AU Class
AU Class
class - AU

Data Strategy to Achieve Digital Daiwa House with Autodesk Consulting

共享此课程
在视频、演示文稿幻灯片和讲义中搜索关键字:

说明

Daiwa House has been striving to achieve building information modeling (BIM) mandate in-house since 2017, and it has achieved many results, but not enough to maximize value. In order to create further business value and establish a solid foundation where the company can benefit from future technology innovations, we're evolving our data strategy and working with Autodesk Consulting on the Digital Daiwa House project. To achieve the goal, we're working on implementing a higher level of BIM maturity while increasing the maturity of the data required for construction projects. We're also working on the configurator as a mechanism to convert structured/standardized data into business value. The configurator links data throughout the project lifecycle and enhances the coordination of each stakeholder. In proportion to the maturity of BIM and data, capabilities in the configurator improve. We are aiming to achieve such an evolving configurator.

主要学习内容

  • Discover the concept of a data strategy beyond BIM.
  • Learn about the maturity levels of BIM and data in the construction industry.
  • Learn about applying those data tied to business value to the configurator.

讲师

  • 吉川 明良
    I joined Daiwa House in 2007 and worked as an architectural designer in general construction/building division for 11.5 years. During that time, I have been utilizing Revit in the project since my third year. Starting in 2017, I participated in the company-wide BIM transition project while concurrently working in the field. One year later, I moved to BIM Promotion Department and worked closely with architectural design team nation-wide to deploy BIM standard in Daiwa House. As the BIM Promotion Department evolved and was reorganized into the Construction Digital Promotion Department, my responsibility was expanded to promote the deployment of digital technology along with the use of BIM. Since 2022, I became to lead the deployment of digital technology in Architecture, Structure, and Cost Estimation Departments. And this year, the Construction Digital Transformation promotion department reorganized again and established the Planning Office in the department. As the head of the office, I am working on identifying the medium- and long-term measures and growth areas, as well as planning for the adaptation of existing measures across the business units, both in Design and Construction dept.
  • 小川 拓真
    I have started to study BIM in university. To apply it into practice, I joined Daiwa House in 2019. In 2021, I have led the project in the company to have ISO19650 certification for the first time in Japan. Currently, I am in charge of establishing common data environment utilizing ACC and developing Web application used APS.
Video Player is loading.
Current Time 0:00
Duration 43:47
Loaded: 0.38%
Stream Type LIVE
Remaining Time 43:47
 
1x
  • Chapters
  • descriptions off, selected
  • en (Main), selected
Transcript

AKIRA YOSHIKAWA: Good afternoon, everyone. Thank you for attending our session, "Data Strategy to Achieve Daiwa House with Autodesk Consulting." We are not fluent in English, but we do our best to share our ideas and approaches we are working on to accelerate digital transformation in the company.

Let's introduce ourselves first. My name is Akira Yoshikawa. I joined Daiwa House in 2007 and worked too as a architectural designer in general construction building division for 11 years. I have studied [INAUDIBLE] in the projects since 2010.

After moving to BIM Promotion Department in 2018, I supported architecture design team closely and developed BIM standard nationwide in Daiwa House. Currently as the head of planning office in digital transformation promotion department, I am leading the team to identify the medium and long-term measures for the growth areas. And also, to adapt established measures across the business units both in design and construction.

TAKUMA OGAWA: My name is Takuma Ogawa. I started to study BIM at university. To apply it into practice, I joined the Daiwa House in 2019. My first project was to have ISO 19650 certified as a first company in Japan. I have worked with a team to establish templates for [INAUDIBLE], authorization settings, as well as standard rules for operation and deployed them to building division nationwide.

We also have conducted many trainings for all engineers to improve the maturity level of end users. Currently to utilize ACC corporate world, we are accelerating development [INAUDIBLE] with ERP and other internal systems using APS. I want to move forward with further transformation by utilizing AI or other advanced technologies. By the way, sashimi, chihiro, and miso soup in the photo is not my current responsibilities at work. But I enjoy cooking Japanese dishes like this.

AKIRA YOSHIKAWA: Let us briefly introduce our company, Daiwa House, about its 70 years of history. We have delivered about 2 million residences over 47,000 commercial facilities and 10,000 medical and nursing care facilities in Japan. We are the largest construction company in Japan with total sales of the group companies exceeded five trillion yen, which is around $35 billion in the [INAUDIBLE] of 150 yens per dollar. Recently, we are expanding our business in the US, Asia, and the ASEAN region, Oceania and Europe.

This very old photo is the first prefab construction in Japan we have developed called pipe house, a prefabricated warehouse for railway facilities in 1955. The founder developed a new concept at that time to utilize the standardized components and expanded the business.

In the process of deepening and developing our own industrialized construction, we have tried to bring information between the departments in various ways. See, we are facing additional challenges, such as increasing number of custom made components and products or the growing complexity of systems and rules.

In response to the changing times and technology, we are aiming to renew industrialized construction where utilizing BIM foundation and applying DfMA. In other words, it is a convergence of digital technology based on BIM and the building technology of industrialized construction we have cultivated. In this session, we talk about the Digital Daiwa House, our concept of evolving industrialization.

Now, let me give you an overview of the concept in the short video.

[VIDEO PLAYBACK]

- A revolutionary innovation in the Japanese construction industry occurred about 10 years ago. Daiwa House began developing BIM standards in 2017. We are presently in the establishment phase of BIM and moving into the utilization phase.

This is part of the evolution of our new Digital Daiwa House concept. Daiwa House's processes revolve around digital data. The data generated in this phase will further create new value. That future is Digital Daiwa House.

There are two important elements in realizing a Digital Daiwa House. The first is to further improve the maturity of BIM, so that data can be linked together without being tied to a file. This will help you be more standardized and collaborative with your processes going beyond BIM.

The second is to mature the data that is linked to BIM. We will develop data that is easy to use and of high quality, so that it can be useful to many in the organization. For realization of maximum value from data, we will develop a common data environment or CDE connected to other digital business initiatives to further facilitate data utilization throughout the company.

Through business process change that will better connect your business units and customers through business process change or BPC, increasing the maturity of BIM and data is also valuable. But it is not enough. Therefore, through connecting BIM with additional data, we will build a configurator to be a mechanism that maximizes business value by first connecting design and cost data real-time to connect and improve estimates and development of design.

It is very important to build an environment to accumulate reliable data and to use it efficiently in order to realize Digital Daiwa House. Data obtained from thousands of projects per year cannot be utilized in the future if it is simply stored on paper or in separate files for each application. By properly recording engineering data in Autodesk Construction Cloud ACC, the data becomes an asset that can be used and reused to higher quality buildings and service.

According to the UK definition of BIM levels, level 3 is a world where BIM data is integrated with various data and web services to streamline the entire lifecycle. To date, BPC has focused on achieving inter-departmental collaboration at Daiwa House. Our next goal is to realize BIM level 3, which enables data centered collaboration in projects beyond the boundaries of our own company.

To move towards this goal, Daiwa House is building a configurator as a mechanism to create business value by connecting BIM and data. Our goal is not just a mechanism to automate the generation of building forms or designs, but helps present business rules from data across the life cycle to make informed decisions.

As the maturity of the data that drives the configurator improves, the performance of the configurator itself will also improve, expanding the scope of what it can handle and further increasing its business value. In this way, the configurator continues to evolve with the maturity of the data.

The Digital Daiwa House concept is a data strategy that goes beyond BIM and enables enterprise level transformation and adaptability to new business opportunities through Digital Daiwa House. While looking at the impacts of data on the construction industry as a whole, we are also raising the company's own digital maturity level. The Digital Daiwa House concept will continue.

[END PLAYBACK]

As mentioned in the video, Digital Daiwa House is an innovation. The concept could have an impact to transform the entire construction industry. By achieving Digital Daiwa House, we will provide services to enrich the activities not only for customers, but also for employees, stakeholders, and many others, creating a new value.

Now, I'd like to talk about how we are planning to achieving Digital Daiwa House. Simply speaking, the purpose of Digital Daiwa House is to create new values. At first, we thought about what kind of process we should apply to achieve it. We constructed our execution process, referring to DIKW model.

As some of you may know, I will briefly explain DIKW model. DIKW model is a framework for effectively implementing knowledge management. It consists of four layers-- data, information, knowledge, and wisdom.

The bottom layer is data. Data alone has no value. And even if correct as it is, it cannot be utilized. By classifying, analyzing, considering, and verifying data and giving it meanings, it will become information.

When integrating multiple pieces of information, systemising it with regularity and adding some insight, it will become knowledge. This is where the value comes into play. Then, based on the knowledge, if we think and act to create new value, it will become wisdom.

Based on DIKW model, we saw about the execution process that achieved Digital Daiwa House. We define it as data maturity process. We also considered classifying data into two types-- BIM data and [INAUDIBLE] data and improving the maturity of each type.

To improve data maturity, we first wanted to understand where we are now. We define the data maturity indicator as data maturity level and divided them into four levels. Level 0 consists of data generated by conventional business process, for example, data printed on paper or stored in PDF files.

Level 1 is a level of maturity where each department can utilize data respectively. Level 2 refers to stage where data is integrated across the company and can be linked and utilized across multiple departments. Level 3 will be the stage where data [INAUDIBLE] can generate new valuable data based on cutting edge technologies such as AI.

Recognizing our service as level 1, we conducted several analyses with Autodesk Consulting. We found our weak area in data quality and data scalability. We need to strengthen those areas to reach to level 2.

We have organized the necessary action to enhance data quality and scalability into three steps. We named it as 3C cycle-- take the initial letter of those three steps. The first is to create. The second is to collect. The third is to consume. To overcome our weakness, it is important to create the right data and correct and accumulate those data properly.

[INAUDIBLE] start with a step of creating data, structured and standardized as a key. Even if we create our data, it cannot be retrieved or handled. We cannot utilize it with other data. In other words, the system should be able to freely input and output data independent from individuals or environment. We define the indicator as structured.

In addition, if the quality of the retrieved data is not ensured, the expected roots cannot be obtained even if the data is [INAUDIBLE]. The data should be utilized without any restriction from certain functions, operations, or departments. We define the indicator as standardized. We conducted four initiatives as described here. Establishing structured and standardized data improves data quality.

The next step is collecting data. Data-centric approach is a key. Conventional data processing methods, such as bucket relays, not only slow down the speed of process execution but also deteriorates the quality and connectivity of the data itself. In contrast, the data center oriented idea places the data at the center, creating an environment where all processes, technologies, and stakeholders can always retrieve and use the most up-to-date and necessary granularity of information. The data-centric protocol improves the scalability of data.

Daiwa House has been [INAUDIBLE] so far a vision of a mobius loop, whereas data is seamlessly passed between processes and [INAUDIBLE]. However, only with this idea, the data transform may depend on individuals and correct feedback might not be reached to the next process or future projects.

Therefore, we have added a new vision, data-centric and advancing the data strategy to have grown our data maturity from level 1 to level 2. Not all of our data is currently at level 2 maturity, but with this new vision, we achieve level 2 maturity and tends to lead to level 3.

Let's take a look at Daiwa House's common data strategy, which incorporates data-centric philosophy. The important key for the common data strategy is a CDE. We define CDE as a common data environment necessary to facilitate the seamless execution of the construction lifecycle for all projects.

We believe Autodesk Construction Cloud is a perfect tool for CDE. It manages rapid data in ACC and leverages stocks and BIM to execute the process, making the construction [INAUDIBLE] run effectively and smoothly.

Why leveraging this to achieve our vision of Digital Daiwa House, we need a data-centric foundation. It can effectively execute the entire business lifecycle. We include it in our common data strategy.

The key here is how we implement the concept of centralized management. Centralized management doesn't mean uploading all data to ACC for management. We believe that the centralized management is an environment where designated people can access and retrieve the necessary data when and where they need with the proper access control.

This slide shows the overall picture of common data strategy. We consolidate building information around the BIM model. By managing the BIM model with CDE, we can manage construction project from design to construction and maintenance.

At the same time, we build a database environment that manages multiple construction projects across the board. We call it the building database. We need it to manage a variety of specialized knowledge data required to conduct projects as a knowledge database. For instance, material data, structure data, procurement data, estimated data, products data are a part of the database.

Each data is maintained in its own master database. Each master database grows while repeating 3C cycle of create, correct, [INAUDIBLE] data. As it grows, it forms a larger master database, interacting with each other. We will achieve our common data strategy by utilizing Revit as a DB2, ACC as a CDE, and APS as a technology to connect to data.

AKIRA YOSHIKAWA: In the previous chapter, Ogawa talks about the first two steps of 3C cycle to improve data maturity as a part of our data strategy to realize Digital Daiwa House. The first step is create data. And the second step is correct data. In this chapter, I'm going to share with you our approach on the third steps, consume data, or how to leverage data.

We are continuing to work on improving the maturity of BIM and data in order to achieve Digital Daiwa House. Having suffered from Autodesk Consulting, we started to develop a mechanism to link both and create value as a form of utilizing data.

This is a configurator as a solution to create business value. Our goal is to create a next generation configurator, not only generating 3D models, but also optimizing the entire construction life cycle by integrating digital technology and construction technology.

The configurator is driven by data such as rules, components, product info, and accumulated knowledge. As the maturity of the data improves, the configurator performance can be improved. And its scope coverage will also expand.

The configurator maturity level 1 focuses on the design phase. Main target user is architecture design. Based on the [INAUDIBLE] engine, it manipulates parameters to generate building information. It also can visualize metrics by linking information such as cost, carbon emissions, or a schedule.

This is the outline of the prototype we are currently working on as level 1. We have analyzed data from accumulated 3,000 projects and created a master based on building use, loom use, and [INAUDIBLE] configuration. With this approach, even with the low LOD model, we can interactively obtain more detailed and accurate costs at early stage of design phase. This is a short video for the first prototype.

[VIDEO PLAYBACK]

- The configurator is launched showing an interactive dialog box, allowing the user to define the characteristics and the performance of a specific room and wall. This will then suggest potential core and skin values that the user can either select or change based on the desired needs of the application, applying these then to the new wall and creating a new wall family.

So once the changes have been made, we can validate the changes by looking at the wall. Once we see that that has been changed, we can then go and change the characteristics, the core, and the skin again and see what these changes do to the price of that wall. Notice the price changing down in the lower right corner of the dialog box. Then we can apply those settings to the wall and double check the wall again to determine if those changes are what we ultimately want.

So once we've gone and applied all of the different characteristics, cores, and skin values to all the different pieces, we can switch over to the dashboard. The dashboard allows us to look at each of the different versions from a cost perspective, as well as look at what materials have been used the most and where they've been used from a room perspective. In the future, we will also have industry standards for carbon calculations that will be able to be displayed and compared.

[END PLAYBACK]

AKIRA YOSHIKAWA: As mentioned in the movie, one of the important capability we want to incorporate into level 1, maturity configurators. We are currently looking into the calculation of embodied carbon. With the help of Autodesk Consulting Team, we are developing a tool to calculate the carbon of structure members in conjunction with ACC.

At this moment, the development of the two is independent. But we would like to integrate the system into the configurator in near future. It will allow us to update our workflow for all designers to perform carbon analysis as a part of their design work every day. Although not yet integrated into the configurator, we are rolling out the functionality of carbon calculus as a tool next [INAUDIBLE]. And I'd like to share a short demonstration.

[VIDEO PLAYBACK]

- Data governance and security have been central to the design of the ICT. The tool links directly with the ACC project and inherits roles that inform the access for the assessment process. Designers create a single source of truth by selecting the project models. The automated permissions for administrators, editors or reviewers control access rights and data.

It was important for the Daiwa team to form a complete assessment profile up front, as the structure can contribute to between 40% to 60% of the total emissions for the building. This is typically made difficult when the components, such as rebar or bolts, are not modeled until late in the project. Using the tool, the team are able to assess the carbon impact from the structural elements in the Revit model alongside supplemental assumptions.

The information from the Revit model is displayed in a data tree representing all of the model elements which can interact dynamically with the Model Viewer. The assumptions for rebar and other non-modeled elements, which can be automated based on the category type or CAD material, can be set and viewed also in the model tree.

Building on the theme of data governance, it was important for the Daiwa team to be able to centrally control the carbon database. The Japan standard data set of emission factors has been loaded into the system, which then can be managed by the administrators for all users.

[END PLAYBACK]

AKIRA YOSHIKAWA: As a level 1 configurator, we get up ideas considering various scenes, phrases, and personas. With [INAUDIBLE] shows those ideas plotted on [INAUDIBLE] as a vertical axis AND the construction life cycle as the horizontal axis. With this process, we noticed that the configurator would be used to accelerate the decision making by stakeholders.

[INAUDIBLE] function will be developed in parallel. And they are integrated into core configurator. This integration will allow the architectural designers to make the right decision.

At the earliest stage, having the backup of the specialties and expertise coming from individual configurator before the integration, we believe it would be the goal of the maturity level 1 configurator. Also, we can accelerate to organize data with data-centric approach by strategically prioritizing the data.

Next, let's talk about what to consider as the level 2 configurator. At this stage, building models are generated by the user input, applying [INAUDIBLE] products and materials info. Those information were prepared, taking into account money, manufacturing, construction, and other factors.

Create data can be used for actual manufacturing and construction and can be smoothly linked to subsequent processes. It is necessary to standardize product information defined the necessary information for each product and managed them throughout the life cycle.

By integrating a configurator with DfMA capabilities, the configurator evolved from level 1 to level 2, which include manufacturing, construction, and supply chain elements. The construction technology component will support the design phase to produce a more feasible output. Target user will be expand to include not only designers, engineers, but also clients and sales. It will further accelerate decision making, resulting in shorter overall lead times.

The configurator at maturity level 3 has a potential for further breakthrough with technological innovation. We will continue to leverage the data accumulated in past projects, achieving even more advanced forecasting, analysis, and optimization. Applying AI will accelerate the movement.

Let me summarize what we have discussed so far about configurator. We build this configurator as a solution connecting BIM and data. It creates value and will continue to evolve. The source of the configurator is definitely BIM and data. By enhancing these elements, we will achieve Digital Daiwa House.

Now, I would like to close today's session with two more slides. The construction industry faces many challenges-- shrinking workforce, changes in materials for the configuration of environment, or changes in demand, a wide range of issues. We believe utilizing BIM and other types of data is one of the solution.

However, the construction industry is still generally paper-based and file-based work. This way of working does not allow us to utilizing data. The most important thing is to store and accumulate data in the correct form to be able to utilize properly.

There are so many stakeholders in the construction industry. If more and more companies handled data based on the idea we have discussed today, the potential for data utilization in the industry as a whole will expand. I believe it is a responsibility of leading company to expand such efforts.

It is a dream of our chief technical officer to have the Japan quality construction to a global export industry through such efforts. Today, we are lucky to share these ideas. [INAUDIBLE] from all over the world. We look forward to connecting with you and tributing to the transformation of the industry. That's all. Thank you very much for your kind listening.

______
icon-svg-close-thick

Cookie 首选项

您的隐私对我们非常重要,为您提供出色的体验是我们的责任。为了帮助自定义信息和构建应用程序,我们会收集有关您如何使用此站点的数据。

我们是否可以收集并使用您的数据?

详细了解我们使用的第三方服务以及我们的隐私声明

绝对必要 – 我们的网站正常运行并为您提供服务所必需的

通过这些 Cookie,我们可以记录您的偏好或登录信息,响应您的请求或完成购物车中物品或服务的订购。

改善您的体验 – 使我们能够为您展示与您相关的内容

通过这些 Cookie,我们可以提供增强的功能和个性化服务。可能由我们或第三方提供商进行设置,我们会利用其服务为您提供定制的信息和体验。如果您不允许使用这些 Cookie,可能会无法使用某些或全部服务。

定制您的广告 – 允许我们为您提供针对性的广告

这些 Cookie 会根据您的活动和兴趣收集有关您的数据,以便向您显示相关广告并跟踪其效果。通过收集这些数据,我们可以更有针对性地向您显示与您的兴趣相关的广告。如果您不允许使用这些 Cookie,您看到的广告将缺乏针对性。

icon-svg-close-thick

第三方服务

详细了解每个类别中我们所用的第三方服务,以及我们如何使用所收集的与您的网络活动相关的数据。

icon-svg-hide-thick

icon-svg-show-thick

绝对必要 – 我们的网站正常运行并为您提供服务所必需的

Qualtrics
我们通过 Qualtrics 借助调查或联机表单获得您的反馈。您可能会被随机选定参与某项调查,或者您可以主动向我们提供反馈。填写调查之前,我们将收集数据以更好地了解您所执行的操作。这有助于我们解决您可能遇到的问题。. Qualtrics 隐私政策
Akamai mPulse
我们通过 Akamai mPulse 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Akamai mPulse 隐私政策
Digital River
我们通过 Digital River 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Digital River 隐私政策
Dynatrace
我们通过 Dynatrace 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Dynatrace 隐私政策
Khoros
我们通过 Khoros 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Khoros 隐私政策
Launch Darkly
我们通过 Launch Darkly 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Launch Darkly 隐私政策
New Relic
我们通过 New Relic 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. New Relic 隐私政策
Salesforce Live Agent
我们通过 Salesforce Live Agent 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Salesforce Live Agent 隐私政策
Wistia
我们通过 Wistia 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Wistia 隐私政策
Tealium
我们通过 Tealium 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Tealium 隐私政策
Upsellit
我们通过 Upsellit 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Upsellit 隐私政策
CJ Affiliates
我们通过 CJ Affiliates 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. CJ Affiliates 隐私政策
Commission Factory
我们通过 Commission Factory 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Commission Factory 隐私政策
Google Analytics (Strictly Necessary)
我们通过 Google Analytics (Strictly Necessary) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Strictly Necessary) 隐私政策
Typepad Stats
我们通过 Typepad Stats 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Typepad Stats 隐私政策
Geo Targetly
我们使用 Geo Targetly 将网站访问者引导至最合适的网页并/或根据他们的位置提供量身定制的内容。 Geo Targetly 使用网站访问者的 IP 地址确定访问者设备的大致位置。 这有助于确保访问者以其(最有可能的)本地语言浏览内容。Geo Targetly 隐私政策
SpeedCurve
我们使用 SpeedCurve 来监控和衡量您的网站体验的性能,具体因素为网页加载时间以及后续元素(如图像、脚本和文本)的响应能力。SpeedCurve 隐私政策
Qualified
Qualified is the Autodesk Live Chat agent platform. This platform provides services to allow our customers to communicate in real-time with Autodesk support. We may collect unique ID for specific browser sessions during a chat. Qualified Privacy Policy

icon-svg-hide-thick

icon-svg-show-thick

改善您的体验 – 使我们能够为您展示与您相关的内容

Google Optimize
我们通过 Google Optimize 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Google Optimize 隐私政策
ClickTale
我们通过 ClickTale 更好地了解您可能会在站点的哪些方面遇到困难。我们通过会话记录来帮助了解您与站点的交互方式,包括页面上的各种元素。将隐藏可能会识别个人身份的信息,而不会收集此信息。. ClickTale 隐私政策
OneSignal
我们通过 OneSignal 在 OneSignal 提供支持的站点上投放数字广告。根据 OneSignal 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 OneSignal 收集的与您相关的数据相整合。我们利用发送给 OneSignal 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. OneSignal 隐私政策
Optimizely
我们通过 Optimizely 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Optimizely 隐私政策
Amplitude
我们通过 Amplitude 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Amplitude 隐私政策
Snowplow
我们通过 Snowplow 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Snowplow 隐私政策
UserVoice
我们通过 UserVoice 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. UserVoice 隐私政策
Clearbit
Clearbit 允许实时数据扩充,为客户提供个性化且相关的体验。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。Clearbit 隐私政策
YouTube
YouTube 是一个视频共享平台,允许用户在我们的网站上查看和共享嵌入视频。YouTube 提供关于视频性能的观看指标。 YouTube 隐私政策

icon-svg-hide-thick

icon-svg-show-thick

定制您的广告 – 允许我们为您提供针对性的广告

Adobe Analytics
我们通过 Adobe Analytics 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Adobe Analytics 隐私政策
Google Analytics (Web Analytics)
我们通过 Google Analytics (Web Analytics) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Web Analytics) 隐私政策
AdWords
我们通过 AdWords 在 AdWords 提供支持的站点上投放数字广告。根据 AdWords 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AdWords 收集的与您相关的数据相整合。我们利用发送给 AdWords 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AdWords 隐私政策
Marketo
我们通过 Marketo 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。我们可能会将此数据与从其他信息源收集的数据相整合,以根据高级分析处理方法向您提供改进的销售体验或客户服务体验以及更相关的内容。. Marketo 隐私政策
Doubleclick
我们通过 Doubleclick 在 Doubleclick 提供支持的站点上投放数字广告。根据 Doubleclick 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Doubleclick 收集的与您相关的数据相整合。我们利用发送给 Doubleclick 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Doubleclick 隐私政策
HubSpot
我们通过 HubSpot 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。. HubSpot 隐私政策
Twitter
我们通过 Twitter 在 Twitter 提供支持的站点上投放数字广告。根据 Twitter 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Twitter 收集的与您相关的数据相整合。我们利用发送给 Twitter 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Twitter 隐私政策
Facebook
我们通过 Facebook 在 Facebook 提供支持的站点上投放数字广告。根据 Facebook 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Facebook 收集的与您相关的数据相整合。我们利用发送给 Facebook 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Facebook 隐私政策
LinkedIn
我们通过 LinkedIn 在 LinkedIn 提供支持的站点上投放数字广告。根据 LinkedIn 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 LinkedIn 收集的与您相关的数据相整合。我们利用发送给 LinkedIn 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. LinkedIn 隐私政策
Yahoo! Japan
我们通过 Yahoo! Japan 在 Yahoo! Japan 提供支持的站点上投放数字广告。根据 Yahoo! Japan 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Yahoo! Japan 收集的与您相关的数据相整合。我们利用发送给 Yahoo! Japan 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Yahoo! Japan 隐私政策
Naver
我们通过 Naver 在 Naver 提供支持的站点上投放数字广告。根据 Naver 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Naver 收集的与您相关的数据相整合。我们利用发送给 Naver 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Naver 隐私政策
Quantcast
我们通过 Quantcast 在 Quantcast 提供支持的站点上投放数字广告。根据 Quantcast 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Quantcast 收集的与您相关的数据相整合。我们利用发送给 Quantcast 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Quantcast 隐私政策
Call Tracking
我们通过 Call Tracking 为推广活动提供专属的电话号码。从而,使您可以更快地联系我们的支持人员并帮助我们更精确地评估我们的表现。我们可能会通过提供的电话号码收集与您在站点中的活动相关的数据。. Call Tracking 隐私政策
Wunderkind
我们通过 Wunderkind 在 Wunderkind 提供支持的站点上投放数字广告。根据 Wunderkind 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Wunderkind 收集的与您相关的数据相整合。我们利用发送给 Wunderkind 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Wunderkind 隐私政策
ADC Media
我们通过 ADC Media 在 ADC Media 提供支持的站点上投放数字广告。根据 ADC Media 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 ADC Media 收集的与您相关的数据相整合。我们利用发送给 ADC Media 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. ADC Media 隐私政策
AgrantSEM
我们通过 AgrantSEM 在 AgrantSEM 提供支持的站点上投放数字广告。根据 AgrantSEM 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AgrantSEM 收集的与您相关的数据相整合。我们利用发送给 AgrantSEM 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AgrantSEM 隐私政策
Bidtellect
我们通过 Bidtellect 在 Bidtellect 提供支持的站点上投放数字广告。根据 Bidtellect 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bidtellect 收集的与您相关的数据相整合。我们利用发送给 Bidtellect 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bidtellect 隐私政策
Bing
我们通过 Bing 在 Bing 提供支持的站点上投放数字广告。根据 Bing 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bing 收集的与您相关的数据相整合。我们利用发送给 Bing 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bing 隐私政策
G2Crowd
我们通过 G2Crowd 在 G2Crowd 提供支持的站点上投放数字广告。根据 G2Crowd 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 G2Crowd 收集的与您相关的数据相整合。我们利用发送给 G2Crowd 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. G2Crowd 隐私政策
NMPI Display
我们通过 NMPI Display 在 NMPI Display 提供支持的站点上投放数字广告。根据 NMPI Display 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 NMPI Display 收集的与您相关的数据相整合。我们利用发送给 NMPI Display 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. NMPI Display 隐私政策
VK
我们通过 VK 在 VK 提供支持的站点上投放数字广告。根据 VK 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 VK 收集的与您相关的数据相整合。我们利用发送给 VK 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. VK 隐私政策
Adobe Target
我们通过 Adobe Target 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Adobe Target 隐私政策
Google Analytics (Advertising)
我们通过 Google Analytics (Advertising) 在 Google Analytics (Advertising) 提供支持的站点上投放数字广告。根据 Google Analytics (Advertising) 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Google Analytics (Advertising) 收集的与您相关的数据相整合。我们利用发送给 Google Analytics (Advertising) 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Google Analytics (Advertising) 隐私政策
Trendkite
我们通过 Trendkite 在 Trendkite 提供支持的站点上投放数字广告。根据 Trendkite 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Trendkite 收集的与您相关的数据相整合。我们利用发送给 Trendkite 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Trendkite 隐私政策
Hotjar
我们通过 Hotjar 在 Hotjar 提供支持的站点上投放数字广告。根据 Hotjar 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Hotjar 收集的与您相关的数据相整合。我们利用发送给 Hotjar 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Hotjar 隐私政策
6 Sense
我们通过 6 Sense 在 6 Sense 提供支持的站点上投放数字广告。根据 6 Sense 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 6 Sense 收集的与您相关的数据相整合。我们利用发送给 6 Sense 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. 6 Sense 隐私政策
Terminus
我们通过 Terminus 在 Terminus 提供支持的站点上投放数字广告。根据 Terminus 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Terminus 收集的与您相关的数据相整合。我们利用发送给 Terminus 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Terminus 隐私政策
StackAdapt
我们通过 StackAdapt 在 StackAdapt 提供支持的站点上投放数字广告。根据 StackAdapt 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 StackAdapt 收集的与您相关的数据相整合。我们利用发送给 StackAdapt 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. StackAdapt 隐私政策
The Trade Desk
我们通过 The Trade Desk 在 The Trade Desk 提供支持的站点上投放数字广告。根据 The Trade Desk 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 The Trade Desk 收集的与您相关的数据相整合。我们利用发送给 The Trade Desk 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. The Trade Desk 隐私政策
RollWorks
We use RollWorks to deploy digital advertising on sites supported by RollWorks. Ads are based on both RollWorks data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that RollWorks has collected from you. We use the data that we provide to RollWorks to better customize your digital advertising experience and present you with more relevant ads. RollWorks Privacy Policy

是否确定要简化联机体验?

我们希望您能够从我们这里获得良好体验。对于上一屏幕中的类别,如果选择“是”,我们将收集并使用您的数据以自定义您的体验并为您构建更好的应用程序。您可以访问我们的“隐私声明”,根据需要更改您的设置。

个性化您的体验,选择由您来做。

我们重视隐私权。我们收集的数据可以帮助我们了解您对我们产品的使用情况、您可能感兴趣的信息以及我们可以在哪些方面做出改善以使您与 Autodesk 的沟通更为顺畅。

我们是否可以收集并使用您的数据,从而为您打造个性化的体验?

通过管理您在此站点的隐私设置来了解个性化体验的好处,或访问我们的隐私声明详细了解您的可用选项。