AU Class
AU Class
class - AU

Build a Digital Value Chain with Revit+BiM360+SpaceIQ+Forge & its results

Share this class

Description

When considering the "building life cycle" from the viewpoint of the process importance obtained through ISO19650 certification, to construct a Building database, using BIM360 as CDE and collaborating Information of BIM stored in Revit along with SpaceIQ is required. We will share our insights collected from real project. Also some of the insights on the evolution of data platforms by leveraging SpaceIQ solutions in the design phase, while it is commonly used in the construction to operation/maintenance phases. What is the digital value chain brought by the data collaboration? The effects and future projections will be presented

Key Learnings

  • How to utilize data throughout the building lifecycle
  • Explain the challenges and benefits to be gained when applying the Digital Twin to a real project
  • Synergy between Autodesk products and SpaceIQ
  • What is the Digital Value Chain?

Speakers_few

  • 小川 拓真
    I have started to study BIM in university. To apply it into practice, I joined Daiwa House in 2019. In 2021, I have led the project in the company to have ISO19650 certification for the first time in Japan. Currently, I am in charge of establishing common data environment utilizing ACC and developing Web application used APS.
Video Player is loading.
Current Time 0:00
Duration 29:51
Loaded: 0.55%
Stream Type LIVE
Remaining Time 29:51
 
1x
  • Chapters
  • descriptions off, selected
  • en (Main), selected
Transcript

TAKUMA OGAWA: Good morning. We are going to present Build a Digital Value Chain with Revit, BIM 360, SpaceIQ, Forge, and its results. Let us introduce ourselves. My name is Takuma Ogawa. I've started to study BIM in University. To apply it into practice, I joined the Daiwa House in 2019. In 2020, Daiwa House obtained ISO 9650 certification for the first time in Japan. I was very excited to be a part of the project. In my past-time, I like cooking, especially with fresh whole fish. I cook by myself, for example, sushi and sashimi.

TOMOHIRO MIKAMI: Hi. My name is Tomohiro Mikami. I have also been studying BIM since University. After joining Daiwa House in 2019, I worked on a framework to streamline the information collaboration by utilizing BIM in the classification. My hobby is driving and traveling with my wife. I'm so lucky to be able to participate in Autodesk University for the first time this year. She's just [INAUDIBLE].

TAKUMA OGAWA: Daiwa House was established in 1955. At that time, we developed a prefabricated warehouse or railway facility called pipe house. It was the first prefab construction in Japan. It was created by quite a unique idea from the founder, utilizing the standardized component shown on your right.

Daiwa House has expanded its business into houses, [INAUDIBLE] houses, commercial facilities, hotels, warehouses, offices, and medical facility. We have grown into a $40 billion company. We are not just a housing company, but the largest construction company in Japan.

Daiwa House has been providing new products to customers around with the time and realize the value chain. Today, we live in a digital society. By adding all kinds of information generated by digital society to conventional products, we provide services to enrich people's activities, not only the customer, but also the employee, stakeholders, and the many people living there, and achieve digital value chain.

As the digitalization with BIM model's progress, it has created a new barrier that couldn't be brought about by conventional 2D work. For instance, interference checks by models or simulation analysis based on environmental information. However, these are only a small part of benefits of BIM.

By reforming our business operations through BIM and improving the productivity and the quality of the entire construction process, we can provide a better product to our customers, which in turn becoming the foundation to deliver new value and services. Improving the productivity and quality of the entire building lifecycle, it is necessary to share and utilize all kinds of digital information throughout the construction process.

To achieve this, it is necessary to build a data-centric data protocol. Furthermore, by associating information such as GIS data, product or specification data, construction data, quality data, and building operation data with a BIM model in each process, as value-added information, it enables a digital value chain in the construction process.

How will the construction industry change? By establishing the data brought to home and to achieve the data value chain. In this session, we will first introduce a case study that became a catalyst for this initiative. It is our operation and management BIM cooperating with the BIM models and databases. In conjunction with the case study, we will also share what we are currently working on with SpaceIQ. As many of you know, Autodesk and SpaceIQ formed a partnership last year. Our project is proceeding with the support of the partnership.

TOMOHIRO MIKAMI: So now, we would like to talk about a project we worked with our group company, focusing on the use of BIM in facility management. This building is called Kotokurie, our large-scale training facility located in our prefecture in Japan. It was completed in June last year.

As the owner of the facility, we explored how BIM can be effectively utilized in the operation and management phase. This output was reported to the Ministry of Land, Infrastructure, Transport, and Tourism as a part of a model project for facilitating building production and maintenance management processes using BIM initiatives. To begin with, please watch the [INAUDIBLE] video for Kotokurie.

[VIDEO PLAYBACK]

[MUSIC PLAYING]

- [SPEAKING JAPANESE]

[END PLAYBACK]

TOMOHIRO MIKAMI: As mentioned lately in the video, the collaboration between Revit and Archibus is a key in our project. First, I'd like to share a brief introduction to Archibus. Archibus is an FM system for facility owners, originated in the US. It provides a database environment for slowing data and web applications for implementing various functions.

The most important reason why we chose Archibus is data can be updated bidirectionally between database and BIM parameters in real-time. From the next slide, I'd like to return to Kotokurie case study and talk about operation and management BIM collaborating with Revit and the Archibus. Among the policy initiatives, we have tried to utilize operation and management-based BIM at the Kotokurie. We picked up two case studies to share.

The first case study is about the central supervisory control system. This is fundamental core to achieve digital twin. This figure shows a conceptual diagram of the central underlying system. At the initial wall layer, one, the Archibus display layer. And two, have the data storage layer. And three, have the data acquisition layer and the physical wall layer, actual building layer with sensors installed. Base is [INAUDIBLE] in layer four.

In order to capture the ever-changing conditions of actual activities in the building, air conditioning [INAUDIBLE] sensors, [INAUDIBLE] equipment sensors, electrical equipment sensors, and image sensors are installed. Data captured by the sensor passes through the acquisition layer [? via ?] a gateway approximately every 10 minutes and is stored in the storage layer. For instance, the [INAUDIBLE] sensors have been stored at the Kotokurie for various verifications.

Next, here is an example of automatic alarm function. Each sensor installed in Kotokurie has its own [INAUDIBLE] value. When the value debits largely from the [INAUDIBLE] value, the central monitoring system is allotted as highly important failure. The [INAUDIBLE] is also generated in the BIM viewer, the location where equipment can be performed. [INAUDIBLE] can also be checked.

Facility personnel will check the information and send instruction to the field worker if [INAUDIBLE] is clean. So field worker is notified in the BIM viewer. And the required cost is automatically issued. After executing the task, the worker will report the result of task execution on the tablet.

The [INAUDIBLE] as well as history of treatment on each facility can be recorded in the database. So it's a system. In addition, the information on BIM viewer is also shared to the [INAUDIBLE] layer, who is working remotely. So [INAUDIBLE], consultation, and instruction can be done smoothly. Some of the reported defect may be a problem with a particular piece of equipment. Or it may be a potential problem in the equipment itself.

Based on the [INAUDIBLE], we can analyze the issue and take necessary action in advance. This is a great advantage not only for building owners, who manage many properties, but also for a company like us, who construct many buildings per year and provide maintenance services. By linking and managing the operational data in physical world with additional work through the central monitoring system, they could achieve responding and analyzing political issues much more quickly and extensively than before.

The next case study is about the visualization of the space usage utilizing digital twin. Kotokurie is unique facility, including a wide variety of spaces to support people's creative activities. To maximize support for users facing limited space, verification of space optimization became a major theme of Kotokurie project.

We thought, it is important element to analyze what, kind of, space people prefer and what, kind of, activities they are engaged in there. One of the indicators to watch is the visualization of usage of each room. As an example, the dashboard displays the current number of users, carbon dioxide [INAUDIBLE], and room temperature for each space.

And here is a plot of the number of people unloading each space on the floor plan. Green indicates 10 or more people. And click on the link to see the number of uses for the day in chronological order. The usage history in the past year can also be displayed. It hasn't been easy to prepare the data to support decision or budget planning for mid to long-term periods or space allocation in office buildings.

However, if fiscal data can be checked from the manager's perspective, decision for better capital investments in the required space can be made more clearly. So we will develop an environment to design better spaces for users. By creating the digital twin with BIM model and Archibus, we could successfully respond to the building owner's requirements in a facility management phase much better than before.

We also found it even more effective when multiple buildings are managed at the same time. On the other hand, we saw challenges as well. In this project, it took more effort and time than anticipated to prepare for AIM. Because geometrical data, known geometrical data and document data in PIM, were not collaborated each other, the information had to be conserved to prepare for AIM.

If we update PIM around with the process, and maintain the quality of PIM and links information to AIM in real-time, we can significantly reduce the work time. So we want to leverage the benefits of collaboration between Revit and the Archibus to overcome the challenges and build that framework as a service.

TAKUMA OGAWA: Here, we would like to talk about our project with SpaceIQ. To share information across each process throughout the building lifecycle, it's a common data environment to encompass the entire process and the database environment to manage across each project as necessary. We are establishing the data [INAUDIBLE] home by using Revit as a BIM too, BIM 360 as a common data environment, Archibus as a database ranking to Revit, and for the API, as a technology connecting each solution.

There are three main areas we are currently working on with SpaceIQ, establishing the building database. The building database managed all projects handled by Daiwa House. It is responsible for correlating ERP information with BIM 360 and Revit data using technologies such as Forge API.

The element of technology of SpaceIQ project are ranked on the basis of the building database. The building database is based upon the Archibus database. Beyond this FM system, a prime Archibus from the start of the project, the BIM model and the database are ranked at an early stage in the lifecycle. This centralizes information source and enables seamless transition between each process. It also improves traceability by allowing buildings and assets to be managed across project boundaries.

Second, building a common design element to library, DEL. DEL is a rivalry of technical elements for designer. It works with the BIM model and enrich the information. DEL manages all types of data, master data to monitor the data parameters of each manufacturer's product and as that information, and other data. [INAUDIBLE] combination of multiple master data.

Project knowledge data contains product specification information defined in design, construction, and maintenance process. Physical data, operational data, including billing materials and equipment such as walls, glass, and grasses. With DEL, we can utilize downstream information in upstream. It enables designers to work data-centric approach.

Third, creating the proposal database. Proposal database manages two types of data. One is a project of data. And it's in the proposal process. The other is a project data, completed construction. Proposal database searches for similar project attribute information such as building use, site, configuration, cost, floor plan, et cetera, and provide information to designers. Combining it with generative design technology, creating a similar planning suggestion, might be possible.

To achieve them, we first brought the process down to the functional Revit. Then we've defined LOD and LOI for each process. We also define who, when, where, how, and what information is created before asked and updated. To connect Revit attribute information with the database information, we provide a corresponding database table with Revit family category or more subdivided classification Revit. We also mapped the parameters of each family to the feed in the database.

The challenges we are working on, having a major challenge for the entire construction industry for many years. The key to [INAUDIBLE] Revit model, Autodesk Construction Cloud, Archibus database, and the Forge API technology to connect them, especially after this Construction Cloud has enhanced attribute integration. And for the API, it started to update. [INAUDIBLE] with the right to share some of our near future to be revolutionized rights by establishing the data protocol.

TOMOHIRO MIKAMI: But first, we will look into the design phase. Till today, designers made a decision on specification based mainly on their own knowledge and experience. It is highly dependent on individual skill level and the quality and the cost for value. By building a digital platform, we can decide optimal specification based on static data such as cost, functionality, and performance rather than relying on individual skills. Bio engineering is achieved.

[INAUDIBLE] digital platform [INAUDIBLE] data from operation and management phase, where we link to the design phase. With this, designers will be able to select the product and specifications based on the real performance data rather than catalog values published by manufacturers. This will trigger to create new value or to provide an added value with the proposed activities for clients.

Next, let's look at the construction-to-handover phase. In conventional work, the supervisor checks the delivered product, whether it has adequate performance and costs. Then the result is recorded and saved, attaching to the delivery note. After construction is completed, the model and other related documents are updated based on changes during the construction.

These include [INAUDIBLE] human error and the lead time from the building handover to the delivery of [INAUDIBLE] model. As we saw in Kotokurie case study, the lead time would be further extended while [INAUDIBLE] the maintenance management system. Sorry. Instead of paper drawings or delivery notes, the supervisor will visit the job site with a tablet. That installed product information will be shown on the tablet. He or she can check, confirm, and update [INAUDIBLE].

Updated data is linked to the database in real-time and reflected to the BIM model. Human error is eliminated. And the lead time from building handover to delivery of [INAUDIBLE] model is significantly shortened. It allows a seamless transition to the operation and the management phase.

When we talk about Kotokurie case study, we saw some benefits in operation management phase. Or is that all? We believe to have even greater impact from the data circulation. So that's the building lifecycle on the digital platform. Workers will use tablets to report the problem in the equipment. The collected data is linked to the database in real-time, where similar defects are reported in several locations. The data is updated as highly screened information.

The information from other buildings will also be consolidated. We can see at a glance where and how much asset and product is being used and investigate the necessary treatments when the program happens. Furthermore, the information is immediately linked to design and the construction phase through the digital platform.

Creating a digital platform will not only improve traceability in maintenance management, but also improve risk management for work in progress buildings during design or construction phase. The experience and knowledge of the buildings will be recorded in the database and be passed on to other buildings and the new buildings being created in the future. Our buildings will grow together with people. We will provide such services to our customers.

TAKUMA OGAWA: Ready to conclude this session. We are trying to build a digital platform and achieve a digital value chain by 2025. And then, we would like to move on to the next step to rewrite data transformation across industries. As a final [INAUDIBLE], please take a look at the video summarizing our vision for the future.

[VIDEO PLAYBACK]

[MUSIC PLAYING]

- The key to digital integration comes from the further possibilities created by pairing the building database with the database BIM model.

[MUSIC PLAYING]

For example, by essentially constructing digitized real and virtual data, it is possible to have real-time facility management after construction. And maintenance is more efficient and faster even after construction.

[MUSIC PLAYING]

Utilizing BIM digital information in the database will bring about a new future. This integrated database will then open the door to the future.

[MUSIC PLAYING]

Daiwa House industry will use a digital environment to create a new information infrastructure, promote collaboration with various industries, and start the creation of an unlimited amount of new businesses. This will lead to a digital transformation.

[MUSIC PLAYING]

One day, we will become a company that not only constructs buildings, but also utilizes them.

- [SPEAKING JAPANESE]

- In the near future the design department achieving automated design will become a reality, along with full automation and visualization on site.

- [SPEAKING JAPANESE]

- I think that the era of being able to do more than just save on labor, but also to monitor the safety of on-site productivity remotely, is coming.

[MUSIC PLAYING]

- [SPEAKING JAPANESE]

- Rather than people utilizing technology, BIM will link communities, companies, and departments. I truly think that the era of technology is coming.

[MUSIC PLAYING]

Daiwa House Industry will continue to make new challenges towards the future of the construction industry.

[MUSIC PLAYING]

[END PLAYBACK]

TAKUMA OGAWA: Thank you very much for your attention.

______
icon-svg-close-thick

Настройки cookie

Ваша конфиденциальность и оптимизация возможностей работы важны для нас. Мы собираем данные об использовании вами этого сайта с целью адаптации информации и разработки приложений.

Можем ли мы собирать и использовать ваши данные?

Узнайте подробнее о службах сторонних разработчиков., которые мы используем, и нашем заявлении о конфиденциальности.

Обязательные к использованию: требуются для корректной работы нашего сайта и предоставления сервисов

Эти cookie позволяют нам регистрировать ваши предпочтения или информацию о входе в систему, отвечать на ваши запросы или сохранять данные о вашей корзине.

Оптимизация работы: позволят демонстрировать только релевантную информацию

Эти cookie позволят предоставить вам расширенные функциональные возможности и персонализацию. Они могут быть установлены нами или сторонними поставщиками, чьи сервисы мы используем для предоставления информации и персонализации. Если вы не разрешите использование cookie этого типа, некоторые или все сервисы могут оказаться недоступны.

Персонализация рекламы: позволят предлагать вам целевую рекламу

Эти cookie собирают данные о пользователях на основе их действий и интересов, с целью демонстрации релевантных объявлений и отслеживания эффективности. Благодаря им, пользователю будут доступны рекламные материалы, наиболее соответствующие его интересам. Если вы не разрешите использование cookie этого типа, рекламные материалы будут носить менее адресный характер.

icon-svg-close-thick

СЛУЖБЫ СТОРОННИХ РАЗРАБОТЧИКОВ

Узнайте подробнее о службах сторонних разработчиков, которые мы используем для каждой категории, и получите сведения о том, как мы используем данные, которые собрали о вас в интернете.

icon-svg-hide-thick

icon-svg-show-thick

Обязательные к использованию: требуются для корректной работы нашего сайта и предоставления сервисов

Qualtrics
Мы используем Qualtrics для обеспечения обратной связи с клиентами через опросы или онлайн-формы. Вас могут выбрать случайно для участия в опросе или вы можете самостоятельно решить оставить отзыв. Чтобы лучше понять ваш опыт работы с нами, перед заполнением опроса мы собираем данные о ваших действиях. Это помогает нам решить проблемы, с которыми вы могли столкнуться. Политика конфиденциальности Qualtrics
Akamai mPulse
Для сбора данных о поведении клиентов на наших сайтах мы используем Akamai mPulse. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса или идентификаторы устройств, а также учетные записи Autodesk. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Akamai mPulse
Digital River
Для сбора данных о поведении клиентов на наших сайтах мы используем Digital River. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса или идентификаторы устройств, а также учетные записи Autodesk. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Digital River
Dynatrace
Для сбора данных о поведении клиентов на наших сайтах мы используем Dynatrace. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса или идентификаторы устройств, а также учетные записи Autodesk. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Dynatrace
Khoros
Для сбора данных о поведении клиентов на наших сайтах мы используем Khoros. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса или идентификаторы устройств, а также учетные записи Autodesk. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Khoros
Launch Darkly
Для сбора данных о поведении клиентов на наших сайтах мы используем Launch Darkly. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса или идентификаторы устройств, а также учетные записи Autodesk. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Launch Darkly
New Relic
Для сбора данных о поведении клиентов на наших сайтах мы используем New Relic. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса или идентификаторы устройств, а также учетные записи Autodesk. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности New Relic
Salesforce Live Agent
Для сбора данных о поведении клиентов на наших сайтах мы используем Salesforce Live Agent. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса или идентификаторы устройств, а также учетные записи Autodesk. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Salesforce Live Agent
Wistia
Для сбора данных о поведении клиентов на наших сайтах мы используем Wistia. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса или идентификаторы устройств, а также учетные записи Autodesk. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Wistia
Tealium
Для сбора данных о поведении клиентов на наших сайтах мы используем Tealium. Это могут быть посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Tealium
Upsellit
Для сбора данных о поведении клиентов на наших сайтах мы используем Upsellit. Это могут быть посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Upsellit
CJ Affiliates
Для сбора данных о поведении клиентов на наших сайтах мы используем CJ Affiliates. Это могут быть посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности CJ Affiliates
Commission Factory
Для сбора данных о поведении клиентов на наших сайтах мы используем Commission Factory. Это могут быть посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Commission Factory
Google Analytics (Strictly Necessary)
Для сбора данных о поведении клиентов на наших сайтах мы используем Google Analytics (Strictly Necessary). Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса или идентификаторы устройств, а также учетные записи Autodesk. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Google Analytics (Strictly Necessary)
Typepad Stats
Для сбора данных о поведении клиентов на наших сайтах мы используем Typepad Stats. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса или идентификаторы устройств, а также учетные записи Autodesk. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Typepad Stats
Geo Targetly
Мы используем Geo Targetly, чтобы направлять посетителей сайта на наиболее подходящие веб-страницы и/или показывать контент, подобран-ный с учетом их местоположения. Geo Targetly определяет местоположение посетителя сайта по IP-адресу его устройства. Таким образом на сайте (с большой вероятностью) отображается контент на языке региона пользователя.Политика конфиденциальности Geo Targetly
SpeedCurve
Мы используем SpeedCurve для мониторинга и определения производительности вашего веб-сайта путем измерения времени загрузки веб-страницы, а также отклика последующих элементов, таких как изображения, сценарии и текст.Политика конфиденциальности SpeedCurve
Qualified
Qualified is the Autodesk Live Chat agent platform. This platform provides services to allow our customers to communicate in real-time with Autodesk support. We may collect unique ID for specific browser sessions during a chat. Qualified Privacy Policy

icon-svg-hide-thick

icon-svg-show-thick

Оптимизация работы: позволят демонстрировать только релевантную информацию

Google Optimize
Мы используем Google Optimize для тестирования новых возможностей наших сайтов и их адаптации в соответствии с вашими потребностями. Для этого пока вы работаете с сайтами, мы собираем данные поведения. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса, идентификаторы устройств, учетные записи Autodesk и прочее. На основании тестирования возможностей изменяются версии сайтов. Кроме того, на основе атрибутов посетителей на сайтах появляется персонализированный контент. Политика конфиденциальности Google Optimize
ClickTale
Мы используем ClickTale, чтобы получить представление о трудностях, с которыми вы можете столкнуться на наших сайтах. Мы используем записи сеансов, чтобы узнать, как вы взаимодействуете с нашими сайтами, включая все элементы страниц. Ваша личная информация скрыта и не собирается. Политика конфиденциальности ClickTale
OneSignal
Мы используем OneSignal для развертывания цифровой рекламы на сайтах, поддерживаемых OneSignal. Реклама основывается на данных OneSignal и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными OneSignal от клиентов. Мы используем данные, которые предоставляем OneSignal, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности OneSignal
Optimizely
Мы используем Optimizely для тестирования новых возможностей наших сайтов и их адаптации в соответствии с вашими потребностями. Для этого пока вы работаете с сайтами, мы собираем данные поведения. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса, идентификаторы устройств, учетные записи Autodesk и прочее. На основании тестирования возможностей изменяются версии сайтов. Кроме того, на основе атрибутов посетителей на сайтах появляется персонализированный контент. Политика конфиденциальности Optimizely
Amplitude
Мы используем Amplitude для тестирования новых возможностей наших сайтов и их адаптации в соответствии с вашими потребностями. Для этого пока вы работаете с сайтами, мы собираем данные поведения. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса, идентификаторы устройств, учетные записи Autodesk и прочее. На основании тестирования возможностей изменяются версии сайтов. Кроме того, на основе атрибутов посетителей на сайтах появляется персонализированный контент. Политика конфиденциальности Amplitude
Snowplow
Для сбора данных о поведении клиентов на наших сайтах мы используем Snowplow. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса или идентификаторы устройств, а также учетные записи Autodesk. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Snowplow
UserVoice
Для сбора данных о поведении клиентов на наших сайтах мы используем UserVoice. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса или идентификаторы устройств, а также учетные записи Autodesk. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности UserVoice
Clearbit
Služba Clearbit umožňuje doplňování dat v reálném čase za účelem poskytování individuálního a relevantního prostředí pro naše zákazníky. Mezi data, která shromažďujeme, mohou patřit vámi navštívené stránky, aktivované zkušební verze, přehraná videa, provedené nákupy a vaše IP adresa nebo ID zařízení. Политика конфиденциальности Clearbit
YouTube
YouTube — платформа для обмена видеороликами, через которую пользователи могут просматривать и размещать встроенные видеоролики на наших веб-сайтах. YouTube предоставляет данные о зрительской аудитории. Политика конфиденциальности YouTube

icon-svg-hide-thick

icon-svg-show-thick

Персонализация рекламы: позволят предлагать вам целевую рекламу

Adobe Analytics
Для сбора данных о поведении клиентов на наших сайтах мы используем Adobe Analytics. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса или идентификаторы устройств, а также учетные записи Autodesk. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Adobe Analytics
Google Analytics (Web Analytics)
Для сбора данных о поведении клиентов на наших сайтах мы используем Google Analytics (Web Analytics). Это могут быть посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Мы используем эти данные для оценки работы нашего сайта, а также удобства его использования. Они помогают нам улучшить предоставляемые возможности. Кроме того, мы используем передовые методы анализа для оптимизации работы с электронной почтой, поддержкой клиентов и отделом продаж. Политика конфиденциальности Google Analytics (Web Analytics)
AdWords
Мы используем AdWords для развертывания цифровой рекламы на сайтах, поддерживаемых AdWords. Реклама основывается на данных AdWords и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными AdWords от клиентов. Мы используем данные, которые предоставляем AdWords, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности AdWords
Marketo
Мы используем Marketo для своевременной отправки более актуальных сообщений клиентам по электронной почте. Для этого мы собираем данные о вашем поведении в интернете и взаимодействии с отправляемыми нами сообщениями электронной почты. Данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса, идентификаторы устройств, коэффициенты открытия сообщений электронной почты, сведения о переходах по ссылкам и др. Мы можем объединять эти данные с данными, полученными из других источников, чтобы оптимизировать ваш опыт работы с отделом продаж или службой технической поддержки, а также предлагать более подходящие материалы на основании использования передовых средств анализа данных. Политика конфиденциальности Marketo
Doubleclick
Мы используем Doubleclick для развертывания цифровой рекламы на сайтах, поддерживаемых Doubleclick. Реклама основывается на данных Doubleclick и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными Doubleclick от клиентов. Мы используем данные, которые предоставляем Doubleclick, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности Doubleclick
HubSpot
Мы используем HubSpot для своевременной отправки более актуальных сообщений клиентам по электронной почте. Для этого мы собираем данные о вашем поведении в интернете и взаимодействии с отправляемыми нами сообщениями электронной почты. Данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса, идентификаторы устройств, коэффициенты открытия сообщений электронной почты, сведения о переходах по ссылкам и др. Политика конфиденциальности HubSpot
Twitter
Мы используем Twitter для развертывания цифровой рекламы на сайтах, поддерживаемых Twitter. Реклама основывается на данных Twitter и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными Twitter от клиентов. Мы используем данные, которые предоставляем Twitter, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности Twitter
Facebook
Мы используем Facebook для развертывания цифровой рекламы на сайтах, поддерживаемых Facebook. Реклама основывается на данных Facebook и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными Facebook от клиентов. Мы используем данные, которые предоставляем Facebook, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности Facebook
LinkedIn
Мы используем LinkedIn для развертывания цифровой рекламы на сайтах, поддерживаемых LinkedIn. Реклама основывается на данных LinkedIn и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными LinkedIn от клиентов. Мы используем данные, которые предоставляем LinkedIn, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности LinkedIn
Yahoo! Japan
Мы используем Yahoo! Japan для развертывания цифровой рекламы на сайтах, поддерживаемых Yahoo! Japan. Реклама основывается на данных Yahoo! Japan и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными Yahoo! Japan от клиентов. Мы используем данные, которые предоставляем Yahoo! Japan, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности Yahoo! Japan
Naver
Мы используем Naver для развертывания цифровой рекламы на сайтах, поддерживаемых Naver. Реклама основывается на данных Naver и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными Naver от клиентов. Мы используем данные, которые предоставляем Naver, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности Naver
Quantcast
Мы используем Quantcast для развертывания цифровой рекламы на сайтах, поддерживаемых Quantcast. Реклама основывается на данных Quantcast и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными Quantcast от клиентов. Мы используем данные, которые предоставляем Quantcast, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности Quantcast
Call Tracking
Мы используем Call Tracking для предоставления адаптированных телефонных номеров для наших рекламных кампаний. При этом вы получаете быстрый доступ к нашим агентам, а мы можем получить более точную оценку своей работы. Мы можем собирать данные о вашем поведении на наших сайтах на основе предоставленного телефонного номера. Политика конфиденциальности Call Tracking
Wunderkind
Мы используем Wunderkind для развертывания цифровой рекламы на сайтах, поддерживаемых Wunderkind. Реклама основывается на данных Wunderkind и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными Wunderkind от клиентов. Мы используем данные, которые предоставляем Wunderkind, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности Wunderkind
ADC Media
Мы используем ADC Media для развертывания цифровой рекламы на сайтах, поддерживаемых ADC Media. Реклама основывается на данных ADC Media и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными ADC Media от клиентов. Мы используем данные, которые предоставляем ADC Media, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности ADC Media
AgrantSEM
Мы используем AgrantSEM для развертывания цифровой рекламы на сайтах, поддерживаемых AgrantSEM. Реклама основывается на данных AgrantSEM и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными AgrantSEM от клиентов. Мы используем данные, которые предоставляем AgrantSEM, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности AgrantSEM
Bidtellect
Мы используем Bidtellect для развертывания цифровой рекламы на сайтах, поддерживаемых Bidtellect. Реклама основывается на данных Bidtellect и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными Bidtellect от клиентов. Мы используем данные, которые предоставляем Bidtellect, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности Bidtellect
Bing
Мы используем Bing для развертывания цифровой рекламы на сайтах, поддерживаемых Bing. Реклама основывается на данных Bing и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными Bing от клиентов. Мы используем данные, которые предоставляем Bing, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности Bing
G2Crowd
Мы используем G2Crowd для развертывания цифровой рекламы на сайтах, поддерживаемых G2Crowd. Реклама основывается на данных G2Crowd и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными G2Crowd от клиентов. Мы используем данные, которые предоставляем G2Crowd, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности G2Crowd
NMPI Display
Мы используем NMPI Display для развертывания цифровой рекламы на сайтах, поддерживаемых NMPI Display. Реклама основывается на данных NMPI Display и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными NMPI Display от клиентов. Мы используем данные, которые предоставляем NMPI Display, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности NMPI Display
VK
Мы используем VK для развертывания цифровой рекламы на сайтах, поддерживаемых VK. Реклама основывается на данных VK и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными VK от клиентов. Мы используем данные, которые предоставляем VK, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности VK
Adobe Target
Мы используем Adobe Target для тестирования новых возможностей наших сайтов и их адаптации в соответствии с вашими потребностями. Для этого пока вы работаете с сайтами, мы собираем данные поведения. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, IP-адреса, идентификаторы устройств, учетные записи Autodesk и прочее. На основании тестирования возможностей изменяются версии сайтов. Кроме того, на основе атрибутов посетителей на сайтах появляется персонализированный контент. Политика конфиденциальности Adobe Target
Google Analytics (Advertising)
Мы используем Google Analytics (Advertising) для развертывания цифровой рекламы на сайтах, поддерживаемых Google Analytics (Advertising). Реклама основывается на данных Google Analytics (Advertising) и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными Google Analytics (Advertising) от клиентов. Мы используем данные, которые предоставляем Google Analytics (Advertising), для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности Google Analytics (Advertising)
Trendkite
Мы используем Trendkite для развертывания цифровой рекламы на сайтах, поддерживаемых Trendkite. Реклама основывается на данных Trendkite и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными Trendkite от клиентов. Мы используем данные, которые предоставляем Trendkite, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности Trendkite
Hotjar
Мы используем Hotjar для развертывания цифровой рекламы на сайтах, поддерживаемых Hotjar. Реклама основывается на данных Hotjar и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными Hotjar от клиентов. Мы используем данные, которые предоставляем Hotjar, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности Hotjar
6 Sense
Мы используем 6 Sense для развертывания цифровой рекламы на сайтах, поддерживаемых 6 Sense. Реклама основывается на данных 6 Sense и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными 6 Sense от клиентов. Мы используем данные, которые предоставляем 6 Sense, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности 6 Sense
Terminus
Мы используем Terminus для развертывания цифровой рекламы на сайтах, поддерживаемых Terminus. Реклама основывается на данных Terminus и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными Terminus от клиентов. Мы используем данные, которые предоставляем Terminus, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности Terminus
StackAdapt
Мы используем StackAdapt для развертывания цифровой рекламы на сайтах, поддерживаемых StackAdapt. Реклама основывается на данных StackAdapt и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными StackAdapt от клиентов. Мы используем данные, которые предоставляем StackAdapt, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности StackAdapt
The Trade Desk
Мы используем The Trade Desk для развертывания цифровой рекламы на сайтах, поддерживаемых The Trade Desk. Реклама основывается на данных The Trade Desk и данных поведения, которые мы собираем в процессе работы клиентов с нашими сайтами. Такие данные могут включать посещенные страницы, запущенные пробные версии, воспроизведенные видеоролики, совершенные покупки, а также IP-адреса или идентификаторы устройств. Эта информация может объединяться с данными, полученными The Trade Desk от клиентов. Мы используем данные, которые предоставляем The Trade Desk, для лучшей адаптации цифровой рекламы и предоставления наиболее актуальных рекламных материалов. Политика конфиденциальности The Trade Desk
RollWorks
We use RollWorks to deploy digital advertising on sites supported by RollWorks. Ads are based on both RollWorks data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that RollWorks has collected from you. We use the data that we provide to RollWorks to better customize your digital advertising experience and present you with more relevant ads. RollWorks Privacy Policy

Вы уверены, что не хотите узнать обо всех возможностях работы с нашими службами в интернете?

Мы хотим, чтобы вам было комфортно работать с нами. Если вы выберете «Да» для категорий на предыдущем экране, мы будем собирать и использовать ваши данные для адаптации возможностей работы и оптимизации приложений. Настройки можно изменить в любой момент, посетив страницу заявления о конфиденциальности.

Удобство работы зависит от вас.

Мы заботимся о вашей конфиденциальности. Собираемые данные помогают нам понять, как вы используете наши продукты, какая информация может вас заинтересовать, а также, что можно изменить для улучшения вашего взаимодействия с компанией Autodesk.

Можем ли мы собирать и использовать ваши данные для адаптации возможностей работы?

Ознакомьтесь с преимуществами адаптированных возможностей работы благодаря управлению параметрами конфиденциальности для этого сайта или перейдите к нашему заявлению о конфиденциальности, чтобы узнать больше о возможных вариантах.