AU Class
AU Class
class - AU

Generative Design in Our Daily Lives

共享此课程
在视频、演示文稿幻灯片和讲义中搜索关键字:

说明

In this class, we’ll give an overview of what generative design is and how it affects our daily lives as designers. Where is the computer better than we are? Where are we still the most important part? How do we use a design that the computer gave us? How do we know that this one is the best for us? How do we actually make these products? We'll answer all these questions in our talk.

主要学习内容

  • Learn about generative design
  • Learn how to use generative design on a regular basis
  • Know the importance of additive manufacturing for generative design
  • Discover the difference between topology optimization and generative design

讲师

  • Nils Brüdigam 的头像
    Nils Brüdigam
    Nils connects companys and peoples with the field of digital simulation and mass customization. After he finished his studies in Naval Architecture and Ocean Engineering he started to teach at Man and Machine in all over Europe. His specialties are mass customization, product configuration, additive manufacturing and simulation using FEA and CFD.
  • Alex Wouters 的头像
    Alex Wouters
    °°° Welten verbinden durch Digitalisierung °°° Als passionierter Simfluencer und Digital Junkie reizen mich Innovationen, die unsere Welt lebenswerter machen. Aber auch die, die auch einfach nur Spaß machen, ohne sämtliche Reize zu überfluten. Ich spreche die Sprachen der Execs und Techs, der jungen und älteren Generationen, und habe es zu meinem Ziel gemacht, diese Welten noch stärker miteinander zu verbinden. Vertrieb | Strategieentwicklung | Simulation & Additive Fertigung CAE | AM | CAD Mensch und Maschine | Autodesk | Maschinenbau | Mechatronik | Architektur
Video Player is loading.
Current Time 0:00
Duration 31:34
Loaded: 0.52%
Stream Type LIVE
Remaining Time 31:34
 
1x
  • Chapters
  • descriptions off, selected
  • en (Main), selected
Transcript

NILS BRÜDIGAM: Yeah. Hello, everyone. And yeah, it's nice to hear from you, or see you, or at least you can see me. For today's talk at Autodesk University the topic will be generative design in our daily lives.

So I did split this talk in three topics, who, what, and why. And this is what we are going to talk about. First, we're going to start with the who. I guess you have an idea of what we're going through now.

Well, yeah. Who is me. And I'm going-- so who am I? My name is Nils Brüdigam. I do have a master's degree of science in naval architecture and ocean engineering.

And I'm working in Germany, but I'm here for you all over the world. Just give me an email, and yeah. I will come back to you during my office hours. And we can schedule a talk, or anything.

I'm specialized in structural dynamics, fluid dynamics, and additive manufacturing. This is what I do all day long, and I love it. It's a great topic, and this is why I'm going to talk to you about generative design.

Well, I'm not working for myself. I'm working in a company, Man and Machine. We have 1000-plus employees, 244 million euro of revenue in 2020, 75 subsidiaries in 22 countries, with over 37 years of market experience. So I guess you could say we're here quite a long time. And I think the biggest factor for our company are our 1000-plus employees from all different fields of CAD and data driven processes.

This is what we do. We try to digitalize everything you need to work with in your daily lives and keep it simple. That's the whole part.

So generative design is-- or, generative design in our daily lives. What are we talking about now? So the what. The second part.

When we want to talk about generative design we need to talk about the design process. How do you design parts? How do you design assemblies nowadays? And I can only say this for myself, but I think I have quite a good understanding on how a lot of my customers are working, , and I guess maybe you, as well. So how do you design?

Well, first, you get a task, right? The task at hand is, for, me I'm a naval architect. Something very familiar would be, bring people from A to B in summer and back from B to A. And in winter, we want to transport paper, for example, as we don't have that many people who are trying to go on vacation. I think that's a very specific task you can adjust-- or you can work with. Then you start how many ships do you need, and stuff like that. And then, you start your design process.

And when you are in your design process, you have a rough idea of what you want to do, right? So and then, you think about how to do stuff, and how to do-- or how to fulfill your design needs, isn't that you think about your specific set of possibility.

So you have different sizes of beams, I beams, T beams. And then you start to attach them together. You try to weld plates to it, and you use bolts, and washers, and connectors to connect all things together. And in the end, you get a big assembly. This assembly, in my case, called a ship. But this is where you start your design process [INAUDIBLE].

So if you think about it, the traditional design concept you have a rough idea of what to do. You may have different ideas, and then you start to draw them. While drawing them you see, hey, this one's not working, that one's not working. And you start to evaluate your different parts.

When you evaluated those, or what is evaluation? Well, you check for manufacturability, for example. This is one part. You also check if you can get all the parts in the correct sizes. If you-- do you have any specific needs you forgot about?

So this is what you do all day long. That you think about those concepts, but you are always limited on what you see, or what you have experienced in your daily life of design. And so, for example, those frames in specific. And if you are a good designer then you already take the manufacturability into account. And then you might get out with a good solution.

For example, on this frame part of a motorbike, on the right-hand side, you can see some cutouts to make it lighter. Maybe this consists maybe of two parts to put them together, or even of one part. And you can 5-- you can mill it with the 5-axis mill, for example. This is what you get out. So you have your clear design task at hand.

Here, you'll need to attach a wheel. You need to attach this rear part to the mainframe of your motorcycle. And then you, in the end, you have your part. After your evaluation and the check for manufacturability there is another test you have [INAUDIBLE]. This is the validation.

What is validation? This is a simulation part or a testing part. Usually it would be the testing part we are talking about here. Testing for structural stiffness, for example.

You have specific loads, you have specific boundary conditions your part needs to fulfill. So how can we even speed this one up? You can start with, for example, on the structural side Autodesk NETFABB and IN-CAD. This would be your structural FEA software. You can also do heat with it, but let's focus on the structural part.

So you have those loads, and you try to bring them into your part. And in the end, after you have chosen it, you see how my safety factor is too low. It's 2 and I wanted it to be 5. So you start again.

Where do you start? Your traditional design process and your concepts. You try to rethink your concepts. Do I need to make my part thicker? Where do I need to add stiffness? Stuff like that.

And then, again, you have to evaluate your part, and you have to manufacture your part. And after that, you start again with the validation of your part. So there's a lot of time invested on this case. And if you do not do any kind of simulation you are doing this on actual tests, not in your computer. It's even more time you are spending here. And this time spent, and also money spent.

This is always a crucial part, right? You need to have a cheap part. And if you spend too much money on your testing, the part will not be cheap anymore, as you'll spend too much money. It's that simple. So in the end, we want to have a part that works from the beginning or in your first test. That would be the first time right principle. And you can do that by using structural simulation.

This would be the first part. And this is also what we are going to focus on in this talk and how generative design works. But I still want to talk about the other simulation features we do have with Autodesk.

The other two parts would be fluid simulation, as in Autodesk CFD computational fluid dynamics. You can see here the flow through a heat exchanger. In this case, it's a high heat exchanger and you can do fluid movement as well as temperatures. Also coupled, if you want to do something like a heat sink, or stuff like this. But you could also do external aerodynamics.

When we come back to this motorcycle part you can do the simulation part on this one, as well, and check if this one validates for your specific test case. You need to have some kind of track and lift coefficient for your motorcycle, [INAUDIBLE] MotoGP, but still, you need this, right?

Also you want to have a good track and lift coefficient for your car, especially a drag coefficient would be nice, probably for your airplane. I don't know if you have one. I don't, but yeah. It might be that you do have one. You need a nice lift coefficient, while your drag coefficient is minimized. So this would be something you also need to validate for.

And well, I think we are coming to generative design, or manufacturable-- or manufacturability. We nowadays have to talk about additive manufacturing. It's still kind of new on the market. I would say, if are not doing it already and not validating your options in additive, you're already a bit behind with your company. But you will always be able to get back in there. We can help you on that one.

And also, you may need some stimulation for additive manufacturing, especially when you are working on metal additive manufacturing you need supports which keep your pot on your build plate. You'll need to check for distortion, or for your displacement for the internal stresses of your parts. And once you've removed your part from your build plate, how will it deform? Will it deform too much, so that this will not be the part you can use anymore? So those are really interesting parts you need to look out for.

So now this, I think we're talking a lot about this traditional design process, right now. So we have different concepts, we evaluate them, we check for manufacturability and in the end, we validate them till we produce them. So we have a very long time to market. And this is where generative design comes in quite handy.

So it brings me to the third part of my talk today. Why generative design? ? And what is generative design? Well, generative design, in general, connects nature and engineering. That's it. We don't do anything else than that. We try to use the nature and bring it to our designs. And this is actually quite easy. So you can see in gray in the background, I would say, the traditional design process of your parts with different concepts. And in the end, you may get to your production part.

Why is the generative design now so much faster? Because we already have multiple validated manufacturable options. And then, something like the right-hand side might-- or you might end up with something like that on the right-hand side. And you have a new part created, which you can print, which you can mill, depending on the manufacturing options you've chosen for.

So let's check again. How and what is generative design? Yeah. We have specific criteria. In this case, I've seen it. It might be mass. It might be volume, something like that.

So in the first place, you specify criterias you want to check for. In structural FEA this is quite easy. That's to say we have a specific safety factor. So stresses we do not want to exceed.

And specific loads. We do have some specific cases. And in the end, we already get thousands of options, and we can choose the one which works the best.

This is the biggest difference between our standard process, where we do get a part in the end, yes. But is it the best part we can create? I have to tell you, it's not. I know, you might be very good. But I think the computer, on this case, can help you and also exceed you and creating specific parts for specific tasks.

So for this task, as we've talked about in your traditionally designed concept, you think about your teams you have at hand, your plates you can use, and your manufacturing methods. Without thinking out of the box you are not starting on a white paper usually. Or, at least, I am not. You may be, I am not.

So where do we start? Yeah. We start on the top-left side for our-- well, this is our given task actually. For the traditional designing process, as well as for our design process in generative design. So we have specific attachment points to our assembly. You can see those long cylindrical surfaces on the top-left side in red. Those might be where you want to put in a screwdriver.

And on the bottom side, you can see-- on the bottom side of this part, you can see the other cylindrical surface, or cylindrical part. This is where you put in some kind of load. So you need to attach your part to something, that's a common one.

So we have those red areas where you need to bring your parts in, where you need to-- some space to-- or fix it to other stuff. This is one part of the obstacle geometry [INAUDIBLE]. So obstacles, we do have those obstacles.

What else is in there in red? Well, that's an obstacle geometry where you are not allowed to bring anything. So this is just space which is taken up from other parts, or where you want to put your load. That would be the same. So in red, obstacle geometry, in general.

And then you have the green part. You can see this small ring on the bottom part, which shines a bit yellow. But, in general this would be your attachment point, where you bring in your load in. This is something you really want to keep.

So you have obstacle geometry and you have geometry you want to keep for your design process, as you are bringing in other parts in here. And the yellow one, this is optional, so not necessarily has to be drawn by you. This is where-- a starting idea on where to start with your part. But you don't need that one. This is just to show you how your traditional design could look like, and to make it a bit easier for the software, you could do that, as, well if you want to follow specific guidelines.

Well, this task is given to you, as I said, in traditional and in generative design. You have space you can use. and you have space you can't use. And you need to attach your part to something else.

But the design for your generative part, you didn't already start with this. So you didn't do anything with-- instead of drawing cylindrical surfaces or cylindrical parts where you want to attach something. So that's quite easy and fast drawn in your design.

What else do we need? We need boundary conditions. Where is my part attached? And where are the loads going to be for my part?

In this case, load on the green cylindrical surface you can see, or the green ring, and the other parts, this is where you will put your screws in. So this is going to be the boundary condition, while the other one is the load.

What else do we need? Well, we need material, but usually you start to use one material. You do not change between different materials, like stainless steel, aluminum, titanium, or something like that. We would just say, OK, I'm using steel. That's it. I mean, like it's cheap. I can see why you are doing it, but there may be a better solution which even might be cheaper. That's possible.

So starting we have to choose from different materials. And we can use multiple materials in your generative design. This will not be-- or you will not be able to even define this in your traditional design, as it would have to design completely different for aluminum than for a steel part. You would have to look for different attachments, and so on.

So we have geometry, we have loads we have boundary conditions, we have material, and what do we need to check for, as well? Well, the manufacturability.

We need to check for manufacturability. It's quite easy. And what do we use here? We have additive manufacturing. We have milling, 5-axis, 3-axis, 2.5-axis milling we can use. And also, we have unrestricted models. And those manufacturing options we can or need to bring into our design process are derived from a specific boundary conditions, as well.

For example, in your additive manufacturing you can't print in the air. So you [INAUDIBLE] have a limited overhang. This limited overhang would be something like 45 degrees. Quite easy to understand and have a look at.

And once we have that, as well, our manufacturing method here, as well, we can check for multiple manufacturing options-- and not only a single one we would have to use for our traditional design. We can click on start and the computer starts working.

And what's happening inside the computer is that it's now taking all those options. It starts to give us different designs. One of those designs might look like the one we see here, top-right, bottom-left, bottom-right-- and bottom-right would be the last iteration on this part.

And so we see this very organic design. You can see the rings where your bolts will be to connect it to the other part. You can still see the ring we have on the top-left side, in green. And this will still be in your part. But this is a single part. We can do that by ourselves. That's true.

This one will give you multiple options for all those different manufacturing methods, for all those different materials you had. And now you can choose, not only from a single design, but from thousands or millions of designs. And you can choose by your specified criteria-- volume, mass, or stiffness. And you can combine those, and find your specific best part for this task. Might not be the best part overall, but it's better, right? So you can use this.

So now, looking at this, and this talk is about generative design. In our daily life, those parts do look great. Yes. But will you manufacture those? I mean, like if you are a car manufacturer, and you want to make a fancy gear shifter, or something like this, yes, this might be an option for you. And it's pretty cool. Or if you're really, really driven by lightweight design, for example, as in aerospace, this direct option might be something for you.

But what if you are working in a normal shop? Well, you wouldn't start to manufacture something like this, because we only have to look at it. This is too expensive, right?

But what do we see here? We see how the forces are aligned. There where we do have big parts, or where our part is big we have lots of stresses, or we have lots of forces going through our part. And this is where I tell you think smart, don't think hard. Yeah.

On the left side, you can see the old part of a German manufacturer called Claudius Peters. And this part is on a single machine in hundreds, and it weighs 150 kilograms. So this is super heavy. And well, every kilogram of math you have to pay for. So this is also a super expensive part.

And think about the top-right design, you wouldn't start to manufacture this in the thousands, as it's already looking way too expensive. But what you can take from there is, how do your forces, how do your stresses align? Then you can take the one on the bottom-right, right side.

This is just plates with stiffness on it. So this is traditionally welded. You have your traditional plate back to your traditional design, right? But you have a way better understanding of what is actually happening in your part. And you are adding stiffness where you need it, just by using those specific designs.

And this is, I think, nowadays the greatest advantage of generative design is not that it will give you a fancy looking part-- I mean, that's cool for all of us, yes. But in our daily lives this is the result we are going to work with, as this one's cheap, and it gives you the possibility to adjust for-- and you can just create it with your traditional methods. So this is where I would say, our generative design is going to be.

So now we did take a very hard look on those traditional MFG topics. But generative design, as I've said before, is not only working in MFG. I'm from the structural part of ships, and I'm also looking at the fluid dynamic part of ships. And I have seen code working on the nose of a ship, or the underwater nose of a ship. And you can optimize your CFD code, or the shape of your nose using a CFD code with the generative design. And this does work. This is really cool.

Another MFG example. Whereas is this nature connection to our design process. Autodesk has a specific showcase together with Airbus, on, I think, it was the A320. They're using the specific cabin separator, which is made specifically for Airbus.

And what did they do? They have been looking on bird bones. And they did use the structural ideas of bird bones, and brought them into their design software. And the growth and the distribution of those beams, which come out of your bird bones-- or, yeah, the idea of your bird bones, which come out of the code, are distributed using the growth rate of fungus. And all this sounds crazy, but it is a super lightweight option in the end, which works perfectly for this case.

So you can see, you have a really nice connection between this nature and the design process, in itself. Another MFG example, but where can you use this, as well? Well, it's in infrastructure, for example.

Let's look at this. We have a specific soil here. And we want to bring in some houses. But to get houses in there, specifically, on those curved surfaces, we need sewer lines, we need streets.

And we need to make sure all the rain is going into the right direction, and going down, and not-- well, we do not want to have a pool somewhere around your house, or even under your house. And then your house is going to go away just because it drains a bit more.

So we can use generative design to automatically create our topological features. And this is, I think, a really, really good example. Now you can adjust for specific corners of your streets. And you can put in specific degrees that the water would run off on those. So I think this is a great, or another great option to check for, or to use generative design in infrastructure.

And where else? Well, Autodesk did use it for their Toronto office. And they did create their specific criterias. Like, how was the light, how far-- what do you want to be away from your coffee machine? What's your work style looking at the coffee machine? I mean, I like coffee but I don't want to be too near to it. That-- the sound will always disturb me. So this is something you can have in mind when creating your office space with a generative design.

Also, especially with the daylight, everybody likes to work in daylight, right? Well, maybe not your kids. They like to live in the basement. But still, I do like to work in daylight. And so, this is something that's really helping. And so you can make your office, or create your office, your initial office design that everybody gets enough of daylight. And I think this is a very, very important part where you can also check for this generative design.

So to sum this up, generative design in our daily lives-- I, personally-- this is always only my opinion, and I might not be correct, but I hope I will be-- is that this generative design is never going to replace you, as a designer. But it will help you to be way more creative on your specific product as you can see where specific forces are distributed, where you can remove stiffness from your part, and where you have to add stiffness to your part. So always think about those terms.

And I think this is also the set where you will need to acquire probably new skills, if you don't already have them, and bring those skill sets into your design that you know how to apply forces, how to check for boundary conditions, and then use those as the generative design approach.

So I hope you did like my talk. Again my name is Nils Brüdigam. I'm working for Man and Machine in Germany as application engineer, and sales, and digital simulation, and additive manufacturing. You can see my mail, or just scan the QR code, and you have all my contact information directly on your mobile.

So thanks for attending this year's Autodesk University. I hope you enjoyed the talk. And I'm very happy to see you, or just talk to you in the live Q&A. I forgot when it is, but it will be soon. So see you then. Bye.

______
icon-svg-close-thick

Cookie 首选项

您的隐私对我们非常重要,为您提供出色的体验是我们的责任。为了帮助自定义信息和构建应用程序,我们会收集有关您如何使用此站点的数据。

我们是否可以收集并使用您的数据?

详细了解我们使用的第三方服务以及我们的隐私声明

绝对必要 – 我们的网站正常运行并为您提供服务所必需的

通过这些 Cookie,我们可以记录您的偏好或登录信息,响应您的请求或完成购物车中物品或服务的订购。

改善您的体验 – 使我们能够为您展示与您相关的内容

通过这些 Cookie,我们可以提供增强的功能和个性化服务。可能由我们或第三方提供商进行设置,我们会利用其服务为您提供定制的信息和体验。如果您不允许使用这些 Cookie,可能会无法使用某些或全部服务。

定制您的广告 – 允许我们为您提供针对性的广告

这些 Cookie 会根据您的活动和兴趣收集有关您的数据,以便向您显示相关广告并跟踪其效果。通过收集这些数据,我们可以更有针对性地向您显示与您的兴趣相关的广告。如果您不允许使用这些 Cookie,您看到的广告将缺乏针对性。

icon-svg-close-thick

第三方服务

详细了解每个类别中我们所用的第三方服务,以及我们如何使用所收集的与您的网络活动相关的数据。

icon-svg-hide-thick

icon-svg-show-thick

绝对必要 – 我们的网站正常运行并为您提供服务所必需的

Qualtrics
我们通过 Qualtrics 借助调查或联机表单获得您的反馈。您可能会被随机选定参与某项调查,或者您可以主动向我们提供反馈。填写调查之前,我们将收集数据以更好地了解您所执行的操作。这有助于我们解决您可能遇到的问题。. Qualtrics 隐私政策
Akamai mPulse
我们通过 Akamai mPulse 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Akamai mPulse 隐私政策
Digital River
我们通过 Digital River 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Digital River 隐私政策
Dynatrace
我们通过 Dynatrace 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Dynatrace 隐私政策
Khoros
我们通过 Khoros 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Khoros 隐私政策
Launch Darkly
我们通过 Launch Darkly 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Launch Darkly 隐私政策
New Relic
我们通过 New Relic 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. New Relic 隐私政策
Salesforce Live Agent
我们通过 Salesforce Live Agent 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Salesforce Live Agent 隐私政策
Wistia
我们通过 Wistia 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Wistia 隐私政策
Tealium
我们通过 Tealium 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Tealium 隐私政策
Upsellit
我们通过 Upsellit 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Upsellit 隐私政策
CJ Affiliates
我们通过 CJ Affiliates 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. CJ Affiliates 隐私政策
Commission Factory
我们通过 Commission Factory 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Commission Factory 隐私政策
Google Analytics (Strictly Necessary)
我们通过 Google Analytics (Strictly Necessary) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Strictly Necessary) 隐私政策
Typepad Stats
我们通过 Typepad Stats 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Typepad Stats 隐私政策
Geo Targetly
我们使用 Geo Targetly 将网站访问者引导至最合适的网页并/或根据他们的位置提供量身定制的内容。 Geo Targetly 使用网站访问者的 IP 地址确定访问者设备的大致位置。 这有助于确保访问者以其(最有可能的)本地语言浏览内容。Geo Targetly 隐私政策
SpeedCurve
我们使用 SpeedCurve 来监控和衡量您的网站体验的性能,具体因素为网页加载时间以及后续元素(如图像、脚本和文本)的响应能力。SpeedCurve 隐私政策
Qualified
Qualified is the Autodesk Live Chat agent platform. This platform provides services to allow our customers to communicate in real-time with Autodesk support. We may collect unique ID for specific browser sessions during a chat. Qualified Privacy Policy

icon-svg-hide-thick

icon-svg-show-thick

改善您的体验 – 使我们能够为您展示与您相关的内容

Google Optimize
我们通过 Google Optimize 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Google Optimize 隐私政策
ClickTale
我们通过 ClickTale 更好地了解您可能会在站点的哪些方面遇到困难。我们通过会话记录来帮助了解您与站点的交互方式,包括页面上的各种元素。将隐藏可能会识别个人身份的信息,而不会收集此信息。. ClickTale 隐私政策
OneSignal
我们通过 OneSignal 在 OneSignal 提供支持的站点上投放数字广告。根据 OneSignal 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 OneSignal 收集的与您相关的数据相整合。我们利用发送给 OneSignal 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. OneSignal 隐私政策
Optimizely
我们通过 Optimizely 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Optimizely 隐私政策
Amplitude
我们通过 Amplitude 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Amplitude 隐私政策
Snowplow
我们通过 Snowplow 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Snowplow 隐私政策
UserVoice
我们通过 UserVoice 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. UserVoice 隐私政策
Clearbit
Clearbit 允许实时数据扩充,为客户提供个性化且相关的体验。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。Clearbit 隐私政策
YouTube
YouTube 是一个视频共享平台,允许用户在我们的网站上查看和共享嵌入视频。YouTube 提供关于视频性能的观看指标。 YouTube 隐私政策

icon-svg-hide-thick

icon-svg-show-thick

定制您的广告 – 允许我们为您提供针对性的广告

Adobe Analytics
我们通过 Adobe Analytics 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Adobe Analytics 隐私政策
Google Analytics (Web Analytics)
我们通过 Google Analytics (Web Analytics) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Web Analytics) 隐私政策
AdWords
我们通过 AdWords 在 AdWords 提供支持的站点上投放数字广告。根据 AdWords 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AdWords 收集的与您相关的数据相整合。我们利用发送给 AdWords 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AdWords 隐私政策
Marketo
我们通过 Marketo 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。我们可能会将此数据与从其他信息源收集的数据相整合,以根据高级分析处理方法向您提供改进的销售体验或客户服务体验以及更相关的内容。. Marketo 隐私政策
Doubleclick
我们通过 Doubleclick 在 Doubleclick 提供支持的站点上投放数字广告。根据 Doubleclick 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Doubleclick 收集的与您相关的数据相整合。我们利用发送给 Doubleclick 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Doubleclick 隐私政策
HubSpot
我们通过 HubSpot 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。. HubSpot 隐私政策
Twitter
我们通过 Twitter 在 Twitter 提供支持的站点上投放数字广告。根据 Twitter 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Twitter 收集的与您相关的数据相整合。我们利用发送给 Twitter 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Twitter 隐私政策
Facebook
我们通过 Facebook 在 Facebook 提供支持的站点上投放数字广告。根据 Facebook 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Facebook 收集的与您相关的数据相整合。我们利用发送给 Facebook 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Facebook 隐私政策
LinkedIn
我们通过 LinkedIn 在 LinkedIn 提供支持的站点上投放数字广告。根据 LinkedIn 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 LinkedIn 收集的与您相关的数据相整合。我们利用发送给 LinkedIn 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. LinkedIn 隐私政策
Yahoo! Japan
我们通过 Yahoo! Japan 在 Yahoo! Japan 提供支持的站点上投放数字广告。根据 Yahoo! Japan 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Yahoo! Japan 收集的与您相关的数据相整合。我们利用发送给 Yahoo! Japan 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Yahoo! Japan 隐私政策
Naver
我们通过 Naver 在 Naver 提供支持的站点上投放数字广告。根据 Naver 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Naver 收集的与您相关的数据相整合。我们利用发送给 Naver 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Naver 隐私政策
Quantcast
我们通过 Quantcast 在 Quantcast 提供支持的站点上投放数字广告。根据 Quantcast 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Quantcast 收集的与您相关的数据相整合。我们利用发送给 Quantcast 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Quantcast 隐私政策
Call Tracking
我们通过 Call Tracking 为推广活动提供专属的电话号码。从而,使您可以更快地联系我们的支持人员并帮助我们更精确地评估我们的表现。我们可能会通过提供的电话号码收集与您在站点中的活动相关的数据。. Call Tracking 隐私政策
Wunderkind
我们通过 Wunderkind 在 Wunderkind 提供支持的站点上投放数字广告。根据 Wunderkind 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Wunderkind 收集的与您相关的数据相整合。我们利用发送给 Wunderkind 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Wunderkind 隐私政策
ADC Media
我们通过 ADC Media 在 ADC Media 提供支持的站点上投放数字广告。根据 ADC Media 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 ADC Media 收集的与您相关的数据相整合。我们利用发送给 ADC Media 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. ADC Media 隐私政策
AgrantSEM
我们通过 AgrantSEM 在 AgrantSEM 提供支持的站点上投放数字广告。根据 AgrantSEM 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AgrantSEM 收集的与您相关的数据相整合。我们利用发送给 AgrantSEM 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AgrantSEM 隐私政策
Bidtellect
我们通过 Bidtellect 在 Bidtellect 提供支持的站点上投放数字广告。根据 Bidtellect 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bidtellect 收集的与您相关的数据相整合。我们利用发送给 Bidtellect 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bidtellect 隐私政策
Bing
我们通过 Bing 在 Bing 提供支持的站点上投放数字广告。根据 Bing 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bing 收集的与您相关的数据相整合。我们利用发送给 Bing 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bing 隐私政策
G2Crowd
我们通过 G2Crowd 在 G2Crowd 提供支持的站点上投放数字广告。根据 G2Crowd 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 G2Crowd 收集的与您相关的数据相整合。我们利用发送给 G2Crowd 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. G2Crowd 隐私政策
NMPI Display
我们通过 NMPI Display 在 NMPI Display 提供支持的站点上投放数字广告。根据 NMPI Display 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 NMPI Display 收集的与您相关的数据相整合。我们利用发送给 NMPI Display 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. NMPI Display 隐私政策
VK
我们通过 VK 在 VK 提供支持的站点上投放数字广告。根据 VK 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 VK 收集的与您相关的数据相整合。我们利用发送给 VK 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. VK 隐私政策
Adobe Target
我们通过 Adobe Target 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Adobe Target 隐私政策
Google Analytics (Advertising)
我们通过 Google Analytics (Advertising) 在 Google Analytics (Advertising) 提供支持的站点上投放数字广告。根据 Google Analytics (Advertising) 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Google Analytics (Advertising) 收集的与您相关的数据相整合。我们利用发送给 Google Analytics (Advertising) 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Google Analytics (Advertising) 隐私政策
Trendkite
我们通过 Trendkite 在 Trendkite 提供支持的站点上投放数字广告。根据 Trendkite 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Trendkite 收集的与您相关的数据相整合。我们利用发送给 Trendkite 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Trendkite 隐私政策
Hotjar
我们通过 Hotjar 在 Hotjar 提供支持的站点上投放数字广告。根据 Hotjar 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Hotjar 收集的与您相关的数据相整合。我们利用发送给 Hotjar 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Hotjar 隐私政策
6 Sense
我们通过 6 Sense 在 6 Sense 提供支持的站点上投放数字广告。根据 6 Sense 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 6 Sense 收集的与您相关的数据相整合。我们利用发送给 6 Sense 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. 6 Sense 隐私政策
Terminus
我们通过 Terminus 在 Terminus 提供支持的站点上投放数字广告。根据 Terminus 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Terminus 收集的与您相关的数据相整合。我们利用发送给 Terminus 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Terminus 隐私政策
StackAdapt
我们通过 StackAdapt 在 StackAdapt 提供支持的站点上投放数字广告。根据 StackAdapt 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 StackAdapt 收集的与您相关的数据相整合。我们利用发送给 StackAdapt 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. StackAdapt 隐私政策
The Trade Desk
我们通过 The Trade Desk 在 The Trade Desk 提供支持的站点上投放数字广告。根据 The Trade Desk 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 The Trade Desk 收集的与您相关的数据相整合。我们利用发送给 The Trade Desk 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. The Trade Desk 隐私政策
RollWorks
We use RollWorks to deploy digital advertising on sites supported by RollWorks. Ads are based on both RollWorks data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that RollWorks has collected from you. We use the data that we provide to RollWorks to better customize your digital advertising experience and present you with more relevant ads. RollWorks Privacy Policy

是否确定要简化联机体验?

我们希望您能够从我们这里获得良好体验。对于上一屏幕中的类别,如果选择“是”,我们将收集并使用您的数据以自定义您的体验并为您构建更好的应用程序。您可以访问我们的“隐私声明”,根据需要更改您的设置。

个性化您的体验,选择由您来做。

我们重视隐私权。我们收集的数据可以帮助我们了解您对我们产品的使用情况、您可能感兴趣的信息以及我们可以在哪些方面做出改善以使您与 Autodesk 的沟通更为顺畅。

我们是否可以收集并使用您的数据,从而为您打造个性化的体验?

通过管理您在此站点的隐私设置来了解个性化体验的好处,或访问我们的隐私声明详细了解您的可用选项。