AU Class
AU Class
class - AU

Go with the Data Flow: Maximizing Tunnel Operation and Maintenance

共享此课程

说明

We made a digital twin (DT) of the tunnels that we manage on behalf of the province of North Holland. We're responsible for operating, controlling, and monitoring those tunnels. The data of the tunnels in the DT make the management and maintenance process much easier. Through its application, the DT is a central database in which we as tunnel administrator—along with the subcontractors and our client—can work directly. Accordingly, we all have up-to-date information about the status of the asset. As an administrator, we know the status of reliability, availability, and safety at all times. The contractor can immediately assess the severity and nature of defects and immediately has insight into the required material for carrying out the maintenance. Based on current information, the owner can make strategic decisions. An extensive effort was necessary regarding the original working method. With the DT, the process steps were reduced by almost 50%.

主要学习内容

  • Learn about performing real-time predictive maintenance when using digital twins with linked data.
  • Learn about applying an easier process in which each stakeholder fills in their own data, first time right.
  • Learn about minimizing effort while maximizing impact—the required steps are reduced by almost 50%.
  • After consuming this session, participants will be able to design their own process with maximum focus on customer value

讲师

  • Bart Duijvestijn 的头像
    Bart Duijvestijn
    Bart Duijvestijn joined ARCADIS as a project engineer in 1995. He's currently head of the department ‘Tunnels' which is a part of the division ‘Mobility' (infrastructure) in the Netherlands. Before ARCADIS he worked on his master study in probabilistic design. He has a Msc degree of Delft University on civil engineering. His professional passion is analysis regarding decision making under uncertainties for public and private decision makers. His groups focus is on Tunnels, safety, information and technical systems in large infrastructure.
Video Player is loading.
Current Time 0:00
Duration 32:37
Loaded: 0.51%
Stream Type LIVE
Remaining Time 32:37
 
1x
  • Chapters
  • descriptions off, selected
  • en (Main), selected
Transcript

BART DUIJVESTIJN: Hi to you all. Go with the Data Flow Maximizing Operation and Maintenance. That's the question we did, and we are aware that we are on a high speed train for digital development. But are we driving in fog? We do not think so.

We think that it's possible to hop on a train and just think to maximize operation and maintenance. How do we do it? We did making it a digital twin from all the data which we use for maintenance, and that's interesting. Some years ago, we had a discussion with Tunneling International.

It was a newspaper, and it was asking us Digital Twins, Hope or Hype? Do you know in your practice what digital twins are and what it is? Please see it for yourself, what is it? And then when we doing some things on digital twins, are they all the same or is a digital twin something which differs from the questions there are and is it all clear or is it some uncertainty within what is a digital twin?

We have some solutions, and we did a way on working it and we'd like to share it with you. And that's the reason why we are telling something about the digital twin we do for tunnel management. Some years ago, we started with it and a client asked about the digital twin. What is it? I don't need a digital picture of my tunnels.

If I want to see my tunnels, I go to them and see them in real. So I do not need the digital twin, but we made another thing using digital twins. Interest and excitement, the lack of definitions of a digital twin is, but what it is work more efficiently, more effective, and to prevent unnecessary errors, saving time and money. It was possible to do it.

We'd like to take you with us and show what we made for digital twin. Please, let's go on and hop on the train with us. My name is Bart Duijvestijn. I'm working as head of the Department Tunnels of Arcadis, a global company who works all over the world. And I have a [INAUDIBLE] in probabilistic design. I did since my study and like to make decisions in the uncertainties, and the digital twin will help with it, and we talk about it together, Jurjen and I, and now I would like to give the talk to Jurjen.

JURJEN HAITSMA: Good afternoon. My name is Jurjen Haitsma. I'm from the Netherlands, and I am a project manager within Arcadis. I was 22 years in the construction industry and last five years I'm program manager for digital in Arcadis. Together with Bart, we experienced the journey of the digital twin of the Waterwolftunnel. In this presentation, we will introduce our clients, we will introduce how we optimize our operation and maintenance of the tunnel process, and Bart is going to do a deep insight into use cases, tunnel lightning, and tunnel ventilation.

We will finalize this presentation with a few on the future. How are we going to proceed? But first, something about Arcadis. Arcadis is a global design and engineering and consultancy company active in 70 countries. We collaborate to improve quality of life, and we want to maximize our impact in our business areas' resilience, places, mobility, and intelligence, our digital product workstream.

We are not alone. We are with more than 36,000 people. We work in 70 countries, and this is how we want to realize our strategy.

[VIDEO PLAYBACK]

[MUSIC PLAYING]

- We continue to see significant changes to the world around us. Changes to our urban landscape, climate change putting pressure on resources and requiring cities and businesses to become more resilient, demands on housing, commercial property, and infrastructure, and the potential to empower data, unlocking decision making and automation for our clients. These trends continue to accelerate, increasing clients demands and shaping our future strategy.

To maximize that impact, Arcadis are focusing on three key business areas. Helping clients to use, renew, and protect essential resources, capitalizing on our experience in North America. Through human-centered design, we will create the spaces people need to work and live, building on our successes in Asia-Pacific, and keeping cities and people moving and connected, as we are doing across Europe. These complex challenges require the proven expertise of Arcadis.

Over the next three years, we will maximize our impact by putting sustainable solutions at the heart of what we do, leaving clients more resilient, effective, and secure. By simplifying operations and focusing on leveraging our experience and global scale, and we will continue our drive towards digital leadership, targeting investment on digital products and services and investing in the skills of Arcadis to maximize their impact. In three years' time, we will be measuring the impact of all our projects against the United Nations Sustainable Development Goals.

Our clients will know us for giving them access to digital solutions that maximize their impact. And we will have a reputation for the best training when it comes to skills in digital and sustainable leadership. We are Arcadis. We exist to improve quality of life.

[MUSIC PLAYING]

[END PLAYBACK]

JURJEN HAITSMA: And that's what Bart and I also stands for. This is what we as Arcadis do for our asset owners. That's where we stand up from our beds every day, and this project is spot on the summary of our strategy. From a digital perspective, we hit all the boxes.

Unlocking data for clients, facilitate data-driven decision making, develop and deliver digital service and solutions. In this way, we achieve our mission, improving quality of life. And data is a key factor particular in operate and main processes. Let's see how this comes into practice.

In our tunnel project in the Netherlands. These are the key items of our project. The asset owner is the province of North Holland. They own the three tunnels, and as Arcadis, we are the managing agent. That means we are strategic director from complex critical infrastructure.

And we can do the job because we have specific knowledge about it, and we do it in a cost effective way. We do it since 2013. We do the management of three objects, two tunnels, and a special, an aqueduct. They were designed and built in different periods, so there are different specification and installation technology.

All the objects are critical to the traffic network around Schiphol, our International Airport and Amsterdam, the capital of the Netherlands. You see how many traffic passes the tunnel every year. The Waterwolftunnel, the biggest amount, more than 30 million traffic units.

This is the way how we organize this collaboration with our clients. The client is responsible for the strategic level. Arcadis is moving strategic into tactics and translate it together with our partners in planning and work preparation. The tool of our collaboration is to provide reliable, available, and safe mobility through the tunnels.

All activities we explore are designed to provide flow and avoid disruptions. Right data at the right time is crucial for an effective operation, and we'd like to see this collaboration process from the point of view of the digital asset lifecycle. This is our language to connect processes from the start of the project, figure design construction operation maintenance to retrofit of an asset.

In the six different phases, we have specialized products and services. Let me make it explicit for three phases. Data-driven design, data-driven construction, and data-driven operation. In the left boxes you see the products and services that we provide. In the right boxes, we see data reuse, and that's the core of our approach to store data one time and reuse that data every phase as much as possible.

To create that for our tunnel, this is the process we went through. We reach the Netherlands, we move into Amsterdam, and Schiphol. The start of our data model is a point cloud. The point cloud to a data BIM model was realized by automatic object recognition, and doing so, we created a Revit model, a model we can use for visualization and simulation.

You'll see all the installations, the lights, the ventilation well positioned on the right place in the tunnel. The installations can also be used for safety training and training with the fire brigade, the police, and the ambulance. The geometric model we also use to identify critical data points, which we connect with static and dynamic data.

To create a digital asset lifecycle, we see five steps. The first step to define valuable data points, the second step to gather them with critical data, and then visualize and make control limits. The fourth step is to evaluate the detail and the frequency, and the last but not least step is to communicate up and downstream the process the effects of the measurements.

And as you see, we have people below. We do not do that alone. We work intensively with our clients and our partners to make this work in a valuable way, and how that becomes practice will be presented by Bart. I will now hand over to Bart.

BART DUIJVESTIJN: So to take you with us on our journey, please hop on the train, and let's see how we build a digital twin. The basis of our digital twin is an Azure database. All the data of the tunnels are collected in this one.

At first, we started to make a tunnel decomposition. All elements of the tunnel and the geometry, as Jurjen just showed, are put into the system. And then we made failure modes in effect analysis where we look to what might be wrong, what had to be extra attention. And from that, we made a monitoring plan and planned also some research to keep it up to date and up and running.

And after that, we made maintenance plans and also thought of solutions. And these four points are all taken together into the system. So happy using it for us, for our clients, and also for our subcontractors. And what did we do with the digital twin?

The aim was data driven. How to work data driven. The first thing we were thinking about the process was erasing steps from the process we did in an old fashioned way not digital. These steps were necessary in a manual process but not when we were using our digital twin.

Now, you see that the photo in the top left, so all the installations and all the parts had a QR code now, and when we can see it with our handheld. When we do some work or a maintenance engineer is doing the work in the tunnel, he directly put it scanning the QR code and then putting the data into our Azure database, so that will help. The second thing which also bases of the model, when we do some observations you see in the lower left, or sorry, the lower right corner, you see some observations, and in practice, we check it to the design principles and it was not right.

We had the fire extinguishing pipes were eaten by bacteria, so working digital, we could easily see it, put it into the system, and then when we make new designs, we also can prevent that this will occur another time. So that helps. Aim to work that driven. A digital delivery.

When we're talking with our clients, we are often coming into situations where there's a lack of data. It is very important that historic data from design but also historic maintenance data is stored and that we can look back, and from that, do some predictive maintenance in future. And how we do it, we do it with using the ISO 55,000, thinking over how it works and we have from that the same way, because our client also use the ISO 55,000, so we have a similar language.

And we can understand each other how to use and how to work. We also share our thoughts, our risks we see, and what we think is important doing the maintenance to the objects. And that's the basis of the things we do is making it what's critical to quality. We using the lean systematic approach to see what things our clients would be critical to quality.

And that is first listening. Listening very good to our clients. What is the voice of the customer? Making some analysis of it. Analysis. Is he thinking, what would be the worst thing what can occur? If you're installed, it is critical infrastructure.

So the most frightening thing is when the tunnel are immediately has to be closed because it's not safe because there are problems. It is near the vicinity of the airport in Holland. We have a flower auction very connected to the airport, and when you have to drive another road to the airport, it might be too late, and then it might be a problem for the people living around. So from that, we thought of what's critical to quality and doing it in a systematic way.

This was what we did. Our clients, the province had some critical things mentioned in their ISO 55,000, the cost and the traffic flow and all the things mentioned in the blue boxes. Therefrom, we find out what our KPIs were and we gave here an example for costs, and then you can see, what are the critical to quality for tunnel lighting?

And we mentioned some things here, and we are going to use these critical to quality to make a translation from that into our process. And then developing the process and developing the digital twin. You can see it here in the top picture, the current state.

What is the current state? That was how we do it manually, our maintenance for the tunnel. And you see a lot of state, a lot of steps doing some maintenance for the tunnels. And all the rows with red boxes and the current state that are all the steps and the yellow papers that are possible optimizations of it. And from that, we make a new made an evaluation and then we're designing the digital twin.

And you see that at the lower part of the picture, the future state. In this, you see less steps. Some steps totally disappear, and the value added time was increased. And so it was much more effective, because we only have to touch the ball once. Everybody was working with the central data, and there was no rework anymore.

So optimizations we made with the maintenance process was huge. Let's try-- and I will tell you something about how we did it for the tunnel lighting. That was one of our first steps we made in our digital twin. And we started with the architecture of the data model.

We had some internet of things. Automatic information which came within [INAUDIBLE] system and the internet of things at the left side going to the Arcadis framework. And also, field data and asset management to put in it and that made together our main platform. From the Arcadis object type library, we put it all in. The requirements we had for the design and what would be fulfilled with the assets.

And using the Autodesk Construction Cloud in the Autodesk platform, it was possible to make it visible and to analyze it. And at the right side, you see everybody's happy. Our client is happy, our partners are happy, and we are happy because we are able to see and to look at it.

And here, you see lots of data sources, which all has some influence on the tunnel lighting, and it's more than you think, and we are aware that-- so if we make more relations and more analysis it would be learns more about how to optimize use the maintenance and do it predictive for tunnel lighting. And this is then a picture where we put it on. All the fixtures of the lighting has a QR code, and you see it at the left bottom, so it's a connection with the model.

So if you are scanning with the handheld, the QR code, you will know which fixture you have. And then you see at the right, send all information from that fixture will be available. You can see the burning hours here and the number of switches. And from that, it is calculated when one of the lights fails, then we do with Bayesian statistics. We have a apriori distribution from our client and calculating it when there are failures from the lighting, then it's possible to calculate for the group of lighting what will be the rest lifespan there is.

And that helps us doing it most precise to give some thoughts about how could we optimize predictive maintenance. This is a short explanation from it. Here, you will see it. This is our platform, and we are working on the Waterwolftunnel, so we chose that one. And then we chose the lighting groups, so it will zoom in and give all the lighting groups and all the fixtures are within the system.

And then we choose one of the fixtures. This is one, and all the data of that fixture is here in our database. And it's actual at every time you look at it, because if we work on it, the QR code is scanned, and we know it.

So here, we can ask put in a task. So if one of our inspectors sees something and has some questions or a maintenance engineer is doing work on it or replacing a lamp or something, then it will be into the system directly. So at every moment, mostly we work at night. And so when we worked at night, we have the information directly into our system.

So if our office personnel is the next day on the tunnel, we directly know what is done at night, what is the status, and is it-- how does it work and is there enough light in the tunnel to make safe paths possible. And we also did this for tunnel ventilation. Tunnel ventilation is also very important in tunnels, because it's a critical installation, and it's needed for tunnel safety, because if there's a fire, then this big ventilations will be used just to make a maximum flow into the tunnel so everybody behind the fire will be safe.

And here, you see it also in short. We have also QR codes on the ventilation. We have in digital model, so we know where the ventilator is. And so you see some vibrations measurements on all the ventilators, which gives us information if there's a disbalance or something. And we also measured the energy, which is using. So when it's using more energy, there might be something that needs some maintenance.

And all the peaks you see here, that's the starting of the ventilation. So we also know how long does it work and how many hours will be used tunnel ventilation. So this is a picture where the model is working. So we here put our information-- this all into the system using the QR codes.

Someone who is going to look at it will see immediately all the information of the installations, and we also information about the traffic. The cameras are able to analyze digital if we have cars, trucks, or buses, and that's important for us who is using the tunnel. But it's also for example important for the quantitative risk analysis. We have to do by law every year and check if the usage of the tunnel is compliant to what we calculated and expected by law.

And then checking the safety, and now, I will give over to Jurjen. He is going to say this was the model for now, but what will it be for the next 10 years?

JURJEN HAITSMA: Thank you, Bart. Yes. That's the question. We have now several use cases. We know how to exchange data, how to do safe data storage, and we were at the end of the contract.

And that was the nice news last year. The journey goes on. Last September, after we submitted our proposal for AU 23, we won the follow up of the contract. So we have 10 years for new experiences and new investments but also improving quality of life and mobility in the Waterwolftunnel.

A great recognition for our work, the collaboration with the client and the bit we did. Now, we have to the opportunity to maximize our learnings, data, and infrastructure so we can grow and enrich our information model. How can we make the tunnel talk to us, and how are we able to connect the available data, these algorithms, to do a well-predicted maintenance?

So the next step for us are adding specific items, collecting the right data, and identities. Intensively data analytics and artificial intelligence to learn about relations and impacts. Our approach is the Pareto analyzer. First things first, so what are the key cost drivers and what is critical to get to quality? Those are items for our roadmap.

The three to move on our roadmap to a talking tunnel, we are going to add next year three data points, energy supply, fire detection, and fire resistance. With those critical data points, we fuel the infinitely to better understanding of assets and better human experience. We learned a lot, and we shall learn more. And what we learned are that you should really invest in client communication to really understand the client needs, the information he has available, but also the information he needs for his own business processes.

We also learned a lot about data exchange connectivity and security. In first instance, our client talks to us with email and PDFs. Now, we are going to transmit data from our system into their systems. How do you do that in a secure way? How do you make sure that your data is compliant, actual, and accurate?

Then we talk about the benefits. The benefits for the people who operate the tunnel. The real-time tunnel data became real-time tunnel status. So the data became information. Another thing we learned is that we are able with our data create real good business case.

Business case to see how we can reduce our energy consumption and to also provide the right refurbishments on the right time. We hope we have inspired you with our case study and that we have given you ideas to grow your talking asset. And we hope that we will receive the moment that we can ask the tunnel, how are you, and not only in one way, but in different ways. Thank you for your attention.

______
icon-svg-close-thick

Cookie 首选项

您的隐私对我们非常重要,为您提供出色的体验是我们的责任。为了帮助自定义信息和构建应用程序,我们会收集有关您如何使用此站点的数据。

我们是否可以收集并使用您的数据?

详细了解我们使用的第三方服务以及我们的隐私声明

绝对必要 – 我们的网站正常运行并为您提供服务所必需的

通过这些 Cookie,我们可以记录您的偏好或登录信息,响应您的请求或完成购物车中物品或服务的订购。

改善您的体验 – 使我们能够为您展示与您相关的内容

通过这些 Cookie,我们可以提供增强的功能和个性化服务。可能由我们或第三方提供商进行设置,我们会利用其服务为您提供定制的信息和体验。如果您不允许使用这些 Cookie,可能会无法使用某些或全部服务。

定制您的广告 – 允许我们为您提供针对性的广告

这些 Cookie 会根据您的活动和兴趣收集有关您的数据,以便向您显示相关广告并跟踪其效果。通过收集这些数据,我们可以更有针对性地向您显示与您的兴趣相关的广告。如果您不允许使用这些 Cookie,您看到的广告将缺乏针对性。

icon-svg-close-thick

第三方服务

详细了解每个类别中我们所用的第三方服务,以及我们如何使用所收集的与您的网络活动相关的数据。

icon-svg-hide-thick

icon-svg-show-thick

绝对必要 – 我们的网站正常运行并为您提供服务所必需的

Qualtrics
我们通过 Qualtrics 借助调查或联机表单获得您的反馈。您可能会被随机选定参与某项调查,或者您可以主动向我们提供反馈。填写调查之前,我们将收集数据以更好地了解您所执行的操作。这有助于我们解决您可能遇到的问题。. Qualtrics 隐私政策
Akamai mPulse
我们通过 Akamai mPulse 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Akamai mPulse 隐私政策
Digital River
我们通过 Digital River 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Digital River 隐私政策
Dynatrace
我们通过 Dynatrace 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Dynatrace 隐私政策
Khoros
我们通过 Khoros 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Khoros 隐私政策
Launch Darkly
我们通过 Launch Darkly 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Launch Darkly 隐私政策
New Relic
我们通过 New Relic 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. New Relic 隐私政策
Salesforce Live Agent
我们通过 Salesforce Live Agent 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Salesforce Live Agent 隐私政策
Wistia
我们通过 Wistia 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Wistia 隐私政策
Tealium
我们通过 Tealium 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Tealium 隐私政策
Upsellit
我们通过 Upsellit 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Upsellit 隐私政策
CJ Affiliates
我们通过 CJ Affiliates 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. CJ Affiliates 隐私政策
Commission Factory
我们通过 Commission Factory 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Commission Factory 隐私政策
Google Analytics (Strictly Necessary)
我们通过 Google Analytics (Strictly Necessary) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Strictly Necessary) 隐私政策
Typepad Stats
我们通过 Typepad Stats 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Typepad Stats 隐私政策
Geo Targetly
我们使用 Geo Targetly 将网站访问者引导至最合适的网页并/或根据他们的位置提供量身定制的内容。 Geo Targetly 使用网站访问者的 IP 地址确定访问者设备的大致位置。 这有助于确保访问者以其(最有可能的)本地语言浏览内容。Geo Targetly 隐私政策
SpeedCurve
我们使用 SpeedCurve 来监控和衡量您的网站体验的性能,具体因素为网页加载时间以及后续元素(如图像、脚本和文本)的响应能力。SpeedCurve 隐私政策
Qualified
Qualified is the Autodesk Live Chat agent platform. This platform provides services to allow our customers to communicate in real-time with Autodesk support. We may collect unique ID for specific browser sessions during a chat. Qualified Privacy Policy

icon-svg-hide-thick

icon-svg-show-thick

改善您的体验 – 使我们能够为您展示与您相关的内容

Google Optimize
我们通过 Google Optimize 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Google Optimize 隐私政策
ClickTale
我们通过 ClickTale 更好地了解您可能会在站点的哪些方面遇到困难。我们通过会话记录来帮助了解您与站点的交互方式,包括页面上的各种元素。将隐藏可能会识别个人身份的信息,而不会收集此信息。. ClickTale 隐私政策
OneSignal
我们通过 OneSignal 在 OneSignal 提供支持的站点上投放数字广告。根据 OneSignal 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 OneSignal 收集的与您相关的数据相整合。我们利用发送给 OneSignal 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. OneSignal 隐私政策
Optimizely
我们通过 Optimizely 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Optimizely 隐私政策
Amplitude
我们通过 Amplitude 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Amplitude 隐私政策
Snowplow
我们通过 Snowplow 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Snowplow 隐私政策
UserVoice
我们通过 UserVoice 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. UserVoice 隐私政策
Clearbit
Clearbit 允许实时数据扩充,为客户提供个性化且相关的体验。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。Clearbit 隐私政策
YouTube
YouTube 是一个视频共享平台,允许用户在我们的网站上查看和共享嵌入视频。YouTube 提供关于视频性能的观看指标。 YouTube 隐私政策

icon-svg-hide-thick

icon-svg-show-thick

定制您的广告 – 允许我们为您提供针对性的广告

Adobe Analytics
我们通过 Adobe Analytics 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Adobe Analytics 隐私政策
Google Analytics (Web Analytics)
我们通过 Google Analytics (Web Analytics) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Web Analytics) 隐私政策
AdWords
我们通过 AdWords 在 AdWords 提供支持的站点上投放数字广告。根据 AdWords 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AdWords 收集的与您相关的数据相整合。我们利用发送给 AdWords 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AdWords 隐私政策
Marketo
我们通过 Marketo 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。我们可能会将此数据与从其他信息源收集的数据相整合,以根据高级分析处理方法向您提供改进的销售体验或客户服务体验以及更相关的内容。. Marketo 隐私政策
Doubleclick
我们通过 Doubleclick 在 Doubleclick 提供支持的站点上投放数字广告。根据 Doubleclick 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Doubleclick 收集的与您相关的数据相整合。我们利用发送给 Doubleclick 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Doubleclick 隐私政策
HubSpot
我们通过 HubSpot 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。. HubSpot 隐私政策
Twitter
我们通过 Twitter 在 Twitter 提供支持的站点上投放数字广告。根据 Twitter 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Twitter 收集的与您相关的数据相整合。我们利用发送给 Twitter 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Twitter 隐私政策
Facebook
我们通过 Facebook 在 Facebook 提供支持的站点上投放数字广告。根据 Facebook 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Facebook 收集的与您相关的数据相整合。我们利用发送给 Facebook 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Facebook 隐私政策
LinkedIn
我们通过 LinkedIn 在 LinkedIn 提供支持的站点上投放数字广告。根据 LinkedIn 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 LinkedIn 收集的与您相关的数据相整合。我们利用发送给 LinkedIn 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. LinkedIn 隐私政策
Yahoo! Japan
我们通过 Yahoo! Japan 在 Yahoo! Japan 提供支持的站点上投放数字广告。根据 Yahoo! Japan 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Yahoo! Japan 收集的与您相关的数据相整合。我们利用发送给 Yahoo! Japan 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Yahoo! Japan 隐私政策
Naver
我们通过 Naver 在 Naver 提供支持的站点上投放数字广告。根据 Naver 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Naver 收集的与您相关的数据相整合。我们利用发送给 Naver 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Naver 隐私政策
Quantcast
我们通过 Quantcast 在 Quantcast 提供支持的站点上投放数字广告。根据 Quantcast 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Quantcast 收集的与您相关的数据相整合。我们利用发送给 Quantcast 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Quantcast 隐私政策
Call Tracking
我们通过 Call Tracking 为推广活动提供专属的电话号码。从而,使您可以更快地联系我们的支持人员并帮助我们更精确地评估我们的表现。我们可能会通过提供的电话号码收集与您在站点中的活动相关的数据。. Call Tracking 隐私政策
Wunderkind
我们通过 Wunderkind 在 Wunderkind 提供支持的站点上投放数字广告。根据 Wunderkind 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Wunderkind 收集的与您相关的数据相整合。我们利用发送给 Wunderkind 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Wunderkind 隐私政策
ADC Media
我们通过 ADC Media 在 ADC Media 提供支持的站点上投放数字广告。根据 ADC Media 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 ADC Media 收集的与您相关的数据相整合。我们利用发送给 ADC Media 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. ADC Media 隐私政策
AgrantSEM
我们通过 AgrantSEM 在 AgrantSEM 提供支持的站点上投放数字广告。根据 AgrantSEM 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AgrantSEM 收集的与您相关的数据相整合。我们利用发送给 AgrantSEM 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AgrantSEM 隐私政策
Bidtellect
我们通过 Bidtellect 在 Bidtellect 提供支持的站点上投放数字广告。根据 Bidtellect 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bidtellect 收集的与您相关的数据相整合。我们利用发送给 Bidtellect 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bidtellect 隐私政策
Bing
我们通过 Bing 在 Bing 提供支持的站点上投放数字广告。根据 Bing 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bing 收集的与您相关的数据相整合。我们利用发送给 Bing 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bing 隐私政策
G2Crowd
我们通过 G2Crowd 在 G2Crowd 提供支持的站点上投放数字广告。根据 G2Crowd 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 G2Crowd 收集的与您相关的数据相整合。我们利用发送给 G2Crowd 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. G2Crowd 隐私政策
NMPI Display
我们通过 NMPI Display 在 NMPI Display 提供支持的站点上投放数字广告。根据 NMPI Display 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 NMPI Display 收集的与您相关的数据相整合。我们利用发送给 NMPI Display 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. NMPI Display 隐私政策
VK
我们通过 VK 在 VK 提供支持的站点上投放数字广告。根据 VK 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 VK 收集的与您相关的数据相整合。我们利用发送给 VK 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. VK 隐私政策
Adobe Target
我们通过 Adobe Target 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Adobe Target 隐私政策
Google Analytics (Advertising)
我们通过 Google Analytics (Advertising) 在 Google Analytics (Advertising) 提供支持的站点上投放数字广告。根据 Google Analytics (Advertising) 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Google Analytics (Advertising) 收集的与您相关的数据相整合。我们利用发送给 Google Analytics (Advertising) 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Google Analytics (Advertising) 隐私政策
Trendkite
我们通过 Trendkite 在 Trendkite 提供支持的站点上投放数字广告。根据 Trendkite 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Trendkite 收集的与您相关的数据相整合。我们利用发送给 Trendkite 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Trendkite 隐私政策
Hotjar
我们通过 Hotjar 在 Hotjar 提供支持的站点上投放数字广告。根据 Hotjar 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Hotjar 收集的与您相关的数据相整合。我们利用发送给 Hotjar 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Hotjar 隐私政策
6 Sense
我们通过 6 Sense 在 6 Sense 提供支持的站点上投放数字广告。根据 6 Sense 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 6 Sense 收集的与您相关的数据相整合。我们利用发送给 6 Sense 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. 6 Sense 隐私政策
Terminus
我们通过 Terminus 在 Terminus 提供支持的站点上投放数字广告。根据 Terminus 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Terminus 收集的与您相关的数据相整合。我们利用发送给 Terminus 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Terminus 隐私政策
StackAdapt
我们通过 StackAdapt 在 StackAdapt 提供支持的站点上投放数字广告。根据 StackAdapt 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 StackAdapt 收集的与您相关的数据相整合。我们利用发送给 StackAdapt 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. StackAdapt 隐私政策
The Trade Desk
我们通过 The Trade Desk 在 The Trade Desk 提供支持的站点上投放数字广告。根据 The Trade Desk 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 The Trade Desk 收集的与您相关的数据相整合。我们利用发送给 The Trade Desk 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. The Trade Desk 隐私政策
RollWorks
We use RollWorks to deploy digital advertising on sites supported by RollWorks. Ads are based on both RollWorks data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that RollWorks has collected from you. We use the data that we provide to RollWorks to better customize your digital advertising experience and present you with more relevant ads. RollWorks Privacy Policy

是否确定要简化联机体验?

我们希望您能够从我们这里获得良好体验。对于上一屏幕中的类别,如果选择“是”,我们将收集并使用您的数据以自定义您的体验并为您构建更好的应用程序。您可以访问我们的“隐私声明”,根据需要更改您的设置。

个性化您的体验,选择由您来做。

我们重视隐私权。我们收集的数据可以帮助我们了解您对我们产品的使用情况、您可能感兴趣的信息以及我们可以在哪些方面做出改善以使您与 Autodesk 的沟通更为顺畅。

我们是否可以收集并使用您的数据,从而为您打造个性化的体验?

通过管理您在此站点的隐私设置来了解个性化体验的好处,或访问我们的隐私声明详细了解您的可用选项。