AU Class
AU Class
class - AU

How Analytics Is Bringing Insights to Toyota's Factory Projects

共享此课程
在视频、演示文稿幻灯片和讲义中搜索关键字:

说明

This case study will cover portfolio creation on business intelligence developed by Toyota Motor North America and Autodesk Consulting. We will discuss Toyota's business requirements, KPIs, and metrics. We'll evaluate Autodesk sources—including Data Connector and the Autodesk Platform Services Token Flex API—against Toyota's requirements. The presentation will teach BI development from raw data extracted from Autodesk products. It will list technical aspects of the ELT process for data extracting, loading, and transforming. An area of focus will be the data engineering processes required to produce meaningful consolidated tables, where data are sliced and diced to target KPIs. The final products include modules' BI dashboards for Executive Overview, RFIs, Issues, Submittals, Forms, Assets, and token consumption, which transform raw data into actionable insights that inform tactical business decisions. The visuals generated from BI equip Toyota with detailed intelligence about the state of the business.

主要学习内容

  • Gain an overview of business initiatives and pain points, KPIs for projects and users, and metrics developed and their measurements.
  • See evaluations of the Autodesk Data Connector, Autodesk Platform Services Token Flex API, and Autodesk Construction Cloud Connect for customized workflows.
  • Learn about metrics and products, including modules like Executive Overview, RFIs, Issues, Submittals, Assets, and tokens consumption.
  • Learn about value added to customers, and get recommendations on products' strategies for diagnostic and predictive analytics.

讲师

  • Tomotoshi Jo
    Tomotoshi Jo, MBA Subject Matter Expert – PE Toyota Motor North America Tomotoshi Jo has a background in information systems, BIM and project management. He supports Toyota Production Engineering (PE) team members who use Autodesk products such as ACC, AutoCAD, Inventor, Navisworks, Vault, and more. He also helps different PE departments build integration factory models for their new equipment installation project and new plant construction project. Tomotoshi graduated with his bachelor's degree in automation engineering from Shanghai University. He also has an MBA focusing on project management from the University of California, Riverside.
  • Liang Gong 的头像
    Liang Gong
    He is a structural engineer by training (PE) with a background in preconstruction/estimating, construction management, BIM/VDC and data science. He helps customers leverage the data they produce through the design and build process to generate actionable insights including forecasting and scalability. He also automates customized workflows with ACC Connect and Autodesk Platform Services. After graduating from Duke University, Liang is currently working on his second master's degree in Applied Data Science at University of Chicago, focusing on AI/ML as a part-time student.
Video Player is loading.
Current Time 0:00
Duration 0:00
Loaded: 0%
Stream Type LIVE
Remaining Time 0:00
 
1x
  • Chapters
  • descriptions off, selected
  • subtitles off, selected
      Transcript

      TOMOTOSHI JO: Hello, everyone. Our topic is "How Analytics is Bringing Insights to Toyota's Factory Projects." So this is the safe harbor statement. And my name is Tomotoshi Jo. I have a background in information system, BIM, and project management. I support Toyota Production Engineering team members to use Autodesk products such as Autodesk Construction Cloud, AutoCAD, Inventor, Navisworks, Vault, and many more.

      I also help different PE departments build integrated factory models for their new equipment installation and plant construction project. About one year ago, I made a promise to my colleagues to attend AU as a speaker. Here I am. It's my first time to attend AU and be a speaker. I would like to say thank you to all people who helped me so far. Next, I would like to hand over to my co-speaker Liang and let him introduce himself.

      LIANG GONG: Hello, everyone. This is Leon Gong from Autodesk Consulting. I am a consultant specialized in analytics and automations. Meanwhile, I'm currently an MS candidate at University of Chicago specializing in AI and machine learning. Thanks. Next slide, please?

      TOMOTOSHI JO: So in this class, I will talk about the Toyota Way, which drives me to partner with Autodesk consulting team to bring analytics to Toyota Production Engineering, explain the challenge that Toyota Production Engineering is facing, and lastly, discuss how analytics helps Toyota team understand the current situation and make decisions on the next step.

      So here are the four key learning objects of the session. I will mainly speak from the business perspective, while Liang will cover the technical side. So I believe many people know about Toyota company, but you may not know or even heard about Toyota Way. It's the core values of Toyota. To me, the number one core value is to drive curiosity. At Toyota, we ask to discover the mechanic behind phenomena. This mindset generates new ideas.

      A second, the number 2 core value is to continue the quest for improvement. In Japanese, it is also called as Kaizen. At Toyota, we believe in the nature ability of people to change things for the better. Even improvement regardless of size is valuable. Encouraging both incremental and breakthrough innovative thinking, we seek to evolve with Kaizen, never accepting the status quo.

      And the number 3 value is to create room to grow. At Toyota, focusing on what is essential, we eliminate waste and manage our resources carefully to create room to grow. This is the foundation for agility and cultivation of the new ideas for the future. These three core values are the backbone of this case study.

      So every organization has its own challenge. Toyota is not an exception. Since 2020, Toyota has had an EBA contract with Autodesk. As you may know, the EBA is a partnership with Autodesk that can include more products and services than the traditional contracts. But there are three major benefits of EBA. First, token flags, second, the enterprise priority support, and third, advisory and implementation service.

      With the EBA, it opens the door for all the members at Toyota Motor North America to use any Autodesk product. If Toyota members have ideas to improve the current process or build new workflow, they can request implementation service from Autodesk. And a dedicated consulting team will help to map the process and deploy new product or features.

      While everything has two sides, challenge also comes with EBA. Toyota Production Engineering is joint organization with 10 plants across the nation and over 2,000 engineers working inside plants. From the high level, we always need to consider how to maximize the benefits of EBA, how to capture the value from EBA, and how to adjust by the return of investment of EBA.

      So at the working level, we also face the challenges to transition to Autodesk Construction Cloud Build. PlanGrid was used to share information, manage the sheets, joins in the Toyota's factory projects. As you know, PlanGrid was acquired by Autodesk in 2018. And later, Autodesk launched ACC Build, which is the next generation solution for field and project management. Because ACC Build is covered under Toyota's EBA, the management team made a decision to generate a move to ACC Build.

      However, switching to ACC Build is not easy. First of all, we have to train not only the users inside Toyota, but also the external users, such as general contracts and subcontracts. Different users have different purpose to use ACC Build. For example, project lead needs to set up tools for the project members in ACC Build, while our project members may just need to upload or download files, create issues, RFIs, and submittals.

      Second, we have to update the existing Shikumi. Shikumi is a Japanese word which means "operation procedure." PlanGrid is embedded into many existing Shikumis to move to ACC Build. We must fully understand the whole operation procedure and the function difference between ACC Build and PlanGrid so that we can revise the process to match the purpose of each Shikumi and make it useful to the end user.

      And lastly, we have to upgrade the existing dashboard. The data sets of existing Power BI dashboard are imported from Excel files. Those Excel files, sheets contains many formulas. And to switch to ACC Build, we must study the current data set and develop a new one leveraging the data set imported directly from ACC Build.

      So here is a glance at current ACC Build usage. We started to use ACC Build in 2021. Currently, there are over 500 active users, 150 projects managed inside ACC. And some are small projects like installing the charging station. Some are large projects like the new Battery Plant Project. There are over 1,000 issues, 3,000 RFIs, and 4,000 submittals created and managed in ACC Build.

      So another challenge is to optimize token usage at Toyota Production Engineering. Token flag is a type of licensing model provided by Autodesk and the EBA. It lets Toyota pre-purchase tokens to access any product via daily rate. For example, a user will be charged a fixed rate even just using AutoCAD for 10 minutes in a day. But Toyota has a limited token to use for the whole organization.

      Every token comes with a price. We have to watch the token usage carefully, understand how our users use the Autodesk products, and guide them to effectively use those tools. Maybe even suggest them to use some free Autodesk tools so that we could save some tokens and create room for the future growing usage. So under Toyota's EBA, the token usage is categorized into three types-- desktop product, cloud system, and adjustments.

      Here, I just want to explain a little bit about adjustments. Adjustments refers to the Autodesk products that are not valuable as token flags. Basically, they charge monthly at a fixed rate. And since May this year, the Autodesk desktop product consumed over 300,000 tokens. The most used products are AutoCAD Inventor and VRED. And the cloud system consumed over 100,000 tokens.

      The most used products are ACC Build, being Collaboration and Docs. And for the adjustment, it consumed over 70,000 tokens. And the most used products at Toyota are ACC Connect, ProEst and Pype. To obtain insights of those construction projects and token usage managed in ACC, the DB analyst is required. And I would like to let Liang talk about his strategy and the way to map the analyst's process. Thank you. Liang?

      LIANG GONG: Thanks, Tommy. Before we go into the deep sea of the technologies associated with the methodology that Tommy was talking about, I'd like to give the overview picture of where we are, where here the zone is at in perspective, the data strategy approach. So this is a normal evolution of the data strategies for the AEC industry. You could see we start with descriptive analytics, and it goes into diagnostic, which means here, if you're trying to benchmark or scoring the different entities like the projects under your BIM 360 or ACC hub, that's a diagnostic analytics example.

      And then we evolve into predictive and prescriptive. And the later two phases, they are more like associated with machine learning and AI, which are hot topics these days. But in order to evolve to the latter two phases, it's always better to build the foundation of the "how solid," which is the descriptive and diagnostic, which is also associated with the database foundation, which I'm going to talk about in the next page. Next page, please?

      As you can see here, when we are mentioning the CDE, the connected data environment or common data environments, what exactly they are. In the previous slides, he was talking about the different kinds of analytics during the evolution process. And the foundation of that is really the database. As you can see on this slide on the left side and the right side-- so on the left side, it's more like mimicking the database for all the normalized tables.

      On the very left side, the very left column like cost, operations, sketches, design, all those data are siloed data which contain a lot of the normalized table. And on the right side, very right, like the prediction, forecasting, correlations, training, diagnosing, these are the visualizations that are ready to be consumed by the end users. For the end users, they do not need to understand the back end, which on the left side, how the data engineering process is looking like.

      They just need to get ready to consume the data, interpret the data for their business purpose. So that's why this slide is divided into two big parts. The first part is data storage environment, which contains all the raw data in silos. And on the right side, the data analytics environment, which is more on the front end like Power BI or Tableau, which are ready to consume the data for the end users.

      As you can see here, the biggest problem is that in order to build this data pipeline, we need to perform a lot of the data engineering work because inevitably, there are a lot of silos in our business today. And we need to do a lot of data engineering work to consolidate data, to consume the data in order for them ready to be used for the end users. So basically, using an analogy, you want to build the foundation of the house very solid before you're building the upper structures and the facade of the house. So that's the analogy here.

      And next page, I'm going to talk about the data connector. So remember, the left side of this page, consolidation process, is more where the data storage environment is. And in our example-- next page, please. In the ACC in the Autodesk example, the data storage environment is the data connector, which the full name is ACC Autodesk Construction Cloud data connector. If you use network product, if you go to the insight module of ACC or BIM 360, there is a sector called Data Connector.

      I put the link here for your reference if you're interested in knowing more about it, those two links, and read the articles. So what it basically does is that all the data you put onto our user interface, UI, onto BIM 360 or ACC, let's say you put a lot of data on our issues module, all those data are going to be organized and put under this data connector ready for you to download and ready for you to consume.

      And on the right side, this is how the data connector looks like. It consumes all the normalized table. By normalized table, this is what I mean-- all the different CSVs for the siloed modules on the right side. So this is our use case for the data storage environment under the Autodesk ACC's perspective under this structure.

      Next page, I will have Tommy talking about the data analytics environment because I just talked about the data storage environment, which is kind of the backend of this design workflow. And next, Tommy is going to talk about the data analytics environment, which is going to show you the videos that are ready to be consumed by the business partners. Tommy, please take it over for the data analytics environment. Thanks.

      TOMOTOSHI JO: So we use the data connector to import ACC Build project data into Power BI dashboard. And here, I just want to discuss about what dashboard we develop and how those dashboard, our analysts benefit toward the production engineering. So first, executive overview. This dashboard shows a summary of the audit projects in the Toyota ACC hub.

      The management team could easily view the project start date, project location, number of companies, and members for each project and understand what's happening and going on with inside organization, Toyota PE organization. Second, the Issue Analysis dashboard. So the Issue Analysis dashboard contains the performance metrics such as the average days to close, number of open issues, status of issues in each project. It could quickly help senior managers identify the road block for each project and common issues among all the projects.

      So the third is the Forms Analysis dashboard. So at Toyota, compound is used to confirm the quality of all aspects of construction projects. So compound literally means signal. In ACC Build, we use forms to implement this concept. The form dashboard helps the management know the progress and the lead time to complete quality confirmation for all projects. That's really helpful, especially safety is the biggest concern for the manufacturing plant.

      Next, the fourth one is the Assets Analysis dashboard. The assets dashboard summarizes all the assets for each project. It helps the operation team understand what equipment will be handed over to them after the project ends and what the status of each equipment is so that they can plan the maintenance in the future. So that's all the dashboard analysis we develop with the data connector.

      Next, so here are-- previously, I mentioned the challenge to optimize the token usage at Toyota. Next, I will let Liang talk about ACC Connect and how he developed the dashboard to analyze token usage for us.

      LIANG GONG: Thanks, Tommy. So in order to analyze the tokens usage, the first step is to really get the data, the tokens consumption data first before we analyze them, before we visualize them, right? So the first step is how we actually get the data. That really relies on our APS APIs. So two parts-- what is APS? Autodesk Platform Services. It's a cloud service which contains a lot of APIs.

      And then what is the API? API is an application programming interface. It is a way for more computer programs to communicate with each other. It is a type of software interface offering a service to other pieces of software. And what is API documentation? It is a document or standard that describes how to build or use such a connection or interface. That is what? An API specification.

      So together, this is APS API Autodesk Platform Services that provides an application programming interface for different softwares to talk with each other, including for the software that Autodesk provides to talk to third-party software, external software like shown on the screen like SharePoint, Google Sheets, or DocuSign. On the left side, these are on the slide, which Tom is presenting. On the left side, these are the products that Autodesk Construction Cloud provide, like the Autodesk Build, Autodesk Takeoff, Autodesk Docs.

      If I wanted this software, this platform to talk with external software like SharePoint, if you want to have any interactions or automation workflows set up, you need to rely on our APIs, which is the bottom right side pop-up, Autodesk Platform Services, which includes the APIs for the different modules, like for issues, RFIs, et cetera.

      And to give a little bit more about what is ACC Connect, ACC Connect is kind of similar to Power Automate, but it's different because it is designed specifically for the Autodesk ecosystem. If you go to next slide, please? So how do we use those APS APIs? We leverage ACC Connect to write those APIs. And regarding ACC Connect, previously-- its parent company is called Workato, but Autodesk rebranded and add our own customized connections and give it a new name, ACC Connect.

      What are the use cases for ACC Connect? We see a lot of this usage areas like document management, between DocuSign, between Box, between SharePoint. We're also seeing a growing area for project management systems like Excel, Smartsheet, Google Sheets, how you analyze this. These are more associated with analytics. And another biggest area we see lies under accounting. If you want, for example, want your ACC cost module to talk with the external accounting system, like QuickBooks, how we can automate that workflow, it's going to utilize the APS APIs and ACC Connect.

      And in our case here at Toyota, Tommy wants to analyze the token's consumption, we use ACC Connect and APS APIs to extract the data to set up a data pipeline. Next slide, please? So I'd like to give you another example of the application of ACC Connect because it's not only restricted to extracting the tokens's data. Here's another example I like to illustrate.

      Everyone's like a lot of us, who work on the construction side here, and we have a lot of QA/QC work to do. In this real example that Toyota wants to create QC and commissioning their equipment on the side in the factory, in order to do that, they wanted to use the ACC Build app. But how do you scan each equipment? So here brings up the concept of barcode. So ideally, we want to put a barcode on each equipment and scan the barcode with the app to bring up all the associated asset and associated Kanban forms with that specific asset.

      If we print out the barcode for each asset equipment, it's going to be very time consuming because there could be more than 500, more than 1,000 assets. So in order to automate this workflow in order to save time, we use ACC Connect to automatically generate a barcode column for each asset. And the barcodes are all unique. Meanwhile, we'll print out a PNG file as you can see on the lower right side of the slide and put it under the DOCX file.

      So in this way, after the automating process, we could print out a barcode for each asset and stick it to each equipment in the factory. So if you're a QC commissioner, you could just open up your ACC Build app and scan the barcode. The corresponding asset is going to pop up. You can see its associated its own asset information, associated Kanban forms information, associated issues. It's all digitalized. So that's the benefit of automating this workflow with ACC Connect.

      Coming back to the topic of token assumptions after we're automatically extracting the tokens data. And now Tom is ready to consume them to visualize these tokens consumption data for his business case. So next page, Tommy is going to talking about the visualization and data analytics for the tokens consumption data.

      TOMOTOSHI JO: OK, thank you, Liang. So here, I want to show two examples of dashboard we developed for token usage. The first one is the User Token Analysis dashboard. So this dashboard helps management know the trade of a user account. And based on the user's ID, we could understand which department they belong to and which area they may focus on. For example, the plant they are designed, or the tooling design, or the simulation side.

      Next is just another-- the other dashboard is called Product Token Analysis. So this dashboard helps management understand the token consumed and hour used per product. For example, on the right side, you can see the most used product at Toyota is AutoCAD. And since May this year, Toyota engineers already spent over 90,000 hours on the Autodesk CAD product only. So it may help us to consider why and how we could help our users maybe use AutoCAD.

      So that's the two examples of token usage analyst dashboard. And in the next here in the end, we would like to conclude this case study and give the recommendation. First for the conclusion-- so by analyzing the data obtained while the data connector and ACC Connect, we can learn project overall performance, individual project members workload, and token usage at Toyota. So it leads us to make the improvement to project planning and management of balanced workload for each project members, and target the people to provide them the right tools and training. So next, Liang will give his recommendation.

      LIANG GONG: Thanks, Tommy. So a very important thing, as you probably have already noticed earlier in this presentation that we want to build a solid foundation for the data pipeline for the different kinds of analytics. So right now, as you could see in the chart, we bring the data directly from ACC Construction Cloud into Power BI directly for analytics.

      However, when the data are growing more and more, Power BI is going to lose its efficiency because Power BI is not really a data storage tool. That's why we're adding a semantic layer, which is the data house or data warehouse or data storage like a SQL database or Snowflake between Power BI and our ACC Construction Cloud.

      The benefit of doing that is listed below for the seven points. I'm not going to read one by one. But overall, you could perform the data engineering, writing the queries instead of the data warehouse before you bring the consolidated, ready-to-consume data sets into Power BI for visualization purpose only. So this going to save tons of time to write the queries in Power BI because that's only going to slow down the performance of Power BI when we're having more and more projects data. So adding the semantic layer of data warehouse here is very important. That's a recommendation to all the audience here.

      And the next slide is for predictive analytics. For the first two parts, we're talking about the descriptive and diagnostic analytics. And now I like to talk about predictive analytics because this is more advanced. What can we do with this AEC data for AI machine learning? I gave some examples here on the slide. For example, if you want to predict the issues-- because I believe a lot of the audience who are using issues model in ACC-- you want to know when you're putting, let's say, like 100 issues on a project, you want to know which issue to solve first.

      So this really relies on the issues priority level. Most of the cases, the superintendent on the construction side probably based on his or her experience, subjectively choose the issue to solve because he thinks or she thinks this is more important. But in order to put in a more objective way or using an algorithm, so we're using the different parameters, like business unit, issue type root cause if it has impact on schedule or cost, which company the issue is from, and what's the trade the issue is liaising?

      Based on these eight parameters, we're predicting the label, which is the priority of the issue. So in this way, systematically, it's going to tell you, this issue is at a high priority. That issue is a lower priority. So you could objectively choose the issue to solve first based on the priority level. And the other use cases like time series analytics, this is more associated with, for example, if you want to predict the tokens consumption in the next year, if you want to predict the labors, these in the next year for your factory, et cetera, it is based on the timeline.

      There's more involved with the statistics like the exponential models like triple extension model, double exponential model, or robust remote model, this lies in this area for the time series analytics. Another example is NLP and LLM. It stands for natural language processing and large language model. For example, you put a lot of descriptions of the issues on the construction side. Based on those descriptions, I want to see which issue contains more risk, right?

      This is another perspective to analyze the issues priority level by using the NLP and LLM modules, and the description, the text words you put in there associated with the issues' descriptions. There are a lot of different possibilities speaking of AI and ML's application in the AEC industry. If you're interested in those areas, we could talk more. And you could use our consulting services to tackle those areas. That really wraps up the technology part that are associated in this presentation. I will pass it over to Tommy for the conclusion.

      TOMOTOSHI JO: OK. Thank you, Liang. That's all for the session. And next, we will go to the Q&A.

      LIANG GONG: Thanks, everyone.

      TOMOTOSHI JO: Thank you.

      ______
      icon-svg-close-thick

      Cookie 首选项

      您的隐私对我们非常重要,为您提供出色的体验是我们的责任。为了帮助自定义信息和构建应用程序,我们会收集有关您如何使用此站点的数据。

      我们是否可以收集并使用您的数据?

      详细了解我们使用的第三方服务以及我们的隐私声明

      绝对必要 – 我们的网站正常运行并为您提供服务所必需的

      通过这些 Cookie,我们可以记录您的偏好或登录信息,响应您的请求或完成购物车中物品或服务的订购。

      改善您的体验 – 使我们能够为您展示与您相关的内容

      通过这些 Cookie,我们可以提供增强的功能和个性化服务。可能由我们或第三方提供商进行设置,我们会利用其服务为您提供定制的信息和体验。如果您不允许使用这些 Cookie,可能会无法使用某些或全部服务。

      定制您的广告 – 允许我们为您提供针对性的广告

      这些 Cookie 会根据您的活动和兴趣收集有关您的数据,以便向您显示相关广告并跟踪其效果。通过收集这些数据,我们可以更有针对性地向您显示与您的兴趣相关的广告。如果您不允许使用这些 Cookie,您看到的广告将缺乏针对性。

      icon-svg-close-thick

      第三方服务

      详细了解每个类别中我们所用的第三方服务,以及我们如何使用所收集的与您的网络活动相关的数据。

      icon-svg-hide-thick

      icon-svg-show-thick

      绝对必要 – 我们的网站正常运行并为您提供服务所必需的

      Qualtrics
      我们通过 Qualtrics 借助调查或联机表单获得您的反馈。您可能会被随机选定参与某项调查,或者您可以主动向我们提供反馈。填写调查之前,我们将收集数据以更好地了解您所执行的操作。这有助于我们解决您可能遇到的问题。. Qualtrics 隐私政策
      Akamai mPulse
      我们通过 Akamai mPulse 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Akamai mPulse 隐私政策
      Digital River
      我们通过 Digital River 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Digital River 隐私政策
      Dynatrace
      我们通过 Dynatrace 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Dynatrace 隐私政策
      Khoros
      我们通过 Khoros 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Khoros 隐私政策
      Launch Darkly
      我们通过 Launch Darkly 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Launch Darkly 隐私政策
      New Relic
      我们通过 New Relic 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. New Relic 隐私政策
      Salesforce Live Agent
      我们通过 Salesforce Live Agent 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Salesforce Live Agent 隐私政策
      Wistia
      我们通过 Wistia 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Wistia 隐私政策
      Tealium
      我们通过 Tealium 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Tealium 隐私政策
      Upsellit
      我们通过 Upsellit 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Upsellit 隐私政策
      CJ Affiliates
      我们通过 CJ Affiliates 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. CJ Affiliates 隐私政策
      Commission Factory
      我们通过 Commission Factory 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Commission Factory 隐私政策
      Google Analytics (Strictly Necessary)
      我们通过 Google Analytics (Strictly Necessary) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Strictly Necessary) 隐私政策
      Typepad Stats
      我们通过 Typepad Stats 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Typepad Stats 隐私政策
      Geo Targetly
      我们使用 Geo Targetly 将网站访问者引导至最合适的网页并/或根据他们的位置提供量身定制的内容。 Geo Targetly 使用网站访问者的 IP 地址确定访问者设备的大致位置。 这有助于确保访问者以其(最有可能的)本地语言浏览内容。Geo Targetly 隐私政策
      SpeedCurve
      我们使用 SpeedCurve 来监控和衡量您的网站体验的性能,具体因素为网页加载时间以及后续元素(如图像、脚本和文本)的响应能力。SpeedCurve 隐私政策
      Qualified
      Qualified is the Autodesk Live Chat agent platform. This platform provides services to allow our customers to communicate in real-time with Autodesk support. We may collect unique ID for specific browser sessions during a chat. Qualified Privacy Policy

      icon-svg-hide-thick

      icon-svg-show-thick

      改善您的体验 – 使我们能够为您展示与您相关的内容

      Google Optimize
      我们通过 Google Optimize 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Google Optimize 隐私政策
      ClickTale
      我们通过 ClickTale 更好地了解您可能会在站点的哪些方面遇到困难。我们通过会话记录来帮助了解您与站点的交互方式,包括页面上的各种元素。将隐藏可能会识别个人身份的信息,而不会收集此信息。. ClickTale 隐私政策
      OneSignal
      我们通过 OneSignal 在 OneSignal 提供支持的站点上投放数字广告。根据 OneSignal 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 OneSignal 收集的与您相关的数据相整合。我们利用发送给 OneSignal 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. OneSignal 隐私政策
      Optimizely
      我们通过 Optimizely 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Optimizely 隐私政策
      Amplitude
      我们通过 Amplitude 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Amplitude 隐私政策
      Snowplow
      我们通过 Snowplow 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Snowplow 隐私政策
      UserVoice
      我们通过 UserVoice 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. UserVoice 隐私政策
      Clearbit
      Clearbit 允许实时数据扩充,为客户提供个性化且相关的体验。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。Clearbit 隐私政策
      YouTube
      YouTube 是一个视频共享平台,允许用户在我们的网站上查看和共享嵌入视频。YouTube 提供关于视频性能的观看指标。 YouTube 隐私政策

      icon-svg-hide-thick

      icon-svg-show-thick

      定制您的广告 – 允许我们为您提供针对性的广告

      Adobe Analytics
      我们通过 Adobe Analytics 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Adobe Analytics 隐私政策
      Google Analytics (Web Analytics)
      我们通过 Google Analytics (Web Analytics) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Web Analytics) 隐私政策
      AdWords
      我们通过 AdWords 在 AdWords 提供支持的站点上投放数字广告。根据 AdWords 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AdWords 收集的与您相关的数据相整合。我们利用发送给 AdWords 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AdWords 隐私政策
      Marketo
      我们通过 Marketo 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。我们可能会将此数据与从其他信息源收集的数据相整合,以根据高级分析处理方法向您提供改进的销售体验或客户服务体验以及更相关的内容。. Marketo 隐私政策
      Doubleclick
      我们通过 Doubleclick 在 Doubleclick 提供支持的站点上投放数字广告。根据 Doubleclick 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Doubleclick 收集的与您相关的数据相整合。我们利用发送给 Doubleclick 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Doubleclick 隐私政策
      HubSpot
      我们通过 HubSpot 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。. HubSpot 隐私政策
      Twitter
      我们通过 Twitter 在 Twitter 提供支持的站点上投放数字广告。根据 Twitter 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Twitter 收集的与您相关的数据相整合。我们利用发送给 Twitter 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Twitter 隐私政策
      Facebook
      我们通过 Facebook 在 Facebook 提供支持的站点上投放数字广告。根据 Facebook 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Facebook 收集的与您相关的数据相整合。我们利用发送给 Facebook 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Facebook 隐私政策
      LinkedIn
      我们通过 LinkedIn 在 LinkedIn 提供支持的站点上投放数字广告。根据 LinkedIn 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 LinkedIn 收集的与您相关的数据相整合。我们利用发送给 LinkedIn 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. LinkedIn 隐私政策
      Yahoo! Japan
      我们通过 Yahoo! Japan 在 Yahoo! Japan 提供支持的站点上投放数字广告。根据 Yahoo! Japan 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Yahoo! Japan 收集的与您相关的数据相整合。我们利用发送给 Yahoo! Japan 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Yahoo! Japan 隐私政策
      Naver
      我们通过 Naver 在 Naver 提供支持的站点上投放数字广告。根据 Naver 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Naver 收集的与您相关的数据相整合。我们利用发送给 Naver 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Naver 隐私政策
      Quantcast
      我们通过 Quantcast 在 Quantcast 提供支持的站点上投放数字广告。根据 Quantcast 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Quantcast 收集的与您相关的数据相整合。我们利用发送给 Quantcast 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Quantcast 隐私政策
      Call Tracking
      我们通过 Call Tracking 为推广活动提供专属的电话号码。从而,使您可以更快地联系我们的支持人员并帮助我们更精确地评估我们的表现。我们可能会通过提供的电话号码收集与您在站点中的活动相关的数据。. Call Tracking 隐私政策
      Wunderkind
      我们通过 Wunderkind 在 Wunderkind 提供支持的站点上投放数字广告。根据 Wunderkind 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Wunderkind 收集的与您相关的数据相整合。我们利用发送给 Wunderkind 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Wunderkind 隐私政策
      ADC Media
      我们通过 ADC Media 在 ADC Media 提供支持的站点上投放数字广告。根据 ADC Media 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 ADC Media 收集的与您相关的数据相整合。我们利用发送给 ADC Media 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. ADC Media 隐私政策
      AgrantSEM
      我们通过 AgrantSEM 在 AgrantSEM 提供支持的站点上投放数字广告。根据 AgrantSEM 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AgrantSEM 收集的与您相关的数据相整合。我们利用发送给 AgrantSEM 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AgrantSEM 隐私政策
      Bidtellect
      我们通过 Bidtellect 在 Bidtellect 提供支持的站点上投放数字广告。根据 Bidtellect 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bidtellect 收集的与您相关的数据相整合。我们利用发送给 Bidtellect 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bidtellect 隐私政策
      Bing
      我们通过 Bing 在 Bing 提供支持的站点上投放数字广告。根据 Bing 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bing 收集的与您相关的数据相整合。我们利用发送给 Bing 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bing 隐私政策
      G2Crowd
      我们通过 G2Crowd 在 G2Crowd 提供支持的站点上投放数字广告。根据 G2Crowd 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 G2Crowd 收集的与您相关的数据相整合。我们利用发送给 G2Crowd 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. G2Crowd 隐私政策
      NMPI Display
      我们通过 NMPI Display 在 NMPI Display 提供支持的站点上投放数字广告。根据 NMPI Display 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 NMPI Display 收集的与您相关的数据相整合。我们利用发送给 NMPI Display 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. NMPI Display 隐私政策
      VK
      我们通过 VK 在 VK 提供支持的站点上投放数字广告。根据 VK 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 VK 收集的与您相关的数据相整合。我们利用发送给 VK 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. VK 隐私政策
      Adobe Target
      我们通过 Adobe Target 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Adobe Target 隐私政策
      Google Analytics (Advertising)
      我们通过 Google Analytics (Advertising) 在 Google Analytics (Advertising) 提供支持的站点上投放数字广告。根据 Google Analytics (Advertising) 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Google Analytics (Advertising) 收集的与您相关的数据相整合。我们利用发送给 Google Analytics (Advertising) 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Google Analytics (Advertising) 隐私政策
      Trendkite
      我们通过 Trendkite 在 Trendkite 提供支持的站点上投放数字广告。根据 Trendkite 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Trendkite 收集的与您相关的数据相整合。我们利用发送给 Trendkite 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Trendkite 隐私政策
      Hotjar
      我们通过 Hotjar 在 Hotjar 提供支持的站点上投放数字广告。根据 Hotjar 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Hotjar 收集的与您相关的数据相整合。我们利用发送给 Hotjar 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Hotjar 隐私政策
      6 Sense
      我们通过 6 Sense 在 6 Sense 提供支持的站点上投放数字广告。根据 6 Sense 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 6 Sense 收集的与您相关的数据相整合。我们利用发送给 6 Sense 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. 6 Sense 隐私政策
      Terminus
      我们通过 Terminus 在 Terminus 提供支持的站点上投放数字广告。根据 Terminus 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Terminus 收集的与您相关的数据相整合。我们利用发送给 Terminus 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Terminus 隐私政策
      StackAdapt
      我们通过 StackAdapt 在 StackAdapt 提供支持的站点上投放数字广告。根据 StackAdapt 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 StackAdapt 收集的与您相关的数据相整合。我们利用发送给 StackAdapt 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. StackAdapt 隐私政策
      The Trade Desk
      我们通过 The Trade Desk 在 The Trade Desk 提供支持的站点上投放数字广告。根据 The Trade Desk 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 The Trade Desk 收集的与您相关的数据相整合。我们利用发送给 The Trade Desk 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. The Trade Desk 隐私政策
      RollWorks
      We use RollWorks to deploy digital advertising on sites supported by RollWorks. Ads are based on both RollWorks data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that RollWorks has collected from you. We use the data that we provide to RollWorks to better customize your digital advertising experience and present you with more relevant ads. RollWorks Privacy Policy

      是否确定要简化联机体验?

      我们希望您能够从我们这里获得良好体验。对于上一屏幕中的类别,如果选择“是”,我们将收集并使用您的数据以自定义您的体验并为您构建更好的应用程序。您可以访问我们的“隐私声明”,根据需要更改您的设置。

      个性化您的体验,选择由您来做。

      我们重视隐私权。我们收集的数据可以帮助我们了解您对我们产品的使用情况、您可能感兴趣的信息以及我们可以在哪些方面做出改善以使您与 Autodesk 的沟通更为顺畅。

      我们是否可以收集并使用您的数据,从而为您打造个性化的体验?

      通过管理您在此站点的隐私设置来了解个性化体验的好处,或访问我们的隐私声明详细了解您的可用选项。