Статья
Статья
Статья

Cradle to Cradle Goes BIM: Ein neues Zeitalter für die Gebäudeplanung?

Share this Article

Kreislaufähiges Bauen und Digitalisierung unter einem Hut?  Das geht, sagen die Experten der Drees & Sommer SE und der EPEA GmbH. Im Rahmen verschiedener Projekte verbinden sie erstmals die digitale Planungsmethode BIM mit dem Cradle to Cradle-Designprinzip. Die komplexen Zusammenhänge dieses Ansatzes für eine konsequente Kreislaufwirtschaft werden unter Verwendung von Autodesk Revit, dem offenen Standard IFC und dem Solibri Model Checker einfach und verständlich dargestellt.

Ob CO2-Fußabdruck, Gesundheit, Flexibilität, Recyclingfähigkeit oder Trennbarkeit – alle relevanten Kriterien erhalten im 3D-Gebäudemodell jeweils eindeutige Farbskalen zur Identifikation und Bewertung der Qualitäten. So wird für alle Beteiligten klar ersichtlich, welche Elemente potenziell noch optimiert werden können oder bereits positiv sind. Für unsere Experten steht daher fest: Cradle to Cradle und BIM ist eine Kombination, die ein neues Zeitalter einläutet und die Zukunft des Bauens mitbestimmt.

Cradle to Cradle goes BIM: Ein neues Zeitalter für die Gebäudeplanung?

Einleitung

Cradle to Cradle

Cradle to Cradle (von der Wiege zur Wiege) ist ein Designprinzip, das in den 1990er Jahren von Prof. Dr. Michael Braungart, William McDonough und EPEA Hamburg entwickelt wurde. Es beschreibt die sichere und potentiell unendliche Zirkulation von Materialien und Nährstoffen in Kreisläufen. Im biologischen Kreislauf zirkulieren Verbrauchsgüter, wie z.B. Naturfasern, die nach ihrem Gebrauch sicher in diesen zurückgeführt werden können. Im technischen Kreislauf zirkulieren Gebrauchsgüter, wie zum Beispiel Elektronikartikel oder Fußböden (Abbildung 1).

Diese Produkte werden bereits im Design- und im Herstellungsprozess als Ressourcen für die nächste Nutzungsphase optimiert. Alle Inhaltsstoffe sind nach Cradle to Cradle chemisch unbedenklich und kreislauffähig.

1
Abbildung 1 - Kreisläufe des Cradle to Cradle Prinzips.

Zielsetzung

Dieser Artikel beschreibt die notwendigen Schritte, um im OpenBIM Kontext unter Verwendung der Programme Autodesk Revit, des Revit IFC-Exporters und dem Solibri Model Checker Cradle to Cradle Bewertungskriterien anhand digitaler Gebäudemodelle berechnen, visualisieren und in Form des Building Circularity Passport sowie verschiedener Dashboards auswerten zu können (Abbildung 2).

Dabei ist er nicht als vollumfängliches User-Manual angelegt, sondern soll interessante Anreize für Nutzer*innen unterschiedlichster Kenntnisstände aus verschiedenen Fachdisziplinen bieten. Zunächst werden hierzu verschiedene, grundlegende Konfigurationsmöglichkeiten in der Autorensoftware Autodesk Revit im Kontext marktüblicher Modellierungsstrategien an reduzierten Modellbeispielen beleuchtet.

Daran anschließend folgt der IFC-Export. Die weitere Verarbeitung der Modelldaten im Nemetschek Solibri Model Checker im Zusammenspiel mit den Microsoft Applikationen Excel und Power BI wird in Ausschnitten anhand des Projektes „The Cradle“ der Interboden GmbH & Co. KG dargestellt.

Abbildung 2 – Softwarelandschaft
Abbildung 2 – Softwarelandschaft.

Eingrenzung

Der Fokus dieses Beitrags liegt auf der interdisziplinären Zusammenarbeit an der Schnittstelle zwischen Architektur, Bauphysik und EPEA. Zentrales Motiv ist die Verwendung des verstärkt an Bedeutung gewinnenden, offenen Austauschformates der Industry Foundation Classes (IFC). Daher wird auf Revit interne Auswertungsmöglichkeiten nicht unmittelbar eingegangen.

Die beiden Hauptabschnitte des Artikels gliedern sich in Erstellung und Export der Daten in Autodesk Revit, sowie in die Weiterverarbeitung und Interpretation dieser Modelldaten im IFC-Format in Solibri Office. Um dem Beitrag folgen zu können sind Revit-Grundkenntnisse und erste Erfahrungen mit dem IFC-Exporter grundsätzlich vorteilhaft, aber keine Voraussetzung.

Die beispielhaften Modellausschnitte sind anhand des Standard Autodesk Templates Architektur D-A-CH mit kleineren Anpassungen in Revit 2019.2 erzeugt und zudem auf Funktionsfähigkeit in 2021.1 getestet worden. Auf viele der Fragestellungen, die hinsichtlich der technischen Durchführung entstehen können, hält das Netzwerk der Autodesk University für Interessierte vollumfängliche Antworten bereit.

Der zweite Abschnitt des Artikels beschreibt die Verarbeitung von IFC-Modelldaten mit Solibri Office. Hier werden insbesondere Grundkonzepte der Standardisierung, konzeptionelle Zusammenhänge und Wechselwirkungen verschiedener Anschlussapplikationen im Überblick beschrieben.

Die genutzten Programmfunktionen sind verkürzt dargestellt. Bei Anwendungsfragen bietet auch Solibri weiterführende Materialien online an.

Ausgangslage

Die Grundlage des Workflows bilden die Angaben zu allen Regelbauteilen und deren Schichtdicke, Material und Dichte. Diese Informationen werden häufig von der Bauphysik in Form eines Bauteilkataloges abgebildet. In dem hier beschriebenen Beispiel wird der „conpact“ - Bauteilkatalog eingesetzt (Abbildung 3).

Abbildung 3 – Übersicht conpact Bauteilkatalog, Bauteilnummer
Abbildung 3 – Übersicht conpact Bauteilkatalog, Bauteilnummer.

1. Revit: Bauelemente und Parameter erstellen

Auf Basis der über Bauteilparameter integrierten Bauteilnummer gemäß des Bauteilkataloges lässt sich der Bezug zum BIM-Modell einfach herstellen.Alternativ kann bei Systemfamilien der Typ bzw. im Falle ladbarer Familien der Familienname um diese Codierung ergänzt werden.

Sofern eine Beschriftung der Codierung im Projektverlauf gewünscht ist, bietet sich der Einsatz eines gemeinsam genutzten Parameters an.

Die gewählte Parameterart (Typ/Exemplar) ist in erster Linie abhängig vom genutzten Template und dem Aufbau des zugehörigen Contents. Die erstmalige Umsetzung im Projekt sollte in jedem Falle mit dem BIM-Verantwortlichen des Planers abgestimmt werden.

Allgemein ist anzumerken, dass eine Integration über Typparameter für den Nutzer zwar leichter kontrollierbar wirkt, den Content-Umfang jedoch beeinflussen kann. Der Einsatz von Exemplar Parametern beeinflusst die Content-Struktur nicht, kann jedoch für manche Nutzer*Innen einen sehr kleinteiligen und daher fehleranfälligen Eindruck im Rahmen der fortlaufenden Projektbearbeitung machen.

Modellierungsarten

Je nach gewählter Modellierungsstrategie lässt sich die Bauteilnummer nun direkt, bzw. bei getrennt modellierten Aufbauten unter Ergänzung der Bauteilschichten, den jeweiligen Modellelement der Kategorien zuordnen.

Abbildung 4 – Übersicht der vereinfachten Modellierungsarten
Abbildung 4 – Übersicht der vereinfachten Modellierungsarten.

Die folgend beschriebenen Modellierungsarten (Abbildung 4) sind nicht ausschließlich Revit spezifisch und haben aufgrund des Zielformates der IFC einen „universellen Charakter“.

Variante A – Aufbau gesamt

Systemfamilien bilden in dieser Variante (Abbildung 5) jeweils den gesamten Schichtaufbau ab. Spätestens zu Beginn der Entwurfsplanung bietet sich häufig die Trennung der Fußbodenaufbauten und der Rohdecken an. Des Weiteren ist die Kategorie Decken zur Umsetzung der Abhangdecken vorgesehen. Daher liegt der Schwerpunkt zumeist auf den aufgehenden Bauteilen.

Die Nummer des Bauteilkataloges ist in den Parameter „PP_BT-Nr“ ohne zusätzliche Anpassung mit dem Wert „203“ übertragbar.

Es handelt sich um eine bevorzugte Modellierungsart für Anwendungsfälle wie den modellbasierten ENEV-Nachweis oder Heiz- und Kühllastberechnungen im Umfeld des Energiedesigns, der Bauphysik und Gebäudetechnik. Im Zusammenhang des IFC-Exportes ist diese Art nur bedingt geeignet für Cradle to Cradle Zwecke, da Bauteilaufbauten nicht ausreichend differenziert bewert- und visualisierbar sind (Abbildung 6).

Abbildung 5 – Mehrschichtige Modellierung, Bauteilnummer des Gesamtaufbaus
Abbildung 5 – Mehrschichtige Modellierung, Bauteilnummer des Gesamtaufbaus.
Abbildung 6 – Variante A, IFC-Export in Solibri, Gesamtaufbau
Abbildung 6 – Variante A, IFC-Export in Solibri, Gesamtaufbau.

Variante B – Aufbau getrennt

Systemfamilien bilden hier (Abbildung 7) jeweils nur einen Teil des gesamten Schichtaufbaus ab.

Insbesondere der Rohbau wird separat erstellt. Alle übrigen Schichten werden sinnvoll paketiert, um eine unnötige Kleinteiligkeit des Modells zu verhindern. Das Trennen nach Kostengruppen im Kontext der Bauteil- und Mengenauswertung kann ebenfalls ausschlaggebend sein für diese Vorgehensweise.

Die Codierung des Bauteilkataloges ist in den Parameter „PP_BT-Nr“ unter Ergänzung der zusammengefassten Bauteilschichten mit dem Wert „203_1-4“ leicht übertragbar.

Dies ist eine geeignete Modellierungsart im Umfeld modellbasierter Mengen- bzw. Kostenermittlung sowie bei einer interdisziplinären Zusammenarbeit zwischen der Architektur und Tragwerksplanung. Vorteile zeigen sich auch im Rahmen der Koordinationsprüfung.

Im Zusammenhang des IFC-Exportes ist diese Modellierungsstrategie je nach Granularität geeignet für C2C Zwecke, da Bauteilaufbauten je nach Paketierung ausreichend differenziert bewertbar sind (Abbildung 8).

Abbildung 7 – Getrennte Modellierung, Bauteilnummer des Gesamtaufbaus inkl. Schichtangaben
Abbildung 7 – Getrennte Modellierung, Bauteilnummer des Gesamtaufbaus inkl. Schichtangaben.
Abbildung 8 – Variante B, IFC-Export in Solibri, Getrennter Gesamtaufbau
Abbildung 8 – Variante B, IFC-Export in Solibri, Getrennter Gesamtaufbau

Variante C – Aufbau gesamt + Teilelemente

Die dritte Möglichkeit (Abbildung 9) stellt eine Kombination der zuvor genannten Varianten dar, die Modellstruktur ist grundsätzlich identisch zu Variante A. Zusätzlich werden Teilelemente der Bauteilaufbauten erzeugt. Dies kann projektweit oder selektiv für einzelne Bauteile erfolgen.

Die Nummer der Basisbauteile gemäß Bauteilkatalog kann in den Parameter „PP_BT-Nr“ der Teilelemente unter Berücksichtigung der zugehörigen Schichtnummer z.B. anhand eines Dynamo-Skripts oder über Bauteillisten „vererbt“ werden. Hier mit dem Wert „203_1“ übergeben.

Es handelt sich in erster Linie um eine ergänzende Variante, die speziell ausgewählte Bauteilaufbauten auf Schichtebene differenzierter auswert- und beurteilbar macht.

Interessant ist im Zusammenhang des IFC-Exportes die Freiheit, sowohl das Basisbauteil der jeweiligen Kategorie bzw. Entität, als auch die zu diesem in Beziehung stehenden Einzelschichten in Form von Gebäudekomponententeilen, auszuwerten zu können (Abbildung 10).

Die notwendigen Konfigurationsschritte zur Umsetzung dieses Mischkonzeptes werden im folgenden Abschnitt ausführlicher beschrieben.

Abbildung 9 – Teilelemente, Bauteilnummer des Gesamtaufbaus mit Schichtangabe
Abbildung 9 – Teilelemente, Bauteilnummer des Gesamtaufbaus mit Schichtangabe.
Abbildung 10 – Variante C, IFC-Export in Solibri, Teilelemente als Gebäudekomponententeile des Gesamtaufbaus
Abbildung 10 – Variante C, IFC-Export in Solibri, Teilelemente als Gebäudekomponententeile des Gesamtaufbaus.

Alternative Vorgehensweisen

Der Bauteilkatalog kann in Revit direkt über den Schichtaufbau des jeweiligen Bauteiltyps, den zugeordneten Materialien sowie deren thermischen Eigenschaften abgebildet werden.

Dieses Vorgehen kann je nach Ausdifferenzierung und Granularität des Bauteilkataloges einen erhöhten Bearbeitungs- bzw. Anpassungsaufwand nach sich ziehen. Dieser sollte daher von den Projektbeteiligten unbedingt hinsichtlich des Aufwand-Nutzen-Verhältnisses abgewogen werden.

Unabhängig von einer projektbezogenen Implementierung eines Bauteilkataloges ist eine solche Standardisierung im Unternehmenskontext in jedem Falle empfehlenswert. Gleiches gilt für die Verwendung von Codierungsparameter wie dem Systemparameter „Baugruppenkennzeichen“.

Maßgebliche Einflussfaktoren zur Umsetzungstiefe sind Projektkonstellation, angewandte Standards oder Vorgaben und die Planungsphase bzw. der Implementierungszeitpunkt.

2. Revit: IFC-Exporteinstellungen konfigurieren

Nach Integration der Bauteilnummer in Abhängigkeit zur eingesetzten Modellierungsstrategie sollen Modelldaten im IFC-Format ausgetauscht werden. Die Abbildungen zeigen Modelldaten, die nach Variante B getrennt modelliert wurden.

Für den hier beschriebenen Anwendungsfall ist nicht ausschließlich die korrekte Übertragung der Geometrie, sondern auch der hinterlegten Parameter ausschlaggebend.

Wesentlich ist die Codierung und die notwendige Leitmenge je Kategorie bzw. Entität im Rahmen der folgenden Verarbeitungsschritte im Solibri Model Checker - oder einer vergleichbaren Applikation.

Die vielfältigen IFC-Exporter Konfigurationsmöglichkeiten sind ausführlich im „Revit IFC Handbuch“ beschrieben und werden daher nicht vollumfänglich beleuchtet. Die folgend gezeigte Herangehensweise ermöglicht eine pragmatische Lösung, um geordnete und auf das Wesentliche reduzierte Daten zu übergeben.

Konfiguration

Eigenschaftensätze über Revit Bauteillisten

Je Kategorie werden dazu Revit Bauteillisten genutzt. Diese enthalten Angaben zur Lage, dem Elementtyp, der Bauteilnummer und den erforderlichen Mengen. Die Parameternamen sind in den Spaltenköpfen optional mit einer fortlaufenden Nummer ergänzt (Abbildung 11). Auf diese Weise lässt sich nach Export innerhalb der IFC die zuvor gezeigte, klare Reihenfolge der Eigenschaften bzw. Properties innerhalb eines benannten Propertysets des Elements integrieren.

Abbildung 11 – Bauteillisten mit Vorkürzel Pset_ und nummerierten Spaltenköpfen, Variante B
Abbildung 11 – Bauteillisten mit Vorkürzel Pset_ und nummerierten Spaltenköpfen, Variante B.

Die Bauteillisten werden mit dem Vorkürzel „Pset_“ versehen, um anhand der entsprechenden Exportoption nur diese Listen als Propertysets in die IFC zu übertragen (Abbildung 12).

Abbildung 12 – Exporter Einstellungen zur Übergabe der Bauteillisten als Propertyset
Abbildung 12 – Exporter Einstellungen zur Übergabe der Bauteillisten als Propertyset.

Zusätzlich werden die „BaseQuantities“ im Sinne der Leitmengen für die jeweilige Kategorie bzw. Entität zu Prüfzwecken übergeben. Das Resultat ist eine reduzierte und geordnete Übergabe der erforderlichen Bauteilinformationen.

Integration einer übergeordneten Klassifikation

Da der Bauteilnummer in diesem Arbeitsablauf eine übergeordnete Bedeutung zukommt kann es sinnvoll sein, diese im Zuge des Exportes als Klassifikation nach Vorbild der DIN 276 oder Uniformat-Classification zu behandeln. Über die Einstellungen des IFC-Exportes kann auf einen beliebigen Parameter verwiesen werden, der direkt in die IFC-Datei übertragen wird (Abbildung 13 / Abbildung 14).

Dieses Vorgehen erleichtert vielfach die Weiterverwendung durch weitere Projektbeteiligte und ist insbesondere empfehlenswert im Zuge mengenbezogener Anwendungsfälle.

Nach Umsetzung der beschriebenen Konfigurationsschritte sind die exportierten Modelldaten im IFC-Format nun bereit zur Weitergabe an die anderen Projektbeteiligten zum Zweck der Auswertung.

Abbildung 13 – Exporter Einstellungen zur Übergabe einer Klassifikation anhand eines Parameters
Abbildung 13 – Exporter Einstellungen zur Übergabe einer Klassifikation anhand eines Parameters.
Abbildung 14 – Klassifikation in Solibri, Quelle IFC
Abbildung 14 – Klassifikation in Solibri, Quelle IFC.

Alternative Vorgehensweise

Alternativ lässt sich der gesamte Informationsgehalt aller exportierten Bauteile übergeben (Abbildung 15).

Die Parametergruppen werden hierbei in Propertysets übersetzt und alle Parameter mit vergebenen Werten übertragen.

Zum einen resultiert dieser Ansatz in längeren Exportzeiten, einer erhöhten Dateigröße und kann gegebenenfalls die Weiterverarbeitung durch nachfolgende Projektbeteiligte aufgrund der Informationsmenge erschweren.

Zum anderen wird gewährleistet, dass die Informationsübergabe möglichst verlustfrei erfolgt.

Parameter ohne vergebenen Wert werden nicht in die IFC übertragen. Sollten Propertysets keine Eigenschaften bzw. Properties mit Wert enthalten entfällt folgerichtig das Propertyset selbst.

Abbildung 15 – Exporter Einstellungen zur Übergabe aller Revit Eigenschaften
Abbildung 15 – Exporter Einstellungen zur Übergabe aller Revit Eigenschaften.

Export der Variante C inkl. Gebäudekomponententeilen

Um die in Variante C gezeigten Teilelemente im Rahmen des IFC-Exportes zu übertragen werden die notwendigen Einstellungen in diesem Abschnitt detaillierter beschrieben.

Zuerst sollte in Revit über die Ansichtseigenschaften der gewünschten 3D-Ansicht zum Export im Bereich „Grafiken“ die Option „Teilelemente anzeigen“ für „Sichtbarkeit der Teilelemente“ gewählt werden (Abbildung 16).

Abbildung 16 – Variante C, 3D-Ansichtseinstellung zur Sichtbartkeit der Teilemente
Abbildung 16 – Variante C, 3D-Ansichtseinstellung zur Sichtbartkeit der Teilemente.

Im darauffolgenden Schritt des Exportes ist in den Einstellungen des IFC-Exporters über „Einrichtung ändern“ im Reiter „Zusätzliche Inhalte“ die Option „Nur in der Ansicht sichtbare Elemente exportieren“ zu aktivieren. Auf diese Art wird gewährleistet, dass die Originalelemente als Container und die Teilelemente als zugeordnete Gebäudekomponententeile übertragen werden (Abbildung 17).

Abbildung 17 – Exporter Einstellungen zur Übergabe nur in der Ansicht sichtbarer Elemente
Abbildung 17 – Exporter Einstellungen zur Übergabe nur in der Ansicht sichtbarer Elemente.

Sowohl die Container als auch die Gebäudekomponententeile enthalten je nach gewählter Exportkonfiguration alle ihnen zugehörigen Properties. Hier bietet sich unter anderem die zuvor beschrieben Variante der Übergabe aller Revit Eigenschaften an.

3. Solibri: Bearbeitung der Modelldaten

Nun folgt die Weiterverarbeitung der vorkonfigurierten IFC-Modelldaten in einem angeschlossenen Programm zu Koordinationszwecken.

In dem hier beschrieben Softwareumfeld kommt der Solibri Model Checker zu Einsatz, eine Software mit dem Schwerpunkt auf regelbasierter Qualitätskontrolle digitaler Gebäudemodelle im IFC-Format.

Um die nachfolgend beschriebenen Programmfunktionen der Klassifikationen und Auswertung nutzen zu können wird eine Solibri Site oder Office Lizenz benötigt. Zur Umsetzung des Workflows im ausschnittsweise gezeigten Projektes „The Cradle“ wurde Solibri Office genutzt.

Die Modelldaten des planenden Architekten HPP wurden mithilfe von Revit 2018 erzeugt.

Umsetzung

Klassifikation

Zunächst soll das Architekturmodell und die in diesem enthaltenen Elemente nach Vorgabe des Bauteilkataloges ausgewertet werden. Die so gegliederten Modellelemente und Mengen ermöglichen den Bezug zu „conpact“, den dort hinterlegten Ökobilanz-Daten und Cradle to Cradle Bewertungskriterien, welche zur Analyse und Bewertung des Projektes notwendig sind.

Die Grundlage dazu bilden in diesem Beispiel abgestimmte Bauteilparameter nach dem Vorbild der zuvor beschriebenen Exportkonfiguration anhand von Revit-Bauteillisten je Kategorie (Abbildung 18).

Abbildung 18 – The Cradle IFC-Modell in Solibri, abgestimmte Propertysets inkl. Bauteilcodierung
Abbildung 18 – The Cradle IFC-Modell in Solibri, abgestimmte Propertysets inkl. Bauteilcodierung.

Nach Öffnen des Modells in Solibri Office werden die Modellelemente anhand der Programmfunktion „Klassifikation“ geordnet und sortiert. Genutzt wird hier eine Hauptklassifikation „KL_BTK-NR.“ zur übergeordneten Einordnung der Elemente.

Im Bereich der Klassifizierungsregeln wird im Modell der Architektur nach dem Revit-Parameter „BT-Nr.“ im jeweiligen Propertyset gefiltert. Das Ergebnis wird der vorgegebenen Codierung aus dem „conpact“ - Bauteilkatalog zugeordnet (Abbildung 19 / Abbildung 20).

Abbildung 19 – Solibri Funktion Klassifkation, Klassifikationsnamen und Regeln am Beispiel 913.2s
Abbildung 19 – Solibri Funktion Klassifkation, Klassifikationsnamen und Regeln am Beispiel 913.2s.
Abbildung 20 – The Cradle IFC-Modell in Solibri, klassifizierte Elemente in 913.2s
Abbildung 20 – The Cradle IFC-Modell in Solibri, klassifizierte Elemente in 913.2s.

Auswertung

Die nun sortierten Modellinhalte werden mittels der Programmfunktion „Auswertung“, welche mit Revit Bauteillisten vergleichbar ist, ausgewertet (Abbildung 21).

Der Export der Auswertung erfolgt im Excel-Format und enthält alle notwendigen Bauteilmengen, gegliedert nach Bauteilnummer.

Abbildung 21 – Solibri Funktion Auswertung, Auswertung nach KL_BTK-NR und KL_Leitmenge
Abbildung 21 – Solibri Funktion Auswertung, Auswertung nach KL_BTK-NR und KL_Leitmenge.

Hinweis

Sofern keine Codierungsparameter im Modell hinterlegt sind kann aufgrund der Mehrstufigkeit der Klassifizierungsregeln nach Kombinationen aus unterschiedlichsten Elementeigenschaften gefiltert werden.

Daher eigenen sich Klassifikationen besonders für den Aufbau von Standards. Sie bieten die Möglichkeit, variierende Datenstrukturen mit relativ geringem Aufwand in eine vorgegebene Zielstruktur zu überführen.

4. Solibri: Auswertung der Modelldaten

Im vorletzten Schritt wird der Bezug zum „conpact“-Bauteilkatalog hergestellt. Die gegliederten Mengenexporte werden genutzt, um das „Global Warming Potential“ GWP bzw. den CO2- Fußabdruck jedes ausgewerteten Modellelementes zu berechnen.

Diese Berechnung dient der Einordnung und Visualisierung der Bauteile je folgend genanntem Cradle to Cradle Bewertungskriterium (Abbildung 22):

  • CO2-Fußabdruck (KL_C2C_CO2)

  • Gesundheit (KL_C2C_Dismount)

  • Flexibilität (KL_C2C_Health)

  • Recyclingfähigkeit  (KL_C2C_Rec)

  • Trennbarkeit (KL_C2C_Sep)

Abbildung 22 – Übersicht der Solibri Klassifikationen nach Bewertungskriterium und Klassifkationsnamen
Abbildung 22 – Übersicht der Solibri Klassifikationen nach Bewertungskriterium und Klassifkationsnamen.

Hierbei ist die gewählte Modellierungsstrategie erneut maßgeblich, um eine möglichst dezidierte Beurteilung der Planung zu ermöglichen.

Ergebnisse
Building Circularity Passport / Dashboards

Die ausgewerteten Modelldaten dienen als Datengrundlage für den Building Circularity Passport (Abbildung 23 / Abbildung 24), welcher mit Microsoft Power BI erstellt wird. Dieser bietet einen direkten und für alle Beteiligten leicht verständlichen, graphischen Überblick über die Qualitäten und die Kreislauffähigkeit des Gebäudes.

Abbildung 23 – Auszug der Building Circularity Passport® Inhalte
Abbildung 23 – Auszug der Building Circularity Passport Inhalte.

Solibri Klassifikationen / Visualisierung

Die Solibri Klassifikationen (Abbildung 22, Abbildung 25 / Abbildung 26) heben die fünf Cradle to Cradle Bewertungskriterien farblich hervor. Die Berechnungsergebnisse werden über Excel und VBA-Scripte anhand eines Excel-Templates zurück in Solibri in die verschiedenen Sub- Klassifikationen importiert, um diese abschließend zu visualisieren und Optimierungspotenziale so bis auf Modellelementebene verständlich zu transportieren (Abbildung 27).

Abbildung 25 – Gesamtmodell (links), Klassifikation KL_C2C_CO2 (rechts)
Abbildung 25 – Gesamtmodell (links), Klassifikation KL_C2C_CO2 (rechts).
Abbildung 26 – Klassifikation KL_C2C_Rec: Re- & Upcyling (links), Downcycling (rechts)
Abbildung 26 – Klassifikation KL_C2C_Rec: Re- & Upcyling (links), Downcycling (rechts).
Abbildung 27 – Solibri Funktion Auswertung, finale Bewertung nach Reimport Klassifikationen
Abbildung 27 – Solibri Funktion Auswertung, finale Bewertung nach Reimport Klassifikationen.

Die Ergebnisse können im nativen Format des Solibri Model Checkers weitergegeben und mit Solibri Anywhere, vergleichbar mit Navisworks Freedom, geöffnet werden.

Fazit

Durch die Integration und Pflege weniger Parameterinformationen im Kontext eines bauphysikalischen Bauteilkataloges des jeweiligen Projektes lassen sich auf Grundlage von IFC- Modellen alle wesentlichen Fragen zur Kreislauffähigkeit beantworten – und das mit überschaubarem Aufwand. Einmal implementiert eignet sich die beschriebene Vorgehensweise, um die komplexen Zusammenhänge des Themas Cradle to Cradle modellbezogen für alle fortlaufend verständlich zu machen.

Die Kommunikation mit allen Beteiligten wird vereinfacht und Optimierungspotentiale so besser wahrgenommen für die Gebäude von morgen.

Nächste Schritte

Gewonnen Erkenntnisse können anhand des BIM Collaboration Format (BCF) mit Modellbezug innerhalb der Teams weitergegeben werden und erleichtern somit den Arbeitsprozess. Abschließend ermöglicht die Verwendung von Hyperlinks den Bezug zu externen Datenquellen – wie z.B. dem hier genutzten „conpact“ – Bauteilkatalog.

Moritz Mombour ist seit über 10 Jahren in der Planung und Beratung im Bereich der Baubranche tätig. Bereits im Rahmen seines Architekturstudium an der Technischen Universität Braunschweig und dem anschließenden postgradualen Masterstudium an der Universität für Angewandte Kunst in Wien beschäftigte er sich intensiv mit digitalen Entwurfsmethoden unter Verwendung verschiedener Autodesk-Lösungen. Seinen beruflichen Werdegang begann er 2012 bei der Nickl & Partner Architekten AG, einem international tätigen Planungsbüro mit Schwerpunkt Krankenhaus- und Laborplanung. Hier war er im Bereich der BIM-Prozess- und Standardentwicklung tätig. Im Anschluss hat er in seiner Funktion als Leiter des operativen Beratungsteams der BIMwelt GmbH verschiedene Planungsbüros und Auftraggeber in der D-A-CH Region bei der Umsetzung der Planungsmethode BIM unterstützt. Seit 2019 ist er bei Drees & Sommer im Unternehmensbereich Integrated Design als Leiter digitale Planungsmethoden für die Entwicklung- und Umsetzung interdisziplinärer Workflows in allen Planungsphasen unter Verwendung der Autodesk AEC Collection zuständig. Neben seinem Engagement für den buildingSMART hat er für verschiedene Softwarehersteller Vorträge zu Anwendungs und Implementierungsthemen gehalten und ist Lehrbeauftragter für CAD/BIM an der TU Braunschweig. Seine Hauptthemen sind disziplinübergreifende Standard und Templateentwicklung, modellbasierte Koordination und Auswertung im Open BIM Kontext. Der aktuelle Fokus des Integrated Design Teams liegt auf modularer Planung und der modellbasierten Integration des Cradle 2 Cradle Designprinzips.

Pascal Keppler ist Berater für Circular Engineering bei EPEA und leitet dort die digitale Innovation. Er ist studierter Umweltschutztechniker und seit 2016 für die Drees & Sommer-Gruppe tätig.

______
icon-svg-close-thick

Настройки cookie

Ваша конфиденциальность и оптимизация возможностей работы важны для нас. Мы собираем данные об использовании вами этого сайта с целью адаптации информации и разработки приложений.

Можем ли мы собирать и использовать ваши данные?

Узнайте подробнее о службах сторонних разработчиков., которые мы используем, и нашем заявлении о конфиденциальности.

Обязательные к использованию: требуются для корректной работы нашего сайта и предоставления сервисов

Эти cookie позволяют нам регистрировать ваши предпочтения или информацию о входе в систему, отвечать на ваши запросы или сохранять данные о вашей корзине.

Оптимизация работы: позволят демонстрировать только релевантную информацию

Эти cookie позволят предоставить вам расширенные функциональные возможности и персонализацию. Они могут быть установлены нами или сторонними поставщиками, чьи сервисы мы используем для предоставления информации и персонализации. Если вы не разрешите использование cookie этого типа, некоторые или все сервисы могут оказаться недоступны.

Персонализация рекламы: позволят предлагать вам целевую рекламу

Эти cookie собирают данные о пользователях на основе их действий и интересов, с целью демонстрации релевантных объявлений и отслеживания эффективности. Благодаря им, пользователю будут доступны рекламные материалы, наиболее соответствующие его интересам. Если вы не разрешите использование cookie этого типа, рекламные материалы будут носить менее адресный характер.

icon-svg-close-thick

СЛУЖБЫ СТОРОННИХ РАЗРАБОТЧИКОВ

Узнайте подробнее о службах сторонних разработчиков, которые мы используем для каждой категории, и получите сведения о том, как мы используем данные, которые собрали о вас в интернете.

icon-svg-hide-thick

icon-svg-show-thick

Обязательные к использованию: требуются для корректной работы нашего сайта и предоставления сервисов

Qualtrics
Мы используем Qualtrics для обеспечения обратной связи с клиентами через опросы или онлайн-формы. Вас могут выбрать случайно для участия в опросе или вы можете самостоятельно решить оставить отзыв. Чтобы лучше понять ваш опыт работы с нами, перед заполнением опроса мы собираем данные о ваших действиях. Это помогает нам решить проблемы, с которыми вы могли столкнуться. Политика конфиденциальности Qualtrics
Akamai mPulse
Для сбора данных о поведении клиентов на наших сайтах мы используем Akamai mPulse. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса или идентификаторы устройств, а также учетные записи Autodesk. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Akamai mPulse
Digital River
Для сбора данных о поведении клиентов на наших сайтах мы используем Digital River. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса или идентификаторы устройств, а также учетные записи Autodesk. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Digital River
Dynatrace
Для сбора данных о поведении клиентов на наших сайтах мы используем Dynatrace. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса или идентификаторы устройств, а также учетные записи Autodesk. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Dynatrace
Khoros
Для сбора данных о поведении клиентов на наших сайтах мы используем Khoros. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса или идентификаторы устройств, а также учетные записи Autodesk. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Khoros
Launch Darkly
Для сбора данных о поведении клиентов на наших сайтах мы используем Launch Darkly. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса или идентификаторы устройств, а также учетные записи Autodesk. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Launch Darkly
New Relic
Для сбора данных о поведении клиентов на наших сайтах мы используем New Relic. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса или идентификаторы устройств, а также учетные записи Autodesk. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности New Relic
Salesforce Live Agent
Для сбора данных о поведении клиентов на наших сайтах мы используем Salesforce Live Agent. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса или идентификаторы устройств, а также учетные записи Autodesk. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Salesforce Live Agent
Wistia
Для сбора данных о поведении клиентов на наших сайтах мы используем Wistia. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса или идентификаторы устройств, а также учетные записи Autodesk. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Wistia
Tealium
Для сбора данных о поведении клиентов на наших сайтах мы используем Tealium. Это могут быть посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Tealium
Upsellit
Для сбора данных о поведении клиентов на наших сайтах мы используем Upsellit. Это могут быть посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Upsellit
CJ Affiliates
Для сбора данных о поведении клиентов на наших сайтах мы используем CJ Affiliates. Это могут быть посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности CJ Affiliates
Commission Factory
Для сбора данных о поведении клиентов на наших сайтах мы используем Commission Factory. Это могут быть посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Commission Factory
Google Analytics (Strictly Necessary)
Для сбора данных о поведении клиентов на наших сайтах мы используем Google Analytics (Strictly Necessary). Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса или идентификаторы устройств, а также учетные записи Autodesk. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Google Analytics (Strictly Necessary)
Typepad Stats
Для сбора данных о поведении клиентов на наших сайтах мы используем Typepad Stats. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса или идентификаторы устройств, а также учетные записи Autodesk. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Typepad Stats
Geo Targetly
Мы используем Geo Targetly, чтобы направлять посетителей сайта на наиболее подходящие веб-страницы и/или показывать контент, подобран-ный с учетом их местоположения. Geo Targetly определяет местоположение посетителя сайта по IP-адресу его устройства. Таким образом на сайте (с большой вероятностью) отображается контент на языке региона пользователя.Политика конфиденциальности Geo Targetly
SpeedCurve
Мы используем SpeedCurve для мониторинга и определения производительности вашего веб-сайта путем измерения времени загрузки веб-страницы, а также отклика последующих элементов, таких как изображения, сценарии и текст.Политика конфиденциальности SpeedCurve
Qualified
Qualified is the Autodesk Live Chat agent platform. This platform provides services to allow our customers to communicate in real-time with Autodesk support. We may collect unique ID for specific browser sessions during a chat. Qualified Privacy Policy

icon-svg-hide-thick

icon-svg-show-thick

Оптимизация работы: позволят демонстрировать только релевантную информацию

Google Optimize
Мы используем Google Optimize для тестирования новых возможностей наших сайтов и их адаптации в соответствии с вашими потребностями. Для этого пока вы работаете с сайтами, мы собираем данные поведения. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса, идентификаторы устройств, учетные записи Autodesk и прочее. На основании тестирования возможностей изменяются версии сайтов. Кроме того, на основе атрибутов посетителей на сайтах появляется персонализированный контент. Политика конфиденциальности Google Optimize
ClickTale
Мы используем ClickTale, чтобы получить представление о трудностях, с которыми вы можете столкнуться на наших сайтах. Мы используем записи сеансов, чтобы узнать, как вы взаимодействуете с нашими сайтами, включая все элементы страниц. Ваша личная информация скрыта и не собирается. Политика конфиденциальности ClickTale
OneSignal
Мы используем OneSignal для развертывания цифровой рекламы на сайтах, поддерживаемых OneSignal. Реклама основывается на данных OneSignal и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными OneSignal от клиентов. Мы используем данные, которые предоставляем OneSignal, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности OneSignal
Optimizely
Мы используем Optimizely для тестирования новых возможностей наших сайтов и их адаптации в соответствии с вашими потребностями. Для этого пока вы работаете с сайтами, мы собираем данные поведения. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса, идентификаторы устройств, учетные записи Autodesk и прочее. На основании тестирования возможностей изменяются версии сайтов. Кроме того, на основе атрибутов посетителей на сайтах появляется персонализированный контент. Политика конфиденциальности Optimizely
Amplitude
Мы используем Amplitude для тестирования новых возможностей наших сайтов и их адаптации в соответствии с вашими потребностями. Для этого пока вы работаете с сайтами, мы собираем данные поведения. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса, идентификаторы устройств, учетные записи Autodesk и прочее. На основании тестирования возможностей изменяются версии сайтов. Кроме того, на основе атрибутов посетителей на сайтах появляется персонализированный контент. Политика конфиденциальности Amplitude
Snowplow
Для сбора данных о поведении клиентов на наших сайтах мы используем Snowplow. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса или идентификаторы устройств, а также учетные записи Autodesk. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Snowplow
UserVoice
Для сбора данных о поведении клиентов на наших сайтах мы используем UserVoice. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса или идентификаторы устройств, а также учетные записи Autodesk. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности UserVoice
Clearbit
Služba Clearbit umožňuje doplňování dat v reálném čase za účelem poskytování individuálního a relevantního prostředí pro naše zákazníky. Mezi data, která shromažďujeme, mohou patřit vámi navštívené stránky, aktivované zkušební verze, přehraná videa, provedené nákupy a vaše IP adresa nebo ID zařízení. Политика конфиденциальности Clearbit
YouTube
YouTube — платформа для обмена видеороликами, через которую пользователи могут просматривать и размещать встроенные видеоролики на наших веб-сайтах. YouTube предоставляет данные о зрительской аудитории. Политика конфиденциальности YouTube

icon-svg-hide-thick

icon-svg-show-thick

Персонализация рекламы: позволят предлагать вам целевую рекламу

Adobe Analytics
Для сбора данных о поведении клиентов на наших сайтах мы используем Adobe Analytics. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса или идентификаторы устройств, а также учетные записи Autodesk. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Adobe Analytics
Google Analytics (Web Analytics)
Для сбора данных о поведении клиентов на наших сайтах мы используем Google Analytics (Web Analytics). Это могут быть посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Google Analytics (Web Analytics)
AdWords
Мы используем AdWords для развертывания цифровой рекламы на сайтах, поддерживаемых AdWords. Реклама основывается на данных AdWords и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными AdWords от клиентов. Мы используем данные, которые предоставляем AdWords, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности AdWords
Marketo
Мы используем Marketo для своевременной отправки более актуальных сообщений клиентам по электронной почте. Для этого мы собираем данные о вашем поведении в интернете и взаимодействии с отправляемыми нами сообщениями электронной почты. Данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса, идентификаторы устройств, коэффициенты открытия сообщений электронной почты, сведения о переходах по ссылкам и др. Мы можем объединять эти данные с данными, полученными из других источников, чтобы оптимизировать ваш опыт работы с отделом продаж или службой технической поддержки, а также предлагать более подходящие материалы на основании использования передовых средств анализа данных. Политика конфиденциальности Marketo
Doubleclick
Мы используем Doubleclick для развертывания цифровой рекламы на сайтах, поддерживаемых Doubleclick. Реклама основывается на данных Doubleclick и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными Doubleclick от клиентов. Мы используем данные, которые предоставляем Doubleclick, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности Doubleclick
HubSpot
Мы используем HubSpot для своевременной отправки более актуальных сообщений клиентам по электронной почте. Для этого мы собираем данные о вашем поведении в интернете и взаимодействии с отправляемыми нами сообщениями электронной почты. Данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса, идентификаторы устройств, коэффициенты открытия сообщений электронной почты, сведения о переходах по ссылкам и др. Политика конфиденциальности HubSpot
Twitter
Мы используем Twitter для развертывания цифровой рекламы на сайтах, поддерживаемых Twitter. Реклама основывается на данных Twitter и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными Twitter от клиентов. Мы используем данные, которые предоставляем Twitter, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности Twitter
Facebook
Мы используем Facebook для развертывания цифровой рекламы на сайтах, поддерживаемых Facebook. Реклама основывается на данных Facebook и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными Facebook от клиентов. Мы используем данные, которые предоставляем Facebook, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности Facebook
LinkedIn
Мы используем LinkedIn для развертывания цифровой рекламы на сайтах, поддерживаемых LinkedIn. Реклама основывается на данных LinkedIn и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными LinkedIn от клиентов. Мы используем данные, которые предоставляем LinkedIn, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности LinkedIn
Yahoo! Japan
Мы используем Yahoo! Japan для развертывания цифровой рекламы на сайтах, поддерживаемых Yahoo! Japan. Реклама основывается на данных Yahoo! Japan и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными Yahoo! Japan от клиентов. Мы используем данные, которые предоставляем Yahoo! Japan, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности Yahoo! Japan
Naver
Мы используем Naver для развертывания цифровой рекламы на сайтах, поддерживаемых Naver. Реклама основывается на данных Naver и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными Naver от клиентов. Мы используем данные, которые предоставляем Naver, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности Naver
Quantcast
Мы используем Quantcast для развертывания цифровой рекламы на сайтах, поддерживаемых Quantcast. Реклама основывается на данных Quantcast и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными Quantcast от клиентов. Мы используем данные, которые предоставляем Quantcast, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности Quantcast
Call Tracking
Мы используем Call Tracking для предоставления адаптированных телефонных номеров для наших рекламных кампаний. При этом вы получаете быстрый доступ к нашим агентам, а мы можем получить более точную оценку своей работы. Мы можем собирать данные о вашем поведении на наших сайтах на основе предоставленного телефонного номера. Политика конфиденциальности Call Tracking
Wunderkind
Мы используем Wunderkind для развертывания цифровой рекламы на сайтах, поддерживаемых Wunderkind. Реклама основывается на данных Wunderkind и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными Wunderkind от клиентов. Мы используем данные, которые предоставляем Wunderkind, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности Wunderkind
ADC Media
Мы используем ADC Media для развертывания цифровой рекламы на сайтах, поддерживаемых ADC Media. Реклама основывается на данных ADC Media и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными ADC Media от клиентов. Мы используем данные, которые предоставляем ADC Media, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности ADC Media
AgrantSEM
Мы используем AgrantSEM для развертывания цифровой рекламы на сайтах, поддерживаемых AgrantSEM. Реклама основывается на данных AgrantSEM и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными AgrantSEM от клиентов. Мы используем данные, которые предоставляем AgrantSEM, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности AgrantSEM
Bidtellect
Мы используем Bidtellect для развертывания цифровой рекламы на сайтах, поддерживаемых Bidtellect. Реклама основывается на данных Bidtellect и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными Bidtellect от клиентов. Мы используем данные, которые предоставляем Bidtellect, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности Bidtellect
Bing
Мы используем Bing для развертывания цифровой рекламы на сайтах, поддерживаемых Bing. Реклама основывается на данных Bing и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными Bing от клиентов. Мы используем данные, которые предоставляем Bing, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности Bing
G2Crowd
Мы используем G2Crowd для развертывания цифровой рекламы на сайтах, поддерживаемых G2Crowd. Реклама основывается на данных G2Crowd и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными G2Crowd от клиентов. Мы используем данные, которые предоставляем G2Crowd, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности G2Crowd
NMPI Display
Мы используем NMPI Display для развертывания цифровой рекламы на сайтах, поддерживаемых NMPI Display. Реклама основывается на данных NMPI Display и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными NMPI Display от клиентов. Мы используем данные, которые предоставляем NMPI Display, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности NMPI Display
VK
Мы используем VK для развертывания цифровой рекламы на сайтах, поддерживаемых VK. Реклама основывается на данных VK и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными VK от клиентов. Мы используем данные, которые предоставляем VK, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности VK
Adobe Target
Мы используем Adobe Target для тестирования новых возможностей наших сайтов и их адаптации в соответствии с вашими потребностями. Для этого пока вы работаете с сайтами, мы собираем данные поведения. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса, идентификаторы устройств, учетные записи Autodesk и прочее. На основании тестирования возможностей изменяются версии сайтов. Кроме того, на основе атрибутов посетителей на сайтах появляется персонализированный контент. Политика конфиденциальности Adobe Target
Google Analytics (Advertising)
Мы используем Google Analytics (Advertising) для развертывания цифровой рекламы на сайтах, поддерживаемых Google Analytics (Advertising). Реклама основывается на данных Google Analytics (Advertising) и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными Google Analytics (Advertising) от клиентов. Мы используем данные, которые предоставляем Google Analytics (Advertising), для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности Google Analytics (Advertising)
Trendkite
Мы используем Trendkite для развертывания цифровой рекламы на сайтах, поддерживаемых Trendkite. Реклама основывается на данных Trendkite и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными Trendkite от клиентов. Мы используем данные, которые предоставляем Trendkite, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности Trendkite
Hotjar
Мы используем Hotjar для развертывания цифровой рекламы на сайтах, поддерживаемых Hotjar. Реклама основывается на данных Hotjar и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными Hotjar от клиентов. Мы используем данные, которые предоставляем Hotjar, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности Hotjar
6 Sense
Мы используем 6 Sense для развертывания цифровой рекламы на сайтах, поддерживаемых 6 Sense. Реклама основывается на данных 6 Sense и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными 6 Sense от клиентов. Мы используем данные, которые предоставляем 6 Sense, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности 6 Sense
Terminus
Мы используем Terminus для развертывания цифровой рекламы на сайтах, поддерживаемых Terminus. Реклама основывается на данных Terminus и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными Terminus от клиентов. Мы используем данные, которые предоставляем Terminus, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности Terminus
StackAdapt
Мы используем StackAdapt для развертывания цифровой рекламы на сайтах, поддерживаемых StackAdapt. Реклама основывается на данных StackAdapt и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными StackAdapt от клиентов. Мы используем данные, которые предоставляем StackAdapt, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности StackAdapt
The Trade Desk
Мы используем The Trade Desk для развертывания цифровой рекламы на сайтах, поддерживаемых The Trade Desk. Реклама основывается на данных The Trade Desk и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными The Trade Desk от клиентов. Мы используем данные, которые предоставляем The Trade Desk, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности The Trade Desk
RollWorks
We use RollWorks to deploy digital advertising on sites supported by RollWorks. Ads are based on both RollWorks data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that RollWorks has collected from you. We use the data that we provide to RollWorks to better customize your digital advertising experience and present you with more relevant ads. RollWorks Privacy Policy

Вы уверены, что не хотите узнать обо всех возможностях работы с нашими службами в интернете?

Мы хотим, чтобы вам было комфортно работать с нами. Если вы выберете «Да» для категорий на предыдущем экране, мы будем собирать и использовать ваши данные для адаптации возможностей работы и оптимизации приложений. Настройки можно изменить в любой момент, посетив страницу заявления о конфиденциальности.

Удобство работы зависит от вас.

Мы заботимся о вашей конфиденциальности. Собираемые данные помогают нам понять, как вы используете наши продукты, какая информация может вас заинтересовать, а также, что можно изменить для улучшения вашего взаимодействия с компанией Autodesk.

Можем ли мы собирать и использовать ваши данные для адаптации возможностей работы?

Ознакомьтесь с преимуществами адаптированных возможностей работы благодаря управлению параметрами конфиденциальности для этого сайта или перейдите к нашему заявлению о конфиденциальности, чтобы узнать больше о возможных вариантах.