AU Class
AU Class
class - AU

AiCorb: Tackling the Designer's Dilemma and Risks with AI-Powered Rapid Prototyping

共享此课程

说明

Designers often face the dilemma of unlimited options and a limited timeframe. AiCorb is an ambitious AI design tool made to address this issue. Established in 2017 as a collaboration between a top Japanese general contractor and a pioneering U.S. research institute, AiCorb currently focuses on facade study and 3D modeling, offering two key features: interpreting a designer's intent from sketch to design, then converting from design to building information modeling (BIM) via a Revit plug-in. As a result, designers can cut down their work time for a mid-sized building feasibility study from eight weeks to less than one week. This class will also explore how AiCorb possibly plans to implement a feedback system that will generate optimal facade designs based on engineering analysis simulation results from apps like Autodesk Forma software. Participants will discover the potential of AI to enable "rapid prototyping" in the early design stages, and they'll gain insights into an innovative design workflow where the designer helps the client make better-informed decisions.

主要学习内容

  • Learn about streamlining the early design phase through AI-powered rapid prototyping to help the client make better-informed decisions.
  • Explore the potential of "emotional digital design" using AI to support design creativity from the designer's intent.
  • Learn how to use existing data for optimal suggestions and risk evaluations as "theoretical digital design."

讲师

  • Takuma Nakabayashi 的头像
    Takuma Nakabayashi
    Interested in the utilization of machine learning, computer vision, xR, and generative design in the AEC industry. I have started my career of research from computational design, and it is expanding toward the utilization of computer vision and machine learning for productivity improvement of the AEC industry after I experienced in working as a site manager. I’m now in charge of some promising projects which utilize latest ICT technologies, and collaborating with many startups. One of my recent projects which newly released is AI-powered architecture design process, AiCorb. We aim to help architects in terms of ideation and building concensus process.
  • Shusaku Kawamoto
    Shusaku Kawamoto is the Innovation Lead of Asia Digital Lab (ADL) by Asia Pacific Regional Headquarters, Obayashi Corporation, located in Singapore. ADL serves as Asia's gateway to Obayashi's global innovation network, which includes the Integrated Product Design Center (iPD Center) and, Technical Research Institute in Japan, and Silicon Valley Ventures & Laboratory in the US. With over 25 years of experience at Obayashi, Kawamoto has tackled engineering and business challenges on a grand scale. He has successfully led mission-critical building construction projects and consultation services in Japan, Taiwan, Singapore and Indonesia, earning an excellent reputation with clients. Kawamoto's expertise lies not only in delivering projects but also in leading cross-functional teams at ADL to bring innovation to life. His goal is not only to improve productivity but also to create new value in the built environment by integrating digitalization and sustainability. Currently, he is spearheading a new initiative to develop leading-edge VDC talents across Japan and the APAC regions through open innovation activities with great support from Japan, Singapore, and US Autodesk teams. One of his priorities is to scale up Obayashi's cloud migration to achieve a single source of truth in project data environments with Autodesk Construction Cloud, under the slogans "Beyond BIM" and "Democratize digital." He has also been promoting the "Smart BIM Standard (SBS)," which Obayashi originally developed for internal use and recently released to the public to share its benefit more widely. In addition to his work in innovation, Kawamoto is passionate about mentoring and coaching others in this field, always looking for opportunities to share his knowledge and skills. His leadership and innovative mindset have helped Obayashi stay ahead in the ever-evolving digital landscape and contribute to Asian society.
  • Yoshito Tsuji
    Tsuji's architectural, urbanism, and innovation career spans continents and roles. He began his journey at Kyoto University and pursued advanced studies at Harvard GSD. In 2013, Tsuji made a significant impact in Omotesando, Tokyo, with the completion of oak omotesando, a prominent office and commercial complex. This project, in collaboration with several artists, enriched Omotesando's skyline, known for fashion and cultural trends. In 2016, Tsuji led the design of the first R&D center outside the U.S. for a major U.S. IT company. This project required a design sophistication similar to the company's flagship smartphone and adherence to an 18-month design and build timeline, achieved through extensive mock-ups and design studies. From 2005 to 2009, Tsuji was part of the design management team for a Private Finance Initiative project to rebuild the House of Representatives building, showcasing his versatility in design and project management. Since 2017, he has been a member of SVVL, an open innovation organization by Obayashi Corporation in Silicon Valley, where he led the development of AiCorb, an AI-powered design assistant tool officially press-released in March 2022. In 2020, Tsuji moved to Singapore as Design Lead for the APAC region of Obayashi Group Companies while continuing to lead AiCorb's development. In 2022, he launched the Asia Digital Lab (ADL) as Chief Innovation Officer, focusing on digital transformation, robotics, decarbonization, and well-being technologies in Asia. In 2024, ADL was reorganized into Obayashi Construction-Tech Lab Singapore (OCLS) under Obayashi Technology Division. OCLS focuses on advancing robotics in construction and fostering a technology and business ecosystem between Japan and Singapore. Tsuji is the Chief Innovation Officer at OCLS, operating in both Japan and Singapore.
Video Player is loading.
Current Time 0:00
Duration 32:50
Loaded: 0.50%
Stream Type LIVE
Remaining Time 32:50
 
1x
  • Chapters
  • descriptions off, selected
  • en (Main), selected
Transcript

YOSHITO TSUJI: Today, we would like to introduce AiCorb, our new AI design assistant developed by Obayashi Corporation. Also, we will talk about the concept of AI-powered rapid prototyping, a new design process using AiCorb. Hope you enjoy our presentation.

Let me briefly introduce Obayashi Corporation. Obayashi Corporation is Japan's leading general contractor, operating in Japan, United States, and APAC regions over 130 years. In addition to construction, Obayashi has expanded our business field into urban development and renewable energy.

What is AiCorb? AiCorb is an AI Design Assistant. However, not just a design generator. Gaudi said, "Human do not create, they discover, and upon those discoveries, they build." We think AiCorb will be a powerful assistant for exploring discoveries for architects.

This is a key takeaway of our presentation. Our new proposed design process, AI-powered Rapid Prototyping, will enable early client agreements and increase their satisfaction. Also, it will solve design dilemma and reduce project risks. Also, it will bring broader stakeholder info-sharing and social benefit. By AI-powered Rapid Prototyping, we realize better informed decision-making with all stakeholders.

Before we jump in more detail, let me introduce us. Myself, Tsuji is an architect and working at Obayashi Corporation for 30 years. Designed R&D center, office building, and high end boutique and so on. At the same time, I also Chief Innovation Officer of Obayashi Construction Tech Lab Singapore, which is promoting robotics construction in Singapore and other APAC countries. Let me introduce Takuma.

TAKUMA NAKABAYASHI: Thank you, Yoshito. My name is Takuma Nakabayashi, and I'm an AI researcher responsible for AI-related technology development at Obayashi Corporation. I spent about three years here in Silicon Valley, California, conducting research and development for the AiCorb project that I'll be introducing today. It's a pleasure to be back here and to have the opportunity to present AiCorb to you. Now, I pass back to Yoshito.

YOSHITO TSUJI: OK. Thank you, Takuma. Let us start by telling you why we developed AiCorb. I will be the client, and Takuma will be the architect, so you can feel familiar more with our story. Please enjoy it.

[KEYBOARD CLICKS]

[CLICKS]

[EXPLOSION]

Enjoy. Have you ever had an experiences like this? This is everyday life for architects. Even I bought my idea that I was very confident. But sometimes they are completely defeated by clients. Very difficult to convince clients.

In the early design stage, usually it is not clear what client want to build. Even in such a situation, architect should explore the client intention, sometimes hidden idea by presenting several different options, considering building codes, costs, and other factors.

For medium sized office building case, these composition during the feasibility study often takes a couple months, but sometimes all the steps can be wasted. How quickly you agree with a client is very important.

If we draw this situation in the diagram, it would be like this. Although the architect is always creating design options, client decision-making is always delayed. So usually, there's a large gap between creation by architect and decision-making by client. This gap would be enlarged in concept design stage and early basic design stage. This gap became design dilemma and project risks.

In my previous project for US IT client seven years ago, I always require to present several options, and I consider every possible option. At the end of the project, my hair came completely gray, like this. Not like this manga guy.

Dilemma is categorized into two. One is dilemma of creativity. The other is dilemma of efficiency. However, each dilemma appears differently, depending on whether you are looking at it from client side or architect side. We always have give and take between the two sides. Let's look at more detail.

Architect explore unlimited option within limited time, and client usually ask architect to propose something new and interesting. Many architect refer to past and similar examples. In my case, I have sometimes copy and paste my previous work and sketch over it.

Using my hands, allow me to experience that joy of creation. Physical cut and paste is faster and better for me, but other persons prefer other way. However, in general, there is not enough time to explore new and interesting ideas, and architect must keep thinking. We must do quick and quick.

Dilemma in efficiency is even more complicated. Even if multiple options are selected by client, to obtain specific figures, such as costs, schedule, and environmental score of each option, is so tough. If architect push design team so hard, often everyone say, cannot be done until other profession finish.

Sometimes argument aligns between architects and engineers. In many cases, most of figures are not available until the end of the design stage, so client cannot get sufficient information for their decision-making.

We developed the concept of AI-powered Rapid Prototyping to fill the gap between creation of architect and decision-making by client, by solving these two dilemma and reducing project risks by AI.

Focusing on concept design stage. Our AiCorb will be a design assistant that enables architect to provide clients with the right information at the right time. By this, client can get a better informed decision-making. OK, let me pass to Takuma to explain about AiCorb capability. Takuma, please.

TAKUMA NAKABAYASHI: Thank you. So, from now on, I'm going to explain the overall structure of AiCorb to resolve the dilemma and risks we've discussed so far. We propose a method called AI-powered Rapid Prototyping through the development of AiCorb. But first, please watch this concept video about AiCorb.

[VIDEO PLAYBACK]

- Creation continues uninterrupted through humans. But humans do not create. They discover. And upon those discoveries, they build. Antoni Gaudi. In pursuit of a better future, we give design to our discoveries to build an ever new world. Those who came before us were in constant progress.

How did they turn their dreams into reality? As architects, dialoguing with our clients, we strive to make the best possible design proposals through a process of trial and error. A conversation between design and oneself has provided a key to solving the profound dilemma between creativity and efficiency. Now, in the age of AI, we're developing an innovative new design process, the AiCorb.

The AI in AiCorb instantly generates a variety of design ideas from a simple sketch. It can read the intentions behind any sketch and reflect those in a design. The generated image can then be modified directly by applying further sketch or design instructions, leading quickly to an ideal design.

Additionally, the AI within AiCorb can generate a 3D model from that ideal design. More easy to conceptualize than a simple picture, a 3D view facilitates discussion of various factors, like environmental or cost analysis.

AiCorb delivers appropriate information at the right time, empowering clients to make the best decisions. This not only solves the architect's dilemma, but also promotes better informed decision-making between clients and other shareholders.

It is a revolutionary solution that assists architects in the balance between creativity and efficiency. The process of design approaches new horizons with AiCorb.

[END PLAYBACK]

TAKUMA NAKABAYASHI: OK, thank you for watching the video. Since its past press release in 2022, AiCorb has been featured in numerous media outlets. It was included as a leading example of image-generating AI in Japan's Information and Communication white paper, and was even used on a TV variety show to design the ideal homes for comedians.

The AiCorb 3D modeling function that I'll introduce shortly, is expected to be available on the Autodesk App Store in early October. I'll provide more details on this feature later, but with this plugin, you can quickly convert generated proposed design concepts into 3D models. Please give it a try.

Before introducing the specific feature of AiCorb, let me explain how we use AI to tackle the dilemmas and risks we mentioned. This is a traditional architectural design workflow. First, based on site conditions, regulations, and the client requests, we consider the building's volume, floor plans, and elevations.

Once these are decided, we will move on to the interior and exterior designs. Design isn't just about appearance. It must also take into account factors like cost and the environmental performance. To evaluate these, architects typically create 3D models manually and run various assessments.

Based on the results, they then adjust the design and make proposals to the client. In the process of building consensus, this cycle is repeated again and again. And as just mentioned, many proposals end up being rejected in this cycle.

The issue is, that design and 3D modeling will take considerable time, and having to repeat this process again and again. Let's do the limits and risks. To help reach a satisfying goal with fewer iterations in the consensus building cycle, we developed AiCorb.

Currently, AiCorb serves as a tool to assist in the design and model stages. With AiCorb Facade Design Function, architects can generate various design options from sketches using generative AI based on the architect's intent and the client's needs.

The AiCorb 3D modeling function helps turn these generated images into 3D models. By using these AI features, architects can present new proposals to clients much earlier in the process.

Now, let me explain more concretely how AiCorb has been addressing these dilemmas and risks. First, please watch this video on the Facade Design Function.

[VIDEO PLAYBACK]

- Design decisions require ongoing dialogue between the client and architect. With AiCorb Facade Design Function, you can visualize the client's ideal design from the first meeting. AiCorb Facade Design Function is intuitive to use. Even if you are not an architect, it brings your design ideas to life.

You can explore further from your favorite design. You can add note to the sketch and make partial edits to the generated design. Design exploration used to start with searching real world examples, but now AI lets you generate entirely new ideas. AiCorb helps you make design decisions with greater satisfaction.

[END PLAYBACK]

TAKUMA NAKABAYASHI: OK, thank you for watching the video again. As shown in the previous video, AiCorb places greater emphasis on sketches. Our AI is specifically trained to understand an architect's intent, even from rough sketches.

Why do we focus so much on rough sketches? The result, the dilemmas, and risks faced in the early stages of architectural design. We believe this function must be something that can be used quickly during meetings.

With the rise of computational design, some architects prefer exploring possible designs using 3D models. However, making quick adjustments during a meeting is challenging. Adjusting a few parameters might be possible, but changing the overall feel of a design is not easy.

On the other hand, sketches have no such limitations. They allow for quick changes to the building's volume, or adding symbolic details to the facade. And that's why we still believe that sketches are the most effective tool for architects to quickly express their intent during discussions, especially when design changes are needed repeatedly.

With AiCorb, various options can be generated, even from rough sketches. We believe that the sketch to design flow using generative AI is the optimal method for optioneering, which is crucial in resolving dilemmas. It's rare for clients to fully articulate their design requests at the start of the project, so it's common for architects to present numerous options to them.

However, preparing options that aren't selected also takes time. Now, this is a real dilemma architects face. They often end up creating more design options than are really necessary. But if you can confirm the client's real preferences during the past meeting, this dilemma can be resolved.

The benefits of using generative AI go far beyond just speeding up design exploration. Traditionally in the early stages of architectural design, architects would expand their ideas by referencing existing examples. But the options you can search for are always limited. And, of course, you can search for something doesn't exist.

With the arrival of generative AI, the ideation process has transformed dramatically. Now architects can generate limitless new designs without being restricted by existing examples. This means you are not just searching for ideas, but also, you are bringing the images in your mind to life, and verifying them on the spot.

Generative AI is particularly powerful in combining different elements, like mimicking specific branches in architecture or blending architecture with a particular culture style, era, or even living creatures. This allows architecture architects to instantly explore entirely new concepts. It's a tool that will spark new inspiration in the world of architecture.

So far, I have explained how AiCorb 's Facade Design Function helps overcome dilemmas. As you've seen, generative AI can produce incredible visuals. However, we cannot propose buildings that are unbuildable or too expensive or lack environmental performance.

These are not things that can be judged from one image alone. And clients cannot make decisions based solely on a beautiful picture. In other words, a great picture alone is nothing more than pie in the sky.

So, we looked for a way to go beyond just creating images. We thought about how to use this amazing technology to better support consensus-building, and provide a practical solution to the real dilemmas and risk faced by architects and clients. This led to the development of the AiCorb Modeling Function. First, please watch this video.

[VIDEO PLAYBACK]

- For design decisions, clients need quantified information, like environmental performance and cost. They can't be understood by appearance alone. These aspects can only be evaluated once the design is turned into a 3D model.

AiCorb Modeling Function assists in converting designs into 3D models. It reads details, such as window sizes and materials, from a design image, and reflects them as Revit family parameters.

Let's give it a try. Apply this design to the lower levels. And then apply this design to the upper levels. The extracted designs are stored in the palette, allowing for easy comparison of different option.

By using the AiCorb Modeling Function, you can evaluate design proposals with numerical data, helping clients make quicker decisions. Let's start using AI, not just to create beautiful images, but to take design further.

[END PLAYBACK]

TAKUMA NAKABAYASHI: OK, thank you again for watching the video. So, as shown in the video, this feature uses AI to extract the facade characteristics and converts them into parameters, like tunnel aspect, window aspect. window depth, volume thickness, and panel color, as illustrated here.

As I mentioned earlier, this feature is scheduled to be available on the Autodesk App Store in early October, and will function as a plugin for Revit. We concluded that converting the generated images into parametric 3D models is necessary to address the dilemmas and risks we have discussed so far.

In recent years, AI technology for estimating realistic surface models from photos has become mainstream. While this is an impressive technology, and actually, I'm personally excited about it as a researcher, but we see it as an extension of image-based techniques. In other words, it's mainly focused on visualization.

What clients need for decision-making, quantitative details, such as environmental performance, cost, and various other performance metrics. To analyze these aspects, parametric 3D model is required. We adapted this approach to perform quantitative analysis and present the results to clients early in the process, ultimately speeding up decision-making for better informed decisions.

As shown here, the 3D modeling function allows us to easily convert generated parts of the images into 3D models. On these 3D models, we can extract real scalar data, such as the area of opening and the shape of the exterior. This allows us to provide approximate, but quantitative evaluations, such as sunlight exposure and environmental performance early in the process, which can be presented to the clients.

While inside, we began through our efforts and that resolving the dilemmas and risks faced by clients and architects requires an approach that optimizing both the emotional and theoretical aspects in architectural design. Although failing only one of these aspects is not enough, you can't make a decision based on just one side.

Up until now, most of the technological developments aimed at improving design efficiency have focused on the theoretical aspect, particularly those related to analysis and plan part. There are several reasons for this, but one of the main reasons, is that we simply didn't have the technology to effectively address the emotional aspect.

However, now generative AI is beginning to change the situation. Many of you have likely been amazed or moved by images, music, or videos generated by AI. But even so, generative AI by itself cannot fully bridge the gap between the emotional and theoretical aspects.

Understanding this challenge, we created AiCorb as a tool to support the proposal of emotionally impactful designs, and linked them to quantitative analysis. With this approach, we can resolve the kinds of dilemmas and risks shown here, and achieve smoother, more convincing decision-making. OK, now it's time to wrap up, so let me hand it back to Yoshito again.

YOSHITO TSUJI: OK. Takuma, thank you for a good presentation. Let me recap the key takeaway. We propose a new design process, AI-powered Rapid Prototyping. It will enable early client agreement and increase their satisfaction. Also, it will solve a design dilemma and reduce project risks. And also, it will bring broader stakeholder info-sharing and social benefit.

By AI-powered Rapid Prototyping, we realize better informed decision-making for all stakeholders. We introduce AiCorb, a design assistant, to realize this. AiCorb works on concept design stage, and enable architect to provide client with the right information at the right time.

Although development is still in progress, we are striving to realize a new design process. Our vision is that AiCorb will solve design dilemma and reduce project risks, not only for the client and architect, but also for the multidisciplinary team, by sharing information generated through AiCorb.

Furthermore, we believe that better informed consent can be created by sharing various information from the early stage of the project, not only with the project team, but also with various outside stakeholders.

AiCorb is a powerful assistant for exploring this vision. We collaborated with all these people until now. We would like to express our gratitude to SRI International, Autodesk Research, Hyper, Geo, and many individuals. Thank you so much.

As a final, me introduce our LinkedIn page, as shown here, together with Obayashi Construction Tech Lab Singapore. Please check it. This is the end of our presentation. Thank you for listening. Thank you.

______
icon-svg-close-thick

Cookie 首选项

您的隐私对我们非常重要,为您提供出色的体验是我们的责任。为了帮助自定义信息和构建应用程序,我们会收集有关您如何使用此站点的数据。

我们是否可以收集并使用您的数据?

详细了解我们使用的第三方服务以及我们的隐私声明

绝对必要 – 我们的网站正常运行并为您提供服务所必需的

通过这些 Cookie,我们可以记录您的偏好或登录信息,响应您的请求或完成购物车中物品或服务的订购。

改善您的体验 – 使我们能够为您展示与您相关的内容

通过这些 Cookie,我们可以提供增强的功能和个性化服务。可能由我们或第三方提供商进行设置,我们会利用其服务为您提供定制的信息和体验。如果您不允许使用这些 Cookie,可能会无法使用某些或全部服务。

定制您的广告 – 允许我们为您提供针对性的广告

这些 Cookie 会根据您的活动和兴趣收集有关您的数据,以便向您显示相关广告并跟踪其效果。通过收集这些数据,我们可以更有针对性地向您显示与您的兴趣相关的广告。如果您不允许使用这些 Cookie,您看到的广告将缺乏针对性。

icon-svg-close-thick

第三方服务

详细了解每个类别中我们所用的第三方服务,以及我们如何使用所收集的与您的网络活动相关的数据。

icon-svg-hide-thick

icon-svg-show-thick

绝对必要 – 我们的网站正常运行并为您提供服务所必需的

Qualtrics
我们通过 Qualtrics 借助调查或联机表单获得您的反馈。您可能会被随机选定参与某项调查,或者您可以主动向我们提供反馈。填写调查之前,我们将收集数据以更好地了解您所执行的操作。这有助于我们解决您可能遇到的问题。. Qualtrics 隐私政策
Akamai mPulse
我们通过 Akamai mPulse 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Akamai mPulse 隐私政策
Digital River
我们通过 Digital River 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Digital River 隐私政策
Dynatrace
我们通过 Dynatrace 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Dynatrace 隐私政策
Khoros
我们通过 Khoros 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Khoros 隐私政策
Launch Darkly
我们通过 Launch Darkly 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Launch Darkly 隐私政策
New Relic
我们通过 New Relic 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. New Relic 隐私政策
Salesforce Live Agent
我们通过 Salesforce Live Agent 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Salesforce Live Agent 隐私政策
Wistia
我们通过 Wistia 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Wistia 隐私政策
Tealium
我们通过 Tealium 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Tealium 隐私政策
Upsellit
我们通过 Upsellit 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Upsellit 隐私政策
CJ Affiliates
我们通过 CJ Affiliates 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. CJ Affiliates 隐私政策
Commission Factory
我们通过 Commission Factory 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Commission Factory 隐私政策
Google Analytics (Strictly Necessary)
我们通过 Google Analytics (Strictly Necessary) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Strictly Necessary) 隐私政策
Typepad Stats
我们通过 Typepad Stats 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Typepad Stats 隐私政策
Geo Targetly
我们使用 Geo Targetly 将网站访问者引导至最合适的网页并/或根据他们的位置提供量身定制的内容。 Geo Targetly 使用网站访问者的 IP 地址确定访问者设备的大致位置。 这有助于确保访问者以其(最有可能的)本地语言浏览内容。Geo Targetly 隐私政策
SpeedCurve
我们使用 SpeedCurve 来监控和衡量您的网站体验的性能,具体因素为网页加载时间以及后续元素(如图像、脚本和文本)的响应能力。SpeedCurve 隐私政策
Qualified
Qualified is the Autodesk Live Chat agent platform. This platform provides services to allow our customers to communicate in real-time with Autodesk support. We may collect unique ID for specific browser sessions during a chat. Qualified Privacy Policy

icon-svg-hide-thick

icon-svg-show-thick

改善您的体验 – 使我们能够为您展示与您相关的内容

Google Optimize
我们通过 Google Optimize 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Google Optimize 隐私政策
ClickTale
我们通过 ClickTale 更好地了解您可能会在站点的哪些方面遇到困难。我们通过会话记录来帮助了解您与站点的交互方式,包括页面上的各种元素。将隐藏可能会识别个人身份的信息,而不会收集此信息。. ClickTale 隐私政策
OneSignal
我们通过 OneSignal 在 OneSignal 提供支持的站点上投放数字广告。根据 OneSignal 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 OneSignal 收集的与您相关的数据相整合。我们利用发送给 OneSignal 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. OneSignal 隐私政策
Optimizely
我们通过 Optimizely 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Optimizely 隐私政策
Amplitude
我们通过 Amplitude 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Amplitude 隐私政策
Snowplow
我们通过 Snowplow 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Snowplow 隐私政策
UserVoice
我们通过 UserVoice 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. UserVoice 隐私政策
Clearbit
Clearbit 允许实时数据扩充,为客户提供个性化且相关的体验。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。Clearbit 隐私政策
YouTube
YouTube 是一个视频共享平台,允许用户在我们的网站上查看和共享嵌入视频。YouTube 提供关于视频性能的观看指标。 YouTube 隐私政策

icon-svg-hide-thick

icon-svg-show-thick

定制您的广告 – 允许我们为您提供针对性的广告

Adobe Analytics
我们通过 Adobe Analytics 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Adobe Analytics 隐私政策
Google Analytics (Web Analytics)
我们通过 Google Analytics (Web Analytics) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Web Analytics) 隐私政策
AdWords
我们通过 AdWords 在 AdWords 提供支持的站点上投放数字广告。根据 AdWords 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AdWords 收集的与您相关的数据相整合。我们利用发送给 AdWords 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AdWords 隐私政策
Marketo
我们通过 Marketo 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。我们可能会将此数据与从其他信息源收集的数据相整合,以根据高级分析处理方法向您提供改进的销售体验或客户服务体验以及更相关的内容。. Marketo 隐私政策
Doubleclick
我们通过 Doubleclick 在 Doubleclick 提供支持的站点上投放数字广告。根据 Doubleclick 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Doubleclick 收集的与您相关的数据相整合。我们利用发送给 Doubleclick 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Doubleclick 隐私政策
HubSpot
我们通过 HubSpot 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。. HubSpot 隐私政策
Twitter
我们通过 Twitter 在 Twitter 提供支持的站点上投放数字广告。根据 Twitter 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Twitter 收集的与您相关的数据相整合。我们利用发送给 Twitter 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Twitter 隐私政策
Facebook
我们通过 Facebook 在 Facebook 提供支持的站点上投放数字广告。根据 Facebook 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Facebook 收集的与您相关的数据相整合。我们利用发送给 Facebook 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Facebook 隐私政策
LinkedIn
我们通过 LinkedIn 在 LinkedIn 提供支持的站点上投放数字广告。根据 LinkedIn 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 LinkedIn 收集的与您相关的数据相整合。我们利用发送给 LinkedIn 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. LinkedIn 隐私政策
Yahoo! Japan
我们通过 Yahoo! Japan 在 Yahoo! Japan 提供支持的站点上投放数字广告。根据 Yahoo! Japan 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Yahoo! Japan 收集的与您相关的数据相整合。我们利用发送给 Yahoo! Japan 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Yahoo! Japan 隐私政策
Naver
我们通过 Naver 在 Naver 提供支持的站点上投放数字广告。根据 Naver 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Naver 收集的与您相关的数据相整合。我们利用发送给 Naver 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Naver 隐私政策
Quantcast
我们通过 Quantcast 在 Quantcast 提供支持的站点上投放数字广告。根据 Quantcast 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Quantcast 收集的与您相关的数据相整合。我们利用发送给 Quantcast 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Quantcast 隐私政策
Call Tracking
我们通过 Call Tracking 为推广活动提供专属的电话号码。从而,使您可以更快地联系我们的支持人员并帮助我们更精确地评估我们的表现。我们可能会通过提供的电话号码收集与您在站点中的活动相关的数据。. Call Tracking 隐私政策
Wunderkind
我们通过 Wunderkind 在 Wunderkind 提供支持的站点上投放数字广告。根据 Wunderkind 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Wunderkind 收集的与您相关的数据相整合。我们利用发送给 Wunderkind 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Wunderkind 隐私政策
ADC Media
我们通过 ADC Media 在 ADC Media 提供支持的站点上投放数字广告。根据 ADC Media 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 ADC Media 收集的与您相关的数据相整合。我们利用发送给 ADC Media 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. ADC Media 隐私政策
AgrantSEM
我们通过 AgrantSEM 在 AgrantSEM 提供支持的站点上投放数字广告。根据 AgrantSEM 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AgrantSEM 收集的与您相关的数据相整合。我们利用发送给 AgrantSEM 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AgrantSEM 隐私政策
Bidtellect
我们通过 Bidtellect 在 Bidtellect 提供支持的站点上投放数字广告。根据 Bidtellect 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bidtellect 收集的与您相关的数据相整合。我们利用发送给 Bidtellect 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bidtellect 隐私政策
Bing
我们通过 Bing 在 Bing 提供支持的站点上投放数字广告。根据 Bing 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bing 收集的与您相关的数据相整合。我们利用发送给 Bing 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bing 隐私政策
G2Crowd
我们通过 G2Crowd 在 G2Crowd 提供支持的站点上投放数字广告。根据 G2Crowd 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 G2Crowd 收集的与您相关的数据相整合。我们利用发送给 G2Crowd 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. G2Crowd 隐私政策
NMPI Display
我们通过 NMPI Display 在 NMPI Display 提供支持的站点上投放数字广告。根据 NMPI Display 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 NMPI Display 收集的与您相关的数据相整合。我们利用发送给 NMPI Display 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. NMPI Display 隐私政策
VK
我们通过 VK 在 VK 提供支持的站点上投放数字广告。根据 VK 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 VK 收集的与您相关的数据相整合。我们利用发送给 VK 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. VK 隐私政策
Adobe Target
我们通过 Adobe Target 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Adobe Target 隐私政策
Google Analytics (Advertising)
我们通过 Google Analytics (Advertising) 在 Google Analytics (Advertising) 提供支持的站点上投放数字广告。根据 Google Analytics (Advertising) 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Google Analytics (Advertising) 收集的与您相关的数据相整合。我们利用发送给 Google Analytics (Advertising) 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Google Analytics (Advertising) 隐私政策
Trendkite
我们通过 Trendkite 在 Trendkite 提供支持的站点上投放数字广告。根据 Trendkite 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Trendkite 收集的与您相关的数据相整合。我们利用发送给 Trendkite 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Trendkite 隐私政策
Hotjar
我们通过 Hotjar 在 Hotjar 提供支持的站点上投放数字广告。根据 Hotjar 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Hotjar 收集的与您相关的数据相整合。我们利用发送给 Hotjar 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Hotjar 隐私政策
6 Sense
我们通过 6 Sense 在 6 Sense 提供支持的站点上投放数字广告。根据 6 Sense 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 6 Sense 收集的与您相关的数据相整合。我们利用发送给 6 Sense 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. 6 Sense 隐私政策
Terminus
我们通过 Terminus 在 Terminus 提供支持的站点上投放数字广告。根据 Terminus 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Terminus 收集的与您相关的数据相整合。我们利用发送给 Terminus 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Terminus 隐私政策
StackAdapt
我们通过 StackAdapt 在 StackAdapt 提供支持的站点上投放数字广告。根据 StackAdapt 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 StackAdapt 收集的与您相关的数据相整合。我们利用发送给 StackAdapt 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. StackAdapt 隐私政策
The Trade Desk
我们通过 The Trade Desk 在 The Trade Desk 提供支持的站点上投放数字广告。根据 The Trade Desk 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 The Trade Desk 收集的与您相关的数据相整合。我们利用发送给 The Trade Desk 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. The Trade Desk 隐私政策
RollWorks
We use RollWorks to deploy digital advertising on sites supported by RollWorks. Ads are based on both RollWorks data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that RollWorks has collected from you. We use the data that we provide to RollWorks to better customize your digital advertising experience and present you with more relevant ads. RollWorks Privacy Policy

是否确定要简化联机体验?

我们希望您能够从我们这里获得良好体验。对于上一屏幕中的类别,如果选择“是”,我们将收集并使用您的数据以自定义您的体验并为您构建更好的应用程序。您可以访问我们的“隐私声明”,根据需要更改您的设置。

个性化您的体验,选择由您来做。

我们重视隐私权。我们收集的数据可以帮助我们了解您对我们产品的使用情况、您可能感兴趣的信息以及我们可以在哪些方面做出改善以使您与 Autodesk 的沟通更为顺畅。

我们是否可以收集并使用您的数据,从而为您打造个性化的体验?

通过管理您在此站点的隐私设置来了解个性化体验的好处,或访问我们的隐私声明详细了解您的可用选项。