AU Class
AU Class
class - AU

Additive-Manufacturing Topology Optimization Workflow Using Within and Netfabb

共享此课程
在视频、演示文稿幻灯片和讲义中搜索关键字:

说明

The new capabilities of additive manufacturing (AM) have given many industries the capacity to print complex designs in many different materials. The benefits include customized products; improved performance with weight reduction; and the reduction of materials, manufacturing time, and assembly cost. This session will give you an overview on how Within software and Netfabb software can help you achieve these benefits. We’ll look at how to capitalize on Within software to create optimized component design using lattice-based optimization while following machine constraints. The goal is to preserve structural performance while lightweighting a part without violating design or AM constraints. We will also look at how Netfabb software provides quality control on the final part, providing support generation and slicing data for the AM machine targeted. This session features Netfabb and Within.

主要学习内容

  • Learn the workflow for Within in the AM process
  • Learn the workflow for Netfabb in the final AM process
  • Learn how to incorporate machine constraint during optimization
  • Learn how to prepare geometry for additive manufacturing

讲师

  • Edgar Aguirre
    Edgar Aguirre is an application engineer for the DMG at Autodesk. He has over 15 years’ experience in the electrical engineering field, and 4 years in the additive manufacturing field.
  • Abhishek Trivedi
    Abhishek Trivedi has over 11 years of experience in simulation and additive manufacturing. Trivedi received his PhD from University of California, San Diego, and he has published several papers in national and international journals. He is the recipient of several prestigious awards and grants, and he has presented his work in various prestigious international conferences.
Video Player is loading.
Current Time 0:00
Duration 42:35
Loaded: 0.39%
Stream Type LIVE
Remaining Time 42:35
 
1x
  • Chapters
  • descriptions off, selected
  • en (Main), selected
Transcript

EDGAR AGUIRRE: Thank you for attending this session. I know that the title said topological optimization, but it turned out that that was a typo. It's AM optimizing your workflow using Within and Netfabb. I don't know how that got in there, but that wasn't the original title. So if anyone is here looking for the topological optimization, we have it with Dreamcatcher. But at the moment, the current Netfabb suite does not have the topological optimization.

But I'll just go through the presentation. And so the title is Am Optimization Workflow using Within and Netfabb. And what I want you guys to get out of it is how does the workflow Within in the AM process, learning about the workflow with Netfabb in the AM process, and how to incorporate the machine constraints, how to use those during your optimization process. And also preparing geometries for the AM process.

So what is Netfabb? Netfabb is a software for preparing files for the AM process. It helps you reduce the cost, increase efficiency, and improves the part performance in the AM process. So what is Netfabb? Netfabb is a way of lightweighting component while keeping its performance characteristics as you would expect. So if you have certain boundary conditions that you apply to this part, Within would optimize that part based on those boundary conditions.

At the moment, before I actually wrote this presentation, Within and Netfabb were two different softwares. But now they're integrated into one software. And it's currently in Netfabb 2017.1. And now Within is now called Optimization Utility.

So this is the Netfabb AM workflow. It allows you to bring in a CAD file, import it using either native CAD files or mesh files. It allows you to repair the file to make sure that it's watertight. It allows you to edit, optimize, put build support structures before you even-- depending on the machine you're using, it allows you to pack a 3D packing or planar packing. It allows you to quote, and at the end you can export it out either as an .xtl file or a slice file.

Before we dive into it, it's good to know what your AM constraints are, your machine constraints. Each machine is going to be different. So you need to know what your minimum feature size are and what your printer can print. Also, you need to know your maximum overhang angle without applying supports. At 90 degrees, you know you're going to need supports. At 45 degrees, some printers can actually print that without supports. It really depends on the printer you're using. And also knowing your build volume for that printer.

I'm going to take you through the whole optimization process. So before I even do any type of optimization, I'd like to bring in the CAD file. I'll do a mesh check. I do a print orientation if I have to. And I'll do a remeshing. Netfabb can repair. It can also remesh for other tools, for example, like the optimization utility. It needs a good mesh in order to work with equal triangle lengths. We'll go through this in a minute.

So I'm going to start just showing you videos of what's going on here. Actually, I just turned it off here. Sorry about that. I think I turned something off. Did I turn that off?

It's on.

It's on? OK. Got it. Sorry.

First, I'm actually going to import a CAD file into Netfabb. And here I can actually choose how detailed I want the CAD file to be. And I could choose the precision of this file. Go ahead and import it.

So, print orientation. Sorry about that. Let's go back here. Eventually--

So then the next one is print orientation. So what I'm doing here is Netfabb has the ability to actually minimize supports. And it actually will go and look at the surface of the part and determine what orientation will give you the minimum supports. So that's something that you could do before you even go and take it into Optimization Utility. So you have three choices you can choose. It really depends on which surface area that you want to have a better surface.

In this case, I'm going to try something else, since I actually wanted to lay it flat. And this part doesn't really have a flat surface, so I'm going to use minimization, out box minimization. So it's going to actually pick an orientation that gives me the lowest volume in that position. I can go ahead and now move it to my origin as well.

In the next step, I'm going to go ahead and remesh this part. So Netfabb has the ability to reduce triangles and remesh. And why do I want to remesh? I'm actually choosing a maximum edge length of 0.25. And I want to make sure that all my edge lengths are the same in the mesh. Within or Optimization Utility can do it, but you can actually also do it in Netfabb.

And once you can bring that out, and hide the original part. And now you have a part that you can use for the next step of our optimization. So when you're taking it into Within, what you're doing is you're going to optimize it for lightweighting. So you need to define what your lattice and what your skins are in the part. You're also going to apply boundary conditions. You're also going to do a simulation on that part. You can do it on the actual part and also on the lattice and the skin that you've defined in Optimization Utility. You optimize, and then you can do some post-processing.

I have an arrow coming in from Netfabb. I have another arrow going out of Netfabb. You can actually bring the component back into Netfabb to check some of the surfaces to see if they're actually self-supporting .

So here I'm going to start the Optimization Utility. So I pick the part and I just bring it into the Optimization Utility, or what used to be called Netfabb. So here I actually can select how I want the part to look in this environment. I can go into lattice and I can pick what my unit size for the lattices will be. I actually want my lattices to be variable. You can actually set it to be not variable, but since we do want to optimize it, we actually want to set these conditions.

Now I'm just going to pause it here. On the variable, there's a threshold. 0.2 is my minimum threshold. That's going to determine what printer you're using. So when you're looking at your AM constraints, you also need to think about what's the smallest feature you can print out. So that's where you actually put it in the minimum threshold. So it's never going to go beyond that, so you're guaranteed that it's going to print on the printer you're using.

I also pick the topology that I want. And we have several topologies that you can choose from. Not all of them are self-supporting. There are some that are. But I've picked the x, which I know that will give me a high chance of it being self-supporting.

In the next stage, I want to pick my surfaces. So in this case, I'm going to pick the top one as a surface that I actually want to keep open. I want this area of my part to be open. And I choose this surface as a way of indicating that it's going to be hollow, or that any beams that touch it will be removed.

In the next region is going to be my skin. So I'm going to skin this part. And I can also make the skin uniform or variable. In this case, I do want to make it variable. Again, this is all just playing with your variables and seeing what works for you and your machine. So this is the final image. So you notice that the top is open. You have a lattice, and then the rest of the part has been skinned.

Let's go to the next one. Now again, in the original workflow, I said that you can actually bring back any part that you create in Within bring it back into Netfabb, and just do a check on your lattice structure. So what I'm doing here is I'm doing a cut view into my part, and removing a part, and looking at my lattices. I'm going to actually use the surface selection tool, and I'm going to indicate the down skin area. So I'm going to go to advanced selection. So this is the area that will need supports if I set it to 40 degrees. I'm looking at my lattices. Nothing's really green except maybe the center of the node. But that's OK. Once I do the smoothing, that area will not need supports.

So now that I'm happy with that, I can go back into Within and do my next-- so if there is a problem, you can always go back to the settings and maybe adjust the unit cell on your lattice. I skiped one. OK, here it is.

AUDIENCE: Do one more? Do lattices? How do you create lattice structures today?

EDGAR AGUIRRE: And then this next stage is where I've actually added the boundary conditions to my part. So here I load up a new boundary condition, which is going to be my constraint. What part will be restrained in this design? So I go ahead and just select the areas that will be constrained. And at the moment, they're all nodes, and you're picking nodes. So I'm just going ahead and picking them and doing a fill in mid area. And once I'm finished with that, I'll go ahead and apply the pressure of the forces for this part. And I go ahead and just select the areas that I know a force will be applied to this part.

So I've now selected both of my-- and here I add the force. I'm actually adding 700 pascal on each of the areas that you see there. I'm going to go ahead and run simulation. I can run simulation on the part itself even before I do this. This is just to see that the part that I'm actually going to optimize can handle the loads. But based on this example, I'm going to go ahead and I ran the simulation. It took about three minutes, but I actually quickly cut this video by three minutes. So what you see is you see the skin displacement and the lattice displacement based on that simulation.

This is the part that I simulated before I even ran the simulation on the lattice and on the skin. I ran it on the whole part just to make sure that it can take-- oh, go ahead. I'm sorry.

AUDIENCE: Did it apply that pressure? What direction did it apply that force?

EDGAR AGUIRRE: Right. So if we go back on the video, when you actually add the constraints, there's an X and Y and Z. And so I just set it to Z at negative 500 pascals, and it was pointing down. And you can adjust those parameters depending on where the loads are being applied to.

So let's see. It's the same one. Sorry. Oh, here it is.

I'm in the optimization. Here you actually can indicate how many iterations you want for the optimization routine to go through. There's all these other settings that you can apply to this part. So it's going to go through five iterations. And you could tell it to stop after 10 or 15 minutes. So after each iteration you'll see the lattice change. And here I'm just showcasing the information at the bottom.

We're actually on the third iteration, and you'll see some of the nodes getting thicker and other lattices staying the same. So it's strengthening the areas that need to be strengthened. So it's optimizing the lattice as well as the skin.

So here it tells you how much lattice has been increased and how much the skin has been increased as well in that graph at the end. So in the end, you'll get something that looks really organic. And you know that this optimized part can withstand the forces applied to it.

So in the next slide, I'm going back and doing some post-processing. I actually turned off the surface trim. Surface trim just removes the lattice from the surface. I set it to intermediate. I can change the beam counts, and I can do some smoothing. All these can be done after the optimization process.

If you set these before, it's going to use a lot more processing power, so it's always good to do this at the end. So once this is finished, you'll get a really nice looking finish on your lattice, and you won't get any protrusions that you saw before, the lattices sticking out of the surface.

AUDIENCE: [INAUDIBLE]

EDGAR AGUIRRE: No, it should not. No, because you're you're just applying a slight smoothing on it. So now that it finished, the next step is to take it back into Netfabb. And this is called Print Preparation Workflow. So you've taken it back into Netfabb, and you can do the wrapping or repair the lattice and the skin are both two different shells. So you need to actually combine them together, Boolean together. You can do mesh editing if you need to. Then you can bring it into a workspace, and a workspace is just a representation of some machines that we support. You can do the build supports right on that workspace. You can apply parameters and tool path on that tool. And then you can export it out as a slice file.

So in this video, I just clicked on the top to export it back into Netfabb. So I get a .3mf file. And a .3mf file, we're using that because you can actually put material properties in that file as well as which machine you want to use. Right now I'm running a repair right directly from the work plane. I have a list of scripts that I can access down here on the bottom. So it's going through and just repairing any holes and just wrapping both the surface and the lattice together to get one shell.

And you'll notice here that I do have a volume now. Before I didn't have a volume. There was something wrong with it. And I can always go up and look at the platform overview to see that I do have a valid mesh. And once you've finished that, you can go and bring up a workspace. So we have all these workspaces.

This represents the SLM 280. So this is the build volume for that printer. I can just drag the part that I have, that I brought in, over to this machine. And once I have it there, I can now position in on the platform, move it above. I know that I'm going to print it in this orientation. So I can move it up a bit off the platform for the supports. Now if it was a flat surface, I probably wouldn't do that. I don't really have a flat finish on this one. I can go ahead and apply supports.

And Netfabb has standard scripts that come with it, or you can make your own. Here, I'm actually going into areas that I might not want supports, so I'm actually decreasing the minimum area that I would want supports. I don't want any supports in the lattice. So I can actually play with this minimum area so when I run it, I shouldn't get any supports on the lattice. So without any supports, everyone else except where I would have lattice.

And if you do see a support inside this part, you can always go into the list of all the clusters. And what a cluster is just a surface that has been given a support. So right now you have all these clusters. I can go ahead and choose a cluster to remove it, or I could just pick on that cluster and remove it the other way. And I've also applied a support on another area that didn't have supports, because it maybe I had the minimum area too low.

Here I'm actually picking my build strategy. And each machine has their own build strategy. Contour, hatching, these all the parameters that you would actually put in this machine. And you can actually edit them here in Netfabb and then send the slice file as well as all those parameters to the machine. You can have multiple build strategies in one parameter in these parameter files.

So right now I'm going to go ahead and just do an animation of each layer. And if you want to see how the hatching or the laser paths are going to be on this, part you can go ahead and just go through each layer. It can also be animated. So you see it's just going through each layer. The purple is the supports, the green is the hatching, and the blue is the contour of the part.

And once you're finished and you're happy with the results you, can go and export out to a file that the printer can actually understand. We also have other build workspaces that actually connect directly to the printer. So in this case, you would have to send the file to the printer.

So this was kind of a quick way of introducing you to Netfabb's AM workflow using the Optimization Utility that used to be called Netfabb but now is called Optimization Utility. And if you've noticed that they both complement each other, and I was able to do this very quickly using just one set of tools. So I think that's the end of my presentation. If you have any questions--

AUDIENCE: So maybe a couple of things for me to add. This is an automated way of optimizing the lattice structures. Based on the loads and battery conditions, the computer shows you how the densities should be on the lattices. There's another functionality in Netfabb which is called 3S, which gives you the manual control over how you want to create your lattices. So we have heard from a lot of companies, they say they don't want computers to do that. They want to decide how the densities should look in the lattice structures. So this is another functionality that's included here where you can actually finalize this. There's no optimization limit, so you have to do it.

The other thing I want to highlight here, the optimization is based on Nastran that's included in this part, which you see in a lot of Autodesk products-- Fusion and so on. So that's based on Nastran. And then one thing about the lattices, I think everyone who's sitting here maybe has probably some idea on how you want to use lattices.

So there are multiple reasons to use lattices. Some people use it for design, just to create an element of design. Alternatives, in the mechanical area, you can use it a lot for performance reasons, too. Performance, but also cost saving. So if you were doing 3D printing, you want to remove a volume. So one way of removing the volume is replacing it by lattices.

Obviously, you want to make sure your structure doesn't break. So that's why we have the lattices with optimization. And that actually ensures that your product is stronger than before in many, many cases. So that's one thing.

The other thing is through lattices, you can also increase the surface area. So for the automotive industry, there are probably more cases for that, you can actually use that to increase performance of your parts.

You're using less material, and you're increasing print time as well.

You reduce your material, so you reduce your printing costs. I think we have multiple examples of you can reduce the weight, and reduce the costs, but also increase performance. So that's why you could use lattices.

AUDIENCE: [INAUDIBLE]

AUDIENCE: [INAUDIBLE]

AUDIENCE: [INAUDIBLE]

So one of the things that our software and hardware team is experimenting with is metal plating can be expensive. So some companies buy metal printers, some don't. So one of the things that they're experimenting with, and you'll probably see more often nowadays, you print in [INAUDIBLE] and then you cast it. So that's definitely an option to consider too. I think there was another question.

AUDIENCE: [INAUDIBLE]

AUDIENCE: Just quickly, the analysis that's being run by Natran, is that a linear analysis, or is it a non-linear analysis? I know a lot of materials that are alloys which are non-linear by nature, so is that a non-linear analysis?

EDGAR AGUIRRE: It's a linear analysis, yeah.

AUDIENCE: [INAUDIBLE]

AUDIENCE: [INAUDIBLE]

AUDIENCE: [INAUDIBLE]

AUDIENCE: Yeah. So actually this morning we had a session about that, like mechanical analysis of the lattices. If you haven't been in the session, I suggest it's going to be available on demand, so you might want to watch it because Dan, who is Andy's colleague on the consulting team, earlier was showing how you can work on the mechanical analysis after you create lattices, take it out and so on. Andy is from our advanced consulting team, so these folks have a lot of experience working with different types of customers, different types of lattices, so if you have any questions.

EDGAR AGUIRRE: Any more questions?

AUDIENCE: What kind of technology is this?

AUDIENCE: What?

AUDIENCE: What technology is this? Direct extrusion, laser centering, [INAUDIBLE]?

AUDIENCE: [INAUDIBLE]

EDGAR AGUIRRE: The tool pathing, well, there is a tool path utility that comes with Netfabb. But the tool paths you saw there, that you saw on the workspaces, were all predetermined tool paths. But Netfabb also gives the ability to make your own tool paths as well. I think any machine, yes.

AUDIENCE: So can you actually have it export to G code?

EDGAR AGUIRRE: In some cases you can, yes. In terms of the metal printer, you're just sending them a slice file. But there is ability to actually control how that pattern of the laser gets processed. For FDM printers, we can send a G code to an FDM printer using the software. You saw part of the list of the printers that we support, but there are EOS, [INAUDIBLE] down to our Amber printer. I guess our Amber printer started the whole development process, developing an ecosystem around this printer, and we're applying it to other printers as well. I'm sorry it's kind of short, but--

AUDIENCE: It's fine. But that's why we wanted to leave some time for questions. So how are you planning to use lattices? Just for our understanding, how would you use lattices in your process?

AUDIENCE: Mostly for material optimization.

AUDIENCE: Material optimization?

AUDIENCE: Less waste.

AUDIENCE: Yeah. That makes sense. Especially if you print them out, it can be very expensive.

EDGAR AGUIRRE: Are you from Made in Space? Are you guys just strictly using polymers?

AUDIENCE: At this point, yeah. But we're working on expanding to others. But yeah, we're looking at ways to optimize material usage for polymer printers.

AUDIENCE: Anyone else going to use lattices? [INAUDIBLE]

AUDIENCE: [INAUDIBLE]

AUDIENCE: That makes sense. Actually, we have examples, too. Aerospace, if you save material, you save fuel, you save a lot of costs, so that's how you save. Yeah, we have a lot of customers in aerospace.

AUDIENCE: So has anyone been using Netfabb before? You?

AUDIENCE: I use it to fix all my SDL files.

AUDIENCE: So I think at AU, they spoke about the new release too, right? Here, today? So you will see we have a new release coming soon in a couple of weeks. So what we showed you is in there, but actually more is coming out in that. So what Edgar showed you is in the Netfabb ultimate. So if you want to go our website, see more, you can see there. But also, just one of the goals is to add more and more based on the customer processes and simulation in the cloud after you create your lattices, and you've built the support structures so you can test those too.

And also then, I think something is coming for the post-processing too, right? [INAUDIBLE]

--simulation in the cloud that you're going to have, and then Netfabb Ultimate. You had a question?

[AUDIO OUT]

AUDIENCE: So that's a great question. We have Within Medical, just so you know. So what we showed you is the standard Within that's gone into Netfabb. This is, I would say, automotive industry, aerospace industry. But also I see a lot of interest from industrial machinery. Obviously, it doesn't prevent other customers to use it. Like under armor used Within technology to create the shoes that you probably saw with Fusion and Within. And they sold like 3,000, I think, shoes in an hour or so. That's what I heard. So they use it. So we see a lot of interest in the consumer too. But I would say for us it's automotive, aerospace, industry machinery.

But medical is another industry that we actually work with. We have Within Medical. So this was not part of it, but it doesn't have optimization, does it, the Within Medical?

AUDIENCE: Within Medical uses pore sizes, and then it has a variance on that pore size. You get a bit of control over that, but it isn't using optimization. So you get a special lattice called trabecular, which is very good at osseointegration. And the user interface is very focused at producing parts quickly and efficiently. So that's the main idea behind Within Medical.

AUDIENCE: Any other questions? So yeah, if you have any questions, we are here. Or I would say if you go to our website, you can always contact us through the website, too, if you have questions. And Within Medical is also on the website, actually.

AUDIENCE: Thank you for attending.

Downloads

______
icon-svg-close-thick

Cookie 首选项

您的隐私对我们非常重要,为您提供出色的体验是我们的责任。为了帮助自定义信息和构建应用程序,我们会收集有关您如何使用此站点的数据。

我们是否可以收集并使用您的数据?

详细了解我们使用的第三方服务以及我们的隐私声明

绝对必要 – 我们的网站正常运行并为您提供服务所必需的

通过这些 Cookie,我们可以记录您的偏好或登录信息,响应您的请求或完成购物车中物品或服务的订购。

改善您的体验 – 使我们能够为您展示与您相关的内容

通过这些 Cookie,我们可以提供增强的功能和个性化服务。可能由我们或第三方提供商进行设置,我们会利用其服务为您提供定制的信息和体验。如果您不允许使用这些 Cookie,可能会无法使用某些或全部服务。

定制您的广告 – 允许我们为您提供针对性的广告

这些 Cookie 会根据您的活动和兴趣收集有关您的数据,以便向您显示相关广告并跟踪其效果。通过收集这些数据,我们可以更有针对性地向您显示与您的兴趣相关的广告。如果您不允许使用这些 Cookie,您看到的广告将缺乏针对性。

icon-svg-close-thick

第三方服务

详细了解每个类别中我们所用的第三方服务,以及我们如何使用所收集的与您的网络活动相关的数据。

icon-svg-hide-thick

icon-svg-show-thick

绝对必要 – 我们的网站正常运行并为您提供服务所必需的

Qualtrics
我们通过 Qualtrics 借助调查或联机表单获得您的反馈。您可能会被随机选定参与某项调查,或者您可以主动向我们提供反馈。填写调查之前,我们将收集数据以更好地了解您所执行的操作。这有助于我们解决您可能遇到的问题。. Qualtrics 隐私政策
Akamai mPulse
我们通过 Akamai mPulse 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Akamai mPulse 隐私政策
Digital River
我们通过 Digital River 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Digital River 隐私政策
Dynatrace
我们通过 Dynatrace 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Dynatrace 隐私政策
Khoros
我们通过 Khoros 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Khoros 隐私政策
Launch Darkly
我们通过 Launch Darkly 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Launch Darkly 隐私政策
New Relic
我们通过 New Relic 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. New Relic 隐私政策
Salesforce Live Agent
我们通过 Salesforce Live Agent 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Salesforce Live Agent 隐私政策
Wistia
我们通过 Wistia 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Wistia 隐私政策
Tealium
我们通过 Tealium 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Tealium 隐私政策
Upsellit
我们通过 Upsellit 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Upsellit 隐私政策
CJ Affiliates
我们通过 CJ Affiliates 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. CJ Affiliates 隐私政策
Commission Factory
我们通过 Commission Factory 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Commission Factory 隐私政策
Google Analytics (Strictly Necessary)
我们通过 Google Analytics (Strictly Necessary) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Strictly Necessary) 隐私政策
Typepad Stats
我们通过 Typepad Stats 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Typepad Stats 隐私政策
Geo Targetly
我们使用 Geo Targetly 将网站访问者引导至最合适的网页并/或根据他们的位置提供量身定制的内容。 Geo Targetly 使用网站访问者的 IP 地址确定访问者设备的大致位置。 这有助于确保访问者以其(最有可能的)本地语言浏览内容。Geo Targetly 隐私政策
SpeedCurve
我们使用 SpeedCurve 来监控和衡量您的网站体验的性能,具体因素为网页加载时间以及后续元素(如图像、脚本和文本)的响应能力。SpeedCurve 隐私政策
Qualified
Qualified is the Autodesk Live Chat agent platform. This platform provides services to allow our customers to communicate in real-time with Autodesk support. We may collect unique ID for specific browser sessions during a chat. Qualified Privacy Policy

icon-svg-hide-thick

icon-svg-show-thick

改善您的体验 – 使我们能够为您展示与您相关的内容

Google Optimize
我们通过 Google Optimize 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Google Optimize 隐私政策
ClickTale
我们通过 ClickTale 更好地了解您可能会在站点的哪些方面遇到困难。我们通过会话记录来帮助了解您与站点的交互方式,包括页面上的各种元素。将隐藏可能会识别个人身份的信息,而不会收集此信息。. ClickTale 隐私政策
OneSignal
我们通过 OneSignal 在 OneSignal 提供支持的站点上投放数字广告。根据 OneSignal 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 OneSignal 收集的与您相关的数据相整合。我们利用发送给 OneSignal 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. OneSignal 隐私政策
Optimizely
我们通过 Optimizely 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Optimizely 隐私政策
Amplitude
我们通过 Amplitude 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Amplitude 隐私政策
Snowplow
我们通过 Snowplow 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Snowplow 隐私政策
UserVoice
我们通过 UserVoice 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. UserVoice 隐私政策
Clearbit
Clearbit 允许实时数据扩充,为客户提供个性化且相关的体验。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。Clearbit 隐私政策
YouTube
YouTube 是一个视频共享平台,允许用户在我们的网站上查看和共享嵌入视频。YouTube 提供关于视频性能的观看指标。 YouTube 隐私政策

icon-svg-hide-thick

icon-svg-show-thick

定制您的广告 – 允许我们为您提供针对性的广告

Adobe Analytics
我们通过 Adobe Analytics 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Adobe Analytics 隐私政策
Google Analytics (Web Analytics)
我们通过 Google Analytics (Web Analytics) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Web Analytics) 隐私政策
AdWords
我们通过 AdWords 在 AdWords 提供支持的站点上投放数字广告。根据 AdWords 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AdWords 收集的与您相关的数据相整合。我们利用发送给 AdWords 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AdWords 隐私政策
Marketo
我们通过 Marketo 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。我们可能会将此数据与从其他信息源收集的数据相整合,以根据高级分析处理方法向您提供改进的销售体验或客户服务体验以及更相关的内容。. Marketo 隐私政策
Doubleclick
我们通过 Doubleclick 在 Doubleclick 提供支持的站点上投放数字广告。根据 Doubleclick 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Doubleclick 收集的与您相关的数据相整合。我们利用发送给 Doubleclick 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Doubleclick 隐私政策
HubSpot
我们通过 HubSpot 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。. HubSpot 隐私政策
Twitter
我们通过 Twitter 在 Twitter 提供支持的站点上投放数字广告。根据 Twitter 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Twitter 收集的与您相关的数据相整合。我们利用发送给 Twitter 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Twitter 隐私政策
Facebook
我们通过 Facebook 在 Facebook 提供支持的站点上投放数字广告。根据 Facebook 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Facebook 收集的与您相关的数据相整合。我们利用发送给 Facebook 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Facebook 隐私政策
LinkedIn
我们通过 LinkedIn 在 LinkedIn 提供支持的站点上投放数字广告。根据 LinkedIn 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 LinkedIn 收集的与您相关的数据相整合。我们利用发送给 LinkedIn 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. LinkedIn 隐私政策
Yahoo! Japan
我们通过 Yahoo! Japan 在 Yahoo! Japan 提供支持的站点上投放数字广告。根据 Yahoo! Japan 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Yahoo! Japan 收集的与您相关的数据相整合。我们利用发送给 Yahoo! Japan 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Yahoo! Japan 隐私政策
Naver
我们通过 Naver 在 Naver 提供支持的站点上投放数字广告。根据 Naver 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Naver 收集的与您相关的数据相整合。我们利用发送给 Naver 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Naver 隐私政策
Quantcast
我们通过 Quantcast 在 Quantcast 提供支持的站点上投放数字广告。根据 Quantcast 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Quantcast 收集的与您相关的数据相整合。我们利用发送给 Quantcast 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Quantcast 隐私政策
Call Tracking
我们通过 Call Tracking 为推广活动提供专属的电话号码。从而,使您可以更快地联系我们的支持人员并帮助我们更精确地评估我们的表现。我们可能会通过提供的电话号码收集与您在站点中的活动相关的数据。. Call Tracking 隐私政策
Wunderkind
我们通过 Wunderkind 在 Wunderkind 提供支持的站点上投放数字广告。根据 Wunderkind 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Wunderkind 收集的与您相关的数据相整合。我们利用发送给 Wunderkind 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Wunderkind 隐私政策
ADC Media
我们通过 ADC Media 在 ADC Media 提供支持的站点上投放数字广告。根据 ADC Media 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 ADC Media 收集的与您相关的数据相整合。我们利用发送给 ADC Media 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. ADC Media 隐私政策
AgrantSEM
我们通过 AgrantSEM 在 AgrantSEM 提供支持的站点上投放数字广告。根据 AgrantSEM 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AgrantSEM 收集的与您相关的数据相整合。我们利用发送给 AgrantSEM 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AgrantSEM 隐私政策
Bidtellect
我们通过 Bidtellect 在 Bidtellect 提供支持的站点上投放数字广告。根据 Bidtellect 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bidtellect 收集的与您相关的数据相整合。我们利用发送给 Bidtellect 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bidtellect 隐私政策
Bing
我们通过 Bing 在 Bing 提供支持的站点上投放数字广告。根据 Bing 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bing 收集的与您相关的数据相整合。我们利用发送给 Bing 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bing 隐私政策
G2Crowd
我们通过 G2Crowd 在 G2Crowd 提供支持的站点上投放数字广告。根据 G2Crowd 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 G2Crowd 收集的与您相关的数据相整合。我们利用发送给 G2Crowd 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. G2Crowd 隐私政策
NMPI Display
我们通过 NMPI Display 在 NMPI Display 提供支持的站点上投放数字广告。根据 NMPI Display 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 NMPI Display 收集的与您相关的数据相整合。我们利用发送给 NMPI Display 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. NMPI Display 隐私政策
VK
我们通过 VK 在 VK 提供支持的站点上投放数字广告。根据 VK 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 VK 收集的与您相关的数据相整合。我们利用发送给 VK 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. VK 隐私政策
Adobe Target
我们通过 Adobe Target 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Adobe Target 隐私政策
Google Analytics (Advertising)
我们通过 Google Analytics (Advertising) 在 Google Analytics (Advertising) 提供支持的站点上投放数字广告。根据 Google Analytics (Advertising) 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Google Analytics (Advertising) 收集的与您相关的数据相整合。我们利用发送给 Google Analytics (Advertising) 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Google Analytics (Advertising) 隐私政策
Trendkite
我们通过 Trendkite 在 Trendkite 提供支持的站点上投放数字广告。根据 Trendkite 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Trendkite 收集的与您相关的数据相整合。我们利用发送给 Trendkite 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Trendkite 隐私政策
Hotjar
我们通过 Hotjar 在 Hotjar 提供支持的站点上投放数字广告。根据 Hotjar 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Hotjar 收集的与您相关的数据相整合。我们利用发送给 Hotjar 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Hotjar 隐私政策
6 Sense
我们通过 6 Sense 在 6 Sense 提供支持的站点上投放数字广告。根据 6 Sense 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 6 Sense 收集的与您相关的数据相整合。我们利用发送给 6 Sense 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. 6 Sense 隐私政策
Terminus
我们通过 Terminus 在 Terminus 提供支持的站点上投放数字广告。根据 Terminus 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Terminus 收集的与您相关的数据相整合。我们利用发送给 Terminus 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Terminus 隐私政策
StackAdapt
我们通过 StackAdapt 在 StackAdapt 提供支持的站点上投放数字广告。根据 StackAdapt 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 StackAdapt 收集的与您相关的数据相整合。我们利用发送给 StackAdapt 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. StackAdapt 隐私政策
The Trade Desk
我们通过 The Trade Desk 在 The Trade Desk 提供支持的站点上投放数字广告。根据 The Trade Desk 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 The Trade Desk 收集的与您相关的数据相整合。我们利用发送给 The Trade Desk 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. The Trade Desk 隐私政策
RollWorks
We use RollWorks to deploy digital advertising on sites supported by RollWorks. Ads are based on both RollWorks data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that RollWorks has collected from you. We use the data that we provide to RollWorks to better customize your digital advertising experience and present you with more relevant ads. RollWorks Privacy Policy

是否确定要简化联机体验?

我们希望您能够从我们这里获得良好体验。对于上一屏幕中的类别,如果选择“是”,我们将收集并使用您的数据以自定义您的体验并为您构建更好的应用程序。您可以访问我们的“隐私声明”,根据需要更改您的设置。

个性化您的体验,选择由您来做。

我们重视隐私权。我们收集的数据可以帮助我们了解您对我们产品的使用情况、您可能感兴趣的信息以及我们可以在哪些方面做出改善以使您与 Autodesk 的沟通更为顺畅。

我们是否可以收集并使用您的数据,从而为您打造个性化的体验?

通过管理您在此站点的隐私设置来了解个性化体验的好处,或访问我们的隐私声明详细了解您的可用选项。