AU Class
AU Class
class - AU

Let's Get Together: Using Connectors in FEA

이 강의 공유하기
동영상, 발표 자료 및 배포 자료에서 키워드 검색:

설명

This class covers the use of bolted connections, joints, rigid elements, and other element types to link parts within multi-body assemblies inside Autodesk Nastran In-CAD and Simulation Mechanical.  Several models will be displayed to highlight the differences between solid and idealized connectors, and how each approach can affect the results. 

주요 학습

  • Discover the differences between various connectors
  • Understand the limitations of using connectors over solid modeled components
  • Learn how to use automated connectors like Bolted Connections
  • Develop skills to construct connectors manually

발표자

  • Andrew Sartorelli 님의 아바타
    Andrew Sartorelli
    Provided technical support for Autodesk's FEA/FEM products from October 2013 through February 2017.
  • David Truyens
    David Truyens has buildup a strong overview on the Autodesk manufacturing products in the 10 years he has been working for distribution in the Benelux. Always had a passion for simulation, but also multi-disciplinary projects. He studied at the University of Antwerp as an electro-mechanical engineer, with a final project on the optimization of a wing box in a collaboration with Dassault. Later on he moved from heavy lifting to product design to find his passion in CAE. Other passions are tinkering with Arduino and CNC (creating a self-balancing robot for example). In rare occasions when he can’t be found behind his computer or at a customer he seeks complete disconnection while sailing at sea.
Video Player is loading.
Current Time 0:00
Duration 46:03
Loaded: 0.36%
Stream Type LIVE
Remaining Time 46:03
 
1x
  • Chapters
  • descriptions off, selected
  • en (Main), selected
Transcript

ANDREW SARTORELLI: All right, so my name is Andrew Sartorelli. I'm a technical support specialist here at AutoDesk. I work out of our Munich office. And with me today is David Truyens.

DAVID TRUYENS: Yeah, I'm David. I work in the simulation business development team from Vince Adams. And we try to enable everybody to be able to work with the software and to see how we can help you solve your challenges.

ANDREW SARTORELLI: So we're talking about different types of connectors in all of our products. So the workflows that we discuss today will be applicable Simulation Mechanical, Nastran In-CAD, as was the Fusion Ultimate Simulation. And again you can use-- so hopefully by the end of today, you'll understand when and how to use different connectors and different types of idealizations, as well as the limitations of all of these approaches, as well as which packages that you can use the different connector types in.

So some people that aren't familiar with FEA might be more familiar with the term fasteners. And in FEA, we generally talk about connectors. If you open any of our FEA packages, you're going to see that term. And they're synonymous with one another. So that's going to be bolts, springs, cables, rigid elements. It's going to be welds. You won't necessarily have weld-type connectors. But there's ways to use these idealizations.

So with fasteners, the big thing to think about is global versus local. So obviously if you have something like the Eiffel Tower, it's got 2.5 million rivets in it. If you're creating an FEA model, it doesn't make sense, if you're doing an upfront engineering approach, to model 2.5 million rabbits. You're going to end up with a lot of elements there that aren't really adding too much benefit.

Whereas maybe you're just concerned with a single fastener. In that case, you can go ahead and model that locally to examine the failure of that specific component. And oftentimes you can do the global model to figure out what specific fasteners in the assembly are actually going to be the ones you're going to look at locally.

So the first type of fastener we're going to talk about are bolts. This is probably the most common fastener that people are going to be familiar with and using in FEA. So we're going to run through a few different topics-- pre-processing, idealization methods, applying pre-loads, and then some applications of bolts.

So we got a quick video here going over using the bolt calculator in Inventor. So one thing to keep in mind when using bolts in FEA is oftentimes there's hand calculations that you can do, or Excel sheets that you can use to actually figure out the correct sizing of bolts before you bring it into FEA. You don't want to end up with a giant bolt in there. And you have no idea if this is the right size. Take the easy approach. And use the tools that you have available before going into FEA and doing the analysis.

So here we've been able to set up a number of sketch points in the model. We then use the bolt connector utility. And we can specify a bolt diameter as well as the loading conditions. And from those loading conditions, it's actually going to tell us the number of bolts that we need in this model.

So here it tells us we need six. So it's not automatically going to go ahead and change the number of bolts there. We're going to have to go back and make some changes to the Inventor model before we can see that change. So we'll just go through those steps here as well. So we're going to use some of the functions built into Inventor. Just change that number from eight to six.

So when we're talking about bolts in FEA, there's three main approaches to idealization. So we can think about contact. We can think about solid modeling bolts. And then we can use beam and bar elements to idealize bolts.

So the first approach using contact is typically when you have continuous behavior. So if we look at this component here, we don't have a single point of failure, I would say, with these bolts. The two components that are joined together with these fasteners are going to act as one. So we can use contact here, instead of going in and modeling all of these fasteners and rivets.

If we go with the solid approach, one thing I often see with customers is they're going to go in with all of the threads, the bevels, the strength marks, and the hexagonal head. These are all things that don't really matter in FEA. You're not concerned with your threads. If you add those in, you're going to have to add in a significant amount of contact, which is going to significantly grow the time it takes to run your analysis. Things like strength marks have no bearing in FEA. Get rid of those. It's just needless details that you're going to have in there.

So whether we're in Inventor or Fusion, we can go through and simply idealize this. So I took the first model you see here on your left and I meshed that. And I ended up with over a million elements to mesh this with a high quality mesh.

And if we go all the way down to the right hand side there, after removing all these things like the bevel, the hexagonal head, the threads, we end up with approximately 1,200 elements. So it's a significant difference there in the element count. And we'll actually see, with some further idealization methods, we can get that number down significantly.

So with 1D approximations using beams and bar elements, in all of our packages you'll see a 3D representation of these. But actually in the back end, there's simply one dimensional elements that are generated there. So in In-CAD and Fusion Ultimate, you don't see the actual elements generated. But you see the idealization.

So here we end up with approximately 25 elements, compared to if you went with a full solid modeled bolt with threads and strength marks and bevels and hexagonal head, like I said a million elements. So this allows you to quickly iterate your analysis, rather than running significant run times with fully modeled solid bolts.

So one of the big things with bolts is you want to make sure you've got that pre-load in there, because it significantly impacts the stiffness of your model as well as the load transfer. So that's the big thing. You want to make sure you're correctly modeling those low transfer paths when you're using different types of idealizations. So with bolts, adding that pre-load in there allows you to correctly model that behavior. And we'll see in some examples later on, when you actually misjudge that pre-load, it can significantly impact the results that you're getting.

So here's just a quick overview of the screens that you would see when using both idealizations in all of our products. So all of them allow you to select geometric entities. And then with Simulation Mechanical on then, you'll actually see the elements generated rather than the 3-D representation. Simulation Mechanical uses more of a drawing environment versus the CAD inventive approach with Fusion and Nastran In-CAD.

So one of the big concerns if you're using solid model bolts-- so say you've taken it down. You removed the screws, removed all the unnecessary details. You want to have that pre-load in there in the model. But there's really no good way to add an axial pre-load with solid elements, or so some people say. But we actually have a good way to do it. We can use thermal loading to add pre-loads to solid elements.

So if we know our force, we know our pre-loading there, we can actually back out using some engineering equations. We end up with-- on the right here, we can come up with a thermal coefficient of expansion. And we just assume that our change in temperature is one degree.

When creating a specific orthotropic material to take advantage of this coefficient of thermal expansion, you want to make sure that you have your coefficient of thermal expansion, the axial direction, to be the same one that you calculate here. But when you're defining your orthotropic material properties, you want a coefficient of thermal expansion of approximately zero in the other directions. Otherwise simply, you have convergence problems. And some solvers me won't accept a zero entry there.

So I actually went ahead and just created a simple model here to show that compression that's going on. I simply calculated, based on a 700 pound pre-load in a steel bolt. They I was able to come up with a coefficient of thermal expansion there.

So we've got our first case study here. I want to--

AUDIENCE: Do you guys have just another way to pre-load solids? Or are you going to go on? Do you have another way you could show?

ANDREW SARTORELLI: Go ahead, Vince. I don't have another way.

AUDIENCE: You don't? I have one. What you can actually do, using bolt connectors is you can-- here's your bolt, bolt to [INAUDIBLE]. Put a small cut in the middle and connect the two ends of the bolt to the bolt connector. Put the pre-load on the bolt connector. And that way, you're guaranteed that load. Whereas with thermal, it's what used to happen in it. But it's hit or miss. If you can use a bolt connector between two solid bolts, it can imagine contact and a little more response. [INAUDIBLE].

ANDREW SARTORELLI: So we've got our first case study here. I pulled this out of my Machine Design textbook. So we've got eccentric loading on two plates that are joined together with four bolts. And what I've done is I've run a number of-- it's essentially parametric study, varying bolt diameter given the conditions here.

So I backed out the forces that each bolt will experience using some hand calculations based on the instantaneous center theory. So we actually can come up and figure out exactly what forces in the y and z direction that we're going to see each bolt. So my study, I was just focusing on bolt number one here. And I went through and examined the forces on that bolt.

So I varied the bolt diameter from a 1/4 inch, all the way up to 3/4 of an inch, as well as the mesh density along the bolt hole itself, and running linear and non-linear solutions. So here we can actually see the different shear forces that we calculated in the y direction. And we can see the analytical solution of 200 pounds as this blue line here.

For some of the larger bolt sizes, we're actually under-estimating that shear force due to the way, with a 1D idealization, the bar and beam elements we generate sometimes can have larger cross-sections. So this is why it's important to make sure that you're sizing your bolts correctly before you go into FEA. If you're adding in larger bolts than are actually necessary, you're overestimating that stiffness.

The other important thing to see here is that for the quarter inch bolt here, which is the solution that we generate with the Inventor bolt calculator, we're relatively constant regardless of mesh size down here for the shear force in the y direction.

So that's important to keep in mind. I often see customers when they're using these bolts connectors, they're going in, and they're refining the mesh significantly in that region. But when you correctly size your boat, you don't actually need to go in and refine that, because you have a singularity in that area where you're connecting all of these bar elements. So when you keep adding more and more bar elements, you're increasing the stiffness in that region and affecting your results.

And again we can see the same thing when we take a look at the shear forces for the bolt in the z direction as well. And then again I did a mesh sensitivity study comparing the max von Mises stress in the region around the bolt. And we can see that with a decreasing mesh size, the stress continues to increase. So we know that when we're using idealizations, we're doing this, again, for a global approach rather than a local approach. So if you're concerned with localized stresses in the region of a bolt, you should be using solid elements there to actually look at that on a local level rather than a global level.

So you can also use-- the example I did used solid elements for the plates. But you can also use shell elements. But some important things to keep in mind when doing shell elements in this example is checking your normal direction. So your contact between the plates is going to be determined based on that normal direction using contact offsets. So if you're David Cordova's presentation, I'm sure he talked about using offsets with shell elements. And then using the edges for the bolt connector rather than surface typically generates the elements in a better manner.

So what we found was there's a small variance in the shear forces compared to the solid elements. But we're seeing displacements. And obviously reaction forces match up quite closely. So some takeaways from this examination is you want to make sure that you're sizing your bolts and determining your pre-loads before you go into FEA. Use those hand calculations. Use those that Excel sheets that you're familiar with. And then add that level of detail into your analysis.

And again don't refine your mesh around your bolt hole It doesn't add any value there. It just increases run time. And on this point of determining pre-load before you go into FEA, I actually made the mistake, when I was preparing for this class, of having an excessive pre-load on some of my bolts. So you can see here, for the 1/4 inch diameter bolt, I had a 20,000 pound pre-load on this boat, which was significantly more than was what was required based on the Inventor bolt connector calculator. And you can see where we're off by 25% on our shear force there.

So we'll skip over now and talk a bit about welds. So Vince did a great job last year of covering quite a lot about welds and weld failure specifically. So we're just going to focus on-- if my clicker will work here. So Vince covered weld failure. We're just going to talk about approaching welds for use in load transfer.

So we're looking, again, at the global level rather than the local level. So the local level is where you are concerned about weld failure. But if you're working with a larger model, you're more concerned about correctly transferring that load in your assembly.

So we've got a lot of different approaches that we can use between solids, shells, using beams and plates. But all of these methods are a little bit of black magic from time to time. And they require a lot of pre-processing. And none of them really improve the accuracy of the results in the region that you're concerned with.

So here we have a Nastran In-CAD. And we can actually correctly size our welds based on the results of doing a shell-to-shell analysis. So we can figure out our normal forces, our shear forces, and our moments. And then we can take those and do some post-processing of those results to correctly size your weld. So you'll want to align your element direction and all of your elements in a single direction, so you can easily post-process those results to figure out your membrane forces and your moments.

So we can use xy plots to extract the elements on the bottom face there. So we can see the elements along this face to figure out those forces, and then extract those to use in our weld calculator. So David is now going to talk a bit about some of our other connector types.

DAVID TRUYENS: So another way we can work with connectors is here you see a winch. This was the [? ReMake ?] demo. You've probably seen this quite a lot. I also used it in the presentation with Wasim.

So if we're going to calculate something like that, you're probably not interested in the winch, because you probably buy it, unless you design winches, of course. But you need to mount it on your machine you make. And in this case, it's the red plate you see behind the winch. So we don't actually want to have the winch model in our analysis. So we could replace it using, in this case, a rigid connector, which you see on the right hand side.

Now there are a couple of options. And this can be a bit confusing the first time you work with that, because there is, if you go to-- if you make a connector, you can choose rigid body. And then on the other side, you can choose rigid or interpolation.

So what it actually does is the one is rigid. And the other one is applying and distributing those force. And I'll show it to you later. There's actually another way which you can work with that. And that's using beam elements. So it's somewhere in between.

So if we take a look at that, here is, on the left hand side, there's the rigid version. So you see here you have these holes. And in between those holes, it's completely straight, because it's actually a rigid block. It's a massive block. And if you look at the winch, you could consider it as a massive block. While on the right hand side, this is the rigid connector. But this is the interpolation. You'll see it will distribute the force. But it will not add extra stiffness. so we'll see the plate bending.

Now there's the other type of approach I told you about, is with connecting them with beam elements. And with beam elements, we can play around with our stiffness. So we can choose something in between very stiff or very, very weak.

So if we look at those results for displacement, we have the interpolation. so the interpolation is adding the least amount of stiffness to the plate. So you could expect that your displacement is the biggest. And because it's a thin plate, I used just a normal linear analysis and a non-linear analysis. Because if the plate starts bending, you add geometrical stiffness as well.

So here are the results. And as you can expect, the rod is somewhere in the middle. And the rigid is the most stiff. So this is quite logic, as this is something I would expect for sure. And if we take a look at the stresses, it's a bit different. Of course, the rigid one, it's very stiff. So there where you're-- if you have a stiffener in your model, so if you have two beams connected, then your highest stress will be in the corner. So if you add a stiffener, you will just move the stress concentration from this point to where the stiffener stops.

Actually what you're doing is moving around the stress concentration. And you hope that the stress will be lower. But that's not always guaranteed. So here you have a big part, which is very stiff. So there's no stress going on there. And then suddenly you have a big jump from something very stiff to something more flexible. So if there's a big jump, you end up with high stresses.

So that makes sense. And then the rod, because it's more flexible, it will distribute it more evenly. And then you have the interpolations, so the rigid connector with interpolation, it will do a very similar job. And if you run them non-linear, all of them, the stress will become a lot less, because you take in account the geometrical stiffening of the plate. Because if it's straight or if it's bended, it adds a lot of geometrical stiffening.

And then we have a last one of ways to connect things. And that's cables. And I'm a big fan of sailing. And this one is now sailing around the world. This is a boat sailing solo, one guy around the world. And I think there are about 30 boats competing. It's really interesting to see these designs changing over and over again, because in boats, you have a lot of cables. And here they use big spreaders. So they can distribute the force even better. So they use cables.

And yesterday, who has been on the high roller? That's a really amazing example of cables, of course. So if you work with cables, they are always non-linear, because it doesn't know. First you have pre-stress. So you first need to apply the pre-stress. And then it needs to know if it's in tension or if it's in compression, because it cannot be in compression. So if it's in compression, the solver says, well, it's actually not doing anything. So we'd always have to assess what's happening.

So you can fill in those values. So if you hover over those boxes, you will see this is the cross-section. And this is the pre-load you want to apply. And there's also, the last one is the failure mode.

Now there's a very important rule in Nastran In-CAD. Everybody knows in simulation that properties are very important. So we have a tendency to fill in as much as we know. Now in Nastran in general, I think I may say, that the rule is if you're not sure, don't fill in a box if it's not needed.

Some boxes are crucial. Of course, you need to have a cross section in these kind of things. But the last one is your failure criteria. If you're in the beginning, you always build up your analysis. So in the beginning, don't fill in a failure criteria, because you're not sure what's going to happen. So if you fill in a failure criteria and you hit that failure criteria, it could be that your solution doesn't converge because your cable has snapped. We can do that.

So the first analysis, you want to make sure that your cable is within its working area. Because normally, you don't want a cable to snap. So if the forces in the cable are higher than allowed, you should redesign your cable. You should probably use a bigger cross-section. And that would be a conclusion of your analysis. And you change the cross-section.

So only fill in the value if you want to do a snap analysis. If you want to see what happens if I go above a certain load and my cable snaps, that's something we can do. So be careful. And there's a lot of other boxes in Nastran. If you don't fill in anything, it will find it out automatically. One of them is material properties for the G value. Probably you have seen-- who works with Nastran In-CAD? Any Nastran?

AUDIENCE: Actually if you put it in, it'll give you a warning.

DAVID TRUYENS: Exactly. If you don't put in the correct value, it says, well, there's a warning. The material properties are not-- how does it say again-- are not reasonable, I think. So if you just delete that, it will take care of it. And this is the general rule, I may say, in Nastran. If you don't know, just put it on automatic.

AUDIENCE: --is to leave it blank unless you know exactly what you want it to be. If you're not sure what blank means, then [INAUDIBLE].

DAVID TRUYENS: So I will [INAUDIBLE]. If you don't need the value in the first step, leave it blank. And later on, you can always play around with those values. But start automatically is the best way. So here is-- yeah?

AUDIENCE: Something on that slide that I think is important, because it caused a lot of confusion with us, is you got to make sure your units are consistent. When you're typing in data in that field there, usually people are going to get the area and the moment of inertia right if they specify it. But the other things, the stress units and the initial displacements units, the pre-load, force units-- and the one thing that is important to understand is that the cable itself, this thing assumes it's a solid cable. No cables are usually solid. I don't know. That would be solid rod.

That's part of the i there. You really do want something in there that's small. And it should be-- I guess, would you mind if I explain this?

DAVID TRUYENS: No, that's OK.

AUDIENCE: So essentially what it is is that the cable itself was a solid rod. The default of that i is going to be a solid. You're probably saying, why does it assume that? Well, the reason why is because it doesn't know what else to assume. You haven't told it what the cable looks like, the strands in it.

So I looked this up a while ago. and there's ways of calculating what their actual moment of inertia is. You can refer to that and then put in that value of what that i really is. So I guess in that case, leaving it blank might not be good, because the default says it's going to take the area. And it's going to calculate a radius and then use that to calculate the moment of inertia of a solid.

So if you want it to be a cable that has very little bending capability, you can put a small number in there, like 1e to the minus 5 in this case, down to 10,000 times less than your area. If you want to factor in some bending stiffness, then you have to [INAUDIBLE]

DAVID TRUYENS: So first example-- well actually 2D model might not be the right one. Actually I should have called this a 1D model, because it's a 1D model just using beams. And this is an interesting case. This is a customer of mine. And they made this mass. It's for emergency situations or military applications. They're in the field. And it's aluminum package. So it's not very heavy. You just can carry it on your back. And you can move it up. So it could also be an emergency situation where you needs a light to shine around.

So it's very light. But this is a very nonlinear thing, because on the top you have your device, a light, and then a light, an antenna, cameras whatever. So if you would run this linear, it will just-- and you put on a load or something-- you push it in this direction, that's the only thing that happens. And there's actually no bending, because it assumes it starts everything as vertical.

But if you run this non-linear, which you should, because there are cables. But there's also another reason, because once it starts moving, the biggest weight in this model on top will do a displacement. And it will create a moment. So it will create a bending moment on these poles. So in this case, it's a really nice example, I think, of cables combined with non-linear analysis.

So set up, so there's a-- in the session together with Wasim, I showed that we have a really nice connection. Thanks, Mitch, for the frame analysis combined. So who has worked with the frame analysis within Inventor? Yeah. So you just build up your model. You use a skeleton model. And then you put in your frames. And then they'll transfer in beam elements.

Well Nastran In-CAD can do exactly the same thing. But then you can continue, because you can combine and can use. You can add plates. And you can add cables, for example, these kind of things. But one of the things, if you want to try working with this, you have your skeleton model in Inventor. You need to suppress that in your analysis.

But usually you also have your reference point. So if you're going to suppress that, and you have to use those working points to put on your constraints, they're gone. So you need to put your working points in your assembly environment. And then it will run perfectly. So there's another thing. But that's coming later.

So other considerations, if you have something like this, a construction like this, cables pulling it down like on the mast of a sailboat, there's a lot of tension just pulling the mast down. So there's a lot of compression. So you'd think about buckling.

And vibration, well what I think is the best way to work with-- but you can discuss about that-- usually you have the mast. And you have the cables. And they have very different densities. They're very different stiffnesses, of course. So I think the best way is to separate them and to look at the mass itself, the vibrations, and the cables.

Because I don't know if you have ever been in a harbor with sailboats, and all the tension on all the ropes, there's always one making an awful lot of noise. I once thought the engine was running in the boat. But it was just the noise of one of the ropes. So I would put them apart.

So there has been a lot of talk about generative design. I don't know if somebody has seen this model. This was one of the early tests from the Dreamcatcher project. And this is a connector exactly for something like this. There's a mast. And you need to attach cables.

So I didn't make it as fancy as that. But I just made something similar. So that's why these points are in different positions. And then we want to make a connection. So the first model was only 1D elements. And now I'm going to put in this connector part, where the cables attached.

So if you set up your analysis, this step you choose nonlinear static. And also make sure this, by default, the force is off. But of course, you're interested in the forces in the cable. So you can just turn it on. And once you turn it on, you will see in your results that you have the cable forces.

So this is the same model. It's a huge mast. So on the top if you zoom in, you see that one. So then it becomes obvious that you should use beam elements. You're not going to use a solid mesh for the whole mast. Or even a shell would have been quite huge. And here we can work with the cables.

So I'll show you this here. So here we can see we have our stresses. So you should see cable stress here on the top. If you don't see it, you're not running a nonlinear analysis. So a lot of people-- the general rule is start easy. And then add complexity. So usually the rule is, start linear static. Once that's running fine, add a non-linear analysis. But with cable, it's a bit different, because otherwise the cables won't do anything.

So if we go to, if you want to know the force, you go to Other. And then you'll see the cable force here. So that's also something which you can get out of the simulation if you want. So if we zoom in here--

AUDIENCE: David, we can't see the screen.

DAVID TRUYENS: I'm sorry. That's why is because it's-- how long have I been talking without it? What have I told you already? So here is, if you go to Stress, here you should see cable stress. So that was what I was telling. So if you don't see it, you're running linear and not non-linear. If you go to Other, you have cable force. If you don't see it, you didn't turn on the force in the output.

So if we're going to look at the details here, we can see at the stress. And then here we can go to our von Mises. So you see the size of the model. If we zoom in, we'll see this part. And the thing we use to connect it, which is-- I was wondering if you said, I'm going to a cut a bolt and put in a rod, how are you going to connect them? Because if you connect a rod directly to a solid element, you're going to pull on a node.

AUDIENCE: You also can have a ball joint. You also have a ball joint, because the solid can take up rotations of the rod.

DAVID TRUYENS: Well but in this case, I have a line or a beam element. And I want to pull on a solid something. So I cannot just pull on a node. Because if you pull on a node, it doesn't make any sense. You're never going to pull on something infinitely small.

So to do this, you can also use the connectors. So if we show those, this is a technique everybody uses to connect, to go from 3D to 1D, or maybe from 2D, from a shell element to a beam element. You can just add those connectors. And then you can continue adding your beams. So in this case, here is a beam. And here are the cables connected. So it's cool that you can turn it off, because otherwise it becomes hard to see.

So here you can also see our cable stresses, to see if they're actually doing something or not. And this was very confusing for me in the beginning, because I have a force to the right. And the whole thing is moving to the left. So if you see something like this, that can't be true.

But actually, rule one, start simple. And then add complexity. So the thing I did with, I thought I just make it a bit fancy. And I put the hinges on different points. So one cable is longer than the other one. So it's a bigger spring. So it will pull more to one side. So that's actually what happens, because the force is quite low. But if you start, all the cables with the same pretension. But they are different in length. So they will pull more in a different direction. So that's also something you should consider when looking at these results.

So that's about it, I think we have. So this was an overview on how you're going to get together. Yes?

AUDIENCE: You have these cables, but it was loose forever. And most cables are straining. Can you predict first strand breakage? Because you can break several strands before you have failure.

AUDIENCE: Let me move on that. On top of this, it's a real simple cable. It just snaps. And that's it. And once it snaps, it doesn't come back. Actually do we have time? Because I wanted to say a few more things about this. Actually, I know a little bit about this. And that's really tough to do. And the way the code works is with bolts and with cables with pre-load, it goes through a initial cycle where it actually does that calculation that Andy was talking about.

And essentially what it's going to do is it's going to go through and try to figure out exactly how much initial displacement is going to be created pre-loading the cable. Well if that base down there is not stable, if it's a pin, it can't do it. And what ends up happening is it has a huge cable nodes that are unrealistic. And the thing never converged. So that's the first thing. If your model's not converging, then the pre-loads are probably not calculating correctly, because there's some type of softness in the model that shouldn't be there.

And the other thing is that you asked about the failure. If you want to do that level of detail, you'd have to actually make these out of solids and have all the different-- we actually model cables that way, too. And in the beginning, you do the contact and everything. It's going to be a big model. But it's possible to do.

DAVID TRUYENS: So I'm just trying to get the problem. Is this something that actually happens, where you have one strand breaking and then the rest? Because then it becomes more elastic.

AUDIENCE: It becomes more elastic and has less strength. But see the issue is that you may have operational failure. Or you can have safety failures. So if you go into that, you may allow the first couple strands to break. But it won't give enough to completely fail to harm somebody.

[INTERPOSING VOICES]

AUDIENCE: So one way he might approach that that just throwing something out here, is you could, theoretically, put a bunch of these cables together. And as long as you don't worry about the fact that they're bound together, you could have it do that.

So I would imagine that you'd have a bunch of these cable elements that look just like lines. And maybe they have an [? RB-- ?] that connects to one end, another [? RB ?] at the other end. And you start pulling on it. And one of them fails. And all of sudden, the load's redistributed. And you can do some kind of progressive failure like that.

[INTERPOSING VOICES]

AUDIENCE: It's really simpler than it. Mine is you're not analyzing the cable. You've got to know in advance what the failure potential of the cable is. And you [INAUDIBLE]. If you've got the test data to show first string failure happens at x thousand pounds, then that's your model. So you're not simulating the actual failure of the cable. It's just you know that this force--

AUDIENCE: You're [INAUDIBLE]. So with these connectors, you're really just providing a load [INAUDIBLE].

[INTERPOSING VOICES]

AUDIENCE: There was a way to di this. In the old days, for me, [INAUDIBLE] had that in Nastran, before I invented it in the Nastran, we used to just use a var element. And we would use a nonlinear stress training curve, the nonlinear elastic. And because you could do the first and the third quadrant. And you just say, hey, you have no stiffness in compression. You have stiffness in tension only. And you can model stuff.

And then you could even model, OK, it's break. It's going to break. It's starting to break. And you can model that whole progressive. Now it's lost all the stiffness. And you can do that with one element too, and just simulate that effect as well. So there's a ton of ways to skin this cat.

AUDIENCE: I was just curious. Thank you.

DAVID TRUYENS: And I think the more people-- probably are a couple of other people who have some other ideas. So the more people you talk to, the more ideas you get. But that's OK. usually you also have to find your own method, I guess. Any more questions? Yes?

AUDIENCE: On the winch example where you had a node of five pointing off the part [INAUDIBLE], how is that different than these where [INAUDIBLE] force?

DAVID TRUYENS: That's a good question. And I was thinking about that as well. But you have four holes. And I have a point here in the middle. And I'm going to, whether remote load this, it's going to take the distributive force and add a moment.

So if you look on the top, so the plate is like this. And then on my point here, I will just have this force distributed on the four holes. And I will also have a moment, which is not exactly true, because this one will pull. And this one will push. And even if you look at the top, and I have this point in the middle, it will also apply a moment.

And so these holes, they will be a torque on this direction, which doesn't make any sense. Because if you look at the winch or even a softer construction, this construction is actually going to prevent that. You have a moment in this direction. And that's what the interpolation actually does for you. It will distribute it. It will not add stiffness. But it will take care of these kind of things. Does that answer your question?

It has been a long week for everybody. I think everybody's tired. So I would like to thank you for your attention. Nobody's fallen asleep, which is a challenge after the party and all that. Maybe Wasim did. But this is recorded. So we should start stopping now that conversation. And maybe get a beer and-- all right, thank you very much. And have a good--

[APPLAUSE]

______
icon-svg-close-thick

쿠기 기본 설정

오토데스크는 고객의 개인 정보와 최상의 경험을 중요시합니다. 오토데스크는 정보를 사용자화하고 응용프로그램을 만들기 위해 고객의 본 사이트 사용에 관한 데이터를 수집합니다.

오토데스크에서 고객의 데이터를 수집하고 사용하도록 허용하시겠습니까?

오토데스크에서 사용하는타사 서비스개인정보 처리방침 정책을 자세히 알아보십시오.

반드시 필요 - 사이트가 제대로 작동하고 사용자에게 서비스를 원활하게 제공하기 위해 필수적임

이 쿠키는 오토데스크에서 사용자 기본 설정 또는 로그인 정보를 저장하거나, 사용자 요청에 응답하거나, 장바구니의 품목을 처리하기 위해 필요합니다.

사용자 경험 향상 – 사용자와 관련된 항목을 표시할 수 있게 해 줌

이 쿠키는 오토데스크가 보다 향상된 기능을 제공하고 사용자에게 맞는 정보를 제공할 수 있게 해 줍니다. 사용자에게 맞는 정보 및 환경을 제공하기 위해 오토데스크 또는 서비스를 제공하는 협력업체에서 이 쿠키를 설정할 수 있습니다. 이 쿠키를 허용하지 않을 경우 이러한 서비스 중 일부 또는 전체를 이용하지 못하게 될 수 있습니다.

광고 수신 설정 – 사용자에게 타겟팅된 광고를 제공할 수 있게 해 줌

이 쿠키는 사용자와 관련성이 높은 광고를 표시하고 그 효과를 추적하기 위해 사용자 활동 및 관심 사항에 대한 데이터를 수집합니다. 이렇게 데이터를 수집함으로써 사용자의 관심 사항에 더 적합한 광고를 표시할 수 있습니다. 이 쿠키를 허용하지 않을 경우 관심 분야에 해당되지 않는 광고가 표시될 수 있습니다.

icon-svg-close-thick

타사 서비스

각 범주에서 오토데스크가 사용하는 타사 서비스와 온라인에서 고객으로부터 수집하는 데이터를 사용하는 방식에 대해 자세히 알아보십시오.

icon-svg-hide-thick

icon-svg-show-thick

반드시 필요 - 사이트가 제대로 작동하고 사용자에게 서비스를 원활하게 제공하기 위해 필수적임

Qualtrics
오토데스크는 고객에게 더욱 시의적절하며 관련 있는 이메일 컨텐츠를 제공하기 위해 Qualtrics를 이용합니다. 이를 위해, 고객의 온라인 행동 및 오토데스크에서 전송하는 이메일과의 상호 작용에 관한 데이터를 수집합니다. 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID, 이메일 확인율, 클릭한 링크 등이 포함될 수 있습니다. 오토데스크는 이 데이터를 다른 소스에서 수집된 데이터와 결합하여 고객의 판매 또는 고객 서비스 경험을 개선하며, 고급 분석 처리에 기초하여 보다 관련 있는 컨텐츠를 제공합니다. Qualtrics 개인정보취급방침
Akamai mPulse
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Akamai mPulse를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Akamai mPulse 개인정보취급방침
Digital River
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Digital River를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Digital River 개인정보취급방침
Dynatrace
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Dynatrace를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Dynatrace 개인정보취급방침
Khoros
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Khoros를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Khoros 개인정보취급방침
Launch Darkly
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Launch Darkly를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Launch Darkly 개인정보취급방침
New Relic
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 New Relic를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. New Relic 개인정보취급방침
Salesforce Live Agent
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Salesforce Live Agent를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Salesforce Live Agent 개인정보취급방침
Wistia
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Wistia를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Wistia 개인정보취급방침
Tealium
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Tealium를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Upsellit
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Upsellit를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. CJ Affiliates
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 CJ Affiliates를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Commission Factory
Typepad Stats
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Typepad Stats를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Typepad Stats 개인정보취급방침
Geo Targetly
Autodesk는 Geo Targetly를 사용하여 웹 사이트 방문자를 가장 적합한 웹 페이지로 안내하거나 위치를 기반으로 맞춤형 콘텐츠를 제공합니다. Geo Targetly는 웹 사이트 방문자의 IP 주소를 사용하여 방문자 장치의 대략적인 위치를 파악합니다. 이렇게 하면 방문자가 (대부분의 경우) 현지 언어로 된 콘텐츠를 볼 수 있습니다.Geo Targetly 개인정보취급방침
SpeedCurve
Autodesk에서는 SpeedCurve를 사용하여 웹 페이지 로드 시간과 이미지, 스크립트, 텍스트 등의 후속 요소 응답성을 측정하여 웹 사이트 환경의 성능을 모니터링하고 측정합니다. SpeedCurve 개인정보취급방침
Qualified
Qualified is the Autodesk Live Chat agent platform. This platform provides services to allow our customers to communicate in real-time with Autodesk support. We may collect unique ID for specific browser sessions during a chat. Qualified Privacy Policy

icon-svg-hide-thick

icon-svg-show-thick

사용자 경험 향상 – 사용자와 관련된 항목을 표시할 수 있게 해 줌

Google Optimize
오토데스크는 사이트의 새 기능을 테스트하고 이러한 기능의 고객 경험을 사용자화하기 위해 Google Optimize을 이용합니다. 이를 위해, 고객이 사이트를 방문해 있는 동안 행동 데이터를 수집합니다. 이 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID, 오토데스크 ID 등이 포함될 수 있습니다. 고객은 기능 테스트를 바탕으로 여러 버전의 오토데스크 사이트를 경험하거나 방문자 특성을 바탕으로 개인화된 컨텐츠를 보게 될 수 있습니다. Google Optimize 개인정보취급방침
ClickTale
오토데스크는 고객이 사이트에서 겪을 수 있는 어려움을 더 잘 파악하기 위해 ClickTale을 이용합니다. 페이지의 모든 요소를 포함해 고객이 오토데스크 사이트와 상호 작용하는 방식을 이해하기 위해 세션 녹화를 사용합니다. 개인적으로 식별 가능한 정보는 가려지며 수집되지 않습니다. ClickTale 개인정보취급방침
OneSignal
오토데스크는 OneSignal가 지원하는 사이트에 디지털 광고를 배포하기 위해 OneSignal를 이용합니다. 광고는 OneSignal 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 OneSignal에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 OneSignal에 제공하는 데이터를 사용합니다. OneSignal 개인정보취급방침
Optimizely
오토데스크는 사이트의 새 기능을 테스트하고 이러한 기능의 고객 경험을 사용자화하기 위해 Optimizely을 이용합니다. 이를 위해, 고객이 사이트를 방문해 있는 동안 행동 데이터를 수집합니다. 이 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID, 오토데스크 ID 등이 포함될 수 있습니다. 고객은 기능 테스트를 바탕으로 여러 버전의 오토데스크 사이트를 경험하거나 방문자 특성을 바탕으로 개인화된 컨텐츠를 보게 될 수 있습니다. Optimizely 개인정보취급방침
Amplitude
오토데스크는 사이트의 새 기능을 테스트하고 이러한 기능의 고객 경험을 사용자화하기 위해 Amplitude을 이용합니다. 이를 위해, 고객이 사이트를 방문해 있는 동안 행동 데이터를 수집합니다. 이 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID, 오토데스크 ID 등이 포함될 수 있습니다. 고객은 기능 테스트를 바탕으로 여러 버전의 오토데스크 사이트를 경험하거나 방문자 특성을 바탕으로 개인화된 컨텐츠를 보게 될 수 있습니다. Amplitude 개인정보취급방침
Snowplow
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Snowplow를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Snowplow 개인정보취급방침
UserVoice
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 UserVoice를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. UserVoice 개인정보취급방침
Clearbit
Clearbit를 사용하면 실시간 데이터 보강 기능을 통해 고객에게 개인화되고 관련 있는 환경을 제공할 수 있습니다. Autodesk가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. Clearbit 개인정보취급방침
YouTube
YouTube는 사용자가 웹 사이트에 포함된 비디오를 보고 공유할 수 있도록 해주는 비디오 공유 플랫폼입니다. YouTube는 비디오 성능에 대한 시청 지표를 제공합니다. YouTube 개인정보보호 정책

icon-svg-hide-thick

icon-svg-show-thick

광고 수신 설정 – 사용자에게 타겟팅된 광고를 제공할 수 있게 해 줌

Adobe Analytics
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Adobe Analytics를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID 및 오토데스크 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. Adobe Analytics 개인정보취급방침
Google Analytics (Web Analytics)
오토데스크 사이트에서 고객의 행동에 관한 데이터를 수집하기 위해 Google Analytics (Web Analytics)를 이용합니다. 여기에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 오토데스크는 사이트 성과를 측정하고 고객의 온라인 경험의 편리함을 평가하여 기능을 개선하기 위해 이러한 데이터를 이용합니다. 또한, 이메일, 고객 지원 및 판매와 관련된 고객 경험을 최적화하기 위해 고급 분석 방법도 사용하고 있습니다. AdWords
Marketo
오토데스크는 고객에게 더욱 시의적절하며 관련 있는 이메일 컨텐츠를 제공하기 위해 Marketo를 이용합니다. 이를 위해, 고객의 온라인 행동 및 오토데스크에서 전송하는 이메일과의 상호 작용에 관한 데이터를 수집합니다. 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID, 이메일 확인율, 클릭한 링크 등이 포함될 수 있습니다. 오토데스크는 이 데이터를 다른 소스에서 수집된 데이터와 결합하여 고객의 판매 또는 고객 서비스 경험을 개선하며, 고급 분석 처리에 기초하여 보다 관련 있는 컨텐츠를 제공합니다. Marketo 개인정보취급방침
Doubleclick
오토데스크는 Doubleclick가 지원하는 사이트에 디지털 광고를 배포하기 위해 Doubleclick를 이용합니다. 광고는 Doubleclick 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Doubleclick에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Doubleclick에 제공하는 데이터를 사용합니다. Doubleclick 개인정보취급방침
HubSpot
오토데스크는 고객에게 더욱 시의적절하며 관련 있는 이메일 컨텐츠를 제공하기 위해 HubSpot을 이용합니다. 이를 위해, 고객의 온라인 행동 및 오토데스크에서 전송하는 이메일과의 상호 작용에 관한 데이터를 수집합니다. 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID, 이메일 확인율, 클릭한 링크 등이 포함될 수 있습니다. HubSpot 개인정보취급방침
Twitter
오토데스크는 Twitter가 지원하는 사이트에 디지털 광고를 배포하기 위해 Twitter를 이용합니다. 광고는 Twitter 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Twitter에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Twitter에 제공하는 데이터를 사용합니다. Twitter 개인정보취급방침
Facebook
오토데스크는 Facebook가 지원하는 사이트에 디지털 광고를 배포하기 위해 Facebook를 이용합니다. 광고는 Facebook 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Facebook에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Facebook에 제공하는 데이터를 사용합니다. Facebook 개인정보취급방침
LinkedIn
오토데스크는 LinkedIn가 지원하는 사이트에 디지털 광고를 배포하기 위해 LinkedIn를 이용합니다. 광고는 LinkedIn 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 LinkedIn에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 LinkedIn에 제공하는 데이터를 사용합니다. LinkedIn 개인정보취급방침
Yahoo! Japan
오토데스크는 Yahoo! Japan가 지원하는 사이트에 디지털 광고를 배포하기 위해 Yahoo! Japan를 이용합니다. 광고는 Yahoo! Japan 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Yahoo! Japan에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Yahoo! Japan에 제공하는 데이터를 사용합니다. Yahoo! Japan 개인정보취급방침
Naver
오토데스크는 Naver가 지원하는 사이트에 디지털 광고를 배포하기 위해 Naver를 이용합니다. 광고는 Naver 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Naver에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Naver에 제공하는 데이터를 사용합니다. Naver 개인정보취급방침
Quantcast
오토데스크는 Quantcast가 지원하는 사이트에 디지털 광고를 배포하기 위해 Quantcast를 이용합니다. 광고는 Quantcast 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Quantcast에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Quantcast에 제공하는 데이터를 사용합니다. Quantcast 개인정보취급방침
Call Tracking
오토데스크는 캠페인을 위해 사용자화된 전화번호를 제공하기 위하여 Call Tracking을 이용합니다. 그렇게 하면 고객이 오토데스크 담당자에게 더욱 빠르게 액세스할 수 있으며, 오토데스크의 성과를 더욱 정확하게 평가하는 데 도움이 됩니다. 제공된 전화번호를 기준으로 사이트에서 고객 행동에 관한 데이터를 수집할 수도 있습니다. Call Tracking 개인정보취급방침
Wunderkind
오토데스크는 Wunderkind가 지원하는 사이트에 디지털 광고를 배포하기 위해 Wunderkind를 이용합니다. 광고는 Wunderkind 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Wunderkind에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Wunderkind에 제공하는 데이터를 사용합니다. Wunderkind 개인정보취급방침
ADC Media
오토데스크는 ADC Media가 지원하는 사이트에 디지털 광고를 배포하기 위해 ADC Media를 이용합니다. 광고는 ADC Media 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 ADC Media에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 ADC Media에 제공하는 데이터를 사용합니다. ADC Media 개인정보취급방침
AgrantSEM
오토데스크는 AgrantSEM가 지원하는 사이트에 디지털 광고를 배포하기 위해 AgrantSEM를 이용합니다. 광고는 AgrantSEM 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 AgrantSEM에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 AgrantSEM에 제공하는 데이터를 사용합니다. AgrantSEM 개인정보취급방침
Bidtellect
오토데스크는 Bidtellect가 지원하는 사이트에 디지털 광고를 배포하기 위해 Bidtellect를 이용합니다. 광고는 Bidtellect 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Bidtellect에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Bidtellect에 제공하는 데이터를 사용합니다. Bidtellect 개인정보취급방침
Bing
오토데스크는 Bing가 지원하는 사이트에 디지털 광고를 배포하기 위해 Bing를 이용합니다. 광고는 Bing 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Bing에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Bing에 제공하는 데이터를 사용합니다. Bing 개인정보취급방침
G2Crowd
오토데스크는 G2Crowd가 지원하는 사이트에 디지털 광고를 배포하기 위해 G2Crowd를 이용합니다. 광고는 G2Crowd 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 G2Crowd에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 G2Crowd에 제공하는 데이터를 사용합니다. G2Crowd 개인정보취급방침
NMPI Display
오토데스크는 NMPI Display가 지원하는 사이트에 디지털 광고를 배포하기 위해 NMPI Display를 이용합니다. 광고는 NMPI Display 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 NMPI Display에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 NMPI Display에 제공하는 데이터를 사용합니다. NMPI Display 개인정보취급방침
VK
오토데스크는 VK가 지원하는 사이트에 디지털 광고를 배포하기 위해 VK를 이용합니다. 광고는 VK 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 VK에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 VK에 제공하는 데이터를 사용합니다. VK 개인정보취급방침
Adobe Target
오토데스크는 사이트의 새 기능을 테스트하고 이러한 기능의 고객 경험을 사용자화하기 위해 Adobe Target을 이용합니다. 이를 위해, 고객이 사이트를 방문해 있는 동안 행동 데이터를 수집합니다. 이 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역, IP 주소 또는 장치 ID, 오토데스크 ID 등이 포함될 수 있습니다. 고객은 기능 테스트를 바탕으로 여러 버전의 오토데스크 사이트를 경험하거나 방문자 특성을 바탕으로 개인화된 컨텐츠를 보게 될 수 있습니다. Adobe Target 개인정보취급방침
Google Analytics (Advertising)
오토데스크는 Google Analytics (Advertising)가 지원하는 사이트에 디지털 광고를 배포하기 위해 Google Analytics (Advertising)를 이용합니다. 광고는 Google Analytics (Advertising) 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Google Analytics (Advertising)에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Google Analytics (Advertising)에 제공하는 데이터를 사용합니다. Google Analytics (Advertising) 개인정보취급방침
Trendkite
오토데스크는 Trendkite가 지원하는 사이트에 디지털 광고를 배포하기 위해 Trendkite를 이용합니다. 광고는 Trendkite 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Trendkite에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Trendkite에 제공하는 데이터를 사용합니다. Trendkite 개인정보취급방침
Hotjar
오토데스크는 Hotjar가 지원하는 사이트에 디지털 광고를 배포하기 위해 Hotjar를 이용합니다. 광고는 Hotjar 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Hotjar에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Hotjar에 제공하는 데이터를 사용합니다. Hotjar 개인정보취급방침
6 Sense
오토데스크는 6 Sense가 지원하는 사이트에 디지털 광고를 배포하기 위해 6 Sense를 이용합니다. 광고는 6 Sense 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 6 Sense에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 6 Sense에 제공하는 데이터를 사용합니다. 6 Sense 개인정보취급방침
Terminus
오토데스크는 Terminus가 지원하는 사이트에 디지털 광고를 배포하기 위해 Terminus를 이용합니다. 광고는 Terminus 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 Terminus에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 Terminus에 제공하는 데이터를 사용합니다. Terminus 개인정보취급방침
StackAdapt
오토데스크는 StackAdapt가 지원하는 사이트에 디지털 광고를 배포하기 위해 StackAdapt를 이용합니다. 광고는 StackAdapt 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 StackAdapt에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 StackAdapt에 제공하는 데이터를 사용합니다. StackAdapt 개인정보취급방침
The Trade Desk
오토데스크는 The Trade Desk가 지원하는 사이트에 디지털 광고를 배포하기 위해 The Trade Desk를 이용합니다. 광고는 The Trade Desk 데이터와 고객이 사이트를 방문하는 동안 오토데스크가 수집하는 행동 데이터 모두에 기초하여 제공됩니다. 오토데스크가 수집하는 데이터에는 고객이 방문한 페이지, 시작한 체험판, 재생한 동영상, 구매 내역 및 IP 주소 또는 장치 ID가 포함될 수 있습니다. 이 정보는 The Trade Desk에서 고객으로부터 수집한 데이터와 결합될 수 있습니다. 오토데스크는 디지털 광고 경험에 대한 사용자화를 개선하고 고객에게 더욱 관련 있는 광고를 제시하기 위해 The Trade Desk에 제공하는 데이터를 사용합니다. The Trade Desk 개인정보취급방침
RollWorks
We use RollWorks to deploy digital advertising on sites supported by RollWorks. Ads are based on both RollWorks data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that RollWorks has collected from you. We use the data that we provide to RollWorks to better customize your digital advertising experience and present you with more relevant ads. RollWorks Privacy Policy

정말 더 적은 온라인 경험을 원하십니까?

오토데스크는 고객 여러분에게 좋은 경험을 드리고 싶습니다. 이전 화면의 범주에 대해 "예"를 선택하셨다면 오토데스크는 고객을 위해 고객 경험을 사용자화하고 향상된 응용프로그램을 제작하기 위해 귀하의 데이터를 수집하고 사용합니다. 언제든지 개인정보 처리방침을 방문해 설정을 변경할 수 있습니다.

고객의 경험. 고객의 선택.

오토데스크는 고객의 개인 정보 보호를 중요시합니다. 오토데스크에서 수집하는 정보는 오토데스크 제품 사용 방법, 고객이 관심을 가질 만한 정보, 오토데스크에서 더욱 뜻깊은 경험을 제공하기 위한 개선 사항을 이해하는 데 도움이 됩니다.

오토데스크에서 고객님께 적합한 경험을 제공해 드리기 위해 고객님의 데이터를 수집하고 사용하도록 허용하시겠습니까?

선택할 수 있는 옵션을 자세히 알아보려면 이 사이트의 개인 정보 설정을 관리해 사용자화된 경험으로 어떤 이점을 얻을 수 있는지 살펴보거나 오토데스크 개인정보 처리방침 정책을 확인해 보십시오.