AU Class
AU Class
class - AU

Addressing the Productivity Crisis in Construction

이 강의 공유하기

설명

The productivity crisis is well known, and numerous industry reports identify the issues and scale of the opportunity. Boosting productivity is the greatest chance the sector has to transform itself—it’s the one lever that would automatically help address sustainability, the skills gap, rising costs, and pressure on resources. This session will cover dramatic advances in business outcomes that are now being made by combining technologies. Algorithmic and computational design, industrialized construction, use of robotics, and on-site automation are being deployed together, already demonstrating how schedules can be halved using far fewer operatives, achieving higher quality and safety, with lower carbon. However, this has required new relationships and procurement strategies. As well as showing real-world examples, this session will also consider how roles, business models, incentives, and value propositions will need to adapt if the industry is to make the necessary change.

주요 학습

  • Learn about what productivity really means in construction, and why comparisons to, for example, manufacturing aren't always relevant.
  • See which approaches, digital tools, and automation technologies are having the greatest impact in transforming outcomes.
  • Learn about procurement approaches, risk management, and delivery models that are bringing clients closer to their supply chains.
  • Have a better understanding of how the future of construction will need to be shaped, and who the key players will need to be.

발표자

  • Jaimie Johnston MBE 님의 아바타
    Jaimie Johnston MBE
    Jaimie joined Bryden Wood – an integrated practice of architects, analysts, engineers, creative technologists and industrial designers – shortly after its formation in 1995. Jaimie leads the application of systems to the delivery and operation of high performing assets. This includes design for manufacture and assembly (DfMA) solutions and new data-led, digital workflows for government and private sector clients in the UK, US, Europe and Asia. Jaimie was the co-author of the benchmark strategy documents, ‘Delivery Platforms for Government Assets’, and ‘Platforms: Bridging the gap between construction + manufacturing’. These have been adopted as a foundation for the UK Government’s initiative to create a more productive, value-driven construction sector. Jaimie is the Design Lead for the Construction Innovation Hub, which was established to drive innovation and technological advances in the UK construction and infrastructure sectors. In June 2021 Jaimie was awarded an MBE for Services to Construction.
Video Player is loading.
Current Time 0:00
Duration 35:25
Loaded: 0.47%
Stream Type LIVE
Remaining Time 35:25
 
1x
  • Chapters
  • descriptions off, selected
  • en (Main), selected
Transcript

JAIMIE JOHNSTON: Hi, all. My name is Jamie Johnston. I'm a board director at Bryden Wood who are an integrated design consultancy. And I'm going to be talking about addressing the productivity crisis in construction. So I'm sure most people have probably seen this slide. It was published as part of one of the McKinsey reports a few years ago. And it shows how productivity has dramatically increased in almost every other sector apart from construction.

And quite rightly, construction gives itself a hard time about this. And it's definitely one of the things that, as an industry, we need to address. But there's something quite interesting in this graph. If you look at how they actually measure it, it's the value add per employee. So you take some raw material, you process it, you turn it into a product, and the cost difference defines the productivity.

So certain sectors have had a massive leg up because traditionally, things like oil and gas or pharmaceuticals couldn't help but be highly productive. They took relatively low cost feedstock, processed it, turned into things that are much more expensive. And so they've traditionally had a massive leg up in terms of productivity. So we don't quite have that benefit.

So whilst there is definitely enormous benefit in being more productive and McKinsey in one of their other reports said there's a potentially 5 to 10 times boost available if we could become more like manufacturing, there's certain things that mean we can't simply copy manufacturing. And construction will probably never look like manufacturing. So I'm going to explore some of the blockers and what are some of the things that we've been doing, certainly in the UK, and increasingly, North America now, to try and shift into this much more manufacturing style production system as McKinsey call it.

So the first or obvious question, why aren't we more like manufacturing? So industry has been talking about this for decades. There are definitely some blockers that we need to address at first. So the key one is repeatability.

So I'm sure everyone knows, every construction project typically is a prototype. So we form a new design team. They develop a design from first principles. We deliver a project. If there's any learning, it doesn't typically get disseminated because that team gets disbanded and move on to another project.

The first thing that automotive did to really get the hang of this was get the hang of repeatability. So prior to Henry Ford and the Model-T Ford, every car was a handmade, luxury, bespoke item, much like construction. The key thing that Ford did was say, well, if we made them all the same, suddenly productivity gets much higher because repeatability of processes, of components, of the whole system is what's going to start to unleash this.

The first thing automotive did was get the hang of repeatability. That's going to be absolutely crucial for us. This is a mental picture that lots of people have of the future of construction. So I think people tend to imagine we'll replicate manufacturing. We'll have six-axis robots making components. I'm not sure that's ever going to be quite true.

So there's an interesting thing, I think, in manufacturing that typically the process is bigger than the products. If you're making a phone or a car or something, you can have a process which is bigger than the component you're making. Buildings aren't like. That they're typically much bigger scale.

We're not going to have 200-story high, six-axis robots making buildings. So there's definitely a place for automation, but it's probably not as much in the factory space as certain people think. The obvious exception to that big in the process or big in the product is aerospace where a Boeing 777 is the size of a building, but it costs about $200 million.

So the other blocker is cost density. So buildings are mostly air and commodity materials. If you had a cubic meter of iPhones, it would be worth about $14 million. A cubic meter of concrete is about $150. There's about 100,000 times more cost density in an iPhone than concrete.

And that's quite an extreme example. But again, it tells you something about what we should be doing. So trying to move everything into a factory, if you take a very low-cost material, handle it a bunch of times in the factory, and bring it to site, you've actually massively increase the cost without necessarily increasing the value to the end user. So these sort of combinations of trying to be more repeatable, working out what to place in factories and what not to put in factories, and how to get automation properly on a construction site to manage these things-- that's where we think this is going to head. And that's why probably construction never quite looks like manufacturing.

So the approach that's been taken, particularly in the UK and particularly driven by central government is to stop thinking about individual programs or projects and start thinking much more broadly. So I talked about that repeatability point earlier-- the fact that every sector focuses on why it's special, why it's different, that's a huge blocker. What we started to do here was say, well, if you look for commonality across sectors, started to identify common kits of parts, that's how you might start to address some of these things and how you might start to make this shift.

Probably the best example of an existing platform is IKEA. So everyone knows when you go to IKEA, the interfaces are the same. The process is always the same. The book's always the same. You only ever need a hex key and a screwdriver.

So IKEA has taken all furniture, it's boiled it down into a very small number of repeatable components and processes, and it means that whatever you're making, whether it's a bed or a chest of drawers or a bookshelf or a kitchen cupboards, you're always using the same components, the same process, the same tools. And thus, that's transformed the furniture industry from something that was quite bespoke, quite handmade, quite trade-intensive like construction, suddenly, they completely deskilled it and almost anyone can make furniture now.

So the platform thinking was, what does that look like for construction? Could we get down to small number of components and processes and start to massively repeat them? So this is the terminology the UK government used. I did a talk on this at AU last year. I'll put a load of links in the class handout that have all the previous documents that we've spoken about.

But the key principle was this idea of looking for commonality. So to give you an example, lots of buildings have about an 8-meter span. That's because, at the height of the person, you can get natural light about 8 meters into a building. And that's why schools and healthcare wards and apartment buildings have quite common structural spans. It's nothing to do with sector. It's everything to do with people.

So the thinking started to say, well, if you could identify more of those repeatable features, it would reveal a kit of parts that would reveal the things that you could start to do across sectors. And suddenly, you get into the sorts of numbers that manufacturing likes. That's how you start to make this big shift into a much more manufacturing-like industry. If you had that, you'd then have a library of digital components that could be configured by design teams on the right-hand side.

If you had the rule for those components, you could probably automate that. So on the right-hand side, you start to get into autoconfiguration. You start to get into higher productivity in the design phase without necessarily relinquishing any kind of site specificity or quality of design. On the left-hand side of this diagram, you then have your physical components, which could be manufactured by a broad diverse supply chain, assembled by teams of people.

So it's not mechanics or engineers who make cars anymore. It's people who have been trained to assemble components. Again, you start to deploy automation, and this is how you start to get a more productive process through the design, manufacture, and assembly process, again, without reducing the quality of the design while still getting quite site-specific assets. So we've been developing a number of these platforms now-- the numbers we use just to describe the kind of spanning characteristics.

So platform naught, which is our low-cost, rapid accommodation. Platform 1 is cellular accommodation for things like cells for the Ministry of Justice here. It's for single-living accommodation for the army, student accommodation. Platform 2 is our mid-span, up to 8-meter platform that we've used for education, healthcare, residential. Platform 3 I'm going to show you an example of is the next scale up. It does a 9-by-9-meter grid.

Platform 4 is for much bigger span-- sheds for distribution warehouses, those sorts of things. But one of the key things for us is that we use the same components and the same processes across a whole range of these. So I talked earlier about IKEA using the same components for beds and chests of drawers and wardrobes. We use the same components for schools and healthcare facilities in offices.

What it means is as soon as we've learnt something in one sector, we can almost instantly deploy it in other sectors, which means all of these sectors are moving much, much quicker. All of the learning from one project gets built back into that digital kit of parts, physical kit of parts, and improved upon for the next project. So this is how we get into that continuous improvement cycle that manufacturing's been so good at.

So one of the things that's allowed manufacturing to keep getting better and better is the accumulation of loads of incremental gains. So every component gets slightly better. Every assembly process gets slightly better. And over decades, that adds up to enormous improvements in productivity. So I mentioned that repeatability thing earlier. This is why we've never been able to get into that continuous improvement because construction has typically constant reinvention.

So by having a more stable kit of parts, a more repeatable set of assembly processes, this is how we start to really over time improve these. And this is how we start to move learning between sectors very quickly. And this is potentially how we start to shift the entire industry.

So I'm going to show you what this looks like in practice. Again, I've spoke a little bit about this project last year. So this is an update. The project is nearly complete now.

It's an office block, commercial office, that we've done for a client called Landsec. They're the biggest private developer in the UK. This building was actually designed traditionally, initially, got planning consent, and then we retrofitted a platform kit of parts to this building. So you can see here, it's very, very site-specific.

So the quality of the design is very responsive to its context. The site is actually between Tate Modern and The Shard if you know London. It's opposite St Paul's Cathedral on the south of the river. It's a very high-profile site, lots of very high-profile neighbors and stakeholders. So we couldn't have a design which was not high quality on this site.

So I think that's a sort of proof point for platforms that we've, again, not compromised the quality of design, but we've used a kit of parts that we've developed in other sectors, applied it to this building, and I'll show you some of the metrics we're getting out of it. So we broadly focused on superstructure, facade, mechanical electrical systems, and fit out.

You'll see for us, we've got superstructure in the middle of this diagram not because it's the biggest cost element, by any means, but it's the enabler of these other things. So you can already buy perfect millimeter perfect facade systems. You can already buy prefabricated mechanical electrical systems.

What we were seeing is that the benefit of that prefabrication gets massively diluted if you bring a millimeter perfect thing to site and you have to interface it with a traditionally built superstructure, which can be plus or minus two, three inches in terms of location of columns and things. So what we were seeing was lots of these potentially very prefabricated systems were never achieving their full potential benefit because of the time taken to measure and fill in the gaps between the manufactured thing and the traditionally built thing.

So we said, if we can get the superstructure to be super quick, super accurate, then it's really believable that everything else kind of installs the kit of parts. So again, it's exactly what automotive does. So they take a single sheet of metal, it gets pressed in a huge stamp. It turns it into the car chassis, and that's then the structure and the setting out and the carrier frame for all these other components that then get assembled onto it.

So if you think about the superstructure as your car chassis, it's a carrier frame for all these other systems. That's where we put the most effort, and it enables all these other things that are already happening out in the industry. So this is obviously time lapse of the building going together. What you'll notice here is firstly, the site's incredibly constrained.

Central London site-- there's virtually no laydown space. And so having this prekitted kit of parts. Think of your IKEA wardrobe. When it turns up, it's in a box. You can take it straight into the house. You don't build it in the garden or the garage. You actually take your kit of parts to point of view. So logistically very controlled site. You can see the speed. Obviously, sped up, but you get a sense of how fast these components are coming together. And again, this is our first iteration of construction as manufacturing.

So to take you through those key components, the superstructure, the facade, the MEP, I'll show you how we assemble them and I'll show you some really interesting metrics that started to come out from this project. So the superstructure was actually 90% of it, 80% of it was using a kit of parts we originally developed for the Ministry of Justice.

So I talked earlier about this idea of transferring things between sectors. We developed a very lean kit of parts for Justice primarily for their mid-span buildings of their education buildings, their healthcare buildings, some of their offices, added one component to get these bigger spans. And we've already taken a thing which developed for the public sector, given it to the private sector who have now picked it up and refined the design and have moved it forward.

And the next thing we'll be doing is handing back all of the benefits from the Landsec project back into the public sector for the next iteration of public-sector buildings. So we took a kit of parts we'd previously developed. I mentioned earlier that digital library of the components. So because we had all of the components already modeled, in many instances, we didn't actually need to draw them.

So we were able to send our files directly to the supply chain. So this is a place where I think robotics has a part to play. It's not in the construction of entire assets, but it's probably in the fabrication of these highly repeatable components. So we literally sent our files to the supply chain. They were laser cut, laser welded, robotically welded, which means that they're submillimeter accurate. They're incredibly precise. And again, this is how we start to get this accuracy that's currently lacking in construction.

So then on site, this was our prototyping facility, but this is how we deliver the building. We were then looking to see whether we could take the construction process and, again, like IKEA, turn it into a very simple set of very repeatable tasks. So you'll see here very few people. We're measuring things in minutes. All of these assembly tasks are very, very straightforward.

They're all very repeatable because they're using laser cut components. They're are all super accurate. And this was looking to see whether we could install the entire superstructure from the floor below. So if we could build a superstructure without ever needing to work at height. So slip, trips, and falls are still one of the biggest health and safety risks. We thought if we could remove that and turn the whole process into something you do from the floor below, you get much safer working, much more productive working, and you can see here with a handful of people, a little bit of automation, not six-axis robots, these are pieces of equipment that are common in the distribution warehouse logistics industry.

We've just appropriated that technology. And it shows that you can potentially build a building half as quick with half the number of people. We also prototyped it. So you can see this was our prototyping center. So again, a thing that manufacturing does very well, it tests things, iterates things, refines them before it puts them into a line environment.

So by the time we arrived at the construction site, this process was well understood, the metrics were well understood. We knew how to put these components together very, very quickly. Some of the benefits that came out of that because of the repeatability of the individual components, we could put an awful lot of effort into optimizing each component and the system as a whole.

So one part of that was we took out an awful lot of materials. So there's 30% less embodied carbon in the building. Because of the prekitting, the logistics was very, very highly controlled, as you saw from that time lapse. And the overall impact was, for this project, we took out 30% of the carbon. It's the first commercial building in the UK to be certified by the UK Green Building Council as net zero in embodied and operational carbon.

And we're on track to get a five-star rating on the Neighbors UK scheme. So enormous sustainability benefits. And again, you imagine multiplying the scale of that benefit by the scale of the UK public sector. You can see how this approach could dramatically address some of our big climate crisis issues.

We then had a team led by Dr. Danny Murgia at the University of Cambridge. So we had a number of PhD students crawling all over this project. So they had access to the site eye. They had access to all the Gantt charts, the day records of what happened, people's time sheets. So they were able to break down what happened and start to really dig into what happened on site and what could have happened on site.

So normally, of course, on a construction project, there's so much noise it's very hard to actually see what's happening and definitely to tell what could have happened. The enormous benefit here was because we have this repeatable kit of parts and we have these repeatable processes, we can actually measure things quite accurately. And we could see in quite a lot of detail what was happening on different floors with the different activities and actually how the project was unfolding as it got built.

So of the two buildings, you can see here that's the visualization. Block A was the bigger building. We focused on that because it had the biggest chance of getting people into a flow of activity. So these are the average rates we got on this project. So the productivity, about 330 pounds an hour. Install was about half a square meter per operative hour in terms of the superstructure.

So we had a benchmark of typically how the project was performing, which was probably slightly better than traditional construction. Not surprising, particularly, given that this is the first project where some of these things have been brought to bear. So we're expecting a learning curve. We're expecting to at least do as well as traditional construction, but hopefully, show that if done consistently, this approach would have dramatic impact, which is what we found.

So looking at the individual levels of the building. Level three was one of the bigger levels. It was the second level using the proper platform kit of parts. So the initial learning curve has been achieved. We're starting to get consistency.

The floor plates actually get smaller as we go up the building, which is why the numbers drop. But level three gave you an insight into what was very, very definitely achievable with a bit of practice. The really interesting thing, it showed that had that level of productivity being maintained, you could potentially have built the building 40% quicker. So you could have got a potentially 40% increase in productivity not by going quicker, not by doing anything much better, just by consistently getting those rates.

So we know they're achievable because they did them on one of the floors. What it shows is that you need to get consistency. And suddenly, there's potentially massive impact just ready to get your hands on. So again, this is why we think the platform approach has got a potential long life because you can see here that just on the first project, we're getting these numbers. If we kept doing this and got better and rehearsed it more, these numbers would get much, much better.

And it also showed you that one of the key things that got in the way was variability. So you can see here in terms of putting up the steel, the best day they had, they put 12 pieces of steel up. But on seven days, they didn't put any up. So again, it shows you don't have to be quick, necessarily. If you were just consistent and kept on your average rate, actually the boat would go faster, the whole building process would go faster.

Found the same thing in the common floor, which is the down stand beams. Again, massive variability between 13 days where none went up and one day where 10 went up. If they'd just maintained at a average rate of five a day, you could have been more than twice as quick in terms of delivering these things. We get the same thing in the shuttering, which is the stuff we pour the concrete onto.

Again, best day, 18 pieces a day. Number of days where none happened. If you just maintained the average, you could have taken out 26% of the program. The other way that Cambridge visualized this data for us was in a thing called flow lines where they show installation of components and the gaps in between is where nothing happened.

So these are the days where either they were off doing other activities or they ran out of components or the logistics team hadn't kept up. But you can see for the primary steel, about a third of the time was inactive and for the common floor, about a quarter of the time. So again, normally, it's impossible to see these sorts of things on site. Suddenly, we've got a real insight into the measures that we can take to improve productivity aren't necessarily about going faster. It's just now about can we plan those activities better.

Now we know how long they take, can we ensure that the teams are geared up to do them? Can we plan the building around these install rates? And potentially, you get much, much better results.

And the other thing Cambridge did was they looked at the way the phasing on the building worked. So they said, actually, if you had rezoned the building into smaller zones with teams that cycled quicker, without doing anything quicker, you could have built the building potentially 43% quicker. So this range of numbers from 25% to 40% is definitely readily achievable if we'd known this ahead of time. And obviously, the benefit of platforms is now we do know this. You can plan the next projects around this.

MEP, we then, having installed the superstructure, it was designed that all the bays were the same. All of the fixing points for the MEP were already cast into the slab. And then we worked with the supply chain. And this time a company called NG Bailey. And said, if you knew that the superstructure was designed in such a way that all the bays were the same, that there was this massive rationality, what could you do about it or how would that improve your processes in the factory?

So they actually set up benchtops with the same adapter frame, they called it, on every bench. They could drop the MEP mechanical electrical systems onto those frames, stuck up a series of cassettes. These aren't volumetric cassettes. This is actually three, four, five, six cassettes with a little spacer.

And they set their entire factory process up around churning these things out. They put little wheels on them, and then they literally wheeled them out of their factory onto the truck, wheeled them onto the floor plate, and then on the right-hand side, you can see we had specially adapted forklift trucks that would pick up five or six or seven of these things at a time, lift them up. The fixing points are already there. So they staple them in, move on to the next one.

And literally, a single operative or a couple of operatives, again, a little bit of automation, not complex automation, not robotics, but an adaption of an existing piece of equipment, and suddenly, you're getting much, much higher levels of installation rates. So suddenly, they're moving much, much quicker. And it looks incredible. It looks like a machine inside.

So we're able to integrate the MEP and the superstructure very, very closely integrated whilst designing in all the maintainability, and the flexibility, and the ability to adapt things in the future. Because we have the fixing point grid, it means that we've already got latent fixing points for the next generation of MEP whenever they need to refurbishment. And because it was so closely integrated with the superstructure, it meant that the floor-to-floor heights in this building were quite low for very good floor-to-ceiling heights.

So that reduced the entire building volume, and therefore, the amount of air that we need to heat and treat, and therefore, the running cost, the operational costs, the operational carbon. So all of these things start to contribute to a leaner, more sustainable, more material-sensitive building. And you can see in the foreground here, that's a series of those cassettes ready to be installed.

When you walk around this building now, it feels incredibly well-organized. It feels very integrated. They're exposing the surfaces. And you can see here the impact of having that equipment.

So to start with, on the left-hand side of that graph, that's industry best practice using genie lifts to move these cassettes around. Once we designed and adapted the forklifts, you can see what happens to the install times. They plummeted from 150 minutes in some instances by at least a third some. Things came down by 90%. So you're suddenly into much, much more productive working-- one or two operatives doing large areas of MEP.

And normally, a lot of the package plant would be prefabricated. The risers would be prefabricated, maybe the main horizontal runs. But typically, with mechanical electrical systems, once you get away from those, you start to do things trade by trade. Because of that rationality, we're able to do these multi-trade cassettes, do most of that work in the factory.

And you can see here, Bailey reckoned that took out 30,000 hours of site labor. And that's work at height, and it's work in quite painful conditions, working overhead. So that's a dramatic improvement in the working conditions of the people on site who absolutely love this way of working.

The final key element for us was the facade. So as with the rest of the building, we designed the facade as a super rational kit of parts. It wasn't a special facade in some sense. We went out to the normal facade supply chain.

But because of the rationality of the design and because they could see that the superstructure would enable them to work better, they actually gave us a cost reduction. So they said as a facade manufacturer, 40% of your time on site is spent in measuring and shimming and bracketing and masticking and-- we talked about earlier-- filling the gaps between your millimeter perfect unitized system and the traditional piece of concrete that sits behind it. So they immediately gave us a cost reduction simply because they could see they wouldn't have to work around it.

On 9-by-9 meter bays, we were at plus or minus five millimeters on the superstructure. So that's a level of accuracy which is very common obviously in things like manufacturing. It's very uncommon in construction. But it enabled the facade supply chain to give us a fantastic deal simply because they knew the facade would fit. It would be much easier to install.

They actually got down to seven and a half minutes of panels. The original program showed seven panels in a shift. So that's about an hour a panel. And at peak, just before Christmas, they managed to do 90 in an hour and a half. So that's like the difference between someone changing a tire using a pump jack and taking 45 minutes and a Formula One team turning up and zipping these things on. So that when they did the 19 in an hour and a half, they then had to leave site because they ran out of panels.

So it tells you that now these rates are achievable, logistics has to be able to keep up or you'll keep diluting the benefit. And that was one of the key things for us was now we know these rates are achievable, firstly, could we improve them. Secondly, let's make sure the logistics and just-in-time and the delivery is there to support that kind of level of working.

And again, same thing. We got the same sorts of results. And the variability was quite large. If they'd just kept their average, you could potentially clad the building nearly twice as fast. But again, no one ever believed that at the time. And so logistics just weren't in place to support that speed of working.

So final couple of slides for me. So what it shows, what the Cambridge data shows is that without even going quicker than we currently did, if you just got that consistency, if you could just deliver day by day by day the same sorts of rates of work, this number keeps coming up. There's a 40% reduction, 40% improvement in productivity readily available.

So you don't have to do anything better at this stage, you just have to get that consistency. And I think that was mirrored by talking to people on site. People on site wants to have productive days. They want to come to work and they want to know what they're going to do. They don't want to have these days where they're hampered by lack of materials or lack of information or lack of tooling or whatever it is or they can't get into their work zone.

So there's something interesting here around there's a way of building buildings much quicker that's also much more satisfying for the people doing it and gives them a much better way of working. And it's really easily achievable. We don't need to do anything much better at this stage. If we just got consistency right, then potentially, we could be building things much, much quicker.

So key things for us that we're looking at next is logistics. You can see here actually Gantt charts aren't as much use to us as we thought. Now that we've seen this Cambridge data and the piece count and the flow lines, you could start to plan the entire building like that. You could start to get into discrete event simulation and using all of these tools that manufacturing does to get this continuous improvement.

So first thing for us is we could now start to plan building in terms of component numbers and assembly times and really start to plan things much more carefully and therefore support the logistics. And consistency is much more powerful than speed at the moment. So we don't need to get quicker, but if we could just be consistent, that would be the first big leap.

Future steps that are coming, as I said, the learning from this project has been fed back into the public sector. The learning from this will go into things like our new hospitals program here in the UK. We're already getting interest from clients in North America, in US and Canada, as to how to start to adopt a platform approach over there. So there's nothing in this approach which is in any way UK-specific.

The idea was always, if these systems work, they work in any geography. So the potential is there for the industry to really pick this up, to run with it, to propagate it more widely and really make that transformational shift into something like manufacturing. And what we're hoping we're going to see over the course of the next couple of years is as we start to get more into this, as more programs and projects start to use it, we'll work out more about what to use in terms of automation.

Clearly, once you've got into that space are very repeatable tasks, you don't need trades in quite the same way. Not that we're going to automate people out of jobs, but some of the big challenges facing construction are skills gap and aging demographic. So as I'm sure most people know, in the next 10, 15 years, a big chunk of our skill base is about to retire. And we're not getting enough young people coming in.

The idea that you could turn construction into those very simple, very repeatable processes means that we could potentially train people very quickly. And we've actually built pharmaceuticals facilities using ex-British army. We've built bits of the prisons program using prisoners. We built bits of airports in the UK using people from a local job center.

So this is one of the reasons governments are really interested in this idea that we could set up training and competencies. And suddenly, our construction labor force is comprised of ex-unemployed, ex-services, ex-prisoners. We resolve the skills gap. These are the sorts of things that I think are going to make a big, big impact in the industry in the next few years.

There's definitely a place for logistics in all of this. So current construction logistics gets things pretty much designed pretty much at the right day. We're miles away from that just in time manufacturing-type mindset. But you can see things like the facade. When they do 19 panels in an hour and a half, you want to get the next set of panels turning up in the afternoon.

So suddenly, logistics becomes super important. And it's going to be the biggest next barrier that we have to overcome. And yeah, I've already talked about this, but the idea that all of the learning from this gets put back into the next iteration of components, puts back into the next iteration of the digital library. We've really got a repository and a place for all this learning to go.

So yeah, we're very excited about this. Hopefully, that's been interesting and hopefully we'll be back next year to talk about the next steps and how the platform approach is continuing to move apace with some examples from North America. So that's all for me. Thanks for your time. Thanks for your attention.

As I say, there will be links in the class handout to the videos, to the animations, to documents we published on this. Hopefully, it's a topic that will keep expanding over time. And hopefully that's been an interesting half an hour. Thank you.

______
icon-svg-close-thick

쿠기 기본 설정

오토데스크는 고객의 개인 정보와 최상의 경험을 중요시합니다. 오토데스크는 정보를 사용자화하고 응용프로그램을 만들기 위해 고객의 본 사이트 사용에 관한 데이터를 수집합니다.

오토데스크에서 고객의 데이터를 수집하고 사용하도록 허용하시겠습니까?

오토데스크에서 사용하는타사 서비스개인정보 처리방침 정책을 자세히 알아보십시오.

반드시 필요 - 사이트가 제대로 작동하고 사용자에게 서비스를 원활하게 제공하기 위해 필수적임

이 쿠키는 오토데스크에서 사용자 기본 설정 또는 로그인 정보를 저장하거나, 사용자 요청에 응답하거나, 장바구니의 품목을 처리하기 위해 필요합니다.

사용자 경험 향상 – 사용자와 관련된 항목을 표시할 수 있게 해 줌

이 쿠키는 오토데스크가 보다 향상된 기능을 제공하고 사용자에게 맞는 정보를 제공할 수 있게 해 줍니다. 사용자에게 맞는 정보 및 환경을 제공하기 위해 오토데스크 또는 서비스를 제공하는 협력업체에서 이 쿠키를 설정할 수 있습니다. 이 쿠키를 허용하지 않을 경우 이러한 서비스 중 일부 또는 전체를 이용하지 못하게 될 수 있습니다.

광고 수신 설정 – 사용자에게 타겟팅된 광고를 제공할 수 있게 해 줌

이 쿠키는 사용자와 관련성이 높은 광고를 표시하고 그 효과를 추적하기 위해 사용자 활동 및 관심 사항에 대한 데이터를 수집합니다. 이렇게 데이터를 수집함으로써 사용자의 관심 사항에 더 적합한 광고를 표시할 수 있습니다. 이 쿠키를 허용하지 않을 경우 관심 분야에 해당되지 않는 광고가 표시될 수 있습니다.

icon-svg-close-thick

타사 서비스

각 범주에서 오토데스크가 사용하는 타사 서비스와 온라인에서 고객으로부터 수집하는 데이터를 사용하는 방식에 대해 자세히 알아보십시오.

icon-svg-hide-thick

icon-svg-show-thick

반드시 필요 - 사이트가 제대로 작동하고 사용자에게 서비스를 원활하게 제공하기 위해 필수적임

Qualtrics
오토데스크는 고객에게 더욱 시의적절하며 관련 있는 이메일 컨텐츠를 제공하기 위해 Qualtrics를 이용합니다. 이를 위해, 고객의 온라인 행동 및 오토데스크에서 전송하는 이메일과의 상호 작용에 관한 데이터를 수집합니다. 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID, 이메일 확인율, 클릭한 링크 등이 포함될 수 있습니다. 오토데스크는 이 데이터를 다른 소스에서 수집된 데이터와 결합하여 고객의 판매 또는 고객 서비스 경험을 개선하며, 고급 분석 처리에 기초하여 보다 관련 있는 컨텐츠를 제공합니다. Qualtrics 개인정보취급방침
Akamai mPulse
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Akamai mPulse를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Akamai mPulse 개인정보취급방침
Digital River
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Digital River를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Digital River 개인정보취급방침
Dynatrace
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Dynatrace를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Dynatrace 개인정보취급방침
Khoros
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Khoros를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Khoros 개인정보취급방침
Launch Darkly
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Launch Darkly를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Launch Darkly 개인정보취급방침
New Relic
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 New Relic를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. New Relic 개인정보취급방침
Salesforce Live Agent
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Salesforce Live Agent를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Salesforce Live Agent 개인정보취급방침
Wistia
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Wistia를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Wistia 개인정보취급방침
Tealium
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Tealium를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Upsellit
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Upsellit를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. CJ Affiliates
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 CJ Affiliates를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Commission Factory
Typepad Stats
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Typepad Stats를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Typepad Stats 개인정보취급방침
Geo Targetly
Autodesk는 Geo Targetly를 사용하여 웹 사이트 방문자를 가장 적합한 웹 페이지로 안내하거나 위치를 기반으로 맞춤형 콘텐츠를 제공합니다. Geo Targetly는 웹 사이트 방문자의 IP 주소를 사용하여 방문자 장치의 대략적인 위치를 파악합니다. 이렇게 하면 방문자가 (대부분의 경우) 현지 언어로 된 콘텐츠를 볼 수 있습니다.Geo Targetly 개인정보취급방침
SpeedCurve
Autodesk에서는 SpeedCurve를 사용하여 웹 페이지 로드 시간과 이미지, 스크립트, 텍스트 등의 후속 요소 응답성을 측정하여 웹 사이트 환경의 성능을 모니터링하고 측정합니다. SpeedCurve 개인정보취급방침
Qualified
Qualified is the Autodesk Live Chat agent platform. This platform provides services to allow our customers to communicate in real-time with Autodesk support. We may collect unique ID for specific browser sessions during a chat. Qualified Privacy Policy

icon-svg-hide-thick

icon-svg-show-thick

사용자 경험 향상 – 사용자와 관련된 항목을 표시할 수 있게 해 줌

Google Optimize
오토데스크는 사이트의 새 기능을 테스트하고 이러한 기능의 고객 경험을 사용자화하기 위해 Google Optimize을 이용합니다. 이를 위해, 고객이 사이트를 방문해 있는 동안 행동 데이터를 수집합니다. 이 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID, 오토데스크 ID 등이 포함될 수 있습니다. 고객은 기능 테스트를 바탕으로 여러 버전의 오토데스크 사이트를 경험하거나 방문자 특성을 바탕으로 개인화된 컨텐츠를 보게 될 수 있습니다. Google Optimize 개인정보취급방침
ClickTale
오토데스크는 고객이 사이트에서 겪을 수 있는 어려움을 더 잘 파악하기 위해 ClickTale을 이용합니다. 페이지의 모든 요소를 포함해 고객이 오토데스크 사이트와 상호 작용하는 방식을 이해하기 위해 세션 녹화를 사용합니다. 개인적으로 식별 가능한 정보는 가려지며 수집되지 않습니다. ClickTale 개인정보취급방침
OneSignal
오토데스크는 OneSignal가 지원하는 사이트에 디지털 광고를 배포하기 위해 OneSignal를 이용합니다. 광고는 OneSignal 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 OneSignal에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 OneSignal에 제공하는 데이터를 사용합니다. OneSignal 개인정보취급방침
Optimizely
오토데스크는 사이트의 새 기능을 테스트하고 이러한 기능의 고객 경험을 사용자화하기 위해 Optimizely을 이용합니다. 이를 위해, 고객이 사이트를 방문해 있는 동안 행동 데이터를 수집합니다. 이 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID, 오토데스크 ID 등이 포함될 수 있습니다. 고객은 기능 테스트를 바탕으로 여러 버전의 오토데스크 사이트를 경험하거나 방문자 특성을 바탕으로 개인화된 컨텐츠를 보게 될 수 있습니다. Optimizely 개인정보취급방침
Amplitude
오토데스크는 사이트의 새 기능을 테스트하고 이러한 기능의 고객 경험을 사용자화하기 위해 Amplitude을 이용합니다. 이를 위해, 고객이 사이트를 방문해 있는 동안 행동 데이터를 수집합니다. 이 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID, 오토데스크 ID 등이 포함될 수 있습니다. 고객은 기능 테스트를 바탕으로 여러 버전의 오토데스크 사이트를 경험하거나 방문자 특성을 바탕으로 개인화된 컨텐츠를 보게 될 수 있습니다. Amplitude 개인정보취급방침
Snowplow
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Snowplow를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Snowplow 개인정보취급방침
UserVoice
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 UserVoice를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. UserVoice 개인정보취급방침
Clearbit
Clearbit를 사용하면 실시간 데이터 보강 기능을 통해 고객에게 개인화되고 관련 있는 환경을 제공할 수 있습니다. Autodesk가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. Clearbit 개인정보취급방침
YouTube
YouTube는 사용자가 웹 사이트에 포함된 비디오를 보고 공유할 수 있도록 해주는 비디오 공유 플랫폼입니다. YouTube는 비디오 성능에 대한 시청 지표를 제공합니다. YouTube 개인정보보호 정책

icon-svg-hide-thick

icon-svg-show-thick

광고 수신 설정 – 사용자에게 타겟팅된 광고를 제공할 수 있게 해 줌

Adobe Analytics
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Adobe Analytics를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Adobe Analytics 개인정보취급방침
Google Analytics (Web Analytics)
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Google Analytics (Web Analytics)를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. AdWords
Marketo
오토데스크는 고객에게 더욱 시의적절하며 관련 있는 이메일 컨텐츠를 제공하기 위해 Marketo를 이용합니다. 이를 위해, 고객의 온라인 행동 및 오토데스크에서 전송하는 이메일과의 상호 작용에 관한 데이터를 수집합니다. 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID, 이메일 확인율, 클릭한 링크 등이 포함될 수 있습니다. 오토데스크는 이 데이터를 다른 소스에서 수집된 데이터와 결합하여 고객의 판매 또는 고객 서비스 경험을 개선하며, 고급 분석 처리에 기초하여 보다 관련 있는 컨텐츠를 제공합니다. Marketo 개인정보취급방침
Doubleclick
오토데스크는 Doubleclick가 지원하는 사이트에 디지털 광고를 배포하기 위해 Doubleclick를 이용합니다. 광고는 Doubleclick 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Doubleclick에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Doubleclick에 제공하는 데이터를 사용합니다. Doubleclick 개인정보취급방침
HubSpot
오토데스크는 고객에게 더욱 시의적절하며 관련 있는 이메일 컨텐츠를 제공하기 위해 HubSpot을 이용합니다. 이를 위해, 고객의 온라인 행동 및 오토데스크에서 전송하는 이메일과의 상호 작용에 관한 데이터를 수집합니다. 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID, 이메일 확인율, 클릭한 링크 등이 포함될 수 있습니다. HubSpot 개인정보취급방침
Twitter
오토데스크는 Twitter가 지원하는 사이트에 디지털 광고를 배포하기 위해 Twitter를 이용합니다. 광고는 Twitter 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Twitter에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Twitter에 제공하는 데이터를 사용합니다. Twitter 개인정보취급방침
Facebook
오토데스크는 Facebook가 지원하는 사이트에 디지털 광고를 배포하기 위해 Facebook를 이용합니다. 광고는 Facebook 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Facebook에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Facebook에 제공하는 데이터를 사용합니다. Facebook 개인정보취급방침
LinkedIn
오토데스크는 LinkedIn가 지원하는 사이트에 디지털 광고를 배포하기 위해 LinkedIn를 이용합니다. 광고는 LinkedIn 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 LinkedIn에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 LinkedIn에 제공하는 데이터를 사용합니다. LinkedIn 개인정보취급방침
Yahoo! Japan
오토데스크는 Yahoo! Japan가 지원하는 사이트에 디지털 광고를 배포하기 위해 Yahoo! Japan를 이용합니다. 광고는 Yahoo! Japan 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Yahoo! Japan에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Yahoo! Japan에 제공하는 데이터를 사용합니다. Yahoo! Japan 개인정보취급방침
Naver
오토데스크는 Naver가 지원하는 사이트에 디지털 광고를 배포하기 위해 Naver를 이용합니다. 광고는 Naver 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Naver에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Naver에 제공하는 데이터를 사용합니다. Naver 개인정보취급방침
Quantcast
오토데스크는 Quantcast가 지원하는 사이트에 디지털 광고를 배포하기 위해 Quantcast를 이용합니다. 광고는 Quantcast 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Quantcast에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Quantcast에 제공하는 데이터를 사용합니다. Quantcast 개인정보취급방침
Call Tracking
오토데스크는 캠페인을 위해 사용자화된 전화번호를 제공하기 위하여 Call Tracking을 이용합니다. 그렇게 하면 고객이 오토데스크 담당자에게 더욱 빠르게 액세스할 수 있으며, 오토데스크의 성과를 더욱 정확하게 평가하는 데 도움이 됩니다. 제공된 전화번호를 기준으로 사이트에서 고객 행동에 관한 데이터를 수집할 수도 있습니다. Call Tracking 개인정보취급방침
Wunderkind
오토데스크는 Wunderkind가 지원하는 사이트에 디지털 광고를 배포하기 위해 Wunderkind를 이용합니다. 광고는 Wunderkind 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Wunderkind에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Wunderkind에 제공하는 데이터를 사용합니다. Wunderkind 개인정보취급방침
ADC Media
오토데스크는 ADC Media가 지원하는 사이트에 디지털 광고를 배포하기 위해 ADC Media를 이용합니다. 광고는 ADC Media 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 ADC Media에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 ADC Media에 제공하는 데이터를 사용합니다. ADC Media 개인정보취급방침
AgrantSEM
오토데스크는 AgrantSEM가 지원하는 사이트에 디지털 광고를 배포하기 위해 AgrantSEM를 이용합니다. 광고는 AgrantSEM 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 AgrantSEM에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 AgrantSEM에 제공하는 데이터를 사용합니다. AgrantSEM 개인정보취급방침
Bidtellect
오토데스크는 Bidtellect가 지원하는 사이트에 디지털 광고를 배포하기 위해 Bidtellect를 이용합니다. 광고는 Bidtellect 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Bidtellect에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Bidtellect에 제공하는 데이터를 사용합니다. Bidtellect 개인정보취급방침
Bing
오토데스크는 Bing가 지원하는 사이트에 디지털 광고를 배포하기 위해 Bing를 이용합니다. 광고는 Bing 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Bing에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Bing에 제공하는 데이터를 사용합니다. Bing 개인정보취급방침
G2Crowd
오토데스크는 G2Crowd가 지원하는 사이트에 디지털 광고를 배포하기 위해 G2Crowd를 이용합니다. 광고는 G2Crowd 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 G2Crowd에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 G2Crowd에 제공하는 데이터를 사용합니다. G2Crowd 개인정보취급방침
NMPI Display
오토데스크는 NMPI Display가 지원하는 사이트에 디지털 광고를 배포하기 위해 NMPI Display를 이용합니다. 광고는 NMPI Display 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 NMPI Display에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 NMPI Display에 제공하는 데이터를 사용합니다. NMPI Display 개인정보취급방침
VK
오토데스크는 VK가 지원하는 사이트에 디지털 광고를 배포하기 위해 VK를 이용합니다. 광고는 VK 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 VK에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 VK에 제공하는 데이터를 사용합니다. VK 개인정보취급방침
Adobe Target
오토데스크는 사이트의 새 기능을 테스트하고 이러한 기능의 고객 경험을 사용자화하기 위해 Adobe Target을 이용합니다. 이를 위해, 고객이 사이트를 방문해 있는 동안 행동 데이터를 수집합니다. 이 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID, 오토데스크 ID 등이 포함될 수 있습니다. 고객은 기능 테스트를 바탕으로 여러 버전의 오토데스크 사이트를 경험하거나 방문자 특성을 바탕으로 개인화된 컨텐츠를 보게 될 수 있습니다. Adobe Target 개인정보취급방침
Google Analytics (Advertising)
오토데스크는 Google Analytics (Advertising)가 지원하는 사이트에 디지털 광고를 배포하기 위해 Google Analytics (Advertising)를 이용합니다. 광고는 Google Analytics (Advertising) 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Google Analytics (Advertising)에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Google Analytics (Advertising)에 제공하는 데이터를 사용합니다. Google Analytics (Advertising) 개인정보취급방침
Trendkite
오토데스크는 Trendkite가 지원하는 사이트에 디지털 광고를 배포하기 위해 Trendkite를 이용합니다. 광고는 Trendkite 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Trendkite에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Trendkite에 제공하는 데이터를 사용합니다. Trendkite 개인정보취급방침
Hotjar
오토데스크는 Hotjar가 지원하는 사이트에 디지털 광고를 배포하기 위해 Hotjar를 이용합니다. 광고는 Hotjar 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Hotjar에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Hotjar에 제공하는 데이터를 사용합니다. Hotjar 개인정보취급방침
6 Sense
오토데스크는 6 Sense가 지원하는 사이트에 디지털 광고를 배포하기 위해 6 Sense를 이용합니다. 광고는 6 Sense 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 6 Sense에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 6 Sense에 제공하는 데이터를 사용합니다. 6 Sense 개인정보취급방침
Terminus
오토데스크는 Terminus가 지원하는 사이트에 디지털 광고를 배포하기 위해 Terminus를 이용합니다. 광고는 Terminus 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Terminus에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Terminus에 제공하는 데이터를 사용합니다. Terminus 개인정보취급방침
StackAdapt
오토데스크는 StackAdapt가 지원하는 사이트에 디지털 광고를 배포하기 위해 StackAdapt를 이용합니다. 광고는 StackAdapt 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 StackAdapt에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 StackAdapt에 제공하는 데이터를 사용합니다. StackAdapt 개인정보취급방침
The Trade Desk
오토데스크는 The Trade Desk가 지원하는 사이트에 디지털 광고를 배포하기 위해 The Trade Desk를 이용합니다. 광고는 The Trade Desk 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 The Trade Desk에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 The Trade Desk에 제공하는 데이터를 사용합니다. The Trade Desk 개인정보취급방침
RollWorks
We use RollWorks to deploy digital advertising on sites supported by RollWorks. Ads are based on both RollWorks data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that RollWorks has collected from you. We use the data that we provide to RollWorks to better customize your digital advertising experience and present you with more relevant ads. RollWorks Privacy Policy

정말 더 적은 온라인 경험을 원하십니까?

오토데스크는 고객 여러분에게 좋은 경험을 드리고 싶습니다. 이전 화면의 범주에 대해 "예"를 선택하셨다면 오토데스크는 고객을 위해 고객 경험을 사용자화하고 향상된 응용프로그램을 제작하기 위해 귀하의 데이터를 수집하고 사용합니다. 언제든지 개인정보 처리방침을 방문해 설정을 변경할 수 있습니다.

고객의 경험. 고객의 선택.

오토데스크는 고객의 개인 정보 보호를 중요시합니다. 오토데스크에서 수집하는 정보는 오토데스크 제품 사용 방법, 고객이 관심을 가질 만한 정보, 오토데스크에서 더욱 뜻깊은 경험을 제공하기 위한 개선 사항을 이해하는 데 도움이 됩니다.

오토데스크에서 고객님께 적합한 경험을 제공해 드리기 위해 고객님의 데이터를 수집하고 사용하도록 허용하시겠습니까?

선택할 수 있는 옵션을 자세히 알아보려면 이 사이트의 개인 정보 설정을 관리해 사용자화된 경험으로 어떤 이점을 얻을 수 있는지 살펴보거나 오토데스크 개인정보 처리방침 정책을 확인해 보십시오.