기 위해 NMPI Display를 이용합니다. 광고는 NMPI Display 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 NMPI Display에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 NMPI Display에 제공하는 데이터를 사용합니다. NMPI Display 개인정보취급방침
      VK
      오토데스크는 VK가 지원하는 사이트에 디지털 광고를 배포하기 위해 VK를 이용합니다. 광고는 VK 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 VK에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 VK에 제공하는 데이터를 사용합니다. VK 개인정보취급방침
      Adobe Target
      오토데스크는 사이트의 새 기능을 테스트하고 이러한 기능의 고객 경험을 사용자화하기 위해 Adobe Target을 이용합니다. 이를 위해, 고객이 사이트를 방문해 있는 동안 행동 데이터를 수집합니다. 이 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID, 오토데스크 ID 등이 포함될 수 있습니다. 고객은 기능 테스트를 바탕으로 여러 버전의 오토데스크 사이트를 경험하거나 방문자 특성을 바탕으로 개인화된 컨텐츠를 보게 될 수 있습니다. Adobe Target 개인정보취급방침
      Google Analytics (Advertising)
      오토데스크는 Google Analytics (Advertising)가 지원하는 사이트에 디지털 광고를 배포하기 위해 Google Analytics (Advertising)를 이용합니다. 광고는 Google Analytics (Advertising) 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Google Analytics (Advertising)에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Google Analytics (Advertising)에 제공하는 데이터를 사용합니다. Google Analytics (Advertising) 개인정보취급방침
      Trendkite
      오토데스크는 Trendkite가 지원하는 사이트에 디지털 광고를 배포하기 위해 Trendkite를 이용합니다. 광고는 Trendkite 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Trendkite에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Trendkite에 제공하는 데이터를 사용합니다. Trendkite 개인정보취급방침
      Hotjar
      오토데스크는 Hotjar가 지원하는 사이트에 디지털 광고를 배포하기 위해 Hotjar를 이용합니다. 광고는 Hotjar 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Hotjar에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Hotjar에 제공하는 데이터를 사용합니다. Hotjar 개인정보취급방침
      6 Sense
      오토데스크는 6 Sense가 지원하는 사이트에 디지털 광고를 배포하기 위해 6 Sense를 이용합니다. 광고는 6 Sense 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 6 Sense에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 6 Sense에 제공하는 데이터를 사용합니다. 6 Sense 개인정보취급방침
      Terminus
      오토데스크는 Terminus가 지원하는 사이트에 디지털 광고를 배포하기 위해 Terminus를 이용합니다. 광고는 Terminus 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Terminus에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Terminus에 제공하는 데이터를 사용합니다. Terminus 개인정보취급방침
      StackAdapt
      오토데스크는 StackAdapt가 지원하는 사이트에 디지털 광고를 배포하기 위해 StackAdapt를 이용합니다. 광고는 StackAdapt 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 StackAdapt에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 StackAdapt에 제공하는 데이터를 사용합니다. StackAdapt 개인정보취급방침
      The Trade Desk
      오토데스크는 The Trade Desk가 지원하는 사이트에 디지털 광고를 배포하기 위해 The Trade Desk를 이용합니다. 광고는 The Trade Desk 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 The Trade Desk에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 The Trade Desk에 제공하는 데이터를 사용합니다. The Trade Desk 개인정보취급방침
      RollWorks
      We use RollWorks to deploy digital advertising on sites supported by RollWorks. Ads are based on both RollWorks data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that RollWorks has collected from you. We use the data that we provide to RollWorks to better customize your digital advertising experience and present you with more relevant ads. RollWorks Privacy Policy

      정말 더 적은 온라인 경험을 원하십니까?

      오토데스크는 고객 여러분에게 좋은 경험을 드리고 싶습니다. 이전 화면의 범주에 대해 "예"를 선택하셨다면 오토데스크는 고객을 위해 고객 경험을 사용자화하고 향상된 응용프로그램을 제작하기 위해 귀하의 데이터를 수집하고 사용합니다. 언제든지 개인정보 처리방침을 방문해 설정을 변경할 수 있습니다.

      고객의 경험. 고객의 선택.

      오토데스크는 고객의 개인 정보 보호를 중요시합니다. 오토데스크에서 수집하는 정보는 오토데스크 제품 사용 방법, 고객이 관심을 가질 만한 정보, 오토데스크에서 더욱 뜻깊은 경험을 제공하기 위한 개선 사항을 이해하는 데 도움이 됩니다.

      오토데스크에서 고객님께 적합한 경험을 제공해 드리기 위해 고객님의 데이터를 수집하고 사용하도록 허용하시겠습니까?

      선택할 수 있는 옵션을 자세히 알아보려면 이 사이트의 개인 정보 설정을 관리해 사용자화된 경험으로 어떤 이점을 얻을 수 있는지 살펴보거나 오토데스크 개인정보 처리방침 정책을 확인해 보십시오.