AU Class
AU Class
class - AU

How to Optimize Project, Design, and Risk Management with Autodesk Forge

共享此课程
在视频、演示文稿幻灯片和讲义中搜索关键字:

说明

Would you like to optimize project and design management? In this class, we’ll go through workflows and automated processes that enable us to track deliverables’ development progress and compare with schedule and budget more efficiently and accurately. We’ll work within the ISO 19650 framework and use some of the standards’ metrics in a set of dashboards to provide an overview of the sample project’s development. To analyze the data, it first gets exported from BIM 360 software and Revit files using Autodesk Forge software. All exported data, with schedule and budget, is imported into Microsoft Power BI. For contextualization, we also embed the Autodesk Forge Viewer into Microsoft Power BI, enabling us to dynamically switch between the project’s models and sheets corresponding to the data displayed on the dashboards. This approach to data and project management allows us to improve collaboration, enhance quality of deliverables, and reduce cost and risk. Throughout the course of two years, we predict saving $190,000 in one project alone.

主要学习内容

  • Learn about how Autodesk Forge is a powerful tool to manage your projects and access data.
  • Learn how to apply automated processes that increase productivity and quality, reducing costs.
  • Learn about adopting standardized processes and methods that allow for scalability and a higher ROI.
  • Learn about implementing workflows using standard formats and automated processes to satisfy your needs and improve your outcomes.

讲师

  • Anna Escolano 的头像
    Anna Escolano
    Anna Roig Escolano is a Senior Specialist in the Digital Twin Solutions group at Mott MacDonald with 10-years of experience working in the Virtual Design and Construction (VDC) and Digital Delivery field for the Architecture, Engineering, and Construction (AEC) industry. Anna is originally from Valencia in Spain. She studied Architecture and later obtained her Masters in Structural Engineering. She has experience in high profile projects and advanced knowledge in infrastructure design and construction. Anna is inquisitive about new applications and solutions with a passion for the future of AEC technology; a creative problem-solver with an interest in improving processes who encourages collaboration and knowledge sharing among team members. She has a strong technical skill set with a desire to expand workplace competencies and is very committed and self-motivated with the ability to push boundaries and to step out of the comfort zone. Now with Mott MacDonald Anna’s focus is on implementing new digital delivery technologies, developing custom made tools and optimizing digital processes globally.
Video Player is loading.
Current Time 0:00
Duration 28:06
Loaded: 0.59%
Stream Type LIVE
Remaining Time 28:06
 
1x
  • Chapters
  • descriptions off, selected
  • en (Main), selected
Transcript

Hi, everyone. Thank you for taking the time to watch this CAD recording. As you may already know, this class is called How to Optimize Project, Design, and Risk Management with Forge. And we're going to talk about an automated process that we developed using Forge to extract data from BIM 360 and Revit and visualize it in Power BI together with other data sources.

Before diving into it, I wanted to briefly introduce myself. My name is Anna Roig Escolano. I am originally from Valencia in Spain, but I'm based in New York City, and I am an architect and a structural engineer. At this point, I have been working in the VDC and digital delivery for the AEC industry for about 10 years, and I am currently a senior specialist in the digital twin solutions group at Mott MacDonald.

I also wanted to take a minute before we start the class to acknowledge the important role that Cory Dippold, vice president and head of the digital tool solution group at Mott MacDonald, and Rene Chicas, former project data specialist in our group, have played in the execution of this effort. Let's get into it.

Since you are in this class, I am assuming that you know the class description as well as the learning objectives, so I won't stop here. But if you can read them in the hand-- but you can read them in the handout if you're interested. The next section of this class is a description of the project that served as a case study for what we developed. The project is the restoration of a major linear infrastructure. The infrastructure is 92 miles long or 148 kilometers. It is over 100 years old, and it serves one of the biggest cities in the world.

Mott MacDonald provides condition assessment, detailed design, facility planning, and design services during construction. What did we need this project to be? We needed a project with a high level of digital maturity of big size and that was standardized. This project had a high level of maturity with a Common Data Environment and a Master Information Delivery Plan. It was a multi-year, multi-discipline project with lots of different models and deliverables and with 16 subcontractors. And it was perfect for scalability since it was following the ISO 19650 standards. All of this made this project a perfect case study for this effort.

That being said, what is the problem that we're trying to solve? It is common that the engineers don't have a lot of transparency into the detailed financials of a job specifically at the discipline level. They might have an overall view of the schedule and budget of the project and what their next milestone is, but they're missing if the deliverables are at the right level of development compared to other metrics.

On the other hand, the PMs rely on the technical capabilities of the designers to deliver a good quality product. Therefore, it is typical that they are focused on client care, ensuring deliverables are produced in a timely manner, that budget goals are hit, and things like that. Additionally, sometimes they don't have the software skills to review the models and drawings on a regular basis. So we could say that there is a disconnect between project management and design management.

That is the problem. So what is our goal and the solution to this problem? Our goal is improving the engagement of design management and project management by creating a unique environment where everybody, regardless of their role, can access complete and relevant information. We want to make the commercial side of the job accessible and meaningful to designers and models and drawings easy to view for managers and combine all of it in a single source for higher accountability and better understanding and communication.

In other words, we want to build an easy and intuitive common environment so that you don't need to, let's say, be a skilled Revit user to see the models or a professional scheduler to understand the timeline of the project. Those are the goals. So now we will get into the how we're achieving all of this.

As we mentioned earlier, the project is set up within the ISO 19650 framework. At Mott MacDonald, we pride ourselves in having used these standards shortly after they were first published and not widely known. For this project in which we have 16 different subcontractors, the benefits of using these standards go beyond controlling information properly. We are able to obligate our subcontractors to manage their information in the same way that we do which is very powerful.

Specifically, for today's topic, I wanted to point out the parameters associated to the contract drawings that we developed in Revit and what these parameters indicate. These are metrics that we have extracted from our models using the Forge API and then used to track the design progress. These parameters are suitability code which gives us an understanding of the maturity of the data and what this data can be used for. Some of the codes and their definitions would be S0 for initial version, S1 for suitable for coordination, S2 for suitable for information, and so on and so forth.

We also have state which provides transparency in the status of a file. For example, if it is a work in progress file, if it is a shared file or a published file. We also have implemented the recommended folder structure and the naming convention which provides a uniform approach towards information and data management. And finally, we added percent complete and hours to completion. These are not metrics that are in the ISO standards, but they give us metadata to quantify design progress.

In a digital delivery job, we start by setting up the digital delivery architecture map. This lays out the tools and systems where all the data resides and how the information flows from system to system. In the blue box, we have the project management tools and data. We use Deltek for the financials, Master Information Delivery Plan for deliverables, an Excel risk register and Microsoft Project for schedules.

As for the design management tools, we use Civil 3D and Revit as design tools to develop models and drawings and ProjectWise and BIM 360 Docs as document management tools. Traditionally, the project manager would also go through the effort of setting up the management visual tool that allows them to supervise project operations. For that we used Moata.

What is Moata? Well, Moata is the Mott McDonald's proprietary digital solutions platform. We have a number of solutions that can be used to solve any of the different problems that come up across the asset lifecycle. For this particular project, we use Moata Insights for project management and controls. I would like to show you how this looks like for us.

Once we log into our Moata hub, we can see all the projects we have access to under Moata solutions. Due to confidentiality reasons, I cannot show you the dashboards of the project subject of this class, but I will show you the Insights dashboards of the demo project which are very similar. As you can see, these dashboards are powered by Power BI. And in these dashboards, we track things like budget with a project cost summary, baseline versus actual cost over time, purchases of the project. We can also track schedule with a project schedule summary, and we track the deliverables, which in our project we do by using the MIDP, as we previously mentioned.

We also track risk with a risk register, and there's also, in this case, a graph that shows the risk mitigation effect. As you can observe on the left hand side, there are many other categories of information that can be analyzed and plotted on these dashboards depending on the needs of your project. All of that I just showed you comes from the blue box. We have not yet got into how the design is coming along. This illustrates the problem of lack of connectivity between project and design management.

How do we get all of the blue and red data into a single environment? We already got the budget and schedule data into an Excel format, as we can see in the blue box. We will extract the design metadata from ProjectWise to an Excel file using a PowerShell script. Revit is a bit trickier, as the metadata resides in the sheets within the files with BIM 360 as instance parameters. Here's where Forge comes in. We would automate the process of extracting the data from Revit files and BIM 360 by building scripts and using Forge to get all of the required information in an Excel file.

Now that we have all of the data in the desired format, we can compile the budget, schedule, and design data into a unique environment using Power BI. Ultimately, the compiled set of Power BI dashboards can be pushed into Moata Insights. For the automated workflow that we developed to extract the data from Revit and BIM 360, the main tools and technologies used are Forge APIs that enabled us to leverage the design and engineering data to develop a custom application and a connected workflow.

Programming, in this case, we have used Python, SQL Query, and JavaScript. And finally, Power BI. Before we move on I wanted to go briefly over the main reasons why we chose Power BI and not another visualization or business intelligence software. This is because Power BI, it is Mott McDonald's standard reporting environment. It is well known across all our project teams and allows us to compile data from any source as well as build into Moata Insights.

I am going now to show you how we have built integration of the project and design management metrics. The design management metrics are extracted from the BIM 360 and Revit files. You can see them on this table. These are parameters that come from the ISO standards. In order to do that, we have built an over 500 line Python script that in itself runs on SQL Query. And after we run it, we get a CSV file that looks like what we're looking at in the screen with the relevant metrics that we had just seen within the Revit file.

I'd like to show you the dashboards that we have created combining the data set that we just saw, that we exported and we saw in CSV format with the projects budget and schedule in Power BI. The first set of dashboards is the Revit deliverables versus schedule and budget. I would first like to bring your attention to the tables on the right hand side of the screen. One of them shows the list of disciplines, and the other one shows the list of Revit files for the project.

As you can see on the left side of the screen, we have three different metrics represented in these graphics. In green, we have the budget and actuals in dollar amounts. The gauge shows an available amount of 1.4 million and a spend amount of 860k. In pink in the central, we can see the time elapsed in days. The design phase of the project is two years which gives us a total of 720 days and an amount passed at this moment in time of 432 days. And finally, in blue, we can see the design progress in percentage. This is what we get from the parameters extracted from our Revit files and BIM 360.

I am sure you have also noticed the cards under each gauge these represent the percentage of budget used, time elapsed, and progress achieved so that we can compare apples to apples and determine if things are on track or we need to take actions. At the bottom, the same three metrics are represented in percentages over time. By default, everything is showing an oversight of the whole project by summing up expenses in case of the budget or averaging in case of the design progress.

But we can also, by clicking on the disciplines in the list that we have at the top right of the screen, we can isolate the information related to each discipline separately. This will also show us the models corresponding to that one discipline alone in the file name list to the right of that discipline list. How does this serve us? Let's take a look at the structural discipline.

As you can see in the percentage over time graph, the pink line, which represents time elapsed, is a straight line with a constant slope. Since time is not depending on any external factor, it is our reference to understand if we are doing good with budget and design progress. For budget, which is the green line, if the line is above the pink line, we're spending at a higher rate than what we want, see here, where budget use was 15% while the time elapsed was only 5%. And with the design progress, which is the blue line, if we are below the timeline, we are progressing at a slower pace than what we would like to, like here where we can see that the time elapsed is 45% while the design progress is only 40%.

As you can see, at the beginning of the project, the budget line is much more steeper than the design progress. This is normal and does not constitute a concern. Since there is a learning curve about the details of the project, the contractual documents need to be set up and started from scratch, and there's a lot of other tasks involved in starting a project that won't happen later on. But at some point, what we want is the spending rate to lower and the design progress rate to increase which is what happened here.

And now if we take a close look, we can see that at some point after the 30% design submittal, the design progress line, which is the blue one, falls under the desired percentage. That can happen, but after we kept getting further away from our goal, that raised a red flag. And we were able to bring the team up to speed short before the 60% submission to deliver a good quality and complete set of drawings.

Now let's take a look at the architectural discipline. The same thing happened at the beginning of the job. The budget line was increasing faster than the design progress one, which is normal, but the difference here is that at the time that it should have gotten softer, it did not. At this point, we were clearly overspending. Thanks to these dashboards, we were capable of noticing these soon enough to do some damage control and flatten the curve. We were able to manage the deliverables without having to discuss a change order with the client or losing money on the job.

As you can see in the cards up top, we finished the 60% deliverable with a budget spent of 70% which gives us a delta of 10% over spend. This is not ideal, but it is very good considering the delta was 28% at some point and is good enough to be able to continue closely controlling the expenses and make it up throughout the upcoming design phases. The other set of dashboards that we built are the models and contract drawings, visuals and status.

For these, we have one tab per discipline. We will take a look at the structural one. For contextualization purposes and to provide an easy visualization of models and drawings, we have also embedded Forge Viewer into Power BI, allowing us to dynamically switch between the models and sheets corresponding to the data displayed on the dashboards. In this case, this was achieved by using JavaScript.

As you can see on the screen, the model can be rotated. You can zoom in and zoom out. You can explore it, and we can also switch views. As you can see, we're going to now switch to a different view, and we can click on the elements and open up the property pane so that we can take a look at the metadata associated to these elements for review all from the Power BI interface.

In our case, we have customized the list of models that we can view to show the existing plus demo, the existing plus proposed we were just looking at, and in this case, the complete proposed model with all the disciplines on for completion. In every model page, we have on the left side up top the navigation buttons. Each one brings us to a different project model.

We also have three cards with the state, design progress, and stability code for each model. And at the bottom of these cards, the list of sheets developed in the model that we're looking at. In the middle, we have the Forge Viewer, and on the left side, a plan view that works like Google Maps with the exact location of each asset.

Right now we're going to look at the last model in this example. And here we can observe the accuracy in the representation of the asset. If we compare the proposed model with the satellite view on the right, we can see that they're very close. We can also see how the sheets that we can access through the document browser match the sheet list on the left side of the screen and how we can take a look at them from the same Forge Viewer without the need to know how Revit works or having to open each model individually or printing out PDFs or anything like that.

After having looked into what we have achieved so far, I would like to go over some of the benefits that we have estimated. The effort of the team to get to where we're at was equivalent to one person working full time for 13 weeks. That is 520 hours or just over $57,000 at an average hourly rate of $110 an hour.

For this project, we were having two-hour weekly meetings with all eight disciplines and the project management. This is roughly 20 people. We estimated that the time saved with these dashboards in these meetings would be a half hour per week conservatively. That makes up to 10 man hour every week. At the average hourly rate of mid senior engineers, that is close to $2,400 saved every week. Therefore, if we do the math, in 24 weeks, we would make up the investment.

The life of the design phase is two years. So the estimated long term benefit considering the investment is of almost $190,000 on this job alone. Because we have implemented the workflow in a very scalable way and developed it within the ISO framework, it can be applied to any project, especially if they're following the same standards, making the financial benefits exponential. For example, applying it to 10 projects of a similar size over two years, we would have close to $2.5 million in savings.

This graphic shows a summary of what we just discussed, and it makes it pretty obvious. So the green bar is the initial investment. The purple one is the long term savings over two years for this one project, deducting the initial investment. And finally, we have the orange bar, which shows us the savings that we would achieve over two years for 10 projects of a similar size.

Other benefits less easy to quantify in a monetary way or savings way are reduced risk at missing deadlines, which we just saw with the structural example; reduced risk of overspending, which we also saw with the architectural example; higher client satisfaction; higher deliverables quality; higher accountability; and better data management and oversight. This solution gives us a much higher degree of control of the project. The amount of problems avoided down the road is incalculable. Overall, what you get is proactive project management rather than reactive troubleshooting.

One thing before we finish is that I would like to give you an overview of our next steps. We would like to add quality management and risk and safety to the created integration of project and design management. We are working on linking the risk register with the models. The idea is to click on a specific risk on the table in Power BI, and the Forge Viewer would bring you to the location of that risk in the model.

We also want to reflect the checked and approved workflows specified in the ISO 19650 at different levels of granularity in our dashboards. This would allow us to see the 3D objects, models, and drawings have been checked and/or approved. The way we envision this is by color coding the objects depending on their status. We can also check percentage of objects that have been checked and/or approved in a model or per discipline.

I would also like to mention other initiatives that are happening at Mott MacDonald and that are in the line of what we have seen today. My colleagues at Mott MacDonald, Paul and Fouad, have created Power BI dashboards using Autodesk Assemble for validating and checking model content against project standards. Their class is called Assemble plus Power BI, Developing a Powerful and Practical Model Checking Tool. If you're interested in learning these other automated processes that can help you automate quality control, especially in high volume projects with quick turnaround, you can check the recording using the class number in this slide.

And finally, I would like to summarize what we have learned today which is that Autodesk Forge allows us to access and manage project data. That we can implement custom automated workflows to satisfy our needs and improve our project outcomes. That automated workflows increase productivity and quality and reduce costs. And lastly, that standardization allows for scalability and the higher profitability of an investment for automation. Thank you very much for your time and attention. I hope you found it interesting, and please feel free to reach out with anything.

______
icon-svg-close-thick

Cookie 首选项

您的隐私对我们非常重要,为您提供出色的体验是我们的责任。为了帮助自定义信息和构建应用程序,我们会收集有关您如何使用此站点的数据。

我们是否可以收集并使用您的数据?

详细了解我们使用的第三方服务以及我们的隐私声明

绝对必要 – 我们的网站正常运行并为您提供服务所必需的

通过这些 Cookie,我们可以记录您的偏好或登录信息,响应您的请求或完成购物车中物品或服务的订购。

改善您的体验 – 使我们能够为您展示与您相关的内容

通过这些 Cookie,我们可以提供增强的功能和个性化服务。可能由我们或第三方提供商进行设置,我们会利用其服务为您提供定制的信息和体验。如果您不允许使用这些 Cookie,可能会无法使用某些或全部服务。

定制您的广告 – 允许我们为您提供针对性的广告

这些 Cookie 会根据您的活动和兴趣收集有关您的数据,以便向您显示相关广告并跟踪其效果。通过收集这些数据,我们可以更有针对性地向您显示与您的兴趣相关的广告。如果您不允许使用这些 Cookie,您看到的广告将缺乏针对性。

icon-svg-close-thick

第三方服务

详细了解每个类别中我们所用的第三方服务,以及我们如何使用所收集的与您的网络活动相关的数据。

icon-svg-hide-thick

icon-svg-show-thick

绝对必要 – 我们的网站正常运行并为您提供服务所必需的

Qualtrics
我们通过 Qualtrics 借助调查或联机表单获得您的反馈。您可能会被随机选定参与某项调查,或者您可以主动向我们提供反馈。填写调查之前,我们将收集数据以更好地了解您所执行的操作。这有助于我们解决您可能遇到的问题。. Qualtrics 隐私政策
Akamai mPulse
我们通过 Akamai mPulse 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Akamai mPulse 隐私政策
Digital River
我们通过 Digital River 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Digital River 隐私政策
Dynatrace
我们通过 Dynatrace 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Dynatrace 隐私政策
Khoros
我们通过 Khoros 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Khoros 隐私政策
Launch Darkly
我们通过 Launch Darkly 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Launch Darkly 隐私政策
New Relic
我们通过 New Relic 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. New Relic 隐私政策
Salesforce Live Agent
我们通过 Salesforce Live Agent 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Salesforce Live Agent 隐私政策
Wistia
我们通过 Wistia 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Wistia 隐私政策
Tealium
我们通过 Tealium 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Tealium 隐私政策
Upsellit
我们通过 Upsellit 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Upsellit 隐私政策
CJ Affiliates
我们通过 CJ Affiliates 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. CJ Affiliates 隐私政策
Commission Factory
我们通过 Commission Factory 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Commission Factory 隐私政策
Google Analytics (Strictly Necessary)
我们通过 Google Analytics (Strictly Necessary) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Strictly Necessary) 隐私政策
Typepad Stats
我们通过 Typepad Stats 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Typepad Stats 隐私政策
Geo Targetly
我们使用 Geo Targetly 将网站访问者引导至最合适的网页并/或根据他们的位置提供量身定制的内容。 Geo Targetly 使用网站访问者的 IP 地址确定访问者设备的大致位置。 这有助于确保访问者以其(最有可能的)本地语言浏览内容。Geo Targetly 隐私政策
SpeedCurve
我们使用 SpeedCurve 来监控和衡量您的网站体验的性能,具体因素为网页加载时间以及后续元素(如图像、脚本和文本)的响应能力。SpeedCurve 隐私政策
Qualified
Qualified is the Autodesk Live Chat agent platform. This platform provides services to allow our customers to communicate in real-time with Autodesk support. We may collect unique ID for specific browser sessions during a chat. Qualified Privacy Policy

icon-svg-hide-thick

icon-svg-show-thick

改善您的体验 – 使我们能够为您展示与您相关的内容

Google Optimize
我们通过 Google Optimize 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Google Optimize 隐私政策
ClickTale
我们通过 ClickTale 更好地了解您可能会在站点的哪些方面遇到困难。我们通过会话记录来帮助了解您与站点的交互方式,包括页面上的各种元素。将隐藏可能会识别个人身份的信息,而不会收集此信息。. ClickTale 隐私政策
OneSignal
我们通过 OneSignal 在 OneSignal 提供支持的站点上投放数字广告。根据 OneSignal 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 OneSignal 收集的与您相关的数据相整合。我们利用发送给 OneSignal 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. OneSignal 隐私政策
Optimizely
我们通过 Optimizely 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Optimizely 隐私政策
Amplitude
我们通过 Amplitude 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Amplitude 隐私政策
Snowplow
我们通过 Snowplow 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Snowplow 隐私政策
UserVoice
我们通过 UserVoice 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. UserVoice 隐私政策
Clearbit
Clearbit 允许实时数据扩充,为客户提供个性化且相关的体验。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。Clearbit 隐私政策
YouTube
YouTube 是一个视频共享平台,允许用户在我们的网站上查看和共享嵌入视频。YouTube 提供关于视频性能的观看指标。 YouTube 隐私政策

icon-svg-hide-thick

icon-svg-show-thick

定制您的广告 – 允许我们为您提供针对性的广告

Adobe Analytics
我们通过 Adobe Analytics 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Adobe Analytics 隐私政策
Google Analytics (Web Analytics)
我们通过 Google Analytics (Web Analytics) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Web Analytics) 隐私政策
AdWords
我们通过 AdWords 在 AdWords 提供支持的站点上投放数字广告。根据 AdWords 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AdWords 收集的与您相关的数据相整合。我们利用发送给 AdWords 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AdWords 隐私政策
Marketo
我们通过 Marketo 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。我们可能会将此数据与从其他信息源收集的数据相整合,以根据高级分析处理方法向您提供改进的销售体验或客户服务体验以及更相关的内容。. Marketo 隐私政策
Doubleclick
我们通过 Doubleclick 在 Doubleclick 提供支持的站点上投放数字广告。根据 Doubleclick 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Doubleclick 收集的与您相关的数据相整合。我们利用发送给 Doubleclick 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Doubleclick 隐私政策
HubSpot
我们通过 HubSpot 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。. HubSpot 隐私政策
Twitter
我们通过 Twitter 在 Twitter 提供支持的站点上投放数字广告。根据 Twitter 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Twitter 收集的与您相关的数据相整合。我们利用发送给 Twitter 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Twitter 隐私政策
Facebook
我们通过 Facebook 在 Facebook 提供支持的站点上投放数字广告。根据 Facebook 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Facebook 收集的与您相关的数据相整合。我们利用发送给 Facebook 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Facebook 隐私政策
LinkedIn
我们通过 LinkedIn 在 LinkedIn 提供支持的站点上投放数字广告。根据 LinkedIn 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 LinkedIn 收集的与您相关的数据相整合。我们利用发送给 LinkedIn 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. LinkedIn 隐私政策
Yahoo! Japan
我们通过 Yahoo! Japan 在 Yahoo! Japan 提供支持的站点上投放数字广告。根据 Yahoo! Japan 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Yahoo! Japan 收集的与您相关的数据相整合。我们利用发送给 Yahoo! Japan 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Yahoo! Japan 隐私政策
Naver
我们通过 Naver 在 Naver 提供支持的站点上投放数字广告。根据 Naver 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Naver 收集的与您相关的数据相整合。我们利用发送给 Naver 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Naver 隐私政策
Quantcast
我们通过 Quantcast 在 Quantcast 提供支持的站点上投放数字广告。根据 Quantcast 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Quantcast 收集的与您相关的数据相整合。我们利用发送给 Quantcast 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Quantcast 隐私政策
Call Tracking
我们通过 Call Tracking 为推广活动提供专属的电话号码。从而,使您可以更快地联系我们的支持人员并帮助我们更精确地评估我们的表现。我们可能会通过提供的电话号码收集与您在站点中的活动相关的数据。. Call Tracking 隐私政策
Wunderkind
我们通过 Wunderkind 在 Wunderkind 提供支持的站点上投放数字广告。根据 Wunderkind 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Wunderkind 收集的与您相关的数据相整合。我们利用发送给 Wunderkind 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Wunderkind 隐私政策
ADC Media
我们通过 ADC Media 在 ADC Media 提供支持的站点上投放数字广告。根据 ADC Media 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 ADC Media 收集的与您相关的数据相整合。我们利用发送给 ADC Media 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. ADC Media 隐私政策
AgrantSEM
我们通过 AgrantSEM 在 AgrantSEM 提供支持的站点上投放数字广告。根据 AgrantSEM 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AgrantSEM 收集的与您相关的数据相整合。我们利用发送给 AgrantSEM 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AgrantSEM 隐私政策
Bidtellect
我们通过 Bidtellect 在 Bidtellect 提供支持的站点上投放数字广告。根据 Bidtellect 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bidtellect 收集的与您相关的数据相整合。我们利用发送给 Bidtellect 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bidtellect 隐私政策
Bing
我们通过 Bing 在 Bing 提供支持的站点上投放数字广告。根据 Bing 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bing 收集的与您相关的数据相整合。我们利用发送给 Bing 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bing 隐私政策
G2Crowd
我们通过 G2Crowd 在 G2Crowd 提供支持的站点上投放数字广告。根据 G2Crowd 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 G2Crowd 收集的与您相关的数据相整合。我们利用发送给 G2Crowd 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. G2Crowd 隐私政策
NMPI Display
我们通过 NMPI Display 在 NMPI Display 提供支持的站点上投放数字广告。根据 NMPI Display 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 NMPI Display 收集的与您相关的数据相整合。我们利用发送给 NMPI Display 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. NMPI Display 隐私政策
VK
我们通过 VK 在 VK 提供支持的站点上投放数字广告。根据 VK 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 VK 收集的与您相关的数据相整合。我们利用发送给 VK 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. VK 隐私政策
Adobe Target
我们通过 Adobe Target 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Adobe Target 隐私政策
Google Analytics (Advertising)
我们通过 Google Analytics (Advertising) 在 Google Analytics (Advertising) 提供支持的站点上投放数字广告。根据 Google Analytics (Advertising) 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Google Analytics (Advertising) 收集的与您相关的数据相整合。我们利用发送给 Google Analytics (Advertising) 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Google Analytics (Advertising) 隐私政策
Trendkite
我们通过 Trendkite 在 Trendkite 提供支持的站点上投放数字广告。根据 Trendkite 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Trendkite 收集的与您相关的数据相整合。我们利用发送给 Trendkite 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Trendkite 隐私政策
Hotjar
我们通过 Hotjar 在 Hotjar 提供支持的站点上投放数字广告。根据 Hotjar 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Hotjar 收集的与您相关的数据相整合。我们利用发送给 Hotjar 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Hotjar 隐私政策
6 Sense
我们通过 6 Sense 在 6 Sense 提供支持的站点上投放数字广告。根据 6 Sense 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 6 Sense 收集的与您相关的数据相整合。我们利用发送给 6 Sense 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. 6 Sense 隐私政策
Terminus
我们通过 Terminus 在 Terminus 提供支持的站点上投放数字广告。根据 Terminus 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Terminus 收集的与您相关的数据相整合。我们利用发送给 Terminus 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Terminus 隐私政策
StackAdapt
我们通过 StackAdapt 在 StackAdapt 提供支持的站点上投放数字广告。根据 StackAdapt 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 StackAdapt 收集的与您相关的数据相整合。我们利用发送给 StackAdapt 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. StackAdapt 隐私政策
The Trade Desk
我们通过 The Trade Desk 在 The Trade Desk 提供支持的站点上投放数字广告。根据 The Trade Desk 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 The Trade Desk 收集的与您相关的数据相整合。我们利用发送给 The Trade Desk 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. The Trade Desk 隐私政策
RollWorks
We use RollWorks to deploy digital advertising on sites supported by RollWorks. Ads are based on both RollWorks data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that RollWorks has collected from you. We use the data that we provide to RollWorks to better customize your digital advertising experience and present you with more relevant ads. RollWorks Privacy Policy

是否确定要简化联机体验?

我们希望您能够从我们这里获得良好体验。对于上一屏幕中的类别,如果选择“是”,我们将收集并使用您的数据以自定义您的体验并为您构建更好的应用程序。您可以访问我们的“隐私声明”,根据需要更改您的设置。

个性化您的体验,选择由您来做。

我们重视隐私权。我们收集的数据可以帮助我们了解您对我们产品的使用情况、您可能感兴趣的信息以及我们可以在哪些方面做出改善以使您与 Autodesk 的沟通更为顺畅。

我们是否可以收集并使用您的数据,从而为您打造个性化的体验?

通过管理您在此站点的隐私设置来了解个性化体验的好处,或访问我们的隐私声明详细了解您的可用选项。