AU Class
AU Class
class - AU

Fundamentals of Signal Integrity - why is it important?

共享此课程
在视频、演示文稿幻灯片和讲义中搜索关键字:

说明

Autodesk and Ansys will be announcing very exciting news for users that are designing PCBs during the 2022 Autodesk University. One of the main concerns today for every PCB designer is Signal Integrity. In the past, Signal Integrity analysis was required only for cutting-edge technology products, but today almost every product includes an antenna, a CPU, DRAM and signa integrity becomes an integral part of the development process, including electromagnetic compatibility certification. Since Signal Integrity is a relatively new discipline, not all PCB layout designers have all the necessary technical background and experience to make them feel confident in this field. The purpose of this class is to provide an overview of the fundamentals of Signal Integrity highlighting its importance for product development and certification.

主要学习内容

  • Understand what is Signal Integrity
  • The importance of Signal Integrity on product development
  • How Signal Integrity can help on first pass electromagnetic certification
  • Better design IoT devices

讲师

  • Juliano Mologni
    Juliano Mologni is the Lead Electronics Product Manager at Ansys. Over 20 years of experience in computational electromagnetics, author of more than 60 peer reviewed journal and conference papers and patents related to automotive EMC. Involved in several RF and EMC projects with top Automotive, A&D, Appliances and High Tech companies. Previous experience includes being a Lead Application Engineer at ESSS, responsible for ANSYS electromagnetics initiatives in South and Central America, Systems Engineer at Delphi Automotive Systems in charge of wiring harness design and hardware engineer at WebTech Wireless. Holds a BSc degree in Telecommunication Engineering, a MSc degree in Microelectronics and his PhD thesis involves research on Automotive EMC and Signal Integrity.
Video Player is loading.
Current Time 0:00
Duration 27:20
Loaded: 0.60%
Stream Type LIVE
Remaining Time 27:20
 
1x
  • Chapters
  • descriptions off, selected
  • en (Main), selected
Transcript

JULIANO MOLOGNI: OK, good afternoon, everyone, and thank you for your time. My name is Juliano Mologni. I'm a product manager working for Ansys. And today we're going to talk about the fundamentals of signal integrity-- what it is and why is it important.

So this is the agenda. First of all, I'm going to talk about the evolution of electronics. And then we're going to do a deep dive on the fundamentals of signal integrity and, of course, electromagnetic compatibility and interference. There's no way to decouple signal integrity from EMI and EMC. And of course, I'm going to talk about the benefits of simulation to drive innovation in improving signal integrity and electromagnetic compatibility, especially using a new extension that we are announcing now, during the Autodesk University, called Fusion 360 Signal Integrity Extension.

So let's get started and talk about the evolution of electronics and smart devices. I got this slide from one of our customers, Whirlpool in Brazil. But that reflects the evolution of most of the smart devices.

This is a washing machine. And if you take a look on the left side, you see a washing machine that is 20 years old. And you can see the electronics content, back at that time, is an electromechanical timer.

If you go some years-- if you move to today's, you take a look at the washing machines today, they have Bluetooth connectivity, Wi-Fi connectivity, they have touchscreen display, they have inverters, microcontrollers-- so we have a much higher content of electronics in the washing machine today. And that's also valid and applies to many of our smart products, like watches, appliances, and basically everything else.

The problem is that, when you have more electronics, when you add wireless connectivity, you're not only increasing the density of electronics but you're also causing some issues, electromagnetic-interference issues. Also, if you have a product like a washing machine and it does have Wi-Fi and Bluetooth connectivity, you have to go through some EMC certification tests. So it becomes more challenging to design electronics that has some wireless connectivity and high-speed channels.

So when you have those smart devices with microcontrollers, USB connectivity, you likely have signal-integrity issues I'm going to explain what's signal-integrity issues. But it's basically how we can make sure that the signals are transmitted within our electronics in a very reliable way.

Also, when you have more electronics, of course, you have more electromagnetic interference. So it becomes really critical, the way that you design your PCBs and where you're going to place your antennas. And of course, electromagnetic compatibility-- you need to make sure your product is compatible in your environment, so it does not interfere on other electronics and it's not interfered by external electromagnetic noise.

So let's start with signal integrity. Signal integrity is actually the integrity of the signals. Every time that you're trying to transmit inside an electronics-- could be image, audio-- we're using digital signals. So that's what we see here, down on the bottom side, on the left.

If you overlap all those digital bits, what you're going to create is what we call an "eye diagram." So that's what we're showing here, on the right side, is an animation showing the eye diagram. What we are doing is overlapping those digital signals.

So the signal integrity is actually making sure that, in the end, on the receiver, the receiver will be able to identify the logic-- zero or one. That's what signal integrity is all about. So, as you can imagine, if you have an open eye, that's good, because the receiver can identify what is zero and what is one. And if you have a closed eye, that's a really bad thing because we're not going to be able to reconstruct the data that we want.

So if you take a look at many electronics products, you have print circuit boards with vias. You have connectors. You have cables. And every time that a signal sees those 3D structures, part of the signal is reflected back to the source, part of the signal is radiated, and, of course, part of the signal goes towards the receiver. And that's what we want. We want most of the energy going towards the receiver.

So for that, we need to control a few things. We need to control the design of the traces of the PCB. We need to control the impedance. We need to control the design of the connectors. We need to choose very good connectors.

So if we take a look in here, on the point A, we're sending really perfect digital signals-- really perfect square signals. But of course, as I said, as the signal is traveling through those PCB traces the signal is distorted. And what we want to make sure-- that, in the end, on point B, the receiver is going to be able to recover all the signals-- the zeros and ones.

So this animation shows a path. The path here is comprised by vias, by traces, micro strips, strip lines, connectors. . And then we have our transmitter, and then we have a receiver.

So we're sending the signal, the digital signal, from the transmitter. And as the signal sees those vias, those traces, and connectors, you see that there is a distortion on the signal. And if you plot the eye diagram and the transmitter and anywhere in your channel, you'll see that the eye diagram is closing. And that's not a good thing. What we want to do is to make sure that the signal reaches the receiver and the eye is still open.

We do have several simulation technologies that enables the users to extract all the electromagnetic behavior of any 3D geometry. There are tools like HFSS, where you can simulate anything in 3D, like print circuit boards, connectors, antennas. There are tools that are really focused on print circuit boards and IC packets like Ansys SIwave. And there are some other tools that can extract electrical properties, like resistance, inductance, and capacitance function of frequency for any 3D geometry, like Ansys Q3D.

This is an animation where we're showing a signal propagating from a package through the bond wires. So here on the right-hand side, you see the signal and the magnetic field. And here you see the eye diagram.

So if you extract the diagram at different points on your channel, you see that the eye diagram is closing. We just need to make sure that the eye diagram's open enough so the receiver can actually identify the logic levels zero and one.

So, in the end, for many of the protocols that we have today, like USB, PCI Express, we do have those-- what we call those "masks," in here-- those red masks. So those masks, they're used to be a compliance for those protocols. So what we need to do is actually to plot the eye diagram on the receiver. And if the eye diagram is overlapping those masks, it means that your channel is failing. Your design is failing. You have to redesign your print circuit board or your package.

And there are many things that affect the integrity of the signals. One of them is the attenuation due to dielectrics and conductor materials. So usually we see fer-4s used as dielectric for PCBs. But, for very high-speed channels, we see low-loss dielectrics, like Meg 4, Meg 6.

There's always a reflection, due to 3D geometries, like a via. If it's not really well designed, you see that part of the signal will reflect back to the source. And that's something that we want to avoid.

And also there's dispersion, due to the material combinations and nonideal conductors. And of course, there is electromagnetic interference, what we call "crosstalk," which is the electromagnetic noise induced by nearby conductors. And of course, there is thermal noise heat generation, especially in chips-- and, of course, (EMPHASIS) of chips-- due to the high transient and DC currents.

We always have more and more problems, when we're talking about signal integrity. We also have manufacturing tolerances. So when you're designing your PCB in Fusion, you know, the cross section of the trace is like a rectangle. But due to the manufacturing process, you see that this is not an exact rectangle. And that changes the impedance. That can change the signal integrity, especially at much higher frequencies.

Also we have the copper roughness. That's actually what attaches the copper to the dielectric. That can also change and affects the signal integrity.

We also have material variation-- the electromagnetic properties both of the copper and the dielectric-- that can change, based on temperature and humidity. And we need to take that into consideration. Also we have cable termination. Depending on the cable and the connector that you're using, that can also affect the signal integrity.

This is one example of a small change on a via and how that impacts the signal integrity. If you-- via, it's a vertical interconnect axis. It's just basically a hole with solder. So if you have a PCB with multiple layers and you're routing the top layer and you want to make a connection to other layer, we're going to use a via.

And this is a PCB. If you look on the side of the PCB on the cross section, you see this via. What happens is that this stub, which is the excess of solder, is actually one of the reasons that it creates an impedance discontinuation. You see here the electric field. It radiates in additional layers.

And if you go here and you drill, you remove that excess of solder, you see that your signal integrity is going to improve a lot. So this technique is widely used, especially on SerDes channels. "SerDes" stands for Serializer/Deserializer-- you know, very high-speed channels. So in order to improve the signal integrity, even though you're using very low-loss dielectrics, sometimes you have to do something like this. You see that the eyes overlap in the mask, so it's violating the mask. But if you perform those back drilling, you can improve signal integrity.

And if you take a look at the PCBs and connectors, you can create what we call a "serial channel." You can simulate the entire channel, of course, but sometimes you want to optimize pieces of your channel-- like the width of the traces or the radius of the vias. So what we can do is actually extract models for all of these pieces of your channel and run what we call a "design of experiment."

So you can optimize your design and get what we see here, which is actually hundreds of eye diagrams showing the best design combination and, of course, the worst design combination. What you want, of course, for signal integrity, is a wide, open eye. So this one in the middle is not good, but the other ones in here, they show a really good signal-integrity performance.

This is one example from smart modules where they were using impedance calculation to improve a DDR print circuit board. So this print circuit board is connecting some DDR modules. And in the past, when they created the first revision of the PCB, they were not concerned about impedance and crosstalk. So they had an eye diagram which was not overlapping the masks.

But due to the manufacturing processes, they were really concerned about this. They say, hey, I want to improve the design so I don't have any issues in the future, even though we know all the manufacturing tolerances. So they were controlling the impedance. So they're redesigning all the lines that were sending data to the memory-- and of course, the clock and then address lines. So they could actually improve the eye diagram.

So if you take a look in here, the eye diagram is much more open. So this is a much better design. And they were doing this just by controlling the impedance and the crosstalk on the PCB that they were designing.

And as I said before, there is no way that we can talk about signal integrity without talking about electromagnetic compatibility and electromagnetic interference. Instead of going through the official overview and description of electromagnetic compatibility and interference, I'm going to show a simulation that probably is going to make you understand what EMI and EMC is.

So imagine that you have someone using a driller really close to a TV. Right? You will likely see this. This is what we call "electromagnetic interference."

So the driller is interfering on the performance of the TV. And there are basically two mechanisms for electromagnetic interference. One of them is radiated emissions. So the motor on this driller is actually generating electromagnetic noise that is transmitted from the driller to the environment, and it's reaching the TV.

And we also have conducted emissions, conducted noise. So that driller is generating some noise. That noise is going back to the power plug through the cables that is also powering up your TV. So we need to make sure that, all of our products, they are not generating enough emission so they can pass the EMC test. How do we control those emissions?

There are several tests. If you take a look at the list of standards in here, there are hundreds of them that controls those conducted radiated emissions and many more tests. And what we have seen is that, on the traditional workflow, usually we have someone inside a company that knows the best design rules on how to design a PCB. But the problem again is, as I was showing before, is that those rules now are not exactly valid anymore, because you're now adding antennas, you're adding high-speed memory devices, you're adding much more electronics.

But still, They know some rules. They design a PCB. They build their prototypes. They integrate the PCB usually in a case, in a housing.

And then they go to the lab, to perform the EMC test, to see if they're going to pass the certification so they can sell the product. At that stage, the only thing that they can do is pray, because changing the prototype at that stage becomes extremely expensive and you don't want to do that. Right?

So one way that we can actually help anyone designing electronics products is use simulation. Some of the tests, electromagnetic-compatibility tests, they can be performed in-house-- like we see here, on the left side, this is a [INAUDIBLE]. But some of them, like, you're trying to measure the electromagnetic noise that is being radiated from a product, like this microwave oven in the middle, or a car, that requires lots of expensive lab equipments. We're going to need an anechoic chamber, we're going to need some big equipments, and that becomes very expensive. And you don't want to fail on that test, because you're going to have to rebuild your physical prototype. And that's going to cost not only time but also money.

So we do have a technology today that can provide you some virtual compliance for many of these tests. So what we are seeing here is a laptop. And as you can see, it's on a turntable. And then we have an antenna.

That antenna, down here, is actually capturing the radiated emissions from the laptop. And since electromagnetic fields is something that is very difficult to see, we have to put those devices under tests on a turntable. So we need to make sure that we're capturing the maximum electric field generated by any device.

And on the right side, you see a plot showing some measurements and simulation. The difference in here is that the simulation was performed when you have your CAD and your PCB in Fusion. You take that information, and you run your simulation, and you get this result.

And measurements, of course, you need the physical prototype. You need the physical PCB. You need your physical laptop, and need to go to a lab. And if you take a look at the results, they're very comparable.

One of the reasons that I want to show electromagnetic interference is that EMI can cause signal-integrity issues. Imagining the cell phone. Here we have a cell phone, we have a USB connector, and then we have two antennas-- one GSM and a Bluetooth. So this is a very old technology.

If you take a look at, here, the eye diagram on the USB connector from this chip, it's good. It's not overlapping this green eye. But when we turn on both Bluetooth antenna and the GSM antenna, you see that we're going to generate some electromagnetic interference on those signals that is actually now overlapping the eye. So when you turn on the antenna, the USB here is failing. So that's one of the interesting EMI effects that we are seeing here in mobile devices.

Another technique that we use to decrease EMI is to use spread-spectrum clock generation. Actually we change the duty cycle of the digital signals so we can decrease the peak of your signals. But what happens is that, when you increase the duty cycle, you see that the eye diagram is also affected. So that's another way where we need to make a compromise between electromagnetic performance, electromagnetic-compatibility performance, and also signal integrity.

And let's talk about today. Let's talk about a new technology called "5G." All of these 5G devices, they have millimeter [INAUDIBLE] antennas. Which means that we don't have one antenna anymore. We have an array of antennae. But why do we want an array of antennae?

One of the advantages of using an antenna array is that you can control what we call the "radiation pattern." So instead of moving mechanically the antenna, you can change the excitation of each of these antennas individually, and you can steer the beam towards the user. So if you have a 5G millimeter wave cell phone and you are walking around the room, the micro cell on the other side is going to follow you. So we're going to make a lot more efficient use of the electromagnetic energy.

But what happens is that, what if you change the radiation pattern towards the electronics? You see here, this eye diagram is from a DDR4 memory. So we have a communication from this chip to a memory. And depending how you're holding your cell phone in here, or depending where you're walking, this radiation pattern can change and can also interfere in the signal integrity. So this is a new EMI effect, electromagnetic-interference effect, that we have been observing a lot lately on devices that are using 5G technology.

So as you can see here, there are only two types of engineers-- the engineers that have EMI problems and signal-integrity problems, and the engineers that are going to have EMI problems and [LAUGHS] signal-integrity problems. We're using more and more electronics, we're using newer technologies, and we need to make sure that we're designing our products properly to support them.

So I think by now it should be clear, the benefits of simulation. I like to show this plot, because it shows the development phase of any product development and the cost of a change. So when you're here on the concept design, you know, you're in Fusion-- you're changing the layout of a PCB, you're changing mechanical CAD-- the cost is 1x. After you have a physical prototype, if you want to change that, it's going to cost at least 100x more.

So usually what we see is that we have companies-- they know how to design their products. But after they have the prototype, the physical prototype, they say, hey, maybe I should place this antenna somewhere else. You know, maybe we should change something. And that's when your cost is 100x more.

But if you bring all these changes-- the y-axis is the number of changes-- back to the concept design, when you're in Fusion, and if you can get the same outputs that you'd get from a physical test, that makes you very smart because your total design cost is going to be much less. Not only that-- when you go to the certification tests, you're likely going to pass, because you have lots of insight in your design. And that's valid not only for PCBs but also for mechanical CADs.

So one of the things that we'd like to show is that, with a certification test, usually you have a report that says, hey, you know, your product passed or your product failed. But you don't know where to change, where to fix, on your prototype if you fail. But with the simulation results, you can actually get more insight.

You can see electric fields. You can have scanners that can show you where you need to fix-- like, hey, you have to improve your impedance in here. Or maybe these two traces are generating too much crosstalk. Right?

So you can actually troubleshoot, so you know where to fix it. So that's the power of simulation. And with that being said, I would like to show the Fusion 360 Signal Integrity Extension that we are announcing now during the Autodesk University 2022. This is a mockup. This is not, of course, the final design and view of the Signal Integrity Extension. But you're going to be able to see how that extension is going to help you design products better.

So this is the Fusion 360. You see, under the Simulation tab, if you are designing the PCB, that you have Analyze Signal. And that extension can calculate and provide you insight on many things on your PCB design.

You can compute resistance, inductance, capacitance. You can compute coupling, crosstalk, and also characteristic impedance. So if you plot the characteristic impedance in some of the traces, you see a red region that is showing, hey, there might be something wrong in here. And at first glance, it doesn't seem that there is nothing wrong. Right?

If you take a look at, here, where we're displaying the same layers, but if you enable the visibility of the bottom layer you see that there is a void on the ground plane. And that generates an impedance discontinuation, and that can radiate a lot. So, with the extension, you can actually fix that right away. But if you want more information-- hey, I want to see the fields-- you can go to Ansys. So you can click on the Ansys button. And we're going to import, with a single click, all the design and information required to run the simulations.

So this is actually the batch that we are using as an asset for the Autodesk University 2022. And once you're in the Ansys environment, you can run thermo, mechanical, optical simulations and electromagnetic simulations. So in this case, we're using the same geometry that it was designed in Fusion 6. And now we're going to compute the radiated fields, and we're going to run a signal-integrity analysis to evaluate the eye diagram.

So this is the fields that we see on the surface of the PCB. And if you go back and compare with extension in Autodesk, you'll see exactly the places or the regions on your design where you have to improve. So here on the top, you'll see where we have a hole-- a void. And down on the bottom, we fixed that. There's no more void.

But of course, if you want to quantify the electric field, if you want to run really advanced signal-integrity analysis, you can always go to Ansys. So here you see where you have this hole. You have a hot spot of electric field. If you fix that, there is no electric field radiation from that hole. And you can also take a look at the signal-integrity analysis, the eye diagram itself.

So, to wrap up, the key takeaway that I think we have here, I think it becomes really clear the benefits of using simulation really early in the design cycle. And if you have access to that simulation capability within the Fusion environment, that makes it even better, because if you have to go to another tool, like Ansys, another environment, that could be time-consuming. But if you have part of the technology that can actually show you where you have to improve your design, that's extremely valuable-- especially now that we have electronics with antennas and high-speed digital signals.

So, with that, I would like to thank you all for your time. And I'll finish my presentation. Thank you very much. [LAUGHS]

[APPLAUSE]

______
icon-svg-close-thick

Cookie 首选项

您的隐私对我们非常重要,为您提供出色的体验是我们的责任。为了帮助自定义信息和构建应用程序,我们会收集有关您如何使用此站点的数据。

我们是否可以收集并使用您的数据?

详细了解我们使用的第三方服务以及我们的隐私声明

绝对必要 – 我们的网站正常运行并为您提供服务所必需的

通过这些 Cookie,我们可以记录您的偏好或登录信息,响应您的请求或完成购物车中物品或服务的订购。

改善您的体验 – 使我们能够为您展示与您相关的内容

通过这些 Cookie,我们可以提供增强的功能和个性化服务。可能由我们或第三方提供商进行设置,我们会利用其服务为您提供定制的信息和体验。如果您不允许使用这些 Cookie,可能会无法使用某些或全部服务。

定制您的广告 – 允许我们为您提供针对性的广告

这些 Cookie 会根据您的活动和兴趣收集有关您的数据,以便向您显示相关广告并跟踪其效果。通过收集这些数据,我们可以更有针对性地向您显示与您的兴趣相关的广告。如果您不允许使用这些 Cookie,您看到的广告将缺乏针对性。

icon-svg-close-thick

第三方服务

详细了解每个类别中我们所用的第三方服务,以及我们如何使用所收集的与您的网络活动相关的数据。

icon-svg-hide-thick

icon-svg-show-thick

绝对必要 – 我们的网站正常运行并为您提供服务所必需的

Qualtrics
我们通过 Qualtrics 借助调查或联机表单获得您的反馈。您可能会被随机选定参与某项调查,或者您可以主动向我们提供反馈。填写调查之前,我们将收集数据以更好地了解您所执行的操作。这有助于我们解决您可能遇到的问题。. Qualtrics 隐私政策
Akamai mPulse
我们通过 Akamai mPulse 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Akamai mPulse 隐私政策
Digital River
我们通过 Digital River 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Digital River 隐私政策
Dynatrace
我们通过 Dynatrace 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Dynatrace 隐私政策
Khoros
我们通过 Khoros 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Khoros 隐私政策
Launch Darkly
我们通过 Launch Darkly 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Launch Darkly 隐私政策
New Relic
我们通过 New Relic 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. New Relic 隐私政策
Salesforce Live Agent
我们通过 Salesforce Live Agent 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Salesforce Live Agent 隐私政策
Wistia
我们通过 Wistia 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Wistia 隐私政策
Tealium
我们通过 Tealium 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Tealium 隐私政策
Upsellit
我们通过 Upsellit 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Upsellit 隐私政策
CJ Affiliates
我们通过 CJ Affiliates 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. CJ Affiliates 隐私政策
Commission Factory
我们通过 Commission Factory 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Commission Factory 隐私政策
Google Analytics (Strictly Necessary)
我们通过 Google Analytics (Strictly Necessary) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Strictly Necessary) 隐私政策
Typepad Stats
我们通过 Typepad Stats 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Typepad Stats 隐私政策
Geo Targetly
我们使用 Geo Targetly 将网站访问者引导至最合适的网页并/或根据他们的位置提供量身定制的内容。 Geo Targetly 使用网站访问者的 IP 地址确定访问者设备的大致位置。 这有助于确保访问者以其(最有可能的)本地语言浏览内容。Geo Targetly 隐私政策
SpeedCurve
我们使用 SpeedCurve 来监控和衡量您的网站体验的性能,具体因素为网页加载时间以及后续元素(如图像、脚本和文本)的响应能力。SpeedCurve 隐私政策
Qualified
Qualified is the Autodesk Live Chat agent platform. This platform provides services to allow our customers to communicate in real-time with Autodesk support. We may collect unique ID for specific browser sessions during a chat. Qualified Privacy Policy

icon-svg-hide-thick

icon-svg-show-thick

改善您的体验 – 使我们能够为您展示与您相关的内容

Google Optimize
我们通过 Google Optimize 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Google Optimize 隐私政策
ClickTale
我们通过 ClickTale 更好地了解您可能会在站点的哪些方面遇到困难。我们通过会话记录来帮助了解您与站点的交互方式,包括页面上的各种元素。将隐藏可能会识别个人身份的信息,而不会收集此信息。. ClickTale 隐私政策
OneSignal
我们通过 OneSignal 在 OneSignal 提供支持的站点上投放数字广告。根据 OneSignal 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 OneSignal 收集的与您相关的数据相整合。我们利用发送给 OneSignal 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. OneSignal 隐私政策
Optimizely
我们通过 Optimizely 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Optimizely 隐私政策
Amplitude
我们通过 Amplitude 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Amplitude 隐私政策
Snowplow
我们通过 Snowplow 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Snowplow 隐私政策
UserVoice
我们通过 UserVoice 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. UserVoice 隐私政策
Clearbit
Clearbit 允许实时数据扩充,为客户提供个性化且相关的体验。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。Clearbit 隐私政策
YouTube
YouTube 是一个视频共享平台,允许用户在我们的网站上查看和共享嵌入视频。YouTube 提供关于视频性能的观看指标。 YouTube 隐私政策

icon-svg-hide-thick

icon-svg-show-thick

定制您的广告 – 允许我们为您提供针对性的广告

Adobe Analytics
我们通过 Adobe Analytics 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Adobe Analytics 隐私政策
Google Analytics (Web Analytics)
我们通过 Google Analytics (Web Analytics) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Web Analytics) 隐私政策
AdWords
我们通过 AdWords 在 AdWords 提供支持的站点上投放数字广告。根据 AdWords 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AdWords 收集的与您相关的数据相整合。我们利用发送给 AdWords 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AdWords 隐私政策
Marketo
我们通过 Marketo 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。我们可能会将此数据与从其他信息源收集的数据相整合,以根据高级分析处理方法向您提供改进的销售体验或客户服务体验以及更相关的内容。. Marketo 隐私政策
Doubleclick
我们通过 Doubleclick 在 Doubleclick 提供支持的站点上投放数字广告。根据 Doubleclick 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Doubleclick 收集的与您相关的数据相整合。我们利用发送给 Doubleclick 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Doubleclick 隐私政策
HubSpot
我们通过 HubSpot 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。. HubSpot 隐私政策
Twitter
我们通过 Twitter 在 Twitter 提供支持的站点上投放数字广告。根据 Twitter 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Twitter 收集的与您相关的数据相整合。我们利用发送给 Twitter 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Twitter 隐私政策
Facebook
我们通过 Facebook 在 Facebook 提供支持的站点上投放数字广告。根据 Facebook 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Facebook 收集的与您相关的数据相整合。我们利用发送给 Facebook 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Facebook 隐私政策
LinkedIn
我们通过 LinkedIn 在 LinkedIn 提供支持的站点上投放数字广告。根据 LinkedIn 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 LinkedIn 收集的与您相关的数据相整合。我们利用发送给 LinkedIn 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. LinkedIn 隐私政策
Yahoo! Japan
我们通过 Yahoo! Japan 在 Yahoo! Japan 提供支持的站点上投放数字广告。根据 Yahoo! Japan 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Yahoo! Japan 收集的与您相关的数据相整合。我们利用发送给 Yahoo! Japan 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Yahoo! Japan 隐私政策
Naver
我们通过 Naver 在 Naver 提供支持的站点上投放数字广告。根据 Naver 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Naver 收集的与您相关的数据相整合。我们利用发送给 Naver 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Naver 隐私政策
Quantcast
我们通过 Quantcast 在 Quantcast 提供支持的站点上投放数字广告。根据 Quantcast 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Quantcast 收集的与您相关的数据相整合。我们利用发送给 Quantcast 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Quantcast 隐私政策
Call Tracking
我们通过 Call Tracking 为推广活动提供专属的电话号码。从而,使您可以更快地联系我们的支持人员并帮助我们更精确地评估我们的表现。我们可能会通过提供的电话号码收集与您在站点中的活动相关的数据。. Call Tracking 隐私政策
Wunderkind
我们通过 Wunderkind 在 Wunderkind 提供支持的站点上投放数字广告。根据 Wunderkind 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Wunderkind 收集的与您相关的数据相整合。我们利用发送给 Wunderkind 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Wunderkind 隐私政策
ADC Media
我们通过 ADC Media 在 ADC Media 提供支持的站点上投放数字广告。根据 ADC Media 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 ADC Media 收集的与您相关的数据相整合。我们利用发送给 ADC Media 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. ADC Media 隐私政策
AgrantSEM
我们通过 AgrantSEM 在 AgrantSEM 提供支持的站点上投放数字广告。根据 AgrantSEM 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AgrantSEM 收集的与您相关的数据相整合。我们利用发送给 AgrantSEM 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AgrantSEM 隐私政策
Bidtellect
我们通过 Bidtellect 在 Bidtellect 提供支持的站点上投放数字广告。根据 Bidtellect 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bidtellect 收集的与您相关的数据相整合。我们利用发送给 Bidtellect 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bidtellect 隐私政策
Bing
我们通过 Bing 在 Bing 提供支持的站点上投放数字广告。根据 Bing 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bing 收集的与您相关的数据相整合。我们利用发送给 Bing 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bing 隐私政策
G2Crowd
我们通过 G2Crowd 在 G2Crowd 提供支持的站点上投放数字广告。根据 G2Crowd 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 G2Crowd 收集的与您相关的数据相整合。我们利用发送给 G2Crowd 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. G2Crowd 隐私政策
NMPI Display
我们通过 NMPI Display 在 NMPI Display 提供支持的站点上投放数字广告。根据 NMPI Display 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 NMPI Display 收集的与您相关的数据相整合。我们利用发送给 NMPI Display 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. NMPI Display 隐私政策
VK
我们通过 VK 在 VK 提供支持的站点上投放数字广告。根据 VK 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 VK 收集的与您相关的数据相整合。我们利用发送给 VK 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. VK 隐私政策
Adobe Target
我们通过 Adobe Target 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Adobe Target 隐私政策
Google Analytics (Advertising)
我们通过 Google Analytics (Advertising) 在 Google Analytics (Advertising) 提供支持的站点上投放数字广告。根据 Google Analytics (Advertising) 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Google Analytics (Advertising) 收集的与您相关的数据相整合。我们利用发送给 Google Analytics (Advertising) 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Google Analytics (Advertising) 隐私政策
Trendkite
我们通过 Trendkite 在 Trendkite 提供支持的站点上投放数字广告。根据 Trendkite 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Trendkite 收集的与您相关的数据相整合。我们利用发送给 Trendkite 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Trendkite 隐私政策
Hotjar
我们通过 Hotjar 在 Hotjar 提供支持的站点上投放数字广告。根据 Hotjar 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Hotjar 收集的与您相关的数据相整合。我们利用发送给 Hotjar 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Hotjar 隐私政策
6 Sense
我们通过 6 Sense 在 6 Sense 提供支持的站点上投放数字广告。根据 6 Sense 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 6 Sense 收集的与您相关的数据相整合。我们利用发送给 6 Sense 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. 6 Sense 隐私政策
Terminus
我们通过 Terminus 在 Terminus 提供支持的站点上投放数字广告。根据 Terminus 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Terminus 收集的与您相关的数据相整合。我们利用发送给 Terminus 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Terminus 隐私政策
StackAdapt
我们通过 StackAdapt 在 StackAdapt 提供支持的站点上投放数字广告。根据 StackAdapt 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 StackAdapt 收集的与您相关的数据相整合。我们利用发送给 StackAdapt 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. StackAdapt 隐私政策
The Trade Desk
我们通过 The Trade Desk 在 The Trade Desk 提供支持的站点上投放数字广告。根据 The Trade Desk 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 The Trade Desk 收集的与您相关的数据相整合。我们利用发送给 The Trade Desk 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. The Trade Desk 隐私政策
RollWorks
We use RollWorks to deploy digital advertising on sites supported by RollWorks. Ads are based on both RollWorks data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that RollWorks has collected from you. We use the data that we provide to RollWorks to better customize your digital advertising experience and present you with more relevant ads. RollWorks Privacy Policy

是否确定要简化联机体验?

我们希望您能够从我们这里获得良好体验。对于上一屏幕中的类别,如果选择“是”,我们将收集并使用您的数据以自定义您的体验并为您构建更好的应用程序。您可以访问我们的“隐私声明”,根据需要更改您的设置。

个性化您的体验,选择由您来做。

我们重视隐私权。我们收集的数据可以帮助我们了解您对我们产品的使用情况、您可能感兴趣的信息以及我们可以在哪些方面做出改善以使您与 Autodesk 的沟通更为顺畅。

我们是否可以收集并使用您的数据,从而为您打造个性化的体验?

通过管理您在此站点的隐私设置来了解个性化体验的好处,或访问我们的隐私声明详细了解您的可用选项。