AU Class
AU Class
class - AU

Developing a mobile app with the Forge IoT API

共享此课程
在视频、演示文稿幻灯片和讲义中搜索关键字:

说明

Review a real world mobile app example created on the Autodesk IoT platform, leveraging the API to build a high quality application leveraging IoT data and interacting with connected devices.

The Forge IoT platform provides a scale-able solution that simplifies the collection and processing of connected device data along with API access to build rich, powerful applications on top of that data.

主要学习内容

讲师

  • Allan O'leary
    Allan is a product manager on the cloud platforms team, currently based in Singapore, he has 10 years experience across Autodesk Data Management applications, IoT and core services. Allan is a Mechanical engineer with a background in maintenance services and product design where he first became an Autodesk user on Mechanical Desktop 4. Allan can watch any sport.
  • Brian Sherman
    Brian Sherman is a senior software engineer on the Fusion Connect Team at Autodesk, Inc., based in the San Francisco office. He joined this team in 2014, and focuses on a number of areas, such as general development of the Internet of Things (IoT) cloud service, writing cloud adapters, training others on the use of the platform, and building customer solutions. Sherman has a bachelor’s degree in computer science and political science from the University of California, Berkeley. Outside of the office, Sherman is an avid sports fan, but as a supporter of the Oakland Athletics, Oakland Raiders, Los Angeles Lakers, and the California Golden Bears, he spends most of his days thoroughly disappointed with his teams. Sherman is an active alumnus in his fraternity, and spends much of his time debating politics, enjoying the city nightlife, and lamenting the futility of his fantasy football team.
Video Player is loading.
Current Time 0:00
Duration 24:14
Loaded: 0.69%
Stream Type LIVE
Remaining Time 24:14
 
1x
  • Chapters
  • descriptions off, selected
  • en (Main), selected
Transcript

ALLAN O'LEARY: All right, welcome everyone. We better get kicked off. We've only got 30 minutes. So that's the good news, if you don't like the class, it will be over soon. Today with me, I've got Brian Sherman. He's a senior developer. And we both work on the Forge team developing IoT.

So a quick heads up on the class overview. Was anyone at the last Dev Con months ago we had in San Francisco? Excellent. So Brian and I did a more in-depth technical overview of the API. That class is probably still available online if you want to go back and do some review. But I did say at that class any months ago-- we should have played the clip to prove that I'm a liar-- that if anyone goes away and builds something with the API, I would come back in and show it next year. So that's where we're at.

So we're going to be talking about a real application of the API currently going into production. And what I want to get across in this class is understanding the real application of the IoT platform, understanding how the data flows through the system, use of the messaging and the mobile app as part of their overall solution, and also get you guys excited to start planning your own IoT solutions.

So the good news is we've got a customer using it. The bad news is they haven't quite made it to production yet. And they're very sensitive about their business model and copycats. I'm sure none of you would go out and build a competing system. But they're very sensitive and they asked us not to show any of the exact business model they're using and what it is that they're actually monitoring.

So I've anonymised a lot of the information we're going to go through here. So it is a somewhat fictional example built on what our customer's currently doing using an API. So unfortunately, there's no live demo. I'm not sure how exciting the live demo would be, watching me stand up here with a mobile phone and flick through screens. You can catch me in the hall doing that afterwards. So we're going to get through and basically just show you what they're doing with the API, rather than give you a live demo.

So it's based essentially on our service inspections so right now they're having to do frequent site inspections, visual inspections, people going out, switching off equipment, cordoning off the area, and sitting through and going through the ware points on the machine, different trouble spots that they traditionally have with the equipment.

So this is costly, in that it's man hours to have someone go out there. A lot of the time, maybe for no benefit. Quite frequently, there is nothing wrong with the machine. It's running as it should. But they need to go and check it still. So best case scenario, at the moment, they're losing money on productivity with the machine down. And they're losing man hours with someone having to go and visually inspect a machine that might actually have nothing wrong with it.

Worst case scenario, the machine breaks in between inspections. Someone forgets to do the inspection and we now have a very, very costly repair bill. Now there is a little bit of big brother in this inspection approach as well. They would never accuse anyone of deliberately doing damage, but they believe there's a lot of people that damage the machine, don't really want to report it, she'll be all right, keep the machine running, we'll fix it in a couple of months. So they were seeing issues where people were embarrassed, using the machine incorrectly, and weren't reporting damage.

That was the best and worst case. Their solution, the business model that they found here was fairly straightforward. They wanted to be able to understand when the machine requires inspection and make sure they get ahead of any issues. Of course, the best way to do that is to remotely monitor the machine. So they looked at some key performance indicators on the machine. We'll have a look at what those are as we go through the inspection piece.

But they started to layer this on top of our IoT platform. So this here is a Fusion Connect product. On the right-hand, your left-hand side, is the data ingestion. So these are some standard protocols, devices with sensors and gateways. So we collect the data on our device adapted layer, and we process it with some business logic in order to make some decisions. Is the machine behaving normally? Is the machine not behaving normally? It can be as simple as that.

And on the back end, we've got a mobile API. Which allows us to build, obviously, mobile applications. It also allows us to integrate with other business systems. So we can bring in information from ERP, customer management service ticket systems, and the like. So they've leveraged this mobile API on the right-hand side to build out as part of their overall solution the mobile application.

It's worth noting here-- it's worth noting here that they do have a full application they built on top of their product with a dashboard, and a series of reports, and other functionality. But they don't employ someone to sit in front of a screen and watch all day what activity is going on. So being able to connect with people on site, being able to alert them or drive them back to the application, or to do an inspection is a big piece of what actually makes this work.

So we set the application Fusion Connect. And the application that we're about to show you uses our Fusion Connect notifications. So it goes through triage to what's going on. Sends a text message, sends an email out to the tech on site.

Fusion Connect forms to get data in. Fusion Connect reports to get data out into the mobile application. So, super simple. I think you don't have to be a genius developer to figure out how to submit a form and pull information out via a report. And of course, we're using the Fusion Connect routines and business logic to triage the incoming data and decide what to do with it.

So these guys are going out to site. They're adding a simple device to each of the machines. And they're monitoring impacts and vibration. That's really all they are doing. Has someone hit the machine? Is something running off center? Are we seeing clunking on the machine at the back end? Again, not necessarily someone hitting it with a hammer, but it doesn't exclude that.

They've also put in the tampering and battery. So if someone goes and starts to fiddle with the device, moves it, we know. And also, we get a warning in the system if the battery starts to go low. So they can go out and replace the device. Make sure that we've got that up-time, they're not missing any information.

So this device goes out and it connects to Fusion Connect. During the set-up, they open up their mobile app. You can see I've-- not real app. I've obscured the company name and what they do. But initially, the tech goes out there. They've got a QR code on that device. They open up their mobile application, take a photo of the QR code.

It loads all the information about that specific device. And then they simply enter where they installed it. So it's usually already registered to a certain customer. They probably know the site. All they have to do is just put in the machine serial number they're monitoring.

So now we've connected that data to a machine in the system that we're going to monitor. Super simple, machine serial number, customer, and location. Usually we try to put in some-- north end of the factory, some other information, so the tech knows where to go and look at the machine. So that's the first use of the mobile application, just to set it up.

Now once we get into operation, our device sits there on the machine, monitoring. We have an incident, there's a high vibration, clunking, something sets it off. It sends a message to Fusion Connect. Here, we're actually using local area connections to a gateway which has cellular connection to our platform. So they have one gateway on every site, a couple if it's a very large site, that these devices connect to. And via cellular, we get the message.

So we triage that. We send a message out to the tech and he goes and starts his inspection. So if you look at a little bit of the details-- and as I said, no one's going to be sitting there, watching their monitor, waiting for something to break. We talked about that a lot. Doesn't happen all the time.

So the first thing we do is we send out a text message to whoever is currently working on that shift. So we have a register of which shift it currently is and who's on that shift. They'll get a text message. And it'll give them the machine ID and the machine location. Now this is something that we probably could have put inside the mobile application as well. We could have filed a notification inside the app. But this, for a lot of their customers, was the preferred method of getting the information.

So a quick text message with the location. And a few companies, a few of their customers, are also requiring a text message go to a manager. So the manager is on top of when the incident occurred. And they can start to track how long it was before Johnny on shift number one went and actually had a look at the machine.

So he goes to the machine. And now he's got his mobile application. We go back to our QR code screen. Take further QR code, scan that in. And it loads up all the machine information. So we're now focused on the right machine. We're ready to start our inspection.

And now, this really just becomes a very big form. We're going to go from page to page. It's going to ask him to do a few checks on some ware points to make sure the pads are visually OK, we have the right clearances. It's going to ask him to check the stock around the machine. So now, this turns into a wider safety inspection.

Is all the guarding in place? Is this a safe working environment? Is everything cleared away from the feeder on the start of the machine. So this turns into a mini audit of that machine. But we can be fairly confident that something has gone wrong because we've received a message that says the machine is behaving out of bounds.

So he can go through, he does these measurements, fills it all out. And when he gets to the end of the form, there is going to be some action which is requested of our user here. So worst case scenario, the bolts on the motor have fallen off, the coupling's snapped, we're going to have to turn that machine off and service it immediately.

We can get into an amber mode as well, where we say there's some worry here that's worth noting, but we've got about a month to fix this. So if we don't have the spares on site, if we need to get someone in with more technical expertise to fix it, we flag that in the system as needing some maintenance.

And basically, once it's flagged in the system, every day, or week, depending on which cycle you want, there's a message that goes out that says, hey, remember to come and complete the maintenance task on this specific machine. Eventually, if no one ever responds to it in for weeks, it gets escalated to a red alert, and everyone starts getting emails and text messages again that there's something wrong with the machine.

So we've got some logic in the background there to help with the remedial action. Green means I went and I had a look. Nothing, no problem there, don't seem to be seeing that-- can't hear that clunking noise, there's no vibration, we're good to go. There's also a false alarm here. The difference here being green, there was probably a legitimate reason, but it's actually OK. Blue is there was nothing wrong with the machine. Once we have three blue alerts or false alarms, we go out and we replace the device, put a new one on there.

Now as use as you'd imagine, it's probably fairly easy, once you get used to doing the inspections to make it look like it's not a red alert. They can go in and say, it's just a green, it's just a blue. In the background though, obviously, we're capturing who did the inspection. So we know when they got the message. We know when they went and looked at it, when they opened it up and started the inspection. We know when they finished the inspection and we know who it is.

So if you submit 20 blue false alarms in the space of a couple of months, you might not be sent out to do any more inspections. So this is a little bit of the smarts that goes along behind it. So really, really simple example there. How we doing for time? I want to make sure we got questions at the end.

15 minutes.

We got 15 minutes still? Good. So the example here, really, really basic. Now, we see we were still required to go in and configure the routines in the background. So there was a significant amount of time getting the logic and the data flow set up. But once we want to build that mobile app, super simple. It's really just I submit a form and request information of our query that we have set up. So just two calls to our API is essentially all you need to set up that mobile application.

The value, of course, is the data that we're getting in and out. That's what makes the app actually useful. It's a mixture of, obviously, the IoT data, the connected machine, and the visual inspections that we're doing. So the challenge is to find a business case in your own fields or with your customers you're working with. We need to define that business value really well, which is what this company did.

Straight away, they can go out to a customer site and say, we're going to cut down your inspections by half. You're going to have immediately 100% more up-time on the machines, 50% more up-time on your machines, and less time doing inspections. So, super simple value proposition. And the mobile app means that people are actually going to use it. They're not walking around with a laptop, seeing it off the shelf, too hard to do. The mobile app, everyone's got it, nice and easy to execute on.

So that brings us to what next. Does anyone at this stage have any questions about the mobile app you want to fire off? I explained that perfectly, excellent. I want to talk a little bit about what's next for IoT and Forge. So I think everyone, they've walked around today and set in some classes. If you were here in the cool apps being built in the class before this, you'll notice a lot of examples of people showing IoT data in large model viewer. It's pretty sexy, it's pretty cool. So this is, obviously, a big piece of the Forge service puzzle here.

So when we looked at our slide before, I showed you guys an overview of how the mobile API was being used by this customer to build a mobile app. We are also leveraging the infrastructure that we already have in place to build an IoT service that you guys will have access to. So moving forward, you'll see here we've taken the most common protocols, adapted types from our current infrastructure. We've got our data collection service in there. So we're ready to start receiving information.

And what we're going to build on the back of that is a Forge API. So a little bit different to what we had with our mobile API, where we've already got infrastructure that you've set up and you're now leveraging that with the forms and reports. With our Forge API, we're now going to allow you to get information and post information into the system without having to do a bunch of configuration.

So if you want to build a much more holistic solution on your own, we're going to provide you with a bunch of simple methods here to create an account, get account information, create device profiles, get a device profile, create the devices, and get the device information. So this is going to be a nice programmatic way for you to set up an application environment, very quickly and easily.

And then we use our get current and get historic data. So once you've finished building your account, it's going to start collecting data from the devices that you point at our service. You just then use get current data to see the most recent information.

So if we're looking at our example previously of the piping in the factory layout, to get the most recent data, it's going to start to flash those lights on there. It's just going to give us the readings for all those valves and points across your large model viewer model. Get historic data is also going to allow us to see the trend information. So we can have some historical points, go back and have a look at how our machine has behaved over time.

Now as we grow, we're going to see much tighter integrations with the Fusion and the BIM solutions. So using our IoT service to drive visual information into those. And of course, we're going to start coupling it with other Forge services. So everybody's favorite, large model viewer, great way to show IoT data.

We can start looking at building out different workflow engines in here to route that information, instead of just collecting it. We're going to have a look at messaging services in there. So we can start to send notifications out of the Forge service. IDX to build much richer applications, and of course something that's going to be super interesting in the future, is going to be analytics and artificial intelligence. So we've collected all our machine information, we've got the historic and current information. We can start to mine that and actually figure out trends, correlations, on machine performance.

So this is the next to come with our Forge IoT service. If you have questions about what next with Forge, if you need help getting up and running with applications, getting more information, we've got an email address there. You can also harass us after the class. I will be around for certainly today, and this afternoon, and most of the week, if you want to approach us with questions on the IT service.

Another interesting thing for those of you who might be starting IoT projects is we have a Discovery Tool Kit. This is essentially a gateway with some industry standard connection points. You can put in some basic sensors. You can connect it to a PLC unit. We've got RS 485, secure LAN, USB inputs on this thing. So you can connect it and start pumping information securely through our partner electric IMP into your own Fusion Correct free account.

So there's an email address there. You can apply for this. And we only have a limited supply of these. But we're looking for some interesting ideas. Some people that have got some projects on the go that you want to see real data from. So I would also encourage you to reach out and talk to us a little about that.

If you are going to be here for the rest of the week, we do have more information about Fusion Connect for you. So tomorrow morning, Brian and myself will be up early doing a class. Tomorrow afternoon, Lona, one of our product managers in the back there, is going to give you an overview of that discovery kit that we just talked about.

So if you are interested in discovery kit, that's probably one to go to. And building your first IoT project business case is on Wednesday. So that's really about justifying the expense of hooking up the machine and what you want to build with your project.

We do want your feedback. Make sure you fill in the forms. But just to end on a high note, I want Brian to just give you a little quick sneak peak of an application that we do have running now using the new Forge IoT service.

BRIAN SHERMAN: That's right, so the mobile API that Allan has been talking about from classes, what we've currently got in beta right now, we've got customers running on it. And the Forge API, as Allen said, is the future. We've currently got that an alpha, and we've got a demo for you that nobody outside this room has seen, as soon as we switch the screen over.

So what we've got here is an application that integrates a number of the different Forge APIs. We've got the data management API to store different 3D files. We've got model derivatives to give information about those models. And of course, we've got the large model viewer here.

So this application takes all of that-- and many examples of those APIs are available online already-- and we add the extra dimension, saying that perhaps somebody not only wants to see information about each of their models, but they want to track real-time information about the prototypes of that specific model.

So what we've done here is we've added an IoT component very easily. All it took was a couple of API calls to, as Allan said, create an account and configure what kind of data it's going to send, strips away all of the complexity of going into the Fusion Connect user interface and configuring an application. All that entire process is automated.

So after two API calls, your application is immediately ready to start receiving data. We've registered a couple of devices already that are actively sending data this account. And you can see that every second it's pinging Fusion Connect server to see what's the latest data and it's plotting it here on a trend. So a user can come in, see what's going on with all the real machines that are using this particular model they've mocked up.

Additionally, if they wanted to add another, register another machine, they can very simply submit a form here. And it's immediately available and Fusion Connect is ready to receive its data. So as Allan was saying, this strips away a lot of the complexity.

Fusion Connect by itself prides itself on being a very simple, rapid solution that helps you develop IoT solutions. And this takes that principle even further. With a couple of simple API calls, you can immediately integrate IoT with any application. Obviously, this here is not a mobile application, but the principle remains the same. So it allows you to get your IoT solution of the ground even faster. So this is coming right around the corner. Stay tuned on that.

ALLAN O'LEARY: Give you a minute, and you think you're the star of the show. That completes the development portion of the class. I think we've probably got someone butting up right against us at the bottom of the hour here. So we're going to have to finish up. But thank you, guys.

As I said, there's a bit of homework for you to follow up with. If you are interested, check out the dev kit. If you want to know what's coming with the service or want more information about how to use the API in its current form, reach out to us via that email address. And of course, we have last year's class, which goes through in much more technical detail what the API does. So thanks for coming in today.

BRIAN SHERMAN: Thanks, everyone.

______
icon-svg-close-thick

Cookie 首选项

您的隐私对我们非常重要,为您提供出色的体验是我们的责任。为了帮助自定义信息和构建应用程序,我们会收集有关您如何使用此站点的数据。

我们是否可以收集并使用您的数据?

详细了解我们使用的第三方服务以及我们的隐私声明

绝对必要 – 我们的网站正常运行并为您提供服务所必需的

通过这些 Cookie,我们可以记录您的偏好或登录信息,响应您的请求或完成购物车中物品或服务的订购。

改善您的体验 – 使我们能够为您展示与您相关的内容

通过这些 Cookie,我们可以提供增强的功能和个性化服务。可能由我们或第三方提供商进行设置,我们会利用其服务为您提供定制的信息和体验。如果您不允许使用这些 Cookie,可能会无法使用某些或全部服务。

定制您的广告 – 允许我们为您提供针对性的广告

这些 Cookie 会根据您的活动和兴趣收集有关您的数据,以便向您显示相关广告并跟踪其效果。通过收集这些数据,我们可以更有针对性地向您显示与您的兴趣相关的广告。如果您不允许使用这些 Cookie,您看到的广告将缺乏针对性。

icon-svg-close-thick

第三方服务

详细了解每个类别中我们所用的第三方服务,以及我们如何使用所收集的与您的网络活动相关的数据。

icon-svg-hide-thick

icon-svg-show-thick

绝对必要 – 我们的网站正常运行并为您提供服务所必需的

Qualtrics
我们通过 Qualtrics 借助调查或联机表单获得您的反馈。您可能会被随机选定参与某项调查,或者您可以主动向我们提供反馈。填写调查之前,我们将收集数据以更好地了解您所执行的操作。这有助于我们解决您可能遇到的问题。. Qualtrics 隐私政策
Akamai mPulse
我们通过 Akamai mPulse 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Akamai mPulse 隐私政策
Digital River
我们通过 Digital River 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Digital River 隐私政策
Dynatrace
我们通过 Dynatrace 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Dynatrace 隐私政策
Khoros
我们通过 Khoros 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Khoros 隐私政策
Launch Darkly
我们通过 Launch Darkly 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Launch Darkly 隐私政策
New Relic
我们通过 New Relic 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. New Relic 隐私政策
Salesforce Live Agent
我们通过 Salesforce Live Agent 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Salesforce Live Agent 隐私政策
Wistia
我们通过 Wistia 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Wistia 隐私政策
Tealium
我们通过 Tealium 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Tealium 隐私政策
Upsellit
我们通过 Upsellit 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Upsellit 隐私政策
CJ Affiliates
我们通过 CJ Affiliates 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. CJ Affiliates 隐私政策
Commission Factory
我们通过 Commission Factory 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Commission Factory 隐私政策
Google Analytics (Strictly Necessary)
我们通过 Google Analytics (Strictly Necessary) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Strictly Necessary) 隐私政策
Typepad Stats
我们通过 Typepad Stats 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Typepad Stats 隐私政策
Geo Targetly
我们使用 Geo Targetly 将网站访问者引导至最合适的网页并/或根据他们的位置提供量身定制的内容。 Geo Targetly 使用网站访问者的 IP 地址确定访问者设备的大致位置。 这有助于确保访问者以其(最有可能的)本地语言浏览内容。Geo Targetly 隐私政策
SpeedCurve
我们使用 SpeedCurve 来监控和衡量您的网站体验的性能,具体因素为网页加载时间以及后续元素(如图像、脚本和文本)的响应能力。SpeedCurve 隐私政策
Qualified
Qualified is the Autodesk Live Chat agent platform. This platform provides services to allow our customers to communicate in real-time with Autodesk support. We may collect unique ID for specific browser sessions during a chat. Qualified Privacy Policy

icon-svg-hide-thick

icon-svg-show-thick

改善您的体验 – 使我们能够为您展示与您相关的内容

Google Optimize
我们通过 Google Optimize 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Google Optimize 隐私政策
ClickTale
我们通过 ClickTale 更好地了解您可能会在站点的哪些方面遇到困难。我们通过会话记录来帮助了解您与站点的交互方式,包括页面上的各种元素。将隐藏可能会识别个人身份的信息,而不会收集此信息。. ClickTale 隐私政策
OneSignal
我们通过 OneSignal 在 OneSignal 提供支持的站点上投放数字广告。根据 OneSignal 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 OneSignal 收集的与您相关的数据相整合。我们利用发送给 OneSignal 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. OneSignal 隐私政策
Optimizely
我们通过 Optimizely 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Optimizely 隐私政策
Amplitude
我们通过 Amplitude 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Amplitude 隐私政策
Snowplow
我们通过 Snowplow 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Snowplow 隐私政策
UserVoice
我们通过 UserVoice 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. UserVoice 隐私政策
Clearbit
Clearbit 允许实时数据扩充,为客户提供个性化且相关的体验。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。Clearbit 隐私政策
YouTube
YouTube 是一个视频共享平台,允许用户在我们的网站上查看和共享嵌入视频。YouTube 提供关于视频性能的观看指标。 YouTube 隐私政策

icon-svg-hide-thick

icon-svg-show-thick

定制您的广告 – 允许我们为您提供针对性的广告

Adobe Analytics
我们通过 Adobe Analytics 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Adobe Analytics 隐私政策
Google Analytics (Web Analytics)
我们通过 Google Analytics (Web Analytics) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Web Analytics) 隐私政策
AdWords
我们通过 AdWords 在 AdWords 提供支持的站点上投放数字广告。根据 AdWords 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AdWords 收集的与您相关的数据相整合。我们利用发送给 AdWords 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AdWords 隐私政策
Marketo
我们通过 Marketo 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。我们可能会将此数据与从其他信息源收集的数据相整合,以根据高级分析处理方法向您提供改进的销售体验或客户服务体验以及更相关的内容。. Marketo 隐私政策
Doubleclick
我们通过 Doubleclick 在 Doubleclick 提供支持的站点上投放数字广告。根据 Doubleclick 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Doubleclick 收集的与您相关的数据相整合。我们利用发送给 Doubleclick 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Doubleclick 隐私政策
HubSpot
我们通过 HubSpot 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。. HubSpot 隐私政策
Twitter
我们通过 Twitter 在 Twitter 提供支持的站点上投放数字广告。根据 Twitter 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Twitter 收集的与您相关的数据相整合。我们利用发送给 Twitter 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Twitter 隐私政策
Facebook
我们通过 Facebook 在 Facebook 提供支持的站点上投放数字广告。根据 Facebook 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Facebook 收集的与您相关的数据相整合。我们利用发送给 Facebook 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Facebook 隐私政策
LinkedIn
我们通过 LinkedIn 在 LinkedIn 提供支持的站点上投放数字广告。根据 LinkedIn 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 LinkedIn 收集的与您相关的数据相整合。我们利用发送给 LinkedIn 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. LinkedIn 隐私政策
Yahoo! Japan
我们通过 Yahoo! Japan 在 Yahoo! Japan 提供支持的站点上投放数字广告。根据 Yahoo! Japan 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Yahoo! Japan 收集的与您相关的数据相整合。我们利用发送给 Yahoo! Japan 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Yahoo! Japan 隐私政策
Naver
我们通过 Naver 在 Naver 提供支持的站点上投放数字广告。根据 Naver 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Naver 收集的与您相关的数据相整合。我们利用发送给 Naver 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Naver 隐私政策
Quantcast
我们通过 Quantcast 在 Quantcast 提供支持的站点上投放数字广告。根据 Quantcast 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Quantcast 收集的与您相关的数据相整合。我们利用发送给 Quantcast 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Quantcast 隐私政策
Call Tracking
我们通过 Call Tracking 为推广活动提供专属的电话号码。从而,使您可以更快地联系我们的支持人员并帮助我们更精确地评估我们的表现。我们可能会通过提供的电话号码收集与您在站点中的活动相关的数据。. Call Tracking 隐私政策
Wunderkind
我们通过 Wunderkind 在 Wunderkind 提供支持的站点上投放数字广告。根据 Wunderkind 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Wunderkind 收集的与您相关的数据相整合。我们利用发送给 Wunderkind 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Wunderkind 隐私政策
ADC Media
我们通过 ADC Media 在 ADC Media 提供支持的站点上投放数字广告。根据 ADC Media 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 ADC Media 收集的与您相关的数据相整合。我们利用发送给 ADC Media 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. ADC Media 隐私政策
AgrantSEM
我们通过 AgrantSEM 在 AgrantSEM 提供支持的站点上投放数字广告。根据 AgrantSEM 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AgrantSEM 收集的与您相关的数据相整合。我们利用发送给 AgrantSEM 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AgrantSEM 隐私政策
Bidtellect
我们通过 Bidtellect 在 Bidtellect 提供支持的站点上投放数字广告。根据 Bidtellect 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bidtellect 收集的与您相关的数据相整合。我们利用发送给 Bidtellect 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bidtellect 隐私政策
Bing
我们通过 Bing 在 Bing 提供支持的站点上投放数字广告。根据 Bing 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bing 收集的与您相关的数据相整合。我们利用发送给 Bing 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bing 隐私政策
G2Crowd
我们通过 G2Crowd 在 G2Crowd 提供支持的站点上投放数字广告。根据 G2Crowd 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 G2Crowd 收集的与您相关的数据相整合。我们利用发送给 G2Crowd 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. G2Crowd 隐私政策
NMPI Display
我们通过 NMPI Display 在 NMPI Display 提供支持的站点上投放数字广告。根据 NMPI Display 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 NMPI Display 收集的与您相关的数据相整合。我们利用发送给 NMPI Display 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. NMPI Display 隐私政策
VK
我们通过 VK 在 VK 提供支持的站点上投放数字广告。根据 VK 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 VK 收集的与您相关的数据相整合。我们利用发送给 VK 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. VK 隐私政策
Adobe Target
我们通过 Adobe Target 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Adobe Target 隐私政策
Google Analytics (Advertising)
我们通过 Google Analytics (Advertising) 在 Google Analytics (Advertising) 提供支持的站点上投放数字广告。根据 Google Analytics (Advertising) 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Google Analytics (Advertising) 收集的与您相关的数据相整合。我们利用发送给 Google Analytics (Advertising) 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Google Analytics (Advertising) 隐私政策
Trendkite
我们通过 Trendkite 在 Trendkite 提供支持的站点上投放数字广告。根据 Trendkite 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Trendkite 收集的与您相关的数据相整合。我们利用发送给 Trendkite 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Trendkite 隐私政策
Hotjar
我们通过 Hotjar 在 Hotjar 提供支持的站点上投放数字广告。根据 Hotjar 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Hotjar 收集的与您相关的数据相整合。我们利用发送给 Hotjar 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Hotjar 隐私政策
6 Sense
我们通过 6 Sense 在 6 Sense 提供支持的站点上投放数字广告。根据 6 Sense 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 6 Sense 收集的与您相关的数据相整合。我们利用发送给 6 Sense 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. 6 Sense 隐私政策
Terminus
我们通过 Terminus 在 Terminus 提供支持的站点上投放数字广告。根据 Terminus 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Terminus 收集的与您相关的数据相整合。我们利用发送给 Terminus 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Terminus 隐私政策
StackAdapt
我们通过 StackAdapt 在 StackAdapt 提供支持的站点上投放数字广告。根据 StackAdapt 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 StackAdapt 收集的与您相关的数据相整合。我们利用发送给 StackAdapt 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. StackAdapt 隐私政策
The Trade Desk
我们通过 The Trade Desk 在 The Trade Desk 提供支持的站点上投放数字广告。根据 The Trade Desk 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 The Trade Desk 收集的与您相关的数据相整合。我们利用发送给 The Trade Desk 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. The Trade Desk 隐私政策
RollWorks
We use RollWorks to deploy digital advertising on sites supported by RollWorks. Ads are based on both RollWorks data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that RollWorks has collected from you. We use the data that we provide to RollWorks to better customize your digital advertising experience and present you with more relevant ads. RollWorks Privacy Policy

是否确定要简化联机体验?

我们希望您能够从我们这里获得良好体验。对于上一屏幕中的类别,如果选择“是”,我们将收集并使用您的数据以自定义您的体验并为您构建更好的应用程序。您可以访问我们的“隐私声明”,根据需要更改您的设置。

个性化您的体验,选择由您来做。

我们重视隐私权。我们收集的数据可以帮助我们了解您对我们产品的使用情况、您可能感兴趣的信息以及我们可以在哪些方面做出改善以使您与 Autodesk 的沟通更为顺畅。

我们是否可以收集并使用您的数据,从而为您打造个性化的体验?

通过管理您在此站点的隐私设置来了解个性化体验的好处,或访问我们的隐私声明详细了解您的可用选项。