AU Class
AU Class
class - AU

Journey Towards Data-Centricity with Autodesk Platform Services

이 강의 공유하기

설명

Unlock the transformative power of data centricity in the architecture, engineering, and construction (AEC) industry at Autodesk University! In this session, we'll explore how Autodesk Platform Services and Autodesk Construction Cloud can support your organization's journey toward data centricity. Discover how to capitalize on advanced data management, visualization, and collaboration tools to enhance decision-making, streamline workflows, and drive project success. Through real-world case studies and practical demonstrations, we'll guide you on the path to becoming a data-centered AEC firm. Don't miss this opportunity to revolutionize your approach to data and gain a competitive edge in the industry.

주요 학습

  • Learn how to harness the power of Autodesk Platform Services to centralize and manage project data for enhanced collaboration and decision.
  • Implement data visualization tools to gain valuable insights, identify patterns, and optimize project performance.
  • Learn how to streamline workflows and eliminate data silos by integrating Autodesk Construction Cloud into your data-centered processes.
  • Gain practical knowledge and learn about actionable steps to embark on the journey toward data-centricity in your AEC engineering firm.

발표자

  • Puria Safari Hesari
    Puria Safari is a computational designer turned to the world of digital transformation and change management, currently lending his expertise to Ramboll. With a foundation in structural engineering and as a self-taught software developer, Puria has crafted a unique path. His journey began with prominent projects like the Tottenham Hotspur Football Club and The Factory by OMA, before embracing the challenge of guiding large consultancies toward becoming digital trailblazers. Puria's academic engagements span student workshops and papers delving into the intricacies of shell structures.
  • Giulio Pagan 님의 아바타
    Giulio Pagan
    I am an Aeronautical engineer by training with more than 26 years of experience in software engineering and solution architecture. I work closely with the development ecosystem, partners, customers, and the data platform community to design innovative, value-driven, cloud-based solutions.
  • Adriano Parodi
    Experience in Manufacturing execution systems and integration with Enterprise PLM systems. Experience in programming, business analysis and design of solution architectures. Experience in Manufacturing industry
Video Player is loading.
Current Time 0:00
Duration 45:18
Loaded: 0.36%
Stream Type LIVE
Remaining Time 45:18
 
1x
  • Chapters
  • descriptions off, selected
  • en (Main), selected
Transcript

GIULIO PAGAN: Hello, everybody, and welcome to this presentation about Ramboll's journey towards data centricity with Autodesk Platform Services. My name is Giulio, and I will take you through-- I'll introduce myself. I have here a representative from Ramboll, which we will introduce to you in a moment.

We're going to go through the problem statement, and we'll talk about the data-centric journey we are embarking in. And we'll cover some basic concepts, and we'll explain what we've been doing through demo scenarios, which we will follow by some conclusions.

So, without further ado, I will just show you briefly the safe harbor statement. I won't keep it for long. And, after that, I'm going to introduce you-- tell you a little bit more about myself. I'm a principal solution architect working for Autodesk.

By training, I'm a aeronautical engineer, but I've been practicing software engineering and solution architecture for over 26 years. And I like working with developers, partners, and customers alike developing solutions which are innovative and value-driven. And, now, I will let Puria introduce himself.

PURIA SAFARI HESARI: Thanks, Giulio, and thanks for having us. My name is Puria, and I am, by background, a structural engineer and a computational designer which have come to work with digital transformation for the past years and change management. And am currently leading Ramboll's computational design transformation program.

I have, during my years in the industry, become a software developer, self-taught software developer, and had the opportunity to work with development in the AEC apps and tools but also great projects like the Tottenham Hotspur Football Club, among others, during my previous position.

So what is it that we're going to dive into in today's session? Well, in Ramboll, we have, during many years, had realized what using files and not having a data-centric approach to project deliverables-- and how that can affect our employees and our projects.

Basically, the usual statement that we hear is that my data is locked in so many files. We have difficulties finding the right files that we're looking for. We cannot really trust the data. Is the data that I see correct? Is the data that I receive from my colleague-- is it the latest one? Has it been modified?

So this is really what the problem is about. And it affects us daily. We have information loss. We have reduced accuracy. We have security concerns, quality, trust, and lead time.

So why is this happening? Well, business units create projects or buy products to respond to a specific need with a deadline. KPIs, such as data control, quality, or reusable architecture are underestimated. And data repositories are created to respond to the needs of the application layer, application-centric approach, which is really hindering us from working from a single data lake.

So, now, I will tell you a bit more about the Ramboll's project data management and data centricity journey, which is the collaboration that we're doing together with Autodesk. So short about Ramboll-- we're architecture, engineering, and consultancy company founded in 1945 in Denmark.

We're present in 35 countries, but our strongest presence is in the Nordics. And we have over more than 18,000 employees. And you can just imagine how a data-centric approach would help all these employees to become more efficient in the way they collaborate and communicate with their data and design, but also with our clients.

And so what is the vision here? What is the big idea? Well, we want, in Ramboll, by 2025, to have widely adopted a data-centric approach to projects-- or to project delivery-- in which data is an open resource not tied to a specific application, that the data is readily accessible through a single source of truth, the data is easily exchanged across application, the data is suitable to support sustainability metrics for analytics, and that the data is actively managed and controlled.

And so the expected outcome that we're looking for here can be divided into short-term, medium-term, and long-term. And the short-term expected outcomes are basically improved interoperability and data handover in projects, improved collaboration and teamwork in projects.

The medium-term expected outcomes are sustainability metrics are embedded in our design in a consistent way, that we have improved quality and reliability in our deliverables, and that we have enforced standardization of production and delivery environment. The long-term ones here are opportunities created for expanded and diversified services and a common and trusted source provided for analytics and best practice sharing.

And so looking at this slide, I just wanted to take you through the roadmap here, and how it looks like, and where we are, and where we want to be. So looking at the five different columns here, we have the files and at the first stage, and then you might move over to working with data, basically, objects. And then you work with more richer objects, and you start utilizing the information on that.

And at the next stage here, you're starting to share knowledge and start to gain a lot of insight in terms of your data. And that can help you to make better decisions.

So talking about utilizing AI and machine learning for decision-making-- the end of this spectrum is where we want to move. And looking in terms of Ramboll and where we are, I mean, the landscape is really diverse in terms of Ramboll.

We can definitely have projects that could be around data and information columns. And we could definitely have projects where-- that we can [INAUDIBLE] the data. But we really want to find and utilize this program and this collaboration here, together, get towards the last columns.

GIULIO PAGAN: OK. Thank you, Puria. I guess it's a little bit of my turn to talk to you a bit about the kind of solution we've been discussing with Ramboll. But before we dive a little bit more in the details, I would like to tell you a few words about the concept of data centricity and also to show you a very high-level architecture which displays how-- if you want the anatomy of a digital data centric solution.

So, first of all, what about data centricity? Well, let's talk about a data-centric organization. A data-centric organization is one which would put a lot of effort, and it would invest resources into generating that relevant information-- so churning data into relevant information, which then they can effectively share to enable collaboration across the organization.

So, clearly, the focus, even in this definition, is on data, from which the term data-centric really comes from. And the reason why this model can bring benefits is because applications are effectively transitory. But the data, especially when you have the right data, data stays. It stays there for a long time.

So at the heart of a data-centric approach, there is importance which really gives to our major asset, which is data. And if things are done in the right way, then you can reap the benefits of such approach, which you can see here in this kind of donut.

You can certainly hope to eliminate or reduce the number of data silos, reduce data redundancy, facilitate a more effective access to data, but also more secure, compliant to certain constraints. You can simplify applications and simplify upgrades, make data more accessible, eliminate complex data transformation-- which is a specific scenario which we started exploring at Ramboll-- reduce data errors and inconsistencies, improve quality, and then, in general, also streamline data management.

So this sounds great, doesn't it? Obviously, it's the reason why it is a journey. And it is a journey that starts from the center, and this is very important. Now, how does a data-centric solution look like?

Well, a data-centric solution is also focused on collaboration. And it's a solution which provides an integrated environment which is capable of managing different types of data. And, in here, there is a summary of the kind of data you would expect to find in this context.

So we would have product-related information. It would be library of objects, for example or other product information which is associated to the design or manufacturing of buildings. Then you have information which is associated to a project, which is vital to the project execution.

Any relevant standard could be found in the-- managed by the block. You can have digital assets, status associated to each to each digital asset. Or, traditionally, that would be associated to a file. But this is a thing. In here, we hope to go beyond that and have-- enable, for example, the management of transactional data, like IoT data.

And another aspect which you would expect to be managed by the platform is data orchestration-- so the movement of data across the different parts. So this is a good opportunity to state that we should not-- while data is at the center of this, we are not suggesting here that all data will have to sit in the same repository.

And what we're talking about here is more the need for a single data model, which basically implies a unified and integrated vision around data. This is important. And the data-centric approach, also, is not to be confused with a purely data-driven approach. A data-centric approach is, in fact, complementary, I would say, to a data-driven approach, which existed already for many years, while the data-centric approach requires changes at all levels, not just the technology level.

So what's the vision? I'm mirroring here what we have already seen on this slide. Let me go back to it in a second. So you may recall this slide. And, now, I'm showing you here another cartoon which is showing, instead, how we want to change the sentiment of these users towards data we have to deal with.

So you may still have the same data input. But, now, the platform will help the users to regain trust with data. And that would help happen because the access to data is easier, so we don't necessarily need to download, for example, entire model.

We don't need to replicate data. We don't necessarily need to transform data all the time. And they can attach metadata to the entities, and they can also share, in an easy way, data with suppliers, for example.

Now, that sounds great. But let's now start to talk about what could be the first steps to move towards this vision.

Well, as a starter, we want to move-- so if you look at these bullet points in this slide, we want to move from a universe-- if these bubbles are the situation where we are-- they represent the present and maybe the ideal future-- you can see that we want to go from a scenario where we have low granularity, situation where it's hard to find data, where you have lots of proprietary and application-centric scenarios-- we want to move from there to a scenario where we have a finer, granular access to data. It's easy to find the data.

We have more data-- product-agnostic approach. And, now, you can see the relationship between the current scenario, the current situation in the future and the fact that, today, we are primarily shuffling files around. So we will hear, mostly, talking about this product model data or that product model data. And the data comes out depending on the applications you're using.

So we want to transition to a scenario where we talk more about individual type of entities and instances of doors and instances of reports or work panels. So everything is an object, and everything can be potentially related to another object.

Having said that, the files will not disappear for a long time. And, chances are, your best-case scenario, your platform may have to interact with other platforms. But, in some cases, you may have to import files into your platform and export files in the way that you have are dealing with that today. But at least, within an organization, you should be able to reap the benefits of the data-centric approach in your own little bubble.

Now, I want to also emphasize the importance of other aspects, which go beyond the way you organize the data. So we discussed so far the granular access to the data. But two other fundamental pillars to this are the journey towards having a more harmonized data.

We mentioned the need for a single data model. It might be necessary to invest into mapping external models to your model. But the reality is that a single data model is what will accelerate the journey, and it will allow you to really reap the benefits.

And in order to, again, to create a stable platform that also doesn't cost too much over time, it's necessary to keep an eye on the status of application landscape. So as we said before, the approach here is that the application layer should be built around the data layer. And this has to be reflected in the choices of applications.

So the applications should be chosen because of their ability to more easily interact with the data platform. And the purpose is to provide the core capabilities which you see listed at the top. So you want to be able to exchange data, by the way, access data, manage your asset lifecycle, manage your asset metadata-- so data about data-- and so on.

Now, this was a bit of an introduction in generic terms. And we're going to now start to talk about how we started the journey by talking more specifically about interoperability. And what do we mean with that? We mean trying to leverage a selected set of services for the purpose of facilitating vendor-neutral data exchange.

So, therefore, the solutions that we've been looking at so far is focused mostly on reusability, increasing the-- make it easy to access the data and make it easy for applications to exchange data. And you can see in this slide, this is a one-slide summary of, basically, what we've been focusing on. So you can see, on the right side, also, the list of the technology which we've been more specifically looking at.

And there is ACC, Autodesk Construction Cloud, as a flavor of software as a service. But we've been focusing our attention on how Autodesk AEC Data Model and the Autodesk Data Exchange and the number of data connectors can help to turn this vision into reality.

And we are doing this. Since the beginning, we have ambitious target, which we hope to achieve with our cooperation. It is a drastic reduction in process lead time, remove almost completely the danger of having accidental data losses caused by data transformations, improve significantly the trust in data, and, also, convince the other parts of the business that data has to live in the cloud for purpose of leveraging the cloud.

So, now, let's try to understand this in practice by looking at one of the first-- we picked a couple of scenarios. So we covered a few scenarios in our engagement, but we picked two of them for the purpose of this presentation.

The first one is about detecting changes of quantities across different versions of a Revit model. So what you're looking at here is a revised version of a model. Currently, when we [INAUDIBLE] process-- so the as-is process.

If it's as-is process, it's difficult to achieve this comparison. And we wanted to show that by using the platform services. This could be greatly simplified. So how does it work in practice?

The data is shared by different parties on ACC. And the data is extracted using the AEC data model API, which makes it fairly easy to compare elements from different versions of the files.

The comparison results are stored in a database, which then can be used for analytics. So in the initial demonstrations and prototypes, what we'll be doing is populating a database, which then we use to populate Power BI dashboards.

Now, a few words about the technology-- for those that don't know what I'm referring to, I'm sure you heard about this before. But the reason why AEC cloud information model has been picked here is because, while it would be possible to use other API, the AEC data model is really the newest, more intriguing and innovating way to have a cloud-based source of truth for building and construction.

And why is it so promising? Because it provides a great tool for developers through dedicated, also, interfaces, like GraphQL. It allows you to access data in an easy way, so data is, effectively, easier to access. And it provides a repository of objects.

So if you remember my slide about explaining the need to move away from files, it's a great technology that helps moving in that direction. So as you can see from this picture here, your model is effectively turned into a graph of objects which you then can access via the API. And the use of the API is facilitated, also, by data connectors, which will mature in time.

Now, how does the solution look like from a conceptual point of view? So the models are updating ACC, as I mentioned before. The interesting aspect is the ACC model will grow in terms of compatibility with multiple platforms.

This specific solution here has been tested against the Revit file versions, but the specific business cases could change without necessarily impacting this architecture, which is the interesting thing. So there is a reusability in the architecture here at play.

Now, the models versions are compared, and this is done by querying the data. So, for the first time, it's actually almost there-- the possibility to treat ACC as a database of objects, which is why this API is particularly interesting.

And we also use the Schema Editor available from Tandem to create a reference asset classification. And this validation tool, which you see here-- what it does is to compare the content in terms of values of properties and is checking whether the property exists in first place in the reference schema.

It can also calculate-- within the dashboard or up front, it can calculate quantities and the quantities of error reported on a dashboard. And you're going to see two demo videos. The first one will show this solution in an automated way, and the output is shown in a dashboard.

So the idea is to periodically run this process to validate to make sure that the models across versions don't have significant differences. But you also see how you can create a web application to perform a same analysis on demand. I'm going to kick off this first video, and we'll provide some comments.

So this is the-- we're going to load the model in Revit, first of all. And what we're going to do is to make some changes to the geometry. So for this specific example, we use some test data.

So you can see here, the master bedroom. I'm making a small change in the geometry. And after that, I'm saving the model, which gets stored in ACC as a new version.

So what happens under the scene is that this data becomes available for extraction via the AEC data model API. Now, what you can see here is the user configuring a Power Automate script to point to a specific order in project and account hub.

And it's using a JSON file to specify what exactly is-- from wherever data is extracted and which versions are to be compared. So this is-- and, also, there is something called elements properties filter element, here, which is an example of how it's also possible to confine, for example, the comparison to certain properties when comparing that.

Then the workflow is executed automatically. And this could be triggered, for example, when a file is dropped in the folder. Or, in this case, it's just manually triggered. When the workflow is successfully executed, an email is sent to the user, and the data is stored in timestamps in an SQL system.

And from that moment on, the data becomes historical data, which is available for analysis purpose. And you can see a very simple dashboard here which shows different rooms which have been analyzed. And the system detected that there are differences in the values of the area and perimeter and [INAUDIBLE].

This is a process which, in some scenario, is not tackled at all. And that can lead at big issues. And although this problem can be solved in different ways, the approach here is particularly interesting because of the possibility to work in a way which is effectively independent from the original data products-- products they use to generate data.

OK, now, I'm going to show you a different demo, which is basically using the same services. But, in this case, the analysis of the two versions is going to be fed directly to the website that you can see here in this slide.

So I'm selecting from a portal, in this case, the models to be compared. So this would come from ACC, the list. And then, also from ACC, I would get a list of versions, and I will be able to choose the ones I want to compare.

And the difference here is that, instead of relying on automation, I would execute directly a comparison of two models. I would use the services of the platform to, here, load in the same scene two versions. And in the table below, you can see the comparison results.

The models are aggregated in the scene, so you see them overlap. You can see many differences because the differences are small. But, now, if I click, I can also-- yeah, I can see where the values are different, but I can also click on an object and find the object there.

And if you pay attention, you also see, to the right of the object, also, some elements which are different in geometry across versions. Yeah, exactly.

And so this is basically how to compare, with a fairly straightforward website, two versions. And you can then accelerate the fixing of the problem.

And now I'm going to describe a second workflow which I will let Puria demonstrate. This workflow, we've been investigating the use of another emerging API, which is actually fairly mature at this point in time. It is just Data Exchange, Autodesk Data Exchange API.

And this API grants access to the data, which can be stored in ACC in something called Data Exchange. So in this workflow here, what we're going to do is update or create a model, identify which parts of a model we want to export, create certain views which represent the elements which we want to extract.

And this will allow us to create data exchange, which is shared via the platform. And you can actually see exchange in ACC, and you can view it before the data goes anywhere else. But what you can also do is when the other engineer-- in this scenario, an external engineer could-- or an architect, in this case-- can open their application can connect to ACC, browse to the data which has been exchanged, and import the data in Rhino.

Also, this is a fragment of a workflow. But the specific scenario which we studied is, basically, the round-tripping of this. So starting, actually, from Rhino-- you're going to see in a minute-- we send it to the Revit and back.

The technology we use, as mentioned, is Data Exchange, which is built on top of our platform. It provides an API, but it also provides several out of the box connectors, which we leveraged to do the first evaluation.

Yeah, at conceptual level, the architecture is pretty simple because, basically, we are-- in this first phase, we simply used the out of the box connectors to send the data from Rhino to Revit and back. Now, I will let Puria explain what he has been focusing on with Rhino and Revit.

PURIA SAFARI HESARI: Thanks, Giulio. So looking into this work flow, while the video is starting, I think it's also-- we have really tried to push this workflow to its limits.

We have also tried, as Giulio described, sending data in both directions, going from Revit to Rhino and back, but, also, from Rhino and Revit and then go back but, also, at the same time, receiving data from Revit in Rhino and then referencing that data in Grasshopper and manipulate it and then send it back to exchange to the Revit model, et cetera. So it allows for a lot of flexibility.

And to take you through the video and how we've done that-- and so we're basically here, starting with the massing model in Revit. And this could be a scenario in the very early stages when we're evaluating different design options and architectural disciplines.

And so what we do-- we're sending this data through the Data Exchange and allow other designers to tap into this and to utilize what already exists as kind of a starting point or as a reference geometry to start building up other parts of the system.

So here, for example, we have a facade engineer, where he, in Rhino, and loads that exchange which has been uploaded to Data Exchange and get that data here in Rhino for the reference geometry.

And so what the facade engineer and designer can now do is to reference the geometry here to a Grasshopper script and easily generate different variations and different options and create multiple versions of this and upload those to the Data Exchange for the rest of the team to review and to test out and evaluate.

So here, for example, we have a triangulated facade, where sails are randomly placed on some of the rectangles. And that can be varied back and forth. So we can create different exchanges, if we would like to. But, here, we're only just sending one, the one that we just created and looked at. So we're creating a new exchange here using Grasshopper.

Once we've done that, there is a reference to the exchange. And, now, we use the Send component and send the data, basically. And this is basically what I mean with the flexibility that it allows. You can take any route you want with the different Data Exchange connectors.

And now coming back here, we can see the facade geometry being loaded to Data Exchange from Grasshopper. And so what we can do is, basically, again, go back to Revit and load that geometry here. And if you would have multiple versions or would get a later version, another version in a later stage, it's just to switch that and reload a new exchange here.

All right, so this sums up the demos and the scenarios and a few of the scenarios that we have worked on that we wanted to share with you guys. But, moving forward, I would also like to share some conclusions that we've come to and challenges and the benefits that we have found and share that with you during this journey, which has just started.

So the benefits from our candidates here and the people that we have worked with in different projects that have been testing these different scenarios and workflows-- we want them, and they believe that, by us adopting data-centric platform services, and Ramboll will be able to achieve 50% less time spent searching for data issues, 80% data quality increased, less than 30% shorter lead time by bringing forward the problem detection, 30% to 50% reduction in process lead time, virtually remove accidental data loss caused by data transformation, 100% increase in data trust, and 100% migrated to the cloud.

So by adopting the data-centric platform services, we can definitely achieve a lot of great values here. So what was the objectives that we set up starting this, and what was the achievements here?

So we wanted to understand the challenges and evaluate the benefit of a data-centric solution for better project data management. And we also wanted to demonstrate the current capabilities together with Autodesk of the Autodesk Platform Services to support project delivery. So what did we achieve?

We have successfully managed to demonstrate how Autodesk Platform Services can make data-centric project data management a reality. We explored how granular data-- granular access to data benefits both interoperability and data validation quality. And we have, in this initial phase, provided an effective way to better understand the needs, promote cross-vendor cooperation, identify new opportunities, and influence the product roadmaps.

GIULIO PAGAN: And if I may add, Puria, to this--

PURIA SAFARI HESARI: Of course.

GIULIO PAGAN: --this first phase, which was an exploratory one, it was also particularly useful for us. So I work for Autodesk Consulting, and it was a really great cooperation, also, with the platform team, which is working hard to help customers. And it was a great way to see a close collaboration to make sure that the product goes in the right direction.

PURIA SAFARI HESARI: And so looking at some challenges we had and some feedback that we've gathered from the people that we have worked on from the project teams and when they have tested out the workflows that we have suggested-- I mean, the overall feeling and the feedback is great. They're really happy to be a part of this journey, to be a part of setting the new standards in terms of working in a data-centric way.

And what we have achieved so far-- it's, overall, promising experience for easily round-tripping data between applications, which we saw in the last demo video, exporting data for data analytics and visualization, right?

But we also want to be clear about the Autodesk Data Exchange and AEC Data Model are in beta stages. So there are sometimes some issues to be expected. But that is something that we hoping to be able to collaborate together closely with Autodesk to mitigate as we go forward part of this collaboration.

We have had a great conversation with the Autodesk Consulting and the Autodesk Data Platform Team so far. We have already started discussing some of the issues that we're talking about-- for example, loading data exchanges can sometimes take time. They're listening to that feedback and taking it seriously, looking into this, which we really appreciate.

And there might sometimes be limitations when we exchange data types across different applications. And in the Rhino-Revit scenario that we looked into, we have had some reports from some of our users that tested the workflow that objects sometimes are only available as direct shapes, which can be a limiting factor.

And so, as mentioned, we're early in this journey. We're testing the cutting-edge stuff out there. And some of these tools and the platforms and the services that we use, they're in beta stage. So that's really to keep in mind. But, still, we're-- I think, from my side-- have come a really, really far way already this year and, specifically, working with [INAUDIBLE].

Well, thanks a lot for listening. It's been a pleasure to present what we've done during the last year to you guys. Yeah, thanks for joining in, and thanks, Giulio, for-- thank you for doing the presentation.

GIULIO PAGAN: And thank you very much for myself, as well. Thank you, Puria, for your very encouraging comments. And I'm looking forward to keep helping you guys in your challenging but rewarding journey towards data centricity. Thanks. Thank you, everybody. Bye.

______
icon-svg-close-thick

쿠기 기본 설정

오토데스크는 고객의 개인 정보와 최상의 경험을 중요시합니다. 오토데스크는 정보를 사용자화하고 응용프로그램을 만들기 위해 고객의 본 사이트 사용에 관한 데이터를 수집합니다.

오토데스크에서 고객의 데이터를 수집하고 사용하도록 허용하시겠습니까?

오토데스크에서 사용하는타사 서비스개인정보 처리방침 정책을 자세히 알아보십시오.

반드시 필요 - 사이트가 제대로 작동하고 사용자에게 서비스를 원활하게 제공하기 위해 필수적임

이 쿠키는 오토데스크에서 사용자 기본 설정 또는 로그인 정보를 저장하거나, 사용자 요청에 응답하거나, 장바구니의 품목을 처리하기 위해 필요합니다.

사용자 경험 향상 – 사용자와 관련된 항목을 표시할 수 있게 해 줌

이 쿠키는 오토데스크가 보다 향상된 기능을 제공하고 사용자에게 맞는 정보를 제공할 수 있게 해 줍니다. 사용자에게 맞는 정보 및 환경을 제공하기 위해 오토데스크 또는 서비스를 제공하는 협력업체에서 이 쿠키를 설정할 수 있습니다. 이 쿠키를 허용하지 않을 경우 이러한 서비스 중 일부 또는 전체를 이용하지 못하게 될 수 있습니다.

광고 수신 설정 – 사용자에게 타겟팅된 광고를 제공할 수 있게 해 줌

이 쿠키는 사용자와 관련성이 높은 광고를 표시하고 그 효과를 추적하기 위해 사용자 활동 및 관심 사항에 대한 데이터를 수집합니다. 이렇게 데이터를 수집함으로써 사용자의 관심 사항에 더 적합한 광고를 표시할 수 있습니다. 이 쿠키를 허용하지 않을 경우 관심 분야에 해당되지 않는 광고가 표시될 수 있습니다.

icon-svg-close-thick

타사 서비스

각 범주에서 오토데스크가 사용하는 타사 서비스와 온라인에서 고객으로부터 수집하는 데이터를 사용하는 방식에 대해 자세히 알아보십시오.

icon-svg-hide-thick

icon-svg-show-thick

반드시 필요 - 사이트가 제대로 작동하고 사용자에게 서비스를 원활하게 제공하기 위해 필수적임

Qualtrics
오토데스크는 고객에게 더욱 시의적절하며 관련 있는 이메일 컨텐츠를 제공하기 위해 Qualtrics를 이용합니다. 이를 위해, 고객의 온라인 행동 및 오토데스크에서 전송하는 이메일과의 상호 작용에 관한 데이터를 수집합니다. 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID, 이메일 확인율, 클릭한 링크 등이 포함될 수 있습니다. 오토데스크는 이 데이터를 다른 소스에서 수집된 데이터와 결합하여 고객의 판매 또는 고객 서비스 경험을 개선하며, 고급 분석 처리에 기초하여 보다 관련 있는 컨텐츠를 제공합니다. Qualtrics 개인정보취급방침
Akamai mPulse
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Akamai mPulse를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Akamai mPulse 개인정보취급방침
Digital River
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Digital River를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Digital River 개인정보취급방침
Dynatrace
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Dynatrace를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Dynatrace 개인정보취급방침
Khoros
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Khoros를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Khoros 개인정보취급방침
Launch Darkly
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Launch Darkly를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Launch Darkly 개인정보취급방침
New Relic
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 New Relic를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. New Relic 개인정보취급방침
Salesforce Live Agent
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Salesforce Live Agent를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Salesforce Live Agent 개인정보취급방침
Wistia
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Wistia를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Wistia 개인정보취급방침
Tealium
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Tealium를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Upsellit
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Upsellit를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. CJ Affiliates
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 CJ Affiliates를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Commission Factory
Typepad Stats
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Typepad Stats를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Typepad Stats 개인정보취급방침
Geo Targetly
Autodesk는 Geo Targetly를 사용하여 웹 사이트 방문자를 가장 적합한 웹 페이지로 안내하거나 위치를 기반으로 맞춤형 콘텐츠를 제공합니다. Geo Targetly는 웹 사이트 방문자의 IP 주소를 사용하여 방문자 장치의 대략적인 위치를 파악합니다. 이렇게 하면 방문자가 (대부분의 경우) 현지 언어로 된 콘텐츠를 볼 수 있습니다.Geo Targetly 개인정보취급방침
SpeedCurve
Autodesk에서는 SpeedCurve를 사용하여 웹 페이지 로드 시간과 이미지, 스크립트, 텍스트 등의 후속 요소 응답성을 측정하여 웹 사이트 환경의 성능을 모니터링하고 측정합니다. SpeedCurve 개인정보취급방침
Qualified
Qualified is the Autodesk Live Chat agent platform. This platform provides services to allow our customers to communicate in real-time with Autodesk support. We may collect unique ID for specific browser sessions during a chat. Qualified Privacy Policy

icon-svg-hide-thick

icon-svg-show-thick

사용자 경험 향상 – 사용자와 관련된 항목을 표시할 수 있게 해 줌

Google Optimize
오토데스크는 사이트의 새 기능을 테스트하고 이러한 기능의 고객 경험을 사용자화하기 위해 Google Optimize을 이용합니다. 이를 위해, 고객이 사이트를 방문해 있는 동안 행동 데이터를 수집합니다. 이 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID, 오토데스크 ID 등이 포함될 수 있습니다. 고객은 기능 테스트를 바탕으로 여러 버전의 오토데스크 사이트를 경험하거나 방문자 특성을 바탕으로 개인화된 컨텐츠를 보게 될 수 있습니다. Google Optimize 개인정보취급방침
ClickTale
오토데스크는 고객이 사이트에서 겪을 수 있는 어려움을 더 잘 파악하기 위해 ClickTale을 이용합니다. 페이지의 모든 요소를 포함해 고객이 오토데스크 사이트와 상호 작용하는 방식을 이해하기 위해 세션 녹화를 사용합니다. 개인적으로 식별 가능한 정보는 가려지며 수집되지 않습니다. ClickTale 개인정보취급방침
OneSignal
오토데스크는 OneSignal가 지원하는 사이트에 디지털 광고를 배포하기 위해 OneSignal를 이용합니다. 광고는 OneSignal 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 OneSignal에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 OneSignal에 제공하는 데이터를 사용합니다. OneSignal 개인정보취급방침
Optimizely
오토데스크는 사이트의 새 기능을 테스트하고 이러한 기능의 고객 경험을 사용자화하기 위해 Optimizely을 이용합니다. 이를 위해, 고객이 사이트를 방문해 있는 동안 행동 데이터를 수집합니다. 이 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID, 오토데스크 ID 등이 포함될 수 있습니다. 고객은 기능 테스트를 바탕으로 여러 버전의 오토데스크 사이트를 경험하거나 방문자 특성을 바탕으로 개인화된 컨텐츠를 보게 될 수 있습니다. Optimizely 개인정보취급방침
Amplitude
오토데스크는 사이트의 새 기능을 테스트하고 이러한 기능의 고객 경험을 사용자화하기 위해 Amplitude을 이용합니다. 이를 위해, 고객이 사이트를 방문해 있는 동안 행동 데이터를 수집합니다. 이 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID, 오토데스크 ID 등이 포함될 수 있습니다. 고객은 기능 테스트를 바탕으로 여러 버전의 오토데스크 사이트를 경험하거나 방문자 특성을 바탕으로 개인화된 컨텐츠를 보게 될 수 있습니다. Amplitude 개인정보취급방침
Snowplow
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Snowplow를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Snowplow 개인정보취급방침
UserVoice
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 UserVoice를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. UserVoice 개인정보취급방침
Clearbit
Clearbit를 사용하면 실시간 데이터 보강 기능을 통해 고객에게 개인화되고 관련 있는 환경을 제공할 수 있습니다. Autodesk가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. Clearbit 개인정보취급방침
YouTube
YouTube는 사용자가 웹 사이트에 포함된 비디오를 보고 공유할 수 있도록 해주는 비디오 공유 플랫폼입니다. YouTube는 비디오 성능에 대한 시청 지표를 제공합니다. YouTube 개인정보보호 정책

icon-svg-hide-thick

icon-svg-show-thick

광고 수신 설정 – 사용자에게 타겟팅된 광고를 제공할 수 있게 해 줌

Adobe Analytics
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Adobe Analytics를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Adobe Analytics 개인정보취급방침
Google Analytics (Web Analytics)
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Google Analytics (Web Analytics)를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. AdWords
Marketo
오토데스크는 고객에게 더욱 시의적절하며 관련 있는 이메일 컨텐츠를 제공하기 위해 Marketo를 이용합니다. 이를 위해, 고객의 온라인 행동 및 오토데스크에서 전송하는 이메일과의 상호 작용에 관한 데이터를 수집합니다. 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID, 이메일 확인율, 클릭한 링크 등이 포함될 수 있습니다. 오토데스크는 이 데이터를 다른 소스에서 수집된 데이터와 결합하여 고객의 판매 또는 고객 서비스 경험을 개선하며, 고급 분석 처리에 기초하여 보다 관련 있는 컨텐츠를 제공합니다. Marketo 개인정보취급방침
Doubleclick
오토데스크는 Doubleclick가 지원하는 사이트에 디지털 광고를 배포하기 위해 Doubleclick를 이용합니다. 광고는 Doubleclick 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Doubleclick에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Doubleclick에 제공하는 데이터를 사용합니다. Doubleclick 개인정보취급방침
HubSpot
오토데스크는 고객에게 더욱 시의적절하며 관련 있는 이메일 컨텐츠를 제공하기 위해 HubSpot을 이용합니다. 이를 위해, 고객의 온라인 행동 및 오토데스크에서 전송하는 이메일과의 상호 작용에 관한 데이터를 수집합니다. 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID, 이메일 확인율, 클릭한 링크 등이 포함될 수 있습니다. HubSpot 개인정보취급방침
Twitter
오토데스크는 Twitter가 지원하는 사이트에 디지털 광고를 배포하기 위해 Twitter를 이용합니다. 광고는 Twitter 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Twitter에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Twitter에 제공하는 데이터를 사용합니다. Twitter 개인정보취급방침
Facebook
오토데스크는 Facebook가 지원하는 사이트에 디지털 광고를 배포하기 위해 Facebook를 이용합니다. 광고는 Facebook 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Facebook에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Facebook에 제공하는 데이터를 사용합니다. Facebook 개인정보취급방침
LinkedIn
오토데스크는 LinkedIn가 지원하는 사이트에 디지털 광고를 배포하기 위해 LinkedIn를 이용합니다. 광고는 LinkedIn 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 LinkedIn에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 LinkedIn에 제공하는 데이터를 사용합니다. LinkedIn 개인정보취급방침
Yahoo! Japan
오토데스크는 Yahoo! Japan가 지원하는 사이트에 디지털 광고를 배포하기 위해 Yahoo! Japan를 이용합니다. 광고는 Yahoo! Japan 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Yahoo! Japan에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Yahoo! Japan에 제공하는 데이터를 사용합니다. Yahoo! Japan 개인정보취급방침
Naver
오토데스크는 Naver가 지원하는 사이트에 디지털 광고를 배포하기 위해 Naver를 이용합니다. 광고는 Naver 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Naver에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Naver에 제공하는 데이터를 사용합니다. Naver 개인정보취급방침
Quantcast
오토데스크는 Quantcast가 지원하는 사이트에 디지털 광고를 배포하기 위해 Quantcast를 이용합니다. 광고는 Quantcast 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Quantcast에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Quantcast에 제공하는 데이터를 사용합니다. Quantcast 개인정보취급방침
Call Tracking
오토데스크는 캠페인을 위해 사용자화된 전화번호를 제공하기 위하여 Call Tracking을 이용합니다. 그렇게 하면 고객이 오토데스크 담당자에게 더욱 빠르게 액세스할 수 있으며, 오토데스크의 성과를 더욱 정확하게 평가하는 데 도움이 됩니다. 제공된 전화번호를 기준으로 사이트에서 고객 행동에 관한 데이터를 수집할 수도 있습니다. Call Tracking 개인정보취급방침
Wunderkind
오토데스크는 Wunderkind가 지원하는 사이트에 디지털 광고를 배포하기 위해 Wunderkind를 이용합니다. 광고는 Wunderkind 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Wunderkind에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Wunderkind에 제공하는 데이터를 사용합니다. Wunderkind 개인정보취급방침
ADC Media
오토데스크는 ADC Media가 지원하는 사이트에 디지털 광고를 배포하기 위해 ADC Media를 이용합니다. 광고는 ADC Media 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 ADC Media에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 ADC Media에 제공하는 데이터를 사용합니다. ADC Media 개인정보취급방침
AgrantSEM
오토데스크는 AgrantSEM가 지원하는 사이트에 디지털 광고를 배포하기 위해 AgrantSEM를 이용합니다. 광고는 AgrantSEM 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 AgrantSEM에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 AgrantSEM에 제공하는 데이터를 사용합니다. AgrantSEM 개인정보취급방침
Bidtellect
오토데스크는 Bidtellect가 지원하는 사이트에 디지털 광고를 배포하기 위해 Bidtellect를 이용합니다. 광고는 Bidtellect 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Bidtellect에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Bidtellect에 제공하는 데이터를 사용합니다. Bidtellect 개인정보취급방침
Bing
오토데스크는 Bing가 지원하는 사이트에 디지털 광고를 배포하기 위해 Bing를 이용합니다. 광고는 Bing 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Bing에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Bing에 제공하는 데이터를 사용합니다. Bing 개인정보취급방침
G2Crowd
오토데스크는 G2Crowd가 지원하는 사이트에 디지털 광고를 배포하기 위해 G2Crowd를 이용합니다. 광고는 G2Crowd 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 G2Crowd에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 G2Crowd에 제공하는 데이터를 사용합니다. G2Crowd 개인정보취급방침
NMPI Display
오토데스크는 NMPI Display가 지원하는 사이트에 디지털 광고를 배포하기 위해 NMPI Display를 이용합니다. 광고는 NMPI Display 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 NMPI Display에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 NMPI Display에 제공하는 데이터를 사용합니다. NMPI Display 개인정보취급방침
VK
오토데스크는 VK가 지원하는 사이트에 디지털 광고를 배포하기 위해 VK를 이용합니다. 광고는 VK 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 VK에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 VK에 제공하는 데이터를 사용합니다. VK 개인정보취급방침
Adobe Target
오토데스크는 사이트의 새 기능을 테스트하고 이러한 기능의 고객 경험을 사용자화하기 위해 Adobe Target을 이용합니다. 이를 위해, 고객이 사이트를 방문해 있는 동안 행동 데이터를 수집합니다. 이 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID, 오토데스크 ID 등이 포함될 수 있습니다. 고객은 기능 테스트를 바탕으로 여러 버전의 오토데스크 사이트를 경험하거나 방문자 특성을 바탕으로 개인화된 컨텐츠를 보게 될 수 있습니다. Adobe Target 개인정보취급방침
Google Analytics (Advertising)
오토데스크는 Google Analytics (Advertising)가 지원하는 사이트에 디지털 광고를 배포하기 위해 Google Analytics (Advertising)를 이용합니다. 광고는 Google Analytics (Advertising) 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Google Analytics (Advertising)에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Google Analytics (Advertising)에 제공하는 데이터를 사용합니다. Google Analytics (Advertising) 개인정보취급방침
Trendkite
오토데스크는 Trendkite가 지원하는 사이트에 디지털 광고를 배포하기 위해 Trendkite를 이용합니다. 광고는 Trendkite 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Trendkite에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Trendkite에 제공하는 데이터를 사용합니다. Trendkite 개인정보취급방침
Hotjar
오토데스크는 Hotjar가 지원하는 사이트에 디지털 광고를 배포하기 위해 Hotjar를 이용합니다. 광고는 Hotjar 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Hotjar에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Hotjar에 제공하는 데이터를 사용합니다. Hotjar 개인정보취급방침
6 Sense
오토데스크는 6 Sense가 지원하는 사이트에 디지털 광고를 배포하기 위해 6 Sense를 이용합니다. 광고는 6 Sense 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 6 Sense에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 6 Sense에 제공하는 데이터를 사용합니다. 6 Sense 개인정보취급방침
Terminus
오토데스크는 Terminus가 지원하는 사이트에 디지털 광고를 배포하기 위해 Terminus를 이용합니다. 광고는 Terminus 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Terminus에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Terminus에 제공하는 데이터를 사용합니다. Terminus 개인정보취급방침
StackAdapt
오토데스크는 StackAdapt가 지원하는 사이트에 디지털 광고를 배포하기 위해 StackAdapt를 이용합니다. 광고는 StackAdapt 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 StackAdapt에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 StackAdapt에 제공하는 데이터를 사용합니다. StackAdapt 개인정보취급방침
The Trade Desk
오토데스크는 The Trade Desk가 지원하는 사이트에 디지털 광고를 배포하기 위해 The Trade Desk를 이용합니다. 광고는 The Trade Desk 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 The Trade Desk에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 The Trade Desk에 제공하는 데이터를 사용합니다. The Trade Desk 개인정보취급방침
RollWorks
We use RollWorks to deploy digital advertising on sites supported by RollWorks. Ads are based on both RollWorks data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that RollWorks has collected from you. We use the data that we provide to RollWorks to better customize your digital advertising experience and present you with more relevant ads. RollWorks Privacy Policy

정말 더 적은 온라인 경험을 원하십니까?

오토데스크는 고객 여러분에게 좋은 경험을 드리고 싶습니다. 이전 화면의 범주에 대해 "예"를 선택하셨다면 오토데스크는 고객을 위해 고객 경험을 사용자화하고 향상된 응용프로그램을 제작하기 위해 귀하의 데이터를 수집하고 사용합니다. 언제든지 개인정보 처리방침을 방문해 설정을 변경할 수 있습니다.

고객의 경험. 고객의 선택.

오토데스크는 고객의 개인 정보 보호를 중요시합니다. 오토데스크에서 수집하는 정보는 오토데스크 제품 사용 방법, 고객이 관심을 가질 만한 정보, 오토데스크에서 더욱 뜻깊은 경험을 제공하기 위한 개선 사항을 이해하는 데 도움이 됩니다.

오토데스크에서 고객님께 적합한 경험을 제공해 드리기 위해 고객님의 데이터를 수집하고 사용하도록 허용하시겠습니까?

선택할 수 있는 옵션을 자세히 알아보려면 이 사이트의 개인 정보 설정을 관리해 사용자화된 경험으로 어떤 이점을 얻을 수 있는지 살펴보거나 오토데스크 개인정보 처리방침 정책을 확인해 보십시오.