AU Class
AU Class
class - AU

Managing Highly Complex Revit Families: The Tunnel Prefabricated Ring Case

共享此课程

说明

Advanced building information modeling (BIM) processes require us to consider modeling with different lenses: personas interacting on a shared model extracting different BIM uses throughout the different project lifecycle stages. We'll look at the specific case of "tunnel ring segment” modeling and all the phases that have been conducted to a Revit model that is open, universal, and fully parametric so it can be used from bidding to execution and from planners to fabricators. The class will show how Bouygues Travaux Publics went from collecting users' needs to formalizing a specification and developing a Revit family and all its applications in Revit, InfraWorks, Navisworks, and Autodesk Construction Cloud. We'll focus on the benefits realized with the application in a project now in the construction phase.

主要学习内容

  • Learn how to build a digitalization and automation process from user need to its application.
  • Learn how to create complex geometric and parametric Revit families.
  • Learn how to validate and implement at-scale Revit families.
  • Understand the design and build challenges and requirements for Tunnel projects using BIM technologies

讲师

Video Player is loading.
Current Time 0:00
Duration 41:42
Loaded: 0.40%
Stream Type LIVE
Remaining Time 41:42
 
1x
  • Chapters
  • descriptions off, selected
  • en (Main), selected
Transcript

NICOLAS RAGEUL: Welcome to the session, Managing Highly Complex Revit Families, The Tunnel Prefabricated Ring Case. There will be three speakers-- me, Nicolas, but also my colleague Laurent, and also Sati from Autodesk. Here's the agenda. First, we will remind you of the objectives of this session. Then, as with any presentation, we will give a quick introduction, and we will get the head of the major development around Revit. Finally, we will look at a few perspectives.

Here are the learning objectives. Build a digitalization and automation process from user needs to its application. Create a complex geometric and parametric Revit family. Validate and implement, at scale, Revit families. Understand the design, and build challenges, and requirements for Tunnel Project using BIM technologies.

So Laurent and I work The Bouygues Group, presenting in a side group with a sale of 34 billion euros in 2022. And, of course, the workforce approaching 200,000 employees is a little bit tricky. The Bouygues Group has diversified into four activities-- the master-subsidiary reconstruction to which we are attached is in the building activity. Bouygues Travaux Public is a subsidiary of Bouyges Construction-- delivers transport infrastructures, and manage civil engineering projects in the energy and environment sector, which, as you recognize, that is in development and management of complex project.

For TP's success, [INAUDIBLE] on its team the expertise and mindset. It's also based on a culture of innovation and attractive research and development policy. Bouygues TP operates all over the world, as you can see from the portfolio of projects over the last few years.

Here are the eight major fields of expertise. The one we are talking about concerns tunnels and underground structure. Bouygues Travaux Public is fortunate to have a strong technical department aided by law partners. The technical department is made of more than 600 people around the world. The aim of the technical department is project management, from design to construction, for security planning, for maintaining of the highest possible quality standards, optimizing costs.

The technical department is a task force attending to project needs and specific requirements, designing key elements in-house, designing and constructing the required plant and equipment after validating their specification.

Who we are. I'm Nicolas Rageul, digital transformation leader and manager, technical department, with 20 years experience in digital development and implementation in companies ranging from Surveyor's Office to France's largest engineering firm, as well as retailer of IT solutions.

There is also Laurent. [INAUDIBLE] senior draftsman in charge of [INAUDIBLE] Design Office [INAUDIBLE] with 30 years of experience. And Safi Hage from Autodesk, 20 years of experience in AEC industry, and supporting strategic customers such as us, [INAUDIBLE] solve complex and technical challenges, as we will see in this class.

Let's start with the tunnel, and we'll see later how it's created. Today, we are using inventor to produce all the documents needed to build a ring. You can see an example of a ring in red. Inventor [INAUDIBLE] the lack of reinforcement during interaction with other Autodesk products, and even IS.

Digital Construction 2025 is an initiative to transform the management of [INAUDIBLE] started from technical department. From this initiative, a specification was drawn up to document the specification and production of a ring. This one, this work, was carried out by a tunnel design expert, Laurent.

From V6 specification, and with the help of Autodesk, and Safi, the universal ring was developed in Revit. We'll show you how to use it with feedback from his first project. Finally, we'll look together a number of possible improvement and interconnection with other Autodesk tools.

Let's talk for a few minutes about digital construction. Digital construction needs two things by the end of 2025-- one vision, and one ambition. The vision is to set up a digital environment by 2025, consistent, reliable, and organized. The ambitions are be more efficient and simpler, promote the sharing and pooling of exchange, be exemplary, effective, and differentiating. Let's take a look at a short video presenting the project.

[MUSIC PLAYING]

Laurent is part of the team, and our expert. We helped him express his [INAUDIBLE] and requirements in relation to the precast segment ring. Laurent, the floor is yours.

LAURENT BARBEAU: For more than 35 years, Bouygues TP has been a major player in the tunneling industry. Our business lines cover the design, construction, renovation and outfitting of tunnels, as well as the activation of caverns. Tunnels of varying diameters, ranging from 3.85 meters to 17.63 meters, with a world record achieved in Hong Kong in 2015.

Before talking about segments and rings, let's talk about tunnels and tunnel boring machine. For those of you who don't know it, there's a great video of how a TBM works. First, let's take a look at how the TBM progresses through the excavation stage. You can see this video on YouTube with [INAUDIBLE].

Step one, the TBM machine events into the ground, resting on the ring already laid to make way for future rings. Two, the ring erector picks up the segment via the ripping cone's position on the previous ring, and connects it via the Insert located on the face between the ring's connector and the cone.

The skids of the tunnel boring machine [INAUDIBLE] pushing on the ring in place, resting on the blister located on the advancing faces. Step three, two on three rings [INAUDIBLE]. Here you can see that the joints can not overline. There is always an offset in the installation of the ring, and the [INAUDIBLE] even if the layout is straight. The TBM rests on the rings already laid, and leaves by leaning on the ring already laid, and leaving room for the future rings.

A 5 kilometers long wind tunnel, the Mun-Chek Lap Kok tunnel, will eventually linked the new Northern territories to the artificial island of Hong Kong-Zuhai-Macau Bridge, Hong Kong [INAUDIBLE] providing faster access to the international [INAUDIBLE]

The world's largest tunnel boring machine, 17.63 meters in diameter, was used to complete an initial 600-meter section before being resized to accompany the change over from the three-lane to a two-lane tunnel. With [INAUDIBLE] reaching up to 50 meters below sea level, maintenance operations were carried out in a hyperbaric environment by teams of people living on the surface in pressurized habitats.

The TBM tunnel is made up of a series of rings known as universal rings. Thanks to the rings' electric [INAUDIBLE] surface [INAUDIBLE] taper. And the position of its [INAUDIBLE] segment, the universal ring can be positioned as close as possible to the curved alignment of the project. The ring is a fiber-reinforced, or reinforced bridge element, made up of several segments that receive inserts on the front and radial faces.

Today, the most widespread principle within companies is a universal-type ring. We can see our desired ring, and its geometric information in cross-section and 3D. Each universe ring is made up of a variable number of segments. Here [INAUDIBLE] a number which varies according to the geometry of the channel, mainly the diameter, and the layout [INAUDIBLE] and elevation.

Each ring has a single [INAUDIBLE] segment in red. The segment which closes the ring will be studded less in the ring. Two [INAUDIBLE] three segment in blue, and the rest of the segments are recurring segment, in green. Seen in profile, the ring has its own taper. All segments have insert, blister, and erector ending for a perfect connection between them, for waterproofing, and for safe relation.

The company's desire through this development is to produce more quickly and safely preliminary design document for rings in the [INAUDIBLE] detailed 2D documents for segments in the execution phases, as well as documents for more, and segment reinforcements.

The objective is to use the basic function of the tool to generate these tunnel rings for use by all designer [INAUDIBLE] without any [INAUDIBLE] of others on Revit. Revit is a software used by all designers. A large part of the projects proceeds in the [INAUDIBLE] or cross-consern phases use Revit and the model to extract the formwork. And Revit models are also used to output quantities [INAUDIBLE], and kinematics phasing methods are produced also from Revit.

The specification [INAUDIBLE] for staging. In order, the simplified ring, the detailed ring, the 3D barometric reinforcement, and the drawing prediction. These four steps make it possible to respond all the stages of production deliverables for a tunnel in the construction phase. The first step of the specification, then, the detailed ring.

It's the ring cut into segments with taper, and without inserts or blister. The desired result is represented on the 3D view on the left. The information [INAUDIBLE] in Revit for this step with the number of segments, the length of the ring, the interior and exterior geometries, and the angles of the pitching, and sector for the keys and contoured keys for all the segments.

The second step of the specification concerns the detailed ring. The detailed ring is a simplified ring plus [INAUDIBLE] inserts and blister are added on the [INAUDIBLE] face, on the face between rings, and on the faces between segments, as well as engraving for drawings. The desired rendering is represented on the 3D view. The parameters to be entered in Revit are the number, positions, and geometry of the different [INAUDIBLE] The detailed ring will be a digital model of the ring installed in the tunnel.

The third page of the specification concernns 3D parametric reinforcements. Here, see an image made with a competing software. The parametric reinforcement for each segment is reinforced reinforcement adapted to the geometry of each segment with a definite positioning of the different reinforcement layers, and taking into account the inserts to prevent conflicts between reinforcement and inserts. [INAUDIBLE] schedule per segment must be generated for this reinforcement.

In the parameters, will we enter the cover, and the geometers of the different reinforcement of each layer. The fourth and final step of this specification concerns the drawing production. Two things.

The first one is a drawing in a [INAUDIBLE] Formwork notebook for the Formwork deliverables. This Formwork book includes the developed, internal and external views, the view of the face between segments, and the view of the face between rings.

The second one is a [INAUDIBLE] book for the reinforcements. It includes a developed show of the internal and external section, and section of the segment in both directions, as well as the bending schedule, detailing the steel [INAUDIBLE]. In the section, Safi will present you with the ring component by using parametric Revit families.

SAFI HAGE: So, thank you, everyone. So based on the specification presented by Laurent just before, I will present you how we at Autodesk implement this Revit ring. Hello. First of all, this is the global overview of families involved to model the tunnel ring. So the tunnel-- the ring family on the left is an assembly of parametric segment.

And these segments, depending on the level of development needed, may host parametric insert families, such as beacon connectors, or guide bars. The geometry of all inserts are independent, which allows us to manage them independently, depending on the project requirements.

So, as you know, we have access to many Revit family templates. And among them, we chose the generic adaptive component family template for two main reasons. So the first one is that it gives us the ability into the Revit Family Editor to create points, and place them by intersection, or to place them according to a cylindrical coordinate system, which is quite helpful when we deal with rings. Adaptive families are also a good fit when we have to manage complex shape, and solid boolean operations.

So the core component of the ring is the segment family. It can be simplified or detailed, with inserts, or other additional components. In this example, we have a ring composed of seven parametric segments. And, as you can see on the video, we have only one family segment to handle the different configuration, such as the key segment, the two contoured key segments, or the regular segment.

The segment family is a parametric family, where segments' arc length and cutting plane orientation can be controlled by an angle. This is possible as adaptive family allows us to host reference points on an arc or a circle curve, and set its position by an angle. Other parameters displayed on the front elevation picture are also parametric. For instance, media length, external diameter, internal diameter, or taper.

The type of segment is also a parameter. As I said, here we have seven different types, and these types have a unique geometry. By combining all of them in one place, the ring will be created.

So now, let's talk about the family creation. On the left, you can see the main step to model the segment family. Parametric arcs and line references are created for the family skeleton. There are also reference plans between the key and contoured keys to manage their connection, and reference plans to define the taper. Reference curves are used to create the main form solid by lofting to section, and, regarding the reference plan, they are used to create voids element, to cut the key and contoured key segments, and to take into account taper.

Rules and formulas have been defined to control when and which void, especially for the key and contoured key, must cut or not the solid form, depending on the type of element. The key segment is always on the top, but the cutting plan's angles are parametric. As we have no segment family, we can start to create the ring family.

First, the previous segment family is loaded into an empty family. The number of possible segment is from 5 to 12. So 12 instances of the segment are created at the same position. Each of them has the same parameter values, except for the type, which defines its angular position along the ring.

If we need seven segments, then the last five types are hidden using formulas to control visibility settings. Finally, parameter association between these 12 segment parameters and the ring family parameters are made. It will allow us to control the geometry of all segments from the ring family, and then from the project.

As shown on the picture, which is the property dialog box of the ring, only the needed parameter are exposed to the user. The intermediate ones are not available or visible. As well as inside the segment family, here we can edit external and internal diameter, length, taper, cutting plant angle, and so on.

The simplified ring is now finished. However, its level of detail can be increased by adding insert components inside the segment family. This component will be propagated to the ring family as we are working with embedded families. Here, you can see different types of insert components, such as bicone connectors, erector cone, or guide bars. All of them are adaptive, family-based, and may be parametric. Each of these three groups have a different positioning rule, axial, or radial, for example.

So let's start with the first group, which is the inserts for the bicone and connector. It's a solid inside an adaptive family component by one point. Each instance is hosted a reference line-- in purple on the video. End points of these reference lines are controlled by a parameter angle, so we can change the radial distribution through it. The component is then hosted on it.

The insertion point is defined by intersecting the host reference line and an existing face of the segment. This is possible into an adaptive component family. The component can also be flipped, if needed. Once it's done, we cut the segment by this component, which will be hidden inside the ring family, and so, into the project. We can preview the result directly into the Family Editor, and using the same step, the 10 other components are created.

The second group is the erector cones family, which is placed along the segment axis. So this axis is the red reference line, as shown in the video Erector cones are also an adaptive family based on one point, and two erector cones are defined inside this family. Once hosted by the reference, line they are flipped, if needed, and the rotation of the placement point along the axis is associated to a segment parameter. As in some configuration, it may vary.

Then the linear position of this point along the axis is also associated to a calculate parameter, which allows the user to control the depth into the segment directly from the project environment. Into the Family Editor, we control that rotation parameter is working. And finally, the segment is cut by this family, which will be hidden in the ring family, and inside the project.

So the last group is the guide bar. They are adaptive family by one point, and placed in the median of each segment radial face. Their host is a reference line. Dimensions of these bars are parametric, so user can control length and diameter, as well as offset from the segment face, even if the segment dimensions change.

Depending on the type segment, the configuration varies from one bar to two bar. At each segment connection, we have alternating bars-- for instance, in the video between the key and the contoured keys. These configuration are managed by formula which handle bar length and visibility.

Once the 3D model is achieved, the next step is to produce drawings from it, and place reinforcements. However, Revit does not handle unfolded surfaces, which are needed to produce required drawing. Furthermore, reinforcing such components in 3D might be difficult. With that being said, the idea is to create an unfolded solid representation linked to the 3D segment model, which will be used to create 2D plans, and model rebar in 2D. This will be achieved using Dynamo scripts.

To create these unfolded elements, the first step is to extract the corner points' coordinates of extrados face and intrados face for each segment. Then we convert these coordinate to cylindrical coordinate. This operation will give us coordinates of unfolded faces' corners, as described on the left chamber. This value will update a dedicated family, which is a solid made of unfolded phases.

As Dynamo is working on the background, if the ring dimension are updated in the project, these unfolded representation will be updated accordingly. At the first step, it will allow us to produce the unfolded extrados and intrados representation of the ring segments in 2D, as you can see on the left part of the video.

So launching the script into the project creates, from the ring, two new element by segment. So the first one is exactly the same one into the ring, but without rotation, to facilitate section creation and annotation. The second one, on the right, is the unfolded one. As you can see on the video, and thanks for-- to Dynamo, these elements are updated every time the ring global geometry changed.

Furthermore, some inserts are also created into the unfolded elements by processing their reference host geometry from cylindrical coordinates to Cartesian coordinates. This will be very helpful, especially during the reinforcement process. So regarding the reinforcement process, the idea is to place rebar component directly in the unfolded element, and replicate them in the associated 3D element.

On the video, and on the left side, we'll reinforce the unfolded element in a 2D view where it is easier to place rebar. And on the right side, the linked 3D segment. Depending on the rebar distribution along x or y-axis in 2D, lines will be converted to line, or to arcs. Dynamo manage the link by processing the appropriate position of each rebar in 2D, and replicate the parameters, such as bar diameter, number of rebar in a set, and so on, in 3D.

Rebar creation is done using the Structural Design Dynamo package developed by Tomasz Fudala. It allows us, by simply entering the bar position as curves, the rebar type, and the host, to create rebar elements directly into the model. Once a layer is created, we can use adaptive propagation feature to reinforce the second layer. As you can see, the two bars layer are connected automatically by U bars. User can also adjust rebar constraints in the 2D views, which will update the wall reinforcement.

So every time we change the rebar layout, then all rebar are updated into the segment components. The same operation can also be made in the other direction. Finally, once the elements are reinforced, shop drawings views using the 3D rebars are created. We have different types of views, section, plan, and unfolded views.

These view can be annotated by using multi-rebar annotation to quickly set-- to quickly annotate a set of rebar, and adding a tag at one time, as shown in the video. Thickness of the segment dimension, as well as tagging rebar elements, are also possible in the section view. We are using core annotation feature of Revit to achieve that.

Into the segment elevation view, arc length, dimension have been added, as you can see on the video, for the main radial rebar, and for U bars. We can also add rebar bending detail, which are updated automatically with any change of the rebar. This detail can be shown in rebar schedule, or, like here, placed in any 2D views.

So the last step will be to place all of this view into sheet. I will give now the floor to Laurent, who will present you the implementation. So, Laurent, the floor is back to you.

LAURENT BARBEAU: The development with Revit concerns only the simplified ring, and the detailed ring corresponding to stages one and two of the specification. This slide details the geometric parameters we set in Revit to obtain the simplified ring. All these parameters are accessible in Revit's properties.

This slide details the geometric parameters to be entered in Revit to obtain the detailed ring. Around 30 parameters are required to define and obtain the final detailed ring. All these entered are parametrics in terms of position and geometry.

Here's a project on which we applied the universal ring. This is the Tolouse Metro line project. There is a video from the owner on YouTube with translate in English. [INAUDIBLE] is responsible for work on [INAUDIBLE] on the project. Let's have a look on this video.

Here's our feedback on using this development. Many advantages, as you can see-- Revit ring used by many users, reliability of Revit geometry, easy to switch between simplified and detailed drawing, quick access to a three-ring model, fully customizable insert. In term of improvements, it wasn't possible to automate layouts. An Excel approach would have been a plus for managing the inserts.

Finally, the most interesting thing is the return on investment. As you can see, we divide the time by 4 for the simplified ring, and by 2.5 for the detailed ring.

NICOLAS RAGEUL: What if we can now do more with the ring? Here are two exercises implemented by a colleague, Mikhail. Correctly linking rings automatically is not necessarily helpful at the beginning of the project. The first very important step just defines a number of rings and ring [INAUDIBLE] position, regardless of orientation, and therefore not taking into account the key position, and the taper. Yes, I know it may seem surprising, but the reality [INAUDIBLE] do this very easily with Mikhail [INAUDIBLE]

First, convert to [INAUDIBLE] AutoCAD. You use also [INAUDIBLE] element files, and an Excel file positioning the change of the ring type, because you have two types. Above all, with Dynamo [INAUDIBLE] you quickly arrive at the model's [INAUDIBLE]

Step two, become more active [INAUDIBLE] because it is setting up the model as a built model, no longer using this [INAUDIBLE] but directly the coordinates of points of the ring as positioned in the channel. As a little bonus, the latest version of Navisworks allows you to use the linear references to navigate easily through the tunnel. Safi?

SAFI HAGE: Thank you, Nicolas. So now I will present you a workflow between Revit and InfraWorks. So it's future plans, as of the 4th of October, 2023. And in the video, I will show you-- so, a workflow between Revit and InfraWorks.

So here we are in InfraWorks. So we have the existing condition into InfraWorks. So it has been created by a model builder. And here, we have some components. So-- imported from Inventor. So we have this workflow with bridges, but it has been extended to tunnels, and in two ways.

So first, with four tunnels. So we can import a ring from Inventor, and-- as well as the ring from Revit. So we can import directly a Revit family inside InfraWorks, and we can apply it to a tunnel. So all the parameters of the Revit-- or some parameters of the Revit family will be mapped to tunnel parameter. And here, we can create. Based on the alignments.

Here it's a rail. We can create a tunnel. So we specify the start and the end of this tunnel, then a generic tunnel will be applied directly into InfraWorks. And then, when we select it, we can have access now to the rings previously imported-- so from Inventor, or from Revit. So let's have a look at that.

So here we go. So we have this generic tunnel. So it's just a rectangular section. So we select it, and then we can change into the type we have access to the ring. So the ring coming from Revit-- so the one we just designed just before. And Inventor will apply it, and find the right rotation of it. So the right key position to minimize the distance between the tunnel axis and the alignment inside InfraWorks.

So you can see, on the left-- on the right, sorry-- all the parameters of this ring. So once it has been designed-- so it can be used in tunnel design to just know quickly the number of ring we need, and then it can be exported to Revit for construction, for instance. So we export, as usual, to Revit from InfraWorks. And in Revit, it will not be a dead geometry. It will be-- InfarWorks will remap-- or the link will remap all the ring to Revit families.

So inside Revit, we have Revit families directly. So you can edit them. You can add some cuts. You can rebar. You have access to all the components. So it's like if you did it directly from it, but we used InfraWorks to make it.

So then, into the next slide, we have this ring created from InfraWorks, and then you have it's tunnel created by InfraWorks. And now we can add some openings. So, for instance, we have a connection between this tunnel with another tunnel, for instance, or a shaft, or an emergency exit, so we need to do something onto the existing geometry.

So here, we can do it. We can cut all of these elements, all of these rings, all of these segments by another solid because it's family-based. It's a generic family-based, so-- with native Revit solid. So now, I will leave the floor to Nicolas.

NICOLAS RAGEUL: So finally, provide you with the ring's user manual specification and Revit's universal ring. It's [INAUDIBLE]. It's a gift Thanks for your time. We hope you find it as useful as we do. Thank you for watching.

______
icon-svg-close-thick

Cookie 首选项

您的隐私对我们非常重要,为您提供出色的体验是我们的责任。为了帮助自定义信息和构建应用程序,我们会收集有关您如何使用此站点的数据。

我们是否可以收集并使用您的数据?

详细了解我们使用的第三方服务以及我们的隐私声明

绝对必要 – 我们的网站正常运行并为您提供服务所必需的

通过这些 Cookie,我们可以记录您的偏好或登录信息,响应您的请求或完成购物车中物品或服务的订购。

改善您的体验 – 使我们能够为您展示与您相关的内容

通过这些 Cookie,我们可以提供增强的功能和个性化服务。可能由我们或第三方提供商进行设置,我们会利用其服务为您提供定制的信息和体验。如果您不允许使用这些 Cookie,可能会无法使用某些或全部服务。

定制您的广告 – 允许我们为您提供针对性的广告

这些 Cookie 会根据您的活动和兴趣收集有关您的数据,以便向您显示相关广告并跟踪其效果。通过收集这些数据,我们可以更有针对性地向您显示与您的兴趣相关的广告。如果您不允许使用这些 Cookie,您看到的广告将缺乏针对性。

icon-svg-close-thick

第三方服务

详细了解每个类别中我们所用的第三方服务,以及我们如何使用所收集的与您的网络活动相关的数据。

icon-svg-hide-thick

icon-svg-show-thick

绝对必要 – 我们的网站正常运行并为您提供服务所必需的

Qualtrics
我们通过 Qualtrics 借助调查或联机表单获得您的反馈。您可能会被随机选定参与某项调查,或者您可以主动向我们提供反馈。填写调查之前,我们将收集数据以更好地了解您所执行的操作。这有助于我们解决您可能遇到的问题。. Qualtrics 隐私政策
Akamai mPulse
我们通过 Akamai mPulse 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Akamai mPulse 隐私政策
Digital River
我们通过 Digital River 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Digital River 隐私政策
Dynatrace
我们通过 Dynatrace 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Dynatrace 隐私政策
Khoros
我们通过 Khoros 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Khoros 隐私政策
Launch Darkly
我们通过 Launch Darkly 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Launch Darkly 隐私政策
New Relic
我们通过 New Relic 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. New Relic 隐私政策
Salesforce Live Agent
我们通过 Salesforce Live Agent 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Salesforce Live Agent 隐私政策
Wistia
我们通过 Wistia 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Wistia 隐私政策
Tealium
我们通过 Tealium 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Tealium 隐私政策
Upsellit
我们通过 Upsellit 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Upsellit 隐私政策
CJ Affiliates
我们通过 CJ Affiliates 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. CJ Affiliates 隐私政策
Commission Factory
我们通过 Commission Factory 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Commission Factory 隐私政策
Google Analytics (Strictly Necessary)
我们通过 Google Analytics (Strictly Necessary) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Strictly Necessary) 隐私政策
Typepad Stats
我们通过 Typepad Stats 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Typepad Stats 隐私政策
Geo Targetly
我们使用 Geo Targetly 将网站访问者引导至最合适的网页并/或根据他们的位置提供量身定制的内容。 Geo Targetly 使用网站访问者的 IP 地址确定访问者设备的大致位置。 这有助于确保访问者以其(最有可能的)本地语言浏览内容。Geo Targetly 隐私政策
SpeedCurve
我们使用 SpeedCurve 来监控和衡量您的网站体验的性能,具体因素为网页加载时间以及后续元素(如图像、脚本和文本)的响应能力。SpeedCurve 隐私政策
Qualified
Qualified is the Autodesk Live Chat agent platform. This platform provides services to allow our customers to communicate in real-time with Autodesk support. We may collect unique ID for specific browser sessions during a chat. Qualified Privacy Policy

icon-svg-hide-thick

icon-svg-show-thick

改善您的体验 – 使我们能够为您展示与您相关的内容

Google Optimize
我们通过 Google Optimize 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Google Optimize 隐私政策
ClickTale
我们通过 ClickTale 更好地了解您可能会在站点的哪些方面遇到困难。我们通过会话记录来帮助了解您与站点的交互方式,包括页面上的各种元素。将隐藏可能会识别个人身份的信息,而不会收集此信息。. ClickTale 隐私政策
OneSignal
我们通过 OneSignal 在 OneSignal 提供支持的站点上投放数字广告。根据 OneSignal 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 OneSignal 收集的与您相关的数据相整合。我们利用发送给 OneSignal 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. OneSignal 隐私政策
Optimizely
我们通过 Optimizely 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Optimizely 隐私政策
Amplitude
我们通过 Amplitude 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Amplitude 隐私政策
Snowplow
我们通过 Snowplow 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Snowplow 隐私政策
UserVoice
我们通过 UserVoice 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. UserVoice 隐私政策
Clearbit
Clearbit 允许实时数据扩充,为客户提供个性化且相关的体验。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。Clearbit 隐私政策
YouTube
YouTube 是一个视频共享平台,允许用户在我们的网站上查看和共享嵌入视频。YouTube 提供关于视频性能的观看指标。 YouTube 隐私政策

icon-svg-hide-thick

icon-svg-show-thick

定制您的广告 – 允许我们为您提供针对性的广告

Adobe Analytics
我们通过 Adobe Analytics 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Adobe Analytics 隐私政策
Google Analytics (Web Analytics)
我们通过 Google Analytics (Web Analytics) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Web Analytics) 隐私政策
AdWords
我们通过 AdWords 在 AdWords 提供支持的站点上投放数字广告。根据 AdWords 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AdWords 收集的与您相关的数据相整合。我们利用发送给 AdWords 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AdWords 隐私政策
Marketo
我们通过 Marketo 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。我们可能会将此数据与从其他信息源收集的数据相整合,以根据高级分析处理方法向您提供改进的销售体验或客户服务体验以及更相关的内容。. Marketo 隐私政策
Doubleclick
我们通过 Doubleclick 在 Doubleclick 提供支持的站点上投放数字广告。根据 Doubleclick 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Doubleclick 收集的与您相关的数据相整合。我们利用发送给 Doubleclick 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Doubleclick 隐私政策
HubSpot
我们通过 HubSpot 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。. HubSpot 隐私政策
Twitter
我们通过 Twitter 在 Twitter 提供支持的站点上投放数字广告。根据 Twitter 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Twitter 收集的与您相关的数据相整合。我们利用发送给 Twitter 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Twitter 隐私政策
Facebook
我们通过 Facebook 在 Facebook 提供支持的站点上投放数字广告。根据 Facebook 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Facebook 收集的与您相关的数据相整合。我们利用发送给 Facebook 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Facebook 隐私政策
LinkedIn
我们通过 LinkedIn 在 LinkedIn 提供支持的站点上投放数字广告。根据 LinkedIn 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 LinkedIn 收集的与您相关的数据相整合。我们利用发送给 LinkedIn 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. LinkedIn 隐私政策
Yahoo! Japan
我们通过 Yahoo! Japan 在 Yahoo! Japan 提供支持的站点上投放数字广告。根据 Yahoo! Japan 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Yahoo! Japan 收集的与您相关的数据相整合。我们利用发送给 Yahoo! Japan 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Yahoo! Japan 隐私政策
Naver
我们通过 Naver 在 Naver 提供支持的站点上投放数字广告。根据 Naver 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Naver 收集的与您相关的数据相整合。我们利用发送给 Naver 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Naver 隐私政策
Quantcast
我们通过 Quantcast 在 Quantcast 提供支持的站点上投放数字广告。根据 Quantcast 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Quantcast 收集的与您相关的数据相整合。我们利用发送给 Quantcast 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Quantcast 隐私政策
Call Tracking
我们通过 Call Tracking 为推广活动提供专属的电话号码。从而,使您可以更快地联系我们的支持人员并帮助我们更精确地评估我们的表现。我们可能会通过提供的电话号码收集与您在站点中的活动相关的数据。. Call Tracking 隐私政策
Wunderkind
我们通过 Wunderkind 在 Wunderkind 提供支持的站点上投放数字广告。根据 Wunderkind 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Wunderkind 收集的与您相关的数据相整合。我们利用发送给 Wunderkind 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Wunderkind 隐私政策
ADC Media
我们通过 ADC Media 在 ADC Media 提供支持的站点上投放数字广告。根据 ADC Media 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 ADC Media 收集的与您相关的数据相整合。我们利用发送给 ADC Media 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. ADC Media 隐私政策
AgrantSEM
我们通过 AgrantSEM 在 AgrantSEM 提供支持的站点上投放数字广告。根据 AgrantSEM 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AgrantSEM 收集的与您相关的数据相整合。我们利用发送给 AgrantSEM 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AgrantSEM 隐私政策
Bidtellect
我们通过 Bidtellect 在 Bidtellect 提供支持的站点上投放数字广告。根据 Bidtellect 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bidtellect 收集的与您相关的数据相整合。我们利用发送给 Bidtellect 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bidtellect 隐私政策
Bing
我们通过 Bing 在 Bing 提供支持的站点上投放数字广告。根据 Bing 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bing 收集的与您相关的数据相整合。我们利用发送给 Bing 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bing 隐私政策
G2Crowd
我们通过 G2Crowd 在 G2Crowd 提供支持的站点上投放数字广告。根据 G2Crowd 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 G2Crowd 收集的与您相关的数据相整合。我们利用发送给 G2Crowd 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. G2Crowd 隐私政策
NMPI Display
我们通过 NMPI Display 在 NMPI Display 提供支持的站点上投放数字广告。根据 NMPI Display 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 NMPI Display 收集的与您相关的数据相整合。我们利用发送给 NMPI Display 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. NMPI Display 隐私政策
VK
我们通过 VK 在 VK 提供支持的站点上投放数字广告。根据 VK 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 VK 收集的与您相关的数据相整合。我们利用发送给 VK 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. VK 隐私政策
Adobe Target
我们通过 Adobe Target 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Adobe Target 隐私政策
Google Analytics (Advertising)
我们通过 Google Analytics (Advertising) 在 Google Analytics (Advertising) 提供支持的站点上投放数字广告。根据 Google Analytics (Advertising) 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Google Analytics (Advertising) 收集的与您相关的数据相整合。我们利用发送给 Google Analytics (Advertising) 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Google Analytics (Advertising) 隐私政策
Trendkite
我们通过 Trendkite 在 Trendkite 提供支持的站点上投放数字广告。根据 Trendkite 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Trendkite 收集的与您相关的数据相整合。我们利用发送给 Trendkite 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Trendkite 隐私政策
Hotjar
我们通过 Hotjar 在 Hotjar 提供支持的站点上投放数字广告。根据 Hotjar 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Hotjar 收集的与您相关的数据相整合。我们利用发送给 Hotjar 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Hotjar 隐私政策
6 Sense
我们通过 6 Sense 在 6 Sense 提供支持的站点上投放数字广告。根据 6 Sense 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 6 Sense 收集的与您相关的数据相整合。我们利用发送给 6 Sense 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. 6 Sense 隐私政策
Terminus
我们通过 Terminus 在 Terminus 提供支持的站点上投放数字广告。根据 Terminus 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Terminus 收集的与您相关的数据相整合。我们利用发送给 Terminus 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Terminus 隐私政策
StackAdapt
我们通过 StackAdapt 在 StackAdapt 提供支持的站点上投放数字广告。根据 StackAdapt 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 StackAdapt 收集的与您相关的数据相整合。我们利用发送给 StackAdapt 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. StackAdapt 隐私政策
The Trade Desk
我们通过 The Trade Desk 在 The Trade Desk 提供支持的站点上投放数字广告。根据 The Trade Desk 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 The Trade Desk 收集的与您相关的数据相整合。我们利用发送给 The Trade Desk 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. The Trade Desk 隐私政策
RollWorks
We use RollWorks to deploy digital advertising on sites supported by RollWorks. Ads are based on both RollWorks data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that RollWorks has collected from you. We use the data that we provide to RollWorks to better customize your digital advertising experience and present you with more relevant ads. RollWorks Privacy Policy

是否确定要简化联机体验?

我们希望您能够从我们这里获得良好体验。对于上一屏幕中的类别,如果选择“是”,我们将收集并使用您的数据以自定义您的体验并为您构建更好的应用程序。您可以访问我们的“隐私声明”,根据需要更改您的设置。

个性化您的体验,选择由您来做。

我们重视隐私权。我们收集的数据可以帮助我们了解您对我们产品的使用情况、您可能感兴趣的信息以及我们可以在哪些方面做出改善以使您与 Autodesk 的沟通更为顺畅。

我们是否可以收集并使用您的数据,从而为您打造个性化的体验?

通过管理您在此站点的隐私设置来了解个性化体验的好处,或访问我们的隐私声明详细了解您的可用选项。