AU Class
AU Class
class - AU

Flame on the Cloud: Remote Production Without Compromising the Quality

共享此课程
在视频、演示文稿幻灯片和讲义中搜索关键字:

说明

With all the challenges we’re facing during the pandemic, we’ve realized how constrained we can be when our access to our production site or office is limited. In this class, we’ll discuss how we can cost-effectively become productive again, and how we can increase our collaboration without compromising the quality of our work. Find out how Flame on Cloud can help you achieve this and incorporate this workflow with your visual effects pipeline, whether you’re in the office or off site.

主要学习内容

  • Learn how to deploy stand-alone Flame products on AWS instances.
  • Discover how Flame can collaborate with other Flame products (Flare, Flame Assist).
  • Learn how to centralize the project data and increase the productivity using Burn nodes.
  • Learn how to cost-effectively implement this into your VFX pipeline or workflow.

讲师

  • Jeffrey Ramirez 的头像
    Jeffrey Ramirez
    Jeffrey Ramirez has been a Technical Support Specialist at Autodesk for 9 years, accumulating a total of 18 years of experience in the Film and TV industry. His primary focus is assisting customers in overcoming challenges while using our Entertainment & Media solutions, specializing in Creative Finishing Products or Visual Effects software such as Flame, Flare, Flame Assist, and Lustre. Jeffrey began his career as a System Engineer in Post-Production for TV series and reality shows. He also worked as a System Integrator in the Post-Production and Broadcast department and as a Post-Production Engineer with one of the top VFX (Visual Effects) companies in South East Asia before joining Autodesk.
Video Player is loading.
Current Time 0:00
Duration 32:39
Loaded: 0.51%
Stream Type LIVE
Remaining Time 32:39
 
1x
  • Chapters
  • descriptions off, selected
  • en (Main), selected
Transcript

JEFFREY RAMIREZ: Hello, good morning, good afternoon, and good evening to all of you who are in different parts of the globe. Thank you for attending this class.

So with all the challenges we are facing during the pandemic, we have realized how constrained we can be when our access to our production site or office is limited. So we learn to adapt with the new challenges. And working remotely is one of them.

Working remotely may have reduced the quality of our work due to lack of collaboration technology and speed, to name a few challenges. So we also learned that working remotely might be the way many will work going forward. So with that, I would like to welcome you to our class, Flame on the cloud, remote production without compromising the quality.

So in this class, we'll discuss how we can help optimize your workflow and increase your collaboration remotely without compromising the quality of your work. So let's find out how flame on the cloud can help you achieve this and incorporate this workload with your visual effects pipeline.

So I would like to introduce myself. My name is Jeffrey Ramirez. I'm a technical support specialist with Autodesk for creative finishing products. I have 17 years of experience in the film and TV industry as a technical support. And aside from being a technical support specialist in Autodesk, I am also a case KCS, or knowledge center support coach and a geo-escalation lead for creative finishing team.

So before we start with our class, please take time to read our safe harbor statement. And please note that the AU content is proprietary. Please do not copy, post, or distribute without express permission.

So in this class, we will discuss the following learning objectives. So our first learning objectives would be to learn how to deploy a single Autodesk Flame family product on AWS. So this is similar to your standalone on premise workstation setup.

So next, we will discuss how Flame can collaborate with other Flame family products like Flare and Flame Assist. We will also discuss how to centralize the project data and add Burn Nodes to further improve the collaboration and help increase the productivity.

And then finally, we will talk about some consideration to help you implement these into your VFX pipeline or workflow. So I hope you will find the topic useful. So let's start.

So for those who are not familiar with Flame yet, so let me give you a little introduction. So Flame is a powerful 3D compositing visual effects and editorial finishing tool with an integrated environment that accelerates creative workflow.

So if you are a fan or has been amazed with TV commercials, TV series, and films that full of visual effects, Flame is likely the tool behind them. So let's watch this video just to give a little more information about Flame.

[VIDEO PLAYBACK]

[MUSIC PLAYING]

- Autodesk Flame, the 3D compositing VFX and finishing software behind a-list movies, glowing beauty spots, and more than one car commercial. It started on a large million dollar silicon graphics machine, adapting to PC workstations, Apple iMacs, and evolving into the Flame software solution we know today.

And over the past 30 years, its compositing VFX and editorial finishing tools evolved with it. Using tools like matchbox shaders, AI face normal maps, machine learning salient keyers, and next-generation camera tracking, you've taken Flame to unimaginable heights.

So let's take it even higher. Introducing Flame on the Cloud. Enjoy the full Flame experience on AWS cloud with scalability for VFX computing and storage right at your fingertips. Securely access and collaborate with multiple Flames.

And with Teradici CAS remoting software using PC over IP technology, experience the full performance of a cloud workstation from anywhere using the device of your choice.

Take on bigger projects and bring on additional artists with scalable compute and storage capacity. And with parallel distributed file storage solutions based on WEKA's data platform for AI, you can safely store and playback shots in real-time.

No matter the size of your business, Flame on the cloud gives you the freedom to build it the way you want it to be built. Take advantage of the scalability of the cloud and start building a more resilient future today with Flame.

[END PLAYBACK]

JEFFREY RAMIREZ: To give you some history about Flame. Flame was initially deployed on a high-end on-premise hardware. And as a technology evolves, Flame continues to adapt to take advantage of the newer hardware and software solutions.

So we have seen Flame being deployed on SGI, or silicon graphics. So this is literally a size of your fridge or about the size of full server RAM. So please note that this is not the actual SGI image. I use this for illustration purposes only.

And then we have seen it deployed on PC workstations, such as IBM, HP, Dell, Lenovo, and Mac workstations. So Flame used to be bundled with a turnkey hardware. Previously, you cannot acquire Flame software only. It must come with a certified hardware.

So the good news is, Flame family products are now a software-only offering, which means it does not come with a turnkey hardware like in the past. It is not limited to a specific workstations, as there are now several options and recommendation in the Flame system requirement page for your flexibility, including the self-qualification hardware. So you can choose the hardware and platform that suits your needs.

And what's more, Flame now runs on the cloud. So specifically on AWS or Amazon Web Services. Thanks for the effort of our engineering team that worked closely with the AWS team and system integrators to bring artists an alternative to working with Flame. So this technology enables us to work, leveraging the cloud without compromising the quality of our work.

So please note that at the moment, Lustre, or our grading tool, is not supported yet with a AWS.

So before we start, I would like you to familiarize with the type of AWS instances and storages that we will use for our configuration in the discussions. So as you can see in the top of the list, we have the g4dn.8xlarge that we will use primarily for Flame and Burn. So these are 32 CPU and Nvidia T4 GPU with 16 gigabyte of VRAM, 128 gibibyte of RAM, 900 gigabyte of SSD storage, and 50 gigabit network bandwidth.

So while instance type with [? AMGDP ?] are available on AWS, they are not supported by Flame family products. Also, AWS regularly updates their high performance Nvidia-based instances types. So consider the preceding as a minimum requirement.

So let's now discuss our learning objectives. So first, let's see how we can deploy a single Autodesk Flame family product on AWS. This configuration is a great starting point to enable remote workflow leveraging the cloud technology.

So this is ideal for artists who mainly work alone on a given project and rarely collaborate with other artists or an individual user. Also, if you are a freelancer, this will be ideal and great starting point for you.

So for a single Flame family product deployed on AWS, the media is stored in a direct attached storage to a Flame instance. Project metadata is stored in the system disk of Flame instance. So for this configuration, you need one Flame familiar product instance with a high performance Nvidia GPU g4dn.8xlarge or g5.8xlarge. So please note that these are the instances type that you can select from the AWS.

So we also need storage with at least 500 gigabytes for the system disk. So we need this much for a system disk, because this is where we will store the project metadata for disk configuration. And the other one is direct-attached storage using four times two terabyte of AWS ST1 EBS volumes.

So we need to configure the security group as well. The security group are designed to enable the different components with the correct network access they require to properly operate. So take this as a setup rule or permission to a given user or group. We also need one remote display client, either an HP Anywhere or AWS Nice DCV. So the remote client software is a tool to connect and control your Flame instances.

HP Anywhere is a product of HP or the Hewlett-Packard and is one of the remote display solutions tested by Autodesk to connect the Flame on the AWS. HP Anywhere clients are available for Windows, Mac OS, and Linux operating systems.

On the other hand, the AWS Nice DCV is a remote display solution provided by AWS, and is free to use on AWS instances. It was also one of the solutions tested by Autodesk to connect remotely to Flame on AWS. Nice DCV clients are also available for Windows, Mac OS, and Linux operating system.

So here are the steps to deploy these configurations. Please note that I will not go through a detailed or more technical step. But we will just show you the overview for you to have an idea. So if you are ready to implement this into your workflow, a more detailed steps on how to do this is available on our implementation guide in the Flame help website.

So first, we have to create the Amazon machine images or the AMI. So for those who are not aware, AMI is a disk image that contains the OS drivers. And for this case, it is also contained the DKU and Nvidia drivers and all the tools required to use Flame family in the cloud.

There is a guidance on how to create AMI in our implementation guide if you like to create it. But to simplify the deployment to the cloud, Autodesk provides a Rocky Linux 8.5 AMI available from the Flame family system requirement page.

Second, we have to choose and deploy a storage solutions. So we need the fast storage capable of high throughput to be able to work with high resolution media and play in real time. So this storage can be network or direct-attach. But for single Flame configuration, we will choose direct-attached storage.

For the direct-attached storage, you will use the AWS SD1 EBS volumes. And then you can configure the rate if you requires to. So the next step will be to create, configure, and deploy your Flame. That includes Flame Assist or Flare as required.

So for this step, we will install the Flame family products software that are mostly done through the shell or command line. And then we need to configure the machine ID, the hostname, the media storage, [? soft ?] partition, and the backburner.

So once the first three steps are done and Flame is now deployed, we can now connect your Flame using either HP Anywhere or AWS Nice DCV and work with our Flame instances on the cloud.

So again, this is our single Flame setup on AWS. This setup is simpler, it does not require additional instances for NAS, burn nodes, or project server. And again, this setup is ideal for individual user or a freelancer. So there will be no collaboration to network. But you can later scale it by setting up an AWS VPC, or Virtual Private Cloud, which is what we will take a look next.

So our next learning objectives would be to learn how we can do a collaboration between Flame family products. So these configurations are at NAS, or your Network Attached Storage, and AWS or VPC, or your virtual private cloud, to enable collaboration and project sharing. So treat AWS VPC as your network.

But this configuration will suit your pipeline if there are two or more artists that need to work on the same project. And if you need project sharing between cloud instances and on premises workstation.

So in this scenario, multiple Autodesk Flame family product instances are connected to a NAS or shared storage to enable the collaboration between your Flame. Media is stored on a NAS. And each Flame family product instance is store its project metadata on its system disk.

So for this configuration, you need at least to Flame family product in the same VPC with at least g4dn.8xlarge or g5.8xlarge. And in that instance we released c5n.9xlarge with media storage, AWS transit gateway. And one remote display client for each of the Flame instances.

The steps we will deploy in this configuration is almost the same in the single instance configuration. So this time, we need to configure the AWS virtual private cloud or VPC to enable networking with other Flame instances, AWS transit gateway to enable collaboration with other components and on premises workstation, and additional instances or instance for NAS.

So first, again, we have to create the AMI or Flame for every additional instances. So this is the same process we did in our single Flame configuration. So if you already have the single Flame instance, you may just have to scale it up by adding another Flame instances.

Next we have to configure AWS cloud using the AWS virtual private cloud and the AWS transit gateway. So the VPC allows you to network Flame instances, a project server, and a Burn nodes together in your cloud implementations. And to support the various networking capabilities of Flame, you need to configure the transit gateway service on your instances.

So AWS transit gateway connects your VPC's and on premises network through a central hub. So this simplifies your network and puts an end to complex peering relationships. Transit gateway acts as a cloud router. And third, we have to choose and deploy a storage solution, a NAS, or network attached storage, using the AWS SD1 EBS.

So please note, there are other solutions from third party vendors like WekaIO, AWS FSX, or OpenZFS, Pixitmedia Pixstore. So the links are available in the Flame help page and the digital copy of your handout.

Fourth step, we have to create, configure, and deploy your Flame, including Flame Assist, Flare, as required. Again, for this step, we will install the Flame family product software. And we need to configure the machine ID, hostname, the media storage, soft partition, and the backburner. And lastly, connect your Flame using remote display solution like HP Anywhere or AWS Nice DCV.

So again, this is an overview of summary and summary of multiple Flame instances with NAS. So this configuration is ideal for two or more artists and artists that needs collaboration for the same project.

So with this configuration, the artists can easily collaborate by sharing the project and media through the network on the clouds. And with the help of AWS transit gateway, cloud instances and on premises workstation can also share projects and collaborate.

For our next learning objectives, we will find out how we can further enhance the collaboration and our productivity by adding Burn and project server to your existing configuration.

So just to give you a brief information, Burn is a tool that allows you to render images in the backgrounds to free up your Flame workstations for more creative tasks. Adding Burn, the artist working on a Flame can send a render task to the Burn node, so he or she may continue the creative tasks.

While a project server is a collaboration and simplifies project management by eliminating the creation of project data on the Flame player or Flame Assist instances. The project data is stored on the centralized project server.

So this configuration is suitable for a pipeline that requires two or more artists, artists that need collaboration for the same project, and artists that need to focus on their creative work rather than waiting for their render task to finish on the Flame instance.

So here's the overview of this configuration. So in this scenario, multiple instances are connected to a shared storage. And all project data is created on the project server, enabling collaboration with shared libraries. The imagery stored on a NAS and shared with each Flame family product incense. Project metadata is stored on the project server, which is accessible by each Flame family product instant.

So we have to configure an AWS transit gateway to make collaboration possible between the Flame family project instances, the project server, and the Burn nodes, and on premises workstation.

So for this configuration, you need a minimum of two Flame family product instance with at least g4dn or g5.8xlarge, and NAS with at least c5n.9xlarge and AWS SD1 EBS for the media storage, project server, and a backburner manager with at least r5.xlarge, and a project storage of EBS gp3 type. You also need the Burn nodes, AWS transit gateway, and one remote display client for each of the Flame instances.

Since we already went through a similar setup in the previous slides, we will only go through on how we will add and configure the project server, Burn nodes, and backburner manager. So please note that the backburner manager is the render manager of the Burn nodes.

The project server is scalable depending on the storage and instance type we use. So for example, if you select EBS as a media storage, EBS gp3 as a project storage, and r5.xlarge for project server, this configuration can serve up to five instances. So you can mix up Flame and Burn, for example, three Flame and two Burn nodes.

On the other hand, if you select more expansive as shown in the slide, you could have up to 16 instances. So example, you have eight Flames plus eight Burn nodes.

So for this example, we will choose up to five instances configuration. So here the setup is to configure the project server. Again, I will not go through the detailed steps. A more technical detailed steps are available on our implementation guide.

First we had to set up project server instance on AWS using the following configuration. Again, we will use the r5.xlarge instance type. This has four CPU and 32 gibibyte memory. This has no powerful GPU, as this instance does not require to decode media. You also need one storage for the operating system and software, with at least 20 gigabyte capacity, one for the project storage using the AWS gp3.

Please note that to prevent deletion of important project metadata, we have to set the project volume to not delete an instance termination. So if this is not set, and once the incident is terminated, the project volume will be deleted as well.

And then, we also have to configure the security groups to enable the deeper end components with the correct network access they are required to properly operate.

Second step will be to connect to the instance through a command line. So again, there's a guidance in our help page and how to do this. Third is we can add some additional storage if necessary to store the project metadata. Next is to configure the instance as a project server. And lastly, we have to configure the instance to use the network storage or our NAS.

Now let's go to Autodesk Burn configuration. So the first step to configure the Burn is, of course, we have to set up a Burn instance on AWS. So this setup is similar to setting up Flame instances we discussed in our previous slides. The instance type must match the instance we use for Flame as Burn, as Burn is a high performance GPU to decode media.

Second, we have to connect to the instance of the command line to configure the Burn nodes. Third, we have to configure the instance as a Burn node. We will also set similar configuration we did with Flame, except that this time we will set the backburner manager in the project server. So in the previous configuration, we set the backburner manager on the Flame instances. And finally, configure the instance to use the network storage or your NAS.

So once we are done adding the project server and Burn into your configuration, so we can now connect and work with our Flame using either HP Anywhere or AWS nice DCV. Again, this is an overview of multiple Flame instances with NAS, project server, and Burn nodes.

So this configuration is ideal for two or more artists, artists that needs collaboration for the same project, artists that needs to focus on their creative work rather than waiting for the render task to finish on the Flame instance.

So with this configuration, the artists can easily collaborate by sharing the project and media to network on the clouds and through the project server. And eases the instances by rendering up to Burn nodes. And with the help of AWS transit gateway, cloud instances and on-premises workstation can also share projects and collaborate.

Now for the final learning objective, we will discuss the key considerations to help you implement the Flame on the cloud into your workflow or pipeline. To start off, I would like to give you an idea about the AWS instance cost. But please note that this is the current cost in the AWS website as of writing this deck.

So this price may change without prior notice. And the Autodesk has no direct influence or control over the price. So for more information, please visit the Amazon EC2 on-demand pricing website.

So for our primary instance type, g4dn.xlarge that we use in our configuration. So the price is about US dollars 2.176 hourly rate. So again, the price may vary depending on the region. For this example, I chose US is a higher region.

And here the pricing for the data transfer. Again, please check out the Amazon EC2 on-demand pricing website to find out more on this.

Cloud computing is a big shift from traditional on premises infrastructure. So it is understandable that we weighs the benefits or the advantages and disadvantages before deciding or consider adding this into our workflow. So we have to consider the on premises components, capacity and utilization, logistics. So please note that this is general guidelines. These considerations may vary in every facilities.

So but let's go through one by one. So one of the key consideration is on-premise component, such as hardware costs like the server, including the workstation, rack, cables, spare parts. We also need to consider the storage which includes disks, network cards, and cables.

And for the network, we have to consider its components like the network switches, router, cable, ISP bandwidth costs. And we also need to consider the five year upgrade cycle, which is the usual refresh cycle.

So next, the software costs, which includes the operating system, licenses and subscriptions, management software, and software upgrade. So next is the facilities costs, such as the server and workstation space.

So we need space for our hardware. And there is a corresponding cost with it. We need to consider the power and utilities, the cooling and air conditioning. And we also have to consider the manpower costs, like the IT technical support and facilities management.

So the next consideration is capacity and utilization. So how many users are required to use the cloud instance? The cost reduces when the instance is idle or if not running. So some facilities invest with numbers of workstations and servers. But there will be time that they are under-utilized.

How long the instance is needed? So there are some projects that will run within certain period only. For example, working in a movie project, short film, advertisement, et cetera. So how many instances are needed for Burn and Flame? Support in AWS, since the instance is on demand, the quantity is scalable.

How much storage are needed? And for the logistics, we have to consider the travel cost for the user or artist if needed to be on site. You also have to consider the shipping cost for the workstation. Some clients require the user or artists and their Flame workstations to be on site.

So these are just some of the considerations that we need to think about to help us decide whether on premises are still viable for us, or if we can add these to our workflow, or maybe fully shift to the cloud.

Remote workflow will continue to be the way many will work going forward. Flame on the cloud gives us the opportunity to leverage on the new technology that will help us optimize your remote workflow. With its speed, power, accessibility, scalability, and security among many other benefits, you can now experience the full performance of Flame from about anywhere without compromising the quality of your work.

Adopting this technology will benefit your organization with the broader business opportunities. With Flame deployed on the cloud and is essentially accessible from anywhere, an organization can have the ability to work from almost anywhere. It also gives you the flexibility to recruit the finest talent around the world and collaborate with each other wherever they are.

So these are testimony from one early pioneer and adopter of Flame on AWS cloud. Preymaker founder Angus Kneale. So he says, "Preymaker is all about having the finest talent using the best technology. And running Flame in AWS allows us to recruit and work with exceptional talent who live anywhere.

Having Flame projects in the cloud with artists collaborating in multiple locations, we are able to create exceptional work for our clients. Our colorist in Los Angeles can start a project with our Flame artist in London doing the cotton form ready for our CGI team in New York to continue work. Ultimately, the cloud gives us the flexibility to execute highly complicated, demanding, and compute-intensive projects in a collaborative cloud-based workflow."

So the Flame team has provided some prebuilt components like AMI and the implementation guide to help you get started. So we also have resellers and AWS-enabled system integrators that have fully or successfully deployed Flame on the cloud and are equipped to help with your workflow, deployment, and configuration needs. So in your digital handout you should find the link to these resources.

So if you have questions regarding this class, please use the comments section in the AU page, and I will try my best to answer as soon as I can. So if you like this class, please help me to share to your peers and click the recommended icon. Thank you once again. I appreciate you all. And I hope to see you again in the next AU.

______
icon-svg-close-thick

Cookie 首选项

您的隐私对我们非常重要,为您提供出色的体验是我们的责任。为了帮助自定义信息和构建应用程序,我们会收集有关您如何使用此站点的数据。

我们是否可以收集并使用您的数据?

详细了解我们使用的第三方服务以及我们的隐私声明

绝对必要 – 我们的网站正常运行并为您提供服务所必需的

通过这些 Cookie,我们可以记录您的偏好或登录信息,响应您的请求或完成购物车中物品或服务的订购。

改善您的体验 – 使我们能够为您展示与您相关的内容

通过这些 Cookie,我们可以提供增强的功能和个性化服务。可能由我们或第三方提供商进行设置,我们会利用其服务为您提供定制的信息和体验。如果您不允许使用这些 Cookie,可能会无法使用某些或全部服务。

定制您的广告 – 允许我们为您提供针对性的广告

这些 Cookie 会根据您的活动和兴趣收集有关您的数据,以便向您显示相关广告并跟踪其效果。通过收集这些数据,我们可以更有针对性地向您显示与您的兴趣相关的广告。如果您不允许使用这些 Cookie,您看到的广告将缺乏针对性。

icon-svg-close-thick

第三方服务

详细了解每个类别中我们所用的第三方服务,以及我们如何使用所收集的与您的网络活动相关的数据。

icon-svg-hide-thick

icon-svg-show-thick

绝对必要 – 我们的网站正常运行并为您提供服务所必需的

Qualtrics
我们通过 Qualtrics 借助调查或联机表单获得您的反馈。您可能会被随机选定参与某项调查,或者您可以主动向我们提供反馈。填写调查之前,我们将收集数据以更好地了解您所执行的操作。这有助于我们解决您可能遇到的问题。. Qualtrics 隐私政策
Akamai mPulse
我们通过 Akamai mPulse 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Akamai mPulse 隐私政策
Digital River
我们通过 Digital River 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Digital River 隐私政策
Dynatrace
我们通过 Dynatrace 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Dynatrace 隐私政策
Khoros
我们通过 Khoros 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Khoros 隐私政策
Launch Darkly
我们通过 Launch Darkly 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Launch Darkly 隐私政策
New Relic
我们通过 New Relic 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. New Relic 隐私政策
Salesforce Live Agent
我们通过 Salesforce Live Agent 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Salesforce Live Agent 隐私政策
Wistia
我们通过 Wistia 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Wistia 隐私政策
Tealium
我们通过 Tealium 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Tealium 隐私政策
Upsellit
我们通过 Upsellit 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Upsellit 隐私政策
CJ Affiliates
我们通过 CJ Affiliates 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. CJ Affiliates 隐私政策
Commission Factory
我们通过 Commission Factory 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Commission Factory 隐私政策
Google Analytics (Strictly Necessary)
我们通过 Google Analytics (Strictly Necessary) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Strictly Necessary) 隐私政策
Typepad Stats
我们通过 Typepad Stats 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Typepad Stats 隐私政策
Geo Targetly
我们使用 Geo Targetly 将网站访问者引导至最合适的网页并/或根据他们的位置提供量身定制的内容。 Geo Targetly 使用网站访问者的 IP 地址确定访问者设备的大致位置。 这有助于确保访问者以其(最有可能的)本地语言浏览内容。Geo Targetly 隐私政策
SpeedCurve
我们使用 SpeedCurve 来监控和衡量您的网站体验的性能,具体因素为网页加载时间以及后续元素(如图像、脚本和文本)的响应能力。SpeedCurve 隐私政策
Qualified
Qualified is the Autodesk Live Chat agent platform. This platform provides services to allow our customers to communicate in real-time with Autodesk support. We may collect unique ID for specific browser sessions during a chat. Qualified Privacy Policy

icon-svg-hide-thick

icon-svg-show-thick

改善您的体验 – 使我们能够为您展示与您相关的内容

Google Optimize
我们通过 Google Optimize 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Google Optimize 隐私政策
ClickTale
我们通过 ClickTale 更好地了解您可能会在站点的哪些方面遇到困难。我们通过会话记录来帮助了解您与站点的交互方式,包括页面上的各种元素。将隐藏可能会识别个人身份的信息,而不会收集此信息。. ClickTale 隐私政策
OneSignal
我们通过 OneSignal 在 OneSignal 提供支持的站点上投放数字广告。根据 OneSignal 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 OneSignal 收集的与您相关的数据相整合。我们利用发送给 OneSignal 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. OneSignal 隐私政策
Optimizely
我们通过 Optimizely 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Optimizely 隐私政策
Amplitude
我们通过 Amplitude 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Amplitude 隐私政策
Snowplow
我们通过 Snowplow 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Snowplow 隐私政策
UserVoice
我们通过 UserVoice 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. UserVoice 隐私政策
Clearbit
Clearbit 允许实时数据扩充,为客户提供个性化且相关的体验。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。Clearbit 隐私政策
YouTube
YouTube 是一个视频共享平台,允许用户在我们的网站上查看和共享嵌入视频。YouTube 提供关于视频性能的观看指标。 YouTube 隐私政策

icon-svg-hide-thick

icon-svg-show-thick

定制您的广告 – 允许我们为您提供针对性的广告

Adobe Analytics
我们通过 Adobe Analytics 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Adobe Analytics 隐私政策
Google Analytics (Web Analytics)
我们通过 Google Analytics (Web Analytics) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Web Analytics) 隐私政策
AdWords
我们通过 AdWords 在 AdWords 提供支持的站点上投放数字广告。根据 AdWords 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AdWords 收集的与您相关的数据相整合。我们利用发送给 AdWords 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AdWords 隐私政策
Marketo
我们通过 Marketo 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。我们可能会将此数据与从其他信息源收集的数据相整合,以根据高级分析处理方法向您提供改进的销售体验或客户服务体验以及更相关的内容。. Marketo 隐私政策
Doubleclick
我们通过 Doubleclick 在 Doubleclick 提供支持的站点上投放数字广告。根据 Doubleclick 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Doubleclick 收集的与您相关的数据相整合。我们利用发送给 Doubleclick 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Doubleclick 隐私政策
HubSpot
我们通过 HubSpot 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。. HubSpot 隐私政策
Twitter
我们通过 Twitter 在 Twitter 提供支持的站点上投放数字广告。根据 Twitter 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Twitter 收集的与您相关的数据相整合。我们利用发送给 Twitter 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Twitter 隐私政策
Facebook
我们通过 Facebook 在 Facebook 提供支持的站点上投放数字广告。根据 Facebook 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Facebook 收集的与您相关的数据相整合。我们利用发送给 Facebook 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Facebook 隐私政策
LinkedIn
我们通过 LinkedIn 在 LinkedIn 提供支持的站点上投放数字广告。根据 LinkedIn 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 LinkedIn 收集的与您相关的数据相整合。我们利用发送给 LinkedIn 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. LinkedIn 隐私政策
Yahoo! Japan
我们通过 Yahoo! Japan 在 Yahoo! Japan 提供支持的站点上投放数字广告。根据 Yahoo! Japan 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Yahoo! Japan 收集的与您相关的数据相整合。我们利用发送给 Yahoo! Japan 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Yahoo! Japan 隐私政策
Naver
我们通过 Naver 在 Naver 提供支持的站点上投放数字广告。根据 Naver 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Naver 收集的与您相关的数据相整合。我们利用发送给 Naver 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Naver 隐私政策
Quantcast
我们通过 Quantcast 在 Quantcast 提供支持的站点上投放数字广告。根据 Quantcast 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Quantcast 收集的与您相关的数据相整合。我们利用发送给 Quantcast 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Quantcast 隐私政策
Call Tracking
我们通过 Call Tracking 为推广活动提供专属的电话号码。从而,使您可以更快地联系我们的支持人员并帮助我们更精确地评估我们的表现。我们可能会通过提供的电话号码收集与您在站点中的活动相关的数据。. Call Tracking 隐私政策
Wunderkind
我们通过 Wunderkind 在 Wunderkind 提供支持的站点上投放数字广告。根据 Wunderkind 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Wunderkind 收集的与您相关的数据相整合。我们利用发送给 Wunderkind 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Wunderkind 隐私政策
ADC Media
我们通过 ADC Media 在 ADC Media 提供支持的站点上投放数字广告。根据 ADC Media 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 ADC Media 收集的与您相关的数据相整合。我们利用发送给 ADC Media 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. ADC Media 隐私政策
AgrantSEM
我们通过 AgrantSEM 在 AgrantSEM 提供支持的站点上投放数字广告。根据 AgrantSEM 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AgrantSEM 收集的与您相关的数据相整合。我们利用发送给 AgrantSEM 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AgrantSEM 隐私政策
Bidtellect
我们通过 Bidtellect 在 Bidtellect 提供支持的站点上投放数字广告。根据 Bidtellect 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bidtellect 收集的与您相关的数据相整合。我们利用发送给 Bidtellect 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bidtellect 隐私政策
Bing
我们通过 Bing 在 Bing 提供支持的站点上投放数字广告。根据 Bing 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bing 收集的与您相关的数据相整合。我们利用发送给 Bing 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bing 隐私政策
G2Crowd
我们通过 G2Crowd 在 G2Crowd 提供支持的站点上投放数字广告。根据 G2Crowd 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 G2Crowd 收集的与您相关的数据相整合。我们利用发送给 G2Crowd 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. G2Crowd 隐私政策
NMPI Display
我们通过 NMPI Display 在 NMPI Display 提供支持的站点上投放数字广告。根据 NMPI Display 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 NMPI Display 收集的与您相关的数据相整合。我们利用发送给 NMPI Display 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. NMPI Display 隐私政策
VK
我们通过 VK 在 VK 提供支持的站点上投放数字广告。根据 VK 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 VK 收集的与您相关的数据相整合。我们利用发送给 VK 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. VK 隐私政策
Adobe Target
我们通过 Adobe Target 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Adobe Target 隐私政策
Google Analytics (Advertising)
我们通过 Google Analytics (Advertising) 在 Google Analytics (Advertising) 提供支持的站点上投放数字广告。根据 Google Analytics (Advertising) 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Google Analytics (Advertising) 收集的与您相关的数据相整合。我们利用发送给 Google Analytics (Advertising) 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Google Analytics (Advertising) 隐私政策
Trendkite
我们通过 Trendkite 在 Trendkite 提供支持的站点上投放数字广告。根据 Trendkite 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Trendkite 收集的与您相关的数据相整合。我们利用发送给 Trendkite 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Trendkite 隐私政策
Hotjar
我们通过 Hotjar 在 Hotjar 提供支持的站点上投放数字广告。根据 Hotjar 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Hotjar 收集的与您相关的数据相整合。我们利用发送给 Hotjar 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Hotjar 隐私政策
6 Sense
我们通过 6 Sense 在 6 Sense 提供支持的站点上投放数字广告。根据 6 Sense 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 6 Sense 收集的与您相关的数据相整合。我们利用发送给 6 Sense 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. 6 Sense 隐私政策
Terminus
我们通过 Terminus 在 Terminus 提供支持的站点上投放数字广告。根据 Terminus 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Terminus 收集的与您相关的数据相整合。我们利用发送给 Terminus 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Terminus 隐私政策
StackAdapt
我们通过 StackAdapt 在 StackAdapt 提供支持的站点上投放数字广告。根据 StackAdapt 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 StackAdapt 收集的与您相关的数据相整合。我们利用发送给 StackAdapt 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. StackAdapt 隐私政策
The Trade Desk
我们通过 The Trade Desk 在 The Trade Desk 提供支持的站点上投放数字广告。根据 The Trade Desk 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 The Trade Desk 收集的与您相关的数据相整合。我们利用发送给 The Trade Desk 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. The Trade Desk 隐私政策
RollWorks
We use RollWorks to deploy digital advertising on sites supported by RollWorks. Ads are based on both RollWorks data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that RollWorks has collected from you. We use the data that we provide to RollWorks to better customize your digital advertising experience and present you with more relevant ads. RollWorks Privacy Policy

是否确定要简化联机体验?

我们希望您能够从我们这里获得良好体验。对于上一屏幕中的类别,如果选择“是”,我们将收集并使用您的数据以自定义您的体验并为您构建更好的应用程序。您可以访问我们的“隐私声明”,根据需要更改您的设置。

个性化您的体验,选择由您来做。

我们重视隐私权。我们收集的数据可以帮助我们了解您对我们产品的使用情况、您可能感兴趣的信息以及我们可以在哪些方面做出改善以使您与 Autodesk 的沟通更为顺畅。

我们是否可以收集并使用您的数据,从而为您打造个性化的体验?

通过管理您在此站点的隐私设置来了解个性化体验的好处,或访问我们的隐私声明详细了解您的可用选项。