AU Class
AU Class
class - AU

Advancing Smart Hospital Buildings: Using Granular Data and AI for Outcome-Based BIM

Share this class

Description

Hospital design is complex and time consuming, involving numerous stakeholders. We will present innovative advancements in the field with an outcome-based building information modeling (BIM) approach, seamlessly incorporating AI and granular data. We will provide insights into the functionalities of our hospital data management platform connected to Autodesk Construction Cloud with Autodesk Platform Services APIs, thus facilitating bidirectional integration with digital models. We will showcase how our generative deep-learning solutions simplify the incorporation of biomedical equipment and medical furniture, streamlining the design process and enhancing collaboration among stakeholders. Join us to explore the transformative impact of these technologies on hospital design and management, culminating in higher efficiency, improved decision-making capabilities, and, ultimately, better patient outcomes.

Key Learnings

  • Discover the functionalities and benefits of a CDE for collaboration and coordination of digital models in complex design.
  • Learn how to implement granular data management within BIM workflows for enhanced efficiency in complex design projects.
  • Discover AI's role in automating design processes to enhance efficiency, particularly in hospital settings.

Speakers_few

  • Фотография профиля Jacques Lévy-Bencheton
    Jacques Lévy-Bencheton
    Jacques LEVY-BENCHETON is Architect partner and BIM manager at Brunet Saunier Architecture practice. I joined Brunet Saunier Architecture practice in 1992. I’m in charge of implementation of new technologies and especially the development of BIM processes. I’m involved in a few European BIM organisations - among these organisations: the European Architecture Executive Council led by Autodesk and comprising of some famous Architectural Practices in Europe. I have implemented digital models and BIM processes since 2005 in our firm. Today all our projects are studied and designed in digital models and most of them are following a full BIM Process on ACC platform. On our two last hospital projects, we are working in coordination with the owners in order to prepare both the data base of their project and the as built digital models for the maintenance and facility management. To improve the studies, the development and prepare the digital twin of the hospital buildings, we have been developing our own application on Autodesk Forge: DBSApp. a data base managing the hospital building Big Data.
  • Фотография профиля Mathieu Lalanne
    Mathieu Lalanne
    Mathieu LALANNE is the founder and CEO of DB-Lab, a French company renowned for the development of web-based solutions for BIM processes through customized solutions integrating Autodesk APS technologies. DB-Lab is an APS Certified Partner and Autodesk Service Provider Select. Mathieu LALANNE began his career as an Architect, first in an engineering office then for his architectural agency. Initially specialized in 3D design and visualization, he decided in 2015 to develop and code his first web application dedicated to BIM collaboration with the integration of Forge in its Beta version. Today, he implements his expertise and know-how in data management and digital assets associated with all AEC project management skills to create solutions to support the challenges of BIM managers, architects, engineers, and construction companies. Based in Paris, he works now for major French players in the AEC industry.
  • Фотография профиля Nabil Sadeg
    Nabil Sadeg
    As the CTO of ZedSoft, I specialize in AI, 3D rendering, systems integration, cybersecurity, and optimizing processes and operations across diverse industries including Architecture and Healthcare.
Video Player is loading.
Current Time 0:00
Duration 41:36
Loaded: 0.40%
Stream Type LIVE
Remaining Time 41:36
 
1x
  • Chapters
  • descriptions off, selected
  • en (Main), selected
Transcript

JACQUES LEVY-BENCHETON: Good morning, everyone, and thank you for joining us today. We hope you are enjoying your time at AU in San Diego as much as we are. My colleagues, Mathieu, Nabil, and I are thrilled to be here marking our first AU in this vibrant city. Mathieu and I first met at AU 2019 in Las Vegas, and despite being both French, it was this event that brought us together. Since then, we have been collaborating closely on the topics we are presenting today. With Nabil joining us through a valuable introduction by Laurent Praden from the French Autodesk team. Together, we have been developing our own data and AI platforms.

My name is Jacques Levy-Bencheton. I have been with the firm since 1992. Over 30 years. As a partner and BIM manager, I lead the integration of new technologies, particularly the development of BIM processes, which have been central to our projects since 2005. Today, all our architectural projects are designed, developed, and built using digital models with most following a full BIM process based on Autodesk Construction Cloud and our data and AI platforms.

I'm involved in a few European BIM organization, among them the European Architecture Executive Council, led by Autodesk and comprising some of the most famous architectural practices in Europe.

About our company. Founded in 1981 by architects Jerome Brunet and Eric Saunier. Brunet, Saunier, and Partners has been a leading force in public procurement for over 40 years, with health care projects making up 90% of our current activities. We also work in other fields like universities, high schools, offices, and so forth.

20 of our hospital buildings are currently either in operation or under construction in France and neighboring European countries. And the gross area of these hospital projects hovers between 400,000 and 1,000,000 square feet, and the latest one reached 2,000,000 square feet. We are likewise involved in new hospital design competition in non-European countries.

Our offices are located both in Paris, France and Berne, Switzerland, and we have about 50 architects in total. Our architecture. About 20 years of hospital design has led us to acquire extensive expertise in the health care field. We have developed a unique perspective, both aesthetic and scientific, on changes in health care culture and practice.

And our firm has developed likewise a unique and minimalist architectural style, combining an abstraction of form with an extreme flexibility in order to maximize the capacity of our hospital buildings to evolve. And this is currently a major issue in hospital design.

On this slide, you can get a glimpse of some of our achievements Among them, the Jules Bordet Institute in Brussels, Belgium. 850,000 square feet. Another one is the Gustave Julliard Building, University Hospital of Geneva in Switzerland, 540,000 square feet And maybe another one is the Trauma and Cancer Center in Helsinki, Finland, a building of 750,000 square feet

So the learning objectives related to this presentation first, to identify the functionalities and benefits of a common data environment for collaboration and coordination of digital models in complex design. Second, to implement granular data management within BIM workflows for enhanced efficiency in complex design projects. And the last one, to define AI's roles in automatic design processes to enhance efficiency, particularly in hospital settings.

These different learning objectives we are going to develop are now applied to our latest hospital project, the Saint-Ouen Great Paris North University Hospital. Its code names indicates that the project is located in Saint-Ouen, a suburb North of Paris. And if you follow the Paris Olympic games, it will be very close to where the Olympic village was located.

In fact, it constitutes significant new infrastructure for the whole of Greater North Paris, hence its very large size. It's a project we are developing with Renzo Piano Building workshop, the Parisian workshop with Ingerop Engineering and [INAUDIBLE], which is the economist. This hospital building will replace two existing hospitals due to be closed permanently.

Some key figures of this project. It's a sizeable building of 1,800,000 square feet-- 850 feet in length, 310 feet in width, and 90 feet in height. 20 departments and 1,200 beds. About the design team. 20 different companies and more than 130 users.

It's fair to say that a typical construction project generates a colossal amount of data, and this project at its inception has already generated more than 1,200,000 individual pieces of data. The building includes more than 8,000 rooms, and our data dictionary contains 260 parameters. Obviously, not all these 260 parameters are relevant for each room type. On average, about 150 parameters have actual values filled in for each room type. Mathieu will explain later on what I mean by data dictionary. And the budget of this hospital project reaches $600 million, but it's far from over.

Technological advancement. So I would like to take you through the evolution of hospital project management by BSA showcasing our technological advancements from 2005 to 2024. Until 2005, project management primarily relied on CAD. And back then, data was locked within specific software, making it difficult to access and share information efficiently.

Between 2005 and 2012, we leave the shift towards building information modeling, and BIM allows us for the creation of precise digital representations of buildings, incorporating both geometric data and contextual and functional information. However, during this period, the data remained largely confined within the software.

From 2012 to 2020, we experienced significant progress with the integration of BIM 260. It was the beginning of our common data environment. It enabled data to be integrated within the software while making it accessible and shareable, and this facilitated better collaboration among various stakeholders involved in our project.

Since 2020 and moving forward to 2024, the focus has been on leveraging the hospital BIM data and artificial intelligence with the introduction of our own data platform and AI platform. And these technologies allow for the management of granular data that isn't tied to any specific software or product. And this shift provides increased flexibility and agility in project management, enabling optimization and innovation in hospital infrastructure.

In summary, the evolution of hospital project management tools at BSA highlights a trend towards greater data integration, accessibility, and sophistication, leveraging advanced technologies like database and artificial intelligence.

Some words about the common data environment. Through our journey towards optimizing project management, the introduction of a common data environment has been groundbreaking. Acting as a single source of truth, it has drastically reduced errors and increased efficiency across all our hospital projects.

What exactly is a common data environment? It's a central repository where all lifecycle project information is stored. It supports all the tools needed to efficiently implement the project's workflow. And it's not just limited to digital models created in a BIM environment. It also includes documentation, graphical models, and non-graphical information.

Why do we use a common data environment? To avoid errors, redundancy, rework, missed deadlines, cost overruns, and litigation, and to increase quality control and overall project success.

Let's now have a look at our common data environment today. Our common data environment is the combination of three interconnected platforms, and it evolves constantly. How have we organized this common data environment? The first platform is the Autodesk Cloud platform. The second one is the data platform, and the third one is an AI platform.

These platforms each have a bidirectional link between them. That means the three platforms are interconnected in order to allow the links of information, granular data, files, digital models from one platform to another. And using outcomes-based BIM, we leveraged these connected platforms to make sure our BIM processes line up with specific project goals which help us optimize results and track success more effectively.

About the first platform, The Autodesk Construction Cloud platform, the Autodesk Construction Cloud platform has had a significant impact on our hospital project. It's a complete suite with key modules like Autodesk Docs, which is the basis of the following modules-- Ready to Work Sharing, Design Collaboration, Model Coordinate, and many other modules.

About Docs and Ready to Work sharing, as I said previously, they act as a central hub where all our project documents and Revit models are stored and updated. And this ensures everyone accesses the latest files, cutting down on confusion and errors. And by centralizing our data, we streamline workflows and keep all team members in sync.

Next, in the design collaboration module, effective collaboration is, of course, crucial for any project success, and this module provides tools that boost communication among team members. It allows us real-time updates and task tracking, so everyone knows what needs to be done and when. And this transparency improves our efficiency and reduces missed deadlines.

And finally, we have the Model Coordinate module. It includes powerful tools for coordinating various constructions aspects like clash detection, which helps identify and resolve design conflicts before they become costly on site issues. And by visualizing on coordinate module our synthesis Revit model, which integrates all the engineers' Revit models, we can plan better and avoid potential problems, again thanks to the Model Coordinate tools.

In conclusion, the Autodesk Construction Cloud platform has significantly improved our hospital project by providing a unified and efficient way to manage all constructions aspects. And by leveraging this technology, we ensure our hospital project are completed on time and to the highest quality standard.

About our data platform, we have used Autodesk Construction Cloud for a few years and identified some lags in managing hospital programs and room data sheet. So we needed a database that could reliably manage all hospital data and provide access to all project stakeholders, even those not working directly on a Revit model.

Our first goal was to manage the client program from the initial stage through to the advanced phases, and even during the construction phase with the contractors. And these tools has proven incredibly useful for the client, even during the operational phase of the hospital [INAUDIBLE].

The second goal was to handle technical data sheet for each room type. We created a parameter dictionary to establish correspondences with any programmer working on our different hospital project. We establish a bidirectional link to align database data with different digital models. This way, data can be integrated, modified, and extracted from other source.

And the third goal involves managing the biomedical equipment data sheets for typical rooms and their layouts. And this module allows us to integrate list of biomedical equipment and hospital furnitures for these rooms. It facilitates the use of this layout during biomedical space planning meetings with official hospital users.

In conclusion, this platforms allows us to achieve greater reliability and precision in hospital data management by enabling all project stakeholders to manage their own data on a unified platform based on assigned permissions. And it also ensures precise traceability of modification made by stakeholders, including the client, throughout all project phases. And this enables us to justify design and construction changes.

About our AI platform, once we implemented our data platform, and given that we perfectly understand and manage the client's requirements through managing biomedical equipment and hospital furnitures data by room type, we didn't hesitate to take the next step. I mean, developing an artificial intelligence capable of automatically doing biomedical space planning, integrating hospital equipment and furniture items in their rooms the client asked us to be installed.

There are more than 700 room types in which we need to deliver the layout of biomedical space planning in the North Hospital project. The goal is for this artificial intelligence to gather the necessary information from the equipment sheet of a room type on our data platform, and to propose biomedical space planning options within the room.

Once the most relevant option is validated, the AI opens a Revit model and places the BIM object in the room, of course, selecting the appropriate object from our Revit family library. Our artificial intelligence platform integrates a rating system for the different proposals made for each room, and the users must rate this proposal to allow the AI to learn from the expertise of our architects in this specific field.

The principle of biomedical space planning in selected room types required that once this work is validated during appropriate meetings with the future users, it is deployed and it populates the rooms across the entire project. Our algorithm will enable us to do this for our North Hospital project, which, as I mentioned earlier contains more than 8,000 rooms.

So the benefits for us are huge. I invite you to read these different advantages. These benefits can be broken down into two main categories-- improvement in architectural quality on this slide, and improvement in financial efficiency on this one.

In conclusion, integrating AI biomedical space planning in our hospital project has not only enhanced our architectural precision and creativity, but also significantly improved our financial efficiency. Now, I would like to hand over to Mathieu who will deal deeper into how these advancements are being applied in our latest project. Thank you very much.

MATHIEU LALANNE: Yes. Thank you, Jacques for your presentation. Your vision is awesome. Create an ecosystem based on data. In this context at db lab we worked on a part of this system, the data platform, a dedicated platform built to connect and extract [INAUDIBLE] data from BIM models and store and consolidate data with other data. I will explain all of you what we did.

First I introduced myself. My name is Mathieu Lalanne. I'm the CEO of db lab, a small French company based in Paris and Marseilles. We are specialized in web-based software development for IEC. As a previous architect at db lab we have a real culture of the construction industry, so we work with different kind of sectors like hospitals-- and by example, [INAUDIBLE], or architects like BSA.

With [INAUDIBLE], we are data focused on our different subjects. And because we love using web technologies in our software developments, we are specialized in Autodesk Platform Services-- APS, a wonderful approach to help professionals and developers by proposing tools to communicate with our technologies. We are a certified partner and service provider.

This is what I will talk about today-- how APS help us to build a web software dedicated in data management. Here are the different steps. I will talk about the data flux with Data Hub, connectors, picking data, data storage within DataSets, and much more.

As explained, Jacques, hospital project needs to realize complex missions. Complexity is increased due to building sizes. And because of the hospital size, we have a very large amount of data. Millions of parameters. This is why it's so difficult to manage this with simple Excel files. These missions are control and verify hospital programs from rooms data. control and verify hospital equipment needs. Control and verify door specifications.

These missions has to publish a lot of documents in Excel format or in PDF format. It take a lot of time to do by classical tools, Excel or Revit, et cetera. Jacques came to us to create a specific platform with the objectives of centralizing, controlling, and analyzing specific data to set a mission of the architects. But he also came to us to create a tool with capabilities to automatically create documents that they need to provide to their partners and clients at each mission step.

Here in this diagram, you can see the global concept we built. It's a centralized platform with inputs and outputs. For the inputs, we are connected to Autodesk platform like ACC and BIM 360 to access Revit files. Otherwise, Excel files are also input with an internal uploading system. Outputs are the published files for the different missions, and we built an API to be used by the AI platform.

Thanks to IPS APIs, we have built a platform that is fully integrated with ASIC and BIM 360 platform, whether in the USA or Europe. As you can see on the right side, we have implemented several APIs from the Autodesk catalog. Each API has its own capabilities. To enable user authentication, access to different projects in the ACC, documentary navigation, data extraction from Revit models and more than visualization.

Here we authenticates in the platform. Each user uses his own Autodesk account. Then we access to his assigned project in ACC. You can access to the three folders, files inside, and of course, users' data model.

Here, a project dashboard with data from ACC like user list or project information. In each project, we develop a module with the capability to pass folders and files to find the good Revit file to be connected. In each file, we access the specific data to be used for the architect missions. Here by example, the list of rooms present in the BIM model.

In this hospital project, we have more than 8,000 rooms. That's a lot. We don't need to open and visualize the BIM models to access to the data. This is a capabilities of two API from APIs. This is we will see next.

We call granular data the specific data we need to extract from BIM models. This can be room, like in the image, or doors or windows. Stairs and equipment, by example. But by using the Autodesk API, we don't need to open or visualize the BIM file. We access directly the raw data sent by Autodesk servers. Here, an extract of JSON raw data.

Two API can be used for this. The first one is the first API developed by Autodesk, Model Derivative API, built to translate native file from Revit or IFC in a unique format usable for web platform. This API can also grab data from an object list.

This API is based on the full model, so it's fine to pass the data, but it's not so efficient. So Autodesk proposed a new API completely based on granular data since this year. It used the GraphQL method of requests, so you can grab only the data you need. It's powerful and efficient, of course.

Once the data is connected, isolated, and extracted, the data is stored in a data warehouse. It's an environment where the data is prepared before it's used. We have structured the data with data models. The data model is designed to organize data and give it a context.

So we describe all the data we will store with raw data from BIM models with dictionaries. It's a way to define what kind of object properties we want to store before with summary data to increase performance and with metadata to manage data with complementary information like username, dates, commentaries, and version of data.

We store all of this data in a database. We use MongoDB Database Design for big data with the capability to integrate JSON elements. To proceed data by user, we built interfaces for business tasks. With Dashboard Table Sheets, the data can be compared, analyzed, verified, traceable, edited, [INAUDIBLE] intelligence.

As we saw before, BSA forces these different mission needs to reach different documents. The platform has the capability to create PDF documents for the data rooms' sheets or to create Excel files to be used by the partners.

In conclusion, DBS at the data platform is a way to ensure we have quality data. Quality data is also fair data. The data can be findable, accessible, interoperable, reusable. It's optimized for multiple business tasks. And of course, it's the first step to prepare AI processes. Thank you very much. And Nabil now will talk about AI. Thank you.

NABIL SADEG: Thank you, Mathieu and Jacques, for the introduction. As you've seen, thanks to the DBS app solution, we now have access to information about equipment and rooms. This allows us to explore automating the placement of medical equipment in hospitals using artificial intelligence.

Before we proceed, let me take a moment to introduce myself. My name is Nabil Sadeg, and I serve as the Chief Technology Officer at Zedsoft, a UK-based software development company specialized in artificial intelligence and health care. My expertise lies in high performance graphics, particularly in real-time computation and optimisation. I've also worked extensively in health care software development, leveraging artificial intelligence for the discovery of new biomarkers, as well as in the field of cybersecurity.

Now that you know a bit more about me, let's break down the challenge we are addressing. At first glance, this might seem like a complex problem with many unknowns and variables. But let's simplify it. At its core, this is a space optimization challenge. Our goal is to maximize space efficiency around and between the equipment while maintaining a fully functional layout.

The first step is to define our constraints to build a clear framework. So let's take a closer look at them. We have five main constraints. First, adaptability. Brunet-Saunier already has an effective pipeline that has worked for a long time. Our aim is to improve it, not disrupt it. Second, integration. The system must seamlessly fit into their existing workspace, tools, and workflows. We want them to adopt it gradually without interfering with current operations.

Third, scalability. The system should be primarily used during working hours and may scale up or down based on demand. It should not consume resources when not in use. Fourth, lightweight. We want to avoid any need for Brunet-Saunier to invest in new hardware or manage additional infrastructure. Lastly, user-friendliness. It must be simple enough that anyone in the office can use it without any prior technical knowledge.

With these constraints in mind, it's time to make key architectural decisions. Each of these constraints must be considered and addressed through our technical decisions. First, platform compatibility. Brunet-Saunier uses Revit and Autodesk Construction Cloud, so our system must obviously integrate with those platforms.

Next, cloud infrastructure. To reduce dependence on-premise devices, we'll use a cloud-based solution. We'll also use a serverless architecture in the cloud, ensuring both scalability and efficiency. Finally, we'll develop a progressive web app to ensure a simple, responsive system that is accessible across devices and easy to update.

Now, let's talk about our data sources. On one side, we have the DBS app API, which provides a list of objects to be placed in each room. On the other, we have the Revit API, which gives us room geometry and access to object libraries. This data is then processed by our computational model.

The computation process is implemented in two distinct phases. First, we have implemented a rule-based space optimization algorithm. This initial implementation is simpler and faster to use and to develop in the artificial intelligence approach. It helps us lay the foundation of the pipeline while allowing us to explore and understand the data in greater depth.

Then we move on to the AI model integration. Here, the artificial intelligence is incorporated into the pipeline, utilizing the insights and improvements gained from the rule-based approach to significantly enhance the system's efficiency and performance.

Our initial algorithm provided great insights, but it also revealed some challenges. The algorithmic approach has highlighted two key issues. First, the objects in the library had discrepancies. We worked with architects to normalize metadata and fix object orientations.

Second, the data set was too small. To address this, we implemented two solutions. First, a feedback loop for continuous data gathering. Secondly, Brunet-Saunier typically works with room types which serve as templates. These are furnished and reviewed by stakeholders before being replicated across similar rooms.

While this approach is efficient for manual furnishing, it does not generate enough data for our needs. To address this, we shifted our focus to working with individual rooms, which increase the data set tenfold.

One important aspect to keep in mind is simplicity. The system must be intuitive enough for users to operate without any prior technical knowledge. We've adopted the four-step user process. First, users access a dashboard to browse, search, and filter jobs. Next, they can create a job, selecting rooms from the interface or Revit.

Once the artificial intelligence generates solution, the user reviews them and chooses one. The system applies the selected one in Revit. Finally, every solution is rated to provide quality data for the AI improvement.

Now let's focus on the feedback step. For every room added to the job placement, the system generates three placement proposals. Each proposal is rated by the architects on a scale from 1 to 5. Additional feedback can be provided, which helps pre-classify future outputs.

This is crucial because it enables us to significantly expand the data set over time with high quality data that has been reviewed and approved by architects. Therefore, this feedback is critical for training the AI and improving its accuracy.

Now let's take a quick look at the system's technical architecture. On the left, you can see what runs on the user's machine with minimized local components to simplify maintenance. The rest of the architecture runs on the cloud. Our main API, which manages jobs, tracks progress, and collects reviews, is serverless and scales automatically.

Job computations are also serverless, running a Docker container when needed and returning the solution before shutting down. With this architecture, we can scale the entire system from zero to full capacity.

Not that the architecture is in place, we're ready to move forward with the artificial intelligence development. So at this stage, we have a fully developed and deployed pipeline using the rule-based algorithm. The user interface is in place. The data has been normalized. We are now in a good position to develop the artificial intelligence model.

Our approach here is to train a model that learns to autoregressively predict sequences of objects to place in a room. For each element in the sequence, the model considers the room layout using an orthographic projection, the objects already present, and their associated properties. And finally, it predicts the object's class, size, location, orientation, and whether or not the object needs to be mirrored.

Because we are working with highly specific room types, our model uses specific object labels. For instance, if there are three types of beds, we use three distinct class labels rather than a unified one. This might make the size prediction seem irrelevant, as we're not using it to reverse search for the specific bed. However, we use the size and orientation prediction to deduce or, at time, guess the correct orientation. This is important because the objects in our data set were modeled in different coordinate frames, and some degree of guessing is required.

Additionally, we have multiple placement models, each designed for a specific category of rooms. Since rooms can be complex with various inputs, it is more efficient to train one model per room category, requiring less data. Each room is sorted by a sorting algorithm that determines the category based on the equipment to be placed.

Once categorized, the room is processed using the appropriate model. This approach not only allows for more specific models and simplified computations, but also enables parallel processing. If different room types are part of the same job, computation can be run simultaneously.

With this setup, we now have a robust architecture, high quality data and a user friendly interface. The architecture is highly modular, which allows us to extend it further. Future development could include implementing a more comprehensive library management system, automating door placements, and optimizing lighting in rooms.

Finally, we can now extend our models and automation, bringing us closer to outcome-based BIM where automation works in the background to deliver results autonomously. Thank you very much for your attention.

______
icon-svg-close-thick

Настройки cookie

Ваша конфиденциальность и оптимизация возможностей работы важны для нас. Мы собираем данные об использовании вами этого сайта с целью адаптации информации и разработки приложений.

Можем ли мы собирать и использовать ваши данные?

Узнайте подробнее о службах сторонних разработчиков., которые мы используем, и нашем заявлении о конфиденциальности.

Обязательные к использованию: требуются для корректной работы нашего сайта и предоставления сервисов

Эти cookie позволяют нам регистрировать ваши предпочтения или информацию о входе в систему, отвечать на ваши запросы или сохранять данные о вашей корзине.

Оптимизация работы: позволят демонстрировать только релевантную информацию

Эти cookie позволят предоставить вам расширенные функциональные возможности и персонализацию. Они могут быть установлены нами или сторонними поставщиками, чьи сервисы мы используем для предоставления информации и персонализации. Если вы не разрешите использование cookie этого типа, некоторые или все сервисы могут оказаться недоступны.

Персонализация рекламы: позволят предлагать вам целевую рекламу

Эти cookie собирают данные о пользователях на основе их действий и интересов, с целью демонстрации релевантных объявлений и отслеживания эффективности. Благодаря им, пользователю будут доступны рекламные материалы, наиболее соответствующие его интересам. Если вы не разрешите использование cookie этого типа, рекламные материалы будут носить менее адресный характер.

icon-svg-close-thick

СЛУЖБЫ СТОРОННИХ РАЗРАБОТЧИКОВ

Узнайте подробнее о службах сторонних разработчиков, которые мы используем для каждой категории, и получите сведения о том, как мы используем данные, которые собрали о вас в интернете.

icon-svg-hide-thick

icon-svg-show-thick

Обязательные к использованию: требуются для корректной работы нашего сайта и предоставления сервисов

Qualtrics
Мы используем Qualtrics для обеспечения обратной связи с клиентами через опросы или онлайн-формы. Вас могут выбрать случайно для участия в опросе или вы можете самостоятельно решить оставить отзыв. Чтобы лучше понять ваш опыт работы с нами, перед заполнением опроса мы собираем данные о ваших действиях. Это помогает нам решить проблемы, с которыми вы могли столкнуться. Политика конфиденциальности Qualtrics
Akamai mPulse
Для сбора данных о поведении клиентов на наших сайтах мы используем Akamai mPulse. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса или идентификаторы устройств, а также учетные записи Autodesk. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Akamai mPulse
Digital River
Для сбора данных о поведении клиентов на наших сайтах мы используем Digital River. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса или идентификаторы устройств, а также учетные записи Autodesk. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Digital River
Dynatrace
Для сбора данных о поведении клиентов на наших сайтах мы используем Dynatrace. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса или идентификаторы устройств, а также учетные записи Autodesk. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Dynatrace
Khoros
Для сбора данных о поведении клиентов на наших сайтах мы используем Khoros. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса или идентификаторы устройств, а также учетные записи Autodesk. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Khoros
Launch Darkly
Для сбора данных о поведении клиентов на наших сайтах мы используем Launch Darkly. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса или идентификаторы устройств, а также учетные записи Autodesk. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Launch Darkly
New Relic
Для сбора данных о поведении клиентов на наших сайтах мы используем New Relic. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса или идентификаторы устройств, а также учетные записи Autodesk. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности New Relic
Salesforce Live Agent
Для сбора данных о поведении клиентов на наших сайтах мы используем Salesforce Live Agent. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса или идентификаторы устройств, а также учетные записи Autodesk. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Salesforce Live Agent
Wistia
Для сбора данных о поведении клиентов на наших сайтах мы используем Wistia. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса или идентификаторы устройств, а также учетные записи Autodesk. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Wistia
Tealium
Для сбора данных о поведении клиентов на наших сайтах мы используем Tealium. Это могут быть посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Tealium
Upsellit
Для сбора данных о поведении клиентов на наших сайтах мы используем Upsellit. Это могут быть посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Upsellit
CJ Affiliates
Для сбора данных о поведении клиентов на наших сайтах мы используем CJ Affiliates. Это могут быть посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности CJ Affiliates
Commission Factory
Для сбора данных о поведении клиентов на наших сайтах мы используем Commission Factory. Это могут быть посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Commission Factory
Google Analytics (Strictly Necessary)
Для сбора данных о поведении клиентов на наших сайтах мы используем Google Analytics (Strictly Necessary). Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса или идентификаторы устройств, а также учетные записи Autodesk. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Google Analytics (Strictly Necessary)
Typepad Stats
Для сбора данных о поведении клиентов на наших сайтах мы используем Typepad Stats. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса или идентификаторы устройств, а также учетные записи Autodesk. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Typepad Stats
Geo Targetly
Мы используем Geo Targetly, чтобы направлять посетителей сайта на наиболее подходящие веб-страницы и/или показывать контент, подобран-ный с учетом их местоположения. Geo Targetly определяет местоположение посетителя сайта по IP-адресу его устройства. Таким образом на сайте (с большой вероятностью) отображается контент на языке региона пользователя.Политика конфиденциальности Geo Targetly
SpeedCurve
Мы используем SpeedCurve для мониторинга и определения производительности вашего веб-сайта путем измерения времени загрузки веб-страницы, а также отклика последующих элементов, таких как изображения, сценарии и текст.Политика конфиденциальности SpeedCurve
Qualified
Qualified is the Autodesk Live Chat agent platform. This platform provides services to allow our customers to communicate in real-time with Autodesk support. We may collect unique ID for specific browser sessions during a chat. Qualified Privacy Policy

icon-svg-hide-thick

icon-svg-show-thick

Оптимизация работы: позволят демонстрировать только релевантную информацию

Google Optimize
Мы используем Google Optimize для тестирования новых возможностей наших сайтов и их адаптации в соответствии с вашими потребностями. Для этого пока вы работаете с сайтами, мы собираем данные поведения. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса, идентификаторы устройств, учетные записи Autodesk и прочее. На основании тестирования возможностей изменяются версии сайтов. Кроме того, на основе атрибутов посетителей на сайтах появляется персонализированный контент. Политика конфиденциальности Google Optimize
ClickTale
Мы используем ClickTale, чтобы получить представление о трудностях, с которыми вы можете столкнуться на наших сайтах. Мы используем записи сеансов, чтобы узнать, как вы взаимодействуете с нашими сайтами, включая все элементы страниц. Ваша личная информация скрыта и не собирается. Политика конфиденциальности ClickTale
OneSignal
Мы используем OneSignal для развертывания цифровой рекламы на сайтах, поддерживаемых OneSignal. Реклама основывается на данных OneSignal и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными OneSignal от клиентов. Мы используем данные, которые предоставляем OneSignal, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности OneSignal
Optimizely
Мы используем Optimizely для тестирования новых возможностей наших сайтов и их адаптации в соответствии с вашими потребностями. Для этого пока вы работаете с сайтами, мы собираем данные поведения. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса, идентификаторы устройств, учетные записи Autodesk и прочее. На основании тестирования возможностей изменяются версии сайтов. Кроме того, на основе атрибутов посетителей на сайтах появляется персонализированный контент. Политика конфиденциальности Optimizely
Amplitude
Мы используем Amplitude для тестирования новых возможностей наших сайтов и их адаптации в соответствии с вашими потребностями. Для этого пока вы работаете с сайтами, мы собираем данные поведения. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса, идентификаторы устройств, учетные записи Autodesk и прочее. На основании тестирования возможностей изменяются версии сайтов. Кроме того, на основе атрибутов посетителей на сайтах появляется персонализированный контент. Политика конфиденциальности Amplitude
Snowplow
Для сбора данных о поведении клиентов на наших сайтах мы используем Snowplow. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса или идентификаторы устройств, а также учетные записи Autodesk. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Snowplow
UserVoice
Для сбора данных о поведении клиентов на наших сайтах мы используем UserVoice. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса или идентификаторы устройств, а также учетные записи Autodesk. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности UserVoice
Clearbit
Služba Clearbit umožňuje doplňování dat v reálném čase za účelem poskytování individuálního a relevantního prostředí pro naše zákazníky. Mezi data, která shromažďujeme, mohou patřit vámi navštívené stránky, aktivované zkušební verze, přehraná videa, provedené nákupy a vaše IP adresa nebo ID zařízení. Политика конфиденциальности Clearbit
YouTube
YouTube — платформа для обмена видеороликами, через которую пользователи могут просматривать и размещать встроенные видеоролики на наших веб-сайтах. YouTube предоставляет данные о зрительской аудитории. Политика конфиденциальности YouTube

icon-svg-hide-thick

icon-svg-show-thick

Персонализация рекламы: позволят предлагать вам целевую рекламу

Adobe Analytics
Для сбора данных о поведении клиентов на наших сайтах мы используем Adobe Analytics. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса или идентификаторы устройств, а также учетные записи Autodesk. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Adobe Analytics
Google Analytics (Web Analytics)
Для сбора данных о поведении клиентов на наших сайтах мы используем Google Analytics (Web Analytics). Это могут быть посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Google Analytics (Web Analytics)
AdWords
Мы используем AdWords для развертывания цифровой рекламы на сайтах, поддерживаемых AdWords. Реклама основывается на данных AdWords и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными AdWords от клиентов. Мы используем данные, которые предоставляем AdWords, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности AdWords
Marketo
Мы используем Marketo для своевременной отправки более актуальных сообщений клиентам по электронной почте. Для этого мы собираем данные о вашем поведении в интернете и взаимодействии с отправляемыми нами сообщениями электронной почты. Данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса, идентификаторы устройств, коэффициенты открытия сообщений электронной почты, сведения о переходах по ссылкам и др. Мы можем объединять эти данные с данными, полученными из других источников, чтобы оптимизировать ваш опыт работы с отделом продаж или службой технической поддержки, а также предлагать более подходящие материалы на основании использования передовых средств анализа данных. Политика конфиденциальности Marketo
Doubleclick
Мы используем Doubleclick для развертывания цифровой рекламы на сайтах, поддерживаемых Doubleclick. Реклама основывается на данных Doubleclick и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными Doubleclick от клиентов. Мы используем данные, которые предоставляем Doubleclick, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности Doubleclick
HubSpot
Мы используем HubSpot для своевременной отправки более актуальных сообщений клиентам по электронной почте. Для этого мы собираем данные о вашем поведении в интернете и взаимодействии с отправляемыми нами сообщениями электронной почты. Данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса, идентификаторы устройств, коэффициенты открытия сообщений электронной почты, сведения о переходах по ссылкам и др. Политика конфиденциальности HubSpot
Twitter
Мы используем Twitter для развертывания цифровой рекламы на сайтах, поддерживаемых Twitter. Реклама основывается на данных Twitter и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными Twitter от клиентов. Мы используем данные, которые предоставляем Twitter, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности Twitter
Facebook
Мы используем Facebook для развертывания цифровой рекламы на сайтах, поддерживаемых Facebook. Реклама основывается на данных Facebook и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными Facebook от клиентов. Мы используем данные, которые предоставляем Facebook, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности Facebook
LinkedIn
Мы используем LinkedIn для развертывания цифровой рекламы на сайтах, поддерживаемых LinkedIn. Реклама основывается на данных LinkedIn и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными LinkedIn от клиентов. Мы используем данные, которые предоставляем LinkedIn, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности LinkedIn
Yahoo! Japan
Мы используем Yahoo! Japan для развертывания цифровой рекламы на сайтах, поддерживаемых Yahoo! Japan. Реклама основывается на данных Yahoo! Japan и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными Yahoo! Japan от клиентов. Мы используем данные, которые предоставляем Yahoo! Japan, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности Yahoo! Japan
Naver
Мы используем Naver для развертывания цифровой рекламы на сайтах, поддерживаемых Naver. Реклама основывается на данных Naver и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными Naver от клиентов. Мы используем данные, которые предоставляем Naver, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности Naver
Quantcast
Мы используем Quantcast для развертывания цифровой рекламы на сайтах, поддерживаемых Quantcast. Реклама основывается на данных Quantcast и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными Quantcast от клиентов. Мы используем данные, которые предоставляем Quantcast, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности Quantcast
Call Tracking
Мы используем Call Tracking для предоставления адаптированных телефонных номеров для наших рекламных кампаний. При этом вы получаете быстрый доступ к нашим агентам, а мы можем получить более точную оценку своей работы. Мы можем собирать данные о вашем поведении на наших сайтах на основе предоставленного телефонного номера. Политика конфиденциальности Call Tracking
Wunderkind
Мы используем Wunderkind для развертывания цифровой рекламы на сайтах, поддерживаемых Wunderkind. Реклама основывается на данных Wunderkind и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными Wunderkind от клиентов. Мы используем данные, которые предоставляем Wunderkind, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности Wunderkind
ADC Media
Мы используем ADC Media для развертывания цифровой рекламы на сайтах, поддерживаемых ADC Media. Реклама основывается на данных ADC Media и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными ADC Media от клиентов. Мы используем данные, которые предоставляем ADC Media, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности ADC Media
AgrantSEM
Мы используем AgrantSEM для развертывания цифровой рекламы на сайтах, поддерживаемых AgrantSEM. Реклама основывается на данных AgrantSEM и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными AgrantSEM от клиентов. Мы используем данные, которые предоставляем AgrantSEM, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности AgrantSEM
Bidtellect
Мы используем Bidtellect для развертывания цифровой рекламы на сайтах, поддерживаемых Bidtellect. Реклама основывается на данных Bidtellect и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными Bidtellect от клиентов. Мы используем данные, которые предоставляем Bidtellect, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности Bidtellect
Bing
Мы используем Bing для развертывания цифровой рекламы на сайтах, поддерживаемых Bing. Реклама основывается на данных Bing и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными Bing от клиентов. Мы используем данные, которые предоставляем Bing, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности Bing
G2Crowd
Мы используем G2Crowd для развертывания цифровой рекламы на сайтах, поддерживаемых G2Crowd. Реклама основывается на данных G2Crowd и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными G2Crowd от клиентов. Мы используем данные, которые предоставляем G2Crowd, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности G2Crowd
NMPI Display
Мы используем NMPI Display для развертывания цифровой рекламы на сайтах, поддерживаемых NMPI Display. Реклама основывается на данных NMPI Display и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными NMPI Display от клиентов. Мы используем данные, которые предоставляем NMPI Display, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности NMPI Display
VK
Мы используем VK для развертывания цифровой рекламы на сайтах, поддерживаемых VK. Реклама основывается на данных VK и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными VK от клиентов. Мы используем данные, которые предоставляем VK, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности VK
Adobe Target
Мы используем Adobe Target для тестирования новых возможностей наших сайтов и их адаптации в соответствии с вашими потребностями. Для этого пока вы работаете с сайтами, мы собираем данные поведения. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса, идентификаторы устройств, учетные записи Autodesk и прочее. На основании тестирования возможностей изменяются версии сайтов. Кроме того, на основе атрибутов посетителей на сайтах появляется персонализированный контент. Политика конфиденциальности Adobe Target
Google Analytics (Advertising)
Мы используем Google Analytics (Advertising) для развертывания цифровой рекламы на сайтах, поддерживаемых Google Analytics (Advertising). Реклама основывается на данных Google Analytics (Advertising) и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными Google Analytics (Advertising) от клиентов. Мы используем данные, которые предоставляем Google Analytics (Advertising), для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности Google Analytics (Advertising)
Trendkite
Мы используем Trendkite для развертывания цифровой рекламы на сайтах, поддерживаемых Trendkite. Реклама основывается на данных Trendkite и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными Trendkite от клиентов. Мы используем данные, которые предоставляем Trendkite, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности Trendkite
Hotjar
Мы используем Hotjar для развертывания цифровой рекламы на сайтах, поддерживаемых Hotjar. Реклама основывается на данных Hotjar и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными Hotjar от клиентов. Мы используем данные, которые предоставляем Hotjar, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности Hotjar
6 Sense
Мы используем 6 Sense для развертывания цифровой рекламы на сайтах, поддерживаемых 6 Sense. Реклама основывается на данных 6 Sense и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными 6 Sense от клиентов. Мы используем данные, которые предоставляем 6 Sense, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности 6 Sense
Terminus
Мы используем Terminus для развертывания цифровой рекламы на сайтах, поддерживаемых Terminus. Реклама основывается на данных Terminus и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными Terminus от клиентов. Мы используем данные, которые предоставляем Terminus, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности Terminus
StackAdapt
Мы используем StackAdapt для развертывания цифровой рекламы на сайтах, поддерживаемых StackAdapt. Реклама основывается на данных StackAdapt и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными StackAdapt от клиентов. Мы используем данные, которые предоставляем StackAdapt, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности StackAdapt
The Trade Desk
Мы используем The Trade Desk для развертывания цифровой рекламы на сайтах, поддерживаемых The Trade Desk. Реклама основывается на данных The Trade Desk и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными The Trade Desk от клиентов. Мы используем данные, которые предоставляем The Trade Desk, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности The Trade Desk
RollWorks
We use RollWorks to deploy digital advertising on sites supported by RollWorks. Ads are based on both RollWorks data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that RollWorks has collected from you. We use the data that we provide to RollWorks to better customize your digital advertising experience and present you with more relevant ads. RollWorks Privacy Policy

Вы уверены, что не хотите узнать обо всех возможностях работы с нашими службами в интернете?

Мы хотим, чтобы вам было комфортно работать с нами. Если вы выберете «Да» для категорий на предыдущем экране, мы будем собирать и использовать ваши данные для адаптации возможностей работы и оптимизации приложений. Настройки можно изменить в любой момент, посетив страницу заявления о конфиденциальности.

Удобство работы зависит от вас.

Мы заботимся о вашей конфиденциальности. Собираемые данные помогают нам понять, как вы используете наши продукты, какая информация может вас заинтересовать, а также, что можно изменить для улучшения вашего взаимодействия с компанией Autodesk.

Можем ли мы собирать и использовать ваши данные для адаптации возможностей работы?

Ознакомьтесь с преимуществами адаптированных возможностей работы благодаря управлению параметрами конфиденциальности для этого сайта или перейдите к нашему заявлению о конфиденциальности, чтобы узнать больше о возможных вариантах.