AU Class
AU Class
class - AU

Model Requirement Checking Online: Automated Data Checking on BIM 360

共享此课程
在视频、演示文稿幻灯片和讲义中搜索关键字:

说明

Arcadis/CallisonRTKL have been working with Autodesk Consulting to develop the ability to run attribute/parameter checks on WIP (work in progress) models hosted in BIM 360 software to help ensure they meet client requirements. These checks are performed in the background against thousands of data points on thousands of model elements across multiple files in a matter of minutes. Performing these automated EIR (Employer’s Information Requirement) checks on the models directly from BIM 360 streamlines the quality assurance process, which is especially helpful with large-project data sets. The capability developed provides speed and accuracy in meeting clients’ data requirements.

主要学习内容

  • Learn about the need for data quality and reliability throughout the whole project lifecycle
  • Learn how to validate attributes/parameters in models against a specified set of Employer Information Requirements or Asset Requirements
  • Learn how to determine the steps needed to implement MDC Online
  • Discover ways to configure and customize MDC Online to your data environment and requirements

讲师

  • Steven Register 的头像
    Steven Register
    Steven is a Design Technology Specialist for CallisonRTKL in Washington DC supporting multiple offices. Steven has been a BIM Manager since 1999 supporting small Architecture and Landscape Architecture projects to very large multi-discipline campus projects. He is also responsible for creating and maintaining CallisonRTKL custom BIM addin/support programs using .NET programming.
  • Paul Reed
    I began working in the industry by doing an apprenticeship in Civil Engineering in 2006, before switching my focus to Computer Science. I gained a degree in Computer Science in 2012 whilst continuing to work in Civil Engineering, progressing from Engineering Technician to Digital Construction Lead for a major civil engineering contractor before joining Autodesk. Over the past 15 years I've noticed a large increase in data requirements for projects I and enjoy the challenge of trying to link systems together; automating tasks, and data visualization.
  • Richard Walsh
    I have been an Implementation Consultant with Autodesk for over 10 years working on many different customer accounts across the world. I have a background in Structural Engineering and BIM Implementation and been involved in the Model Development team for the last 5 years.
Video Player is loading.
Current Time 0:00
Duration 25:35
Loaded: 0.65%
Stream Type LIVE
Remaining Time 25:35
 
1x
  • Chapters
  • descriptions off, selected
  • en (Main), selected
Transcript

STEPHEN REGISTER: With increasing volume and quality of information being required from our models, we need better quality assurance tools, then Revit schedules, Excel workflows, and other derivatives that are limited in functionality and slow due to their reliance on the Revit user interface. Imagine if you can visualize non-compliant data and correct it at its source within Revit on all your cloud models with all the compliance checking happening in the background.

As you see here, it's not delusion, but a grand tool, indeed, called the model development checker online or MDC. So welcome to the Autodesk University class, AS 500346 Automated Online Model Requirement Checking, where we will explore the MDC's contribution to data quality through its efficient validation reporting capabilities and cover how to implement and adapt it.

To walk you through all this will be myself, Richard and Paul. So let's do some quick intros and get to it. My name is Stephen Register. And I'm a design technology specialist with CollisonRTKL. I started doing the management in the previous century, which means I've seen a few things. Back then, managers, like myself, could easily BS your way through most anything. Can't do that now.

Today, data driven evidence based decisions are expected, which is something we'll build upon later. Another apropos thing about me is my interest in applying agile principles to the [? AEC ?] industry. One of those principles, that of welcoming changing requirements, even late ones, gets a little easier to do when you use the model development checker online, which we'll do for you today.

With me are two gentlemen from Autodesk, who were instrumental in getting the MDC set up for us at CollisonRTKL. Richard, do you want to tell us a little bit about yourself.

RICHARD WALSH: Thanks, Steven. My name is Richard Walsh. I'm a senior implementation consultant here at Autodesk. I joined Autodesk 10 years ago. I have a background in implementation within the AEC and structural engineering sectors. During my time at Autodesk consulting, I've been involved in the development of model development and information management tools that have been delivered to numerous customers and industries.

These aid teams to specify and validate metadata or information within their BIM models to support BIM users through construction and post construction. I'll now hand over to Paul, our third member of the team, to introduce himself. Over to you, Paul.

PAUL REED: Hi, I'm Paul Reed. And I joined Autodesk in June 2019. And prior to this, I worked for a large Civil engineering firm for over 10 years. So I started as an apprentice engineer on site, dealing with setting out quality inspections before gradually moving on to data management, using applications, such as Revit, BIM 360, and Officeworks.

I gradually worked my way up to digital construction lead for my region, given me a pretty good understanding of the data people on site need, as well as, the information our customers needed. I'm interested in getting data to where it needs to be in a format that's usable, using product APIs, automation, scripting to achieve this. And that's it for me and the intros. And I'll pass over to Steven to get started.

STEPHEN REGISTER: Right, as I mentioned earlier, the model development checker is important for data quality. So we'll start there as a backdrop. Then we'll cover some of the difficulties of ensuring data quality for all the required information on a project. And that will lead us to look at the MDC itself and how it addresses those challenges.

We'll also get into what makes the MDC work from a four generation perspective and where the flexural parts that make the MDC adaptable. So first up is data quality. Again, as I mentioned my intro, I've seen them change over the decades from something that was a benefit just internally within the architecture firms I worked with to now being integrated into the entire facility lifecycle of design, delivery, and operations, which means BIM data dependencies have gone from internal to external.

Now others outside your organization are dependent on the data you produce. This opens up contractual liabilities and creates a huge need for validating data quality. And we see the effects of this manifest itself all over the industry, via the BIM standards and requirements like ISO 19650, COBie, LOD, et cetera. Everyone is expecting to give and receive some level of reliable data and want something to measure quality data against.

Here on this slide, you can see listed some of the more prevalent external or cross organizational BIM data standards and exchanges that reflect the need for data quality. COBie, for one, addresses the need to move structured asset data across organizations from design to construction to operations. LOD defines the qualitative differences of design intent and as constructed data so that there can be a clear understanding between the author and recipient of what data resolution to expect.

Space naming standards make sure that the data that the design team produces, it gets delivered to the owner. And the owner can depend on it for their integrated workplace management systems. Even within the specific stages of facility lifecycle, like design, reliance on quality data exchanges occur, especially when dealing with facility performance.

The team doing energy analysis, it depends on the design team to properly enclose the rooms and spaces. So each discipline depends on the other's data, kind of like making sure the BIM spatial data is correct so BIM elements and clearances don't clash. And now, with digital twin tools really starting to make headway, BIM data quality is even more important, especially for those feedback loops to even work. So what are they been doing so far to validate our BIM data and what are the challenges?

So far, we've been doing interesting things with Revit schedules, highlighting elements via view filters, Excel data exchange add ins, and other manual or automated tools. But all of these come with some negatives. The biggest negative with all the tools we've used is all the time required in the Revit and BIM 360 user interfaces. I have to wait on downloads or opening times or the collaboration cash to update, our viewers and geometry to be resolved, or warnings to pop up to be addressed or resolved.

These things are OK when I'm modeling, but mostly not necessary for data validation. Do I really need Revit to resolve all the room boundaries in my model just so I can check the parameters on my [? fire rated ?] walls? No, not really. So I wound up wasting a lot of time just waiting for the next randomly timed user interface prompt, like a [? wrap, ?] that variable rewards experiment.

And then, you multiply that by all the display models, and then, again, by the multiple buildings on some of our campus projects, it's just so absorbing for me. And then, some of the add ins we use have server or client components that need a bit of upkeep to stay compatible with Revit and BIM 60 updates and Microsoft too. But some of the developers are more responsive than others.

So sometimes timing release an issue, when you want to use the latest Revit, but the add in is not ready or something breaks. And it takes a while to get resolved or the developer just goes dark. That's always fun. And then, one of the other challenges is communicating the validation results to the distributed team. We'll often send out Word Document, PDF, or spreadsheet or whatever.

And then, the design team needs to go find all those non-compliant elements in the Revit models. It's like giving them a map-- a hand-drawn map that says, turn right where the old hog shed barn to be. And then, five miles before the road dead ends, veer left. Because, I mean, these tools don't have a highlight and model feature. So you wound up having to guess your way to it.

So when we came across the MDC, it made us keenly aware of all these challenges because it answered them. So let's take a look at that answer. Richard, can you go ahead now and show us the MVC and how it works.

RICHARD WALSH: Sure, Steven. The model development checker itself started out as a desktop plugin for Revit Civil 3D and Navisworks that enables checking of parameters on model items within specified classification attribute reports. This report is a simple Excel file that acts as the instructions to the model originator as to what they're required to populate within their model. This would then be input into the MDC tool.

And they could then check their model getting an HTML report on where these items passed or failed. Further develope was then undertaken to develop switchback tool that I will talk about more soon. All of this was still very manual onerous task. So we looked for a way to take this into BIM 360 and automate it through Forge. This section we'll now look at through the following items.

So we'll have a look at the Excel classification report, the LUA scripts, which can really take the parameter check into the next level, the BIM 360 Environment set-up itself, the web client set-up, the HTML-- sorry, the XML output results, and then, onto the Revits switchback tool itself. Then we'll go through these steps in an end to end demonstration of all the moving parts.

As a high level overview of the workflow, this diagram illustrates the starting point of the owner or operator specifying the organizational information requirements. These are the specifications to the model element authors. With these specified, they develop their project models. And within the MDC online, they receive the validation of their models and continue to iterate their design through the design process, making any corrective actions that are necessary.

With certainty that the information requirements are being met, the model can then be used for field management and on into asset and operations by the owner or operator. So the first part, the classification actually report, as I said, this is a simple Excel file with no fancy bells and whistles. This outlines to the model element authors what they are responsible for on an information perspective and when it is required and what form it should take.

This also lists where the parameters are in the model, whether they're instance or type parameters and what checks will be performed on these parameters. These checks can be simple checks, like parameter is not blank or the parameter is within a range. These can also be in the form of regular expression checks. Additionally, these checks can be script checks, using the LUA scripting language.

LUA is a certified open source software. And it's a free software distributed under the terms of the MIT license. There is a huge online community with lots of information and examples of use available at Lua.org. Within the BIM 360 environment itself, there is little changes required to the standard work in progress environment but I'm sure you are all familiar with.

The additions are a folder that contains the classification attribute report Excel file and one that will contain any LUA scripts to be run within this tool. Once the BIM 360 Environment is up and running, the web client is configured to point to these work in progress model folders and the report and script folders. When you are ready to go to run your checks, these can be submitted to the job queue.

And when the jobs-- when the checks are complete, this can be quick as a couple of minutes for most jobs. After they've been submitted, the user will then receive an email notification that the job has been complete with a hyperlink back to the BIM 360 folder that contains the results XML file. This can then be downloaded by the model author and loaded into the Revit switchback tools to locate and highlight any model elements that need corrective action.

This too can be completed through the tool. The corrective action can be completed through the tool. And the parameter values passes through the specified checks. The traffic light icon can change from red to green to show that it's passed. You can now move on to the next item and work your way through the rest of the model to achieve your stage deliverable requirements. Now let's see this in action.

So firstly the BIM 360 Environment, here you can see the work in progress folders that are project discipline folders. Today we'll focus on the [? McCulloch ?] goals for this demonstration. So here you can see the complexity of the project, illustrating the impossible task of manually checking information on elements. So the reports folder, containing the classification attribute report Excel, this lists the required attributes that will be checked.

On this particular example, we use in the OmniClass classification system to identify the objects in the model and the checks that will be applied to the parameters themselves. We then move on to the script folder that contains the LUA scripts that will be used on these checks, here opening them in Notepad++ just for illustration. So now we can move on to the web client set-up.

We log in using the same credentials as the BIM 360 environment. We select the relevant project hub. And we can now add the folder where the model files are located. And now, click-- select the test folders for the report and scripts. This can then be selected and submitted to the job queue. Once the checks have been complete, you will receive email notification.

And you can click the link to the folder containing the XML reports or navigated to it within the BIM 360 Environment itself. The results will be in the report's folder within the discipline work in progress folder. These can be downloaded for use within the Revit switchback tool, and just for illustration purposes, opening this example in Notepad++ again. The modeler can then open their Revit project from the BIM 360 Environment in the usual way.

And then, open the Revit switchback from the MDS model checker tool, locating the XML report to see how well he has performed. Selecting an [? amber ?] element selects and navigate to the item in the project. So this contains green passed attribute elements together with red fail attributes. Here, red fail attributes can be changed through the switchback tool to correct the value, getting a green pass icon.

Here, illustrating that this was also now being populated to the itself in the instance properties dialog box. I'll now pass you back to Paul to take you through the technical setup side of the solution.

PAUL REED: Thanks for the demo, Richard. We're now going to cover the technical side of the app, how we bring all the aspects of the system together into one comprehensive experience. So this is the basic architecture of the app. We can see it split into quite a few components. We have the stuff on this year. This is where the front and back end is hosted, as well as, a database to help manage the app.

And finally, we have some several serverless functions to perform backend tasks. We also have the original Revit add-in. This was initially a desktop based add-in, which has been converted to work on design automation. We have Froge. This takes the converted Revit add-on and runs the code in the cloud. And this is combined with the data management and authorization APIs to manage access to BIM 360.

And finally, BIM 360 is where the model files, scripts and configuration files are located, as well as, any outputs, such as the reports generated by design automation. So as mentioned prior, we already had a working add-in, which could perform the model checking. But it could only work on individual machines on the desktop, one model at a time. So we converted this add-in to work with design automation.

To do this, we basically remove any functions which are not available in the cloud Revit engine. So this includes any user interface stuff, such as the Revit API, user interface, and any Windows [? form ?] stuff. Next, we had some functions which will get called by design automation when the code is run in the cloud. And then, we change type the add-in to the application.

With these changes made, we can compile a code and place the DLL into a folder, along with a file describing the contents. So this is a package contents XML file. These are then compressed into a zip file ready for uploading to design automation. The Forge application, we included design automation, data management, and the authorization APIs. Design automation is used to run the converted Revit plug-in.

And data management and the authorization APIs are used to manage access to BIM 360, where the inputs and outputs are stored. For the Forge application, we also need to set up an engine. This will specify which version of Revit we wish to run the code on. To do this, we register an app bundle on Forge and specify the app bundles engine or the version of Revit that we wish to use. Next, we create an activity.

This is an action which can be initiated in design automation. Activities run specific app bundles. And when creating the activity, we specify the app bundle that we created earlier. Azure is used to host the web application and its supporting services, the web application is built using TypeScript. And this includes your serverless functions. The front end is built with Angular with material design components for the user interface elements.

And the back end uses Express. We also have a database, which is used to store application information, such as the project we wish to use this on, the folders on BIM 360 we wish to monitor, and the specification files that we want to use for these folders we've selected. Finally, it contains a job queue. And this is used to store a list of folders and files, which require processing.

We have serverless functions, which perform several backend tasks, such as submitting a job to design automation or dealing with the results when design automation has completed processing, such as sending an email notification to alert the user that the job has finished processing. BIM 360 is used to store project data. This includes all the inputs, such as model files, the LUA scripts, and configuration files for checking.

And the output source is stored here, as well. So any output from design automation is stored-- is placed here, such as the output XML or HTML reports. When a user logs into the web application using their Autodesk credentials, they're presented on the Home screen, which shows the list of active projects using MDC online. Here they can select a new project. This uses a data management API to navigate through BIM 360.

The user then selects folders that contains the models that they want to check and which folder contains the check specification files that they wish to use. These locations are then saved into the database. And this is then where serverless functions take on the process. So the web application submits the job to the back end via HTT request to a job serverless function.

This then adds the folder and specification to the database, which is then in turn processed by a check folder function, which adds the files to a file queue. Next a check file serverless function sends the information to design automation for each of these files. On completion of the job, design automation will send a HTT request, which will get picked up by the job finished function.

What this will do is this will notify the user via an email and uploads any job info to the database. So this gives a summary of how Forge design automation helped us work with a lot of large files, without having to download all of these and work on each of them individually, saving a great deal of time. So on our path over, Steven, for the wrap up.

STEPHEN REGISTER: Thanks, Paul. It's all that Forge integration work that really made the Model Development Checker valuable for me. It cut up my time, messing about the user interface and moving data in and out of BIM 360. That saves me hours each week that I can use to spend on higher value BIM tasks or projects, or adding more checks to drive up the project's data quality. So, hopefully, this presentation has helped you see how valuable Modeler Development Checker online can be.

We saw how BIM data quality is increasingly important and that we need better ways to validate our work against all the various information requirements to ensure that that data is high quality. And we also looked at what it takes to set up and run the MDC online to validate in data and how to customize to meet your specific requirements. So if you want to try it out yourselves or learn more, talk to your Autodesk representative or contact me.

I'd be glad to chat with you about my experience that I've had with the tool. With that, thank you so much for your time and interest in this class.

标记

产品
行业
______
icon-svg-close-thick

Cookie 首选项

您的隐私对我们非常重要,为您提供出色的体验是我们的责任。为了帮助自定义信息和构建应用程序,我们会收集有关您如何使用此站点的数据。

我们是否可以收集并使用您的数据?

详细了解我们使用的第三方服务以及我们的隐私声明

绝对必要 – 我们的网站正常运行并为您提供服务所必需的

通过这些 Cookie,我们可以记录您的偏好或登录信息,响应您的请求或完成购物车中物品或服务的订购。

改善您的体验 – 使我们能够为您展示与您相关的内容

通过这些 Cookie,我们可以提供增强的功能和个性化服务。可能由我们或第三方提供商进行设置,我们会利用其服务为您提供定制的信息和体验。如果您不允许使用这些 Cookie,可能会无法使用某些或全部服务。

定制您的广告 – 允许我们为您提供针对性的广告

这些 Cookie 会根据您的活动和兴趣收集有关您的数据,以便向您显示相关广告并跟踪其效果。通过收集这些数据,我们可以更有针对性地向您显示与您的兴趣相关的广告。如果您不允许使用这些 Cookie,您看到的广告将缺乏针对性。

icon-svg-close-thick

第三方服务

详细了解每个类别中我们所用的第三方服务,以及我们如何使用所收集的与您的网络活动相关的数据。

icon-svg-hide-thick

icon-svg-show-thick

绝对必要 – 我们的网站正常运行并为您提供服务所必需的

Qualtrics
我们通过 Qualtrics 借助调查或联机表单获得您的反馈。您可能会被随机选定参与某项调查,或者您可以主动向我们提供反馈。填写调查之前,我们将收集数据以更好地了解您所执行的操作。这有助于我们解决您可能遇到的问题。. Qualtrics 隐私政策
Akamai mPulse
我们通过 Akamai mPulse 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Akamai mPulse 隐私政策
Digital River
我们通过 Digital River 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Digital River 隐私政策
Dynatrace
我们通过 Dynatrace 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Dynatrace 隐私政策
Khoros
我们通过 Khoros 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Khoros 隐私政策
Launch Darkly
我们通过 Launch Darkly 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Launch Darkly 隐私政策
New Relic
我们通过 New Relic 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. New Relic 隐私政策
Salesforce Live Agent
我们通过 Salesforce Live Agent 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Salesforce Live Agent 隐私政策
Wistia
我们通过 Wistia 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Wistia 隐私政策
Tealium
我们通过 Tealium 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Tealium 隐私政策
Upsellit
我们通过 Upsellit 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Upsellit 隐私政策
CJ Affiliates
我们通过 CJ Affiliates 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. CJ Affiliates 隐私政策
Commission Factory
我们通过 Commission Factory 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Commission Factory 隐私政策
Google Analytics (Strictly Necessary)
我们通过 Google Analytics (Strictly Necessary) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Strictly Necessary) 隐私政策
Typepad Stats
我们通过 Typepad Stats 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Typepad Stats 隐私政策
Geo Targetly
我们使用 Geo Targetly 将网站访问者引导至最合适的网页并/或根据他们的位置提供量身定制的内容。 Geo Targetly 使用网站访问者的 IP 地址确定访问者设备的大致位置。 这有助于确保访问者以其(最有可能的)本地语言浏览内容。Geo Targetly 隐私政策
SpeedCurve
我们使用 SpeedCurve 来监控和衡量您的网站体验的性能,具体因素为网页加载时间以及后续元素(如图像、脚本和文本)的响应能力。SpeedCurve 隐私政策
Qualified
Qualified is the Autodesk Live Chat agent platform. This platform provides services to allow our customers to communicate in real-time with Autodesk support. We may collect unique ID for specific browser sessions during a chat. Qualified Privacy Policy

icon-svg-hide-thick

icon-svg-show-thick

改善您的体验 – 使我们能够为您展示与您相关的内容

Google Optimize
我们通过 Google Optimize 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Google Optimize 隐私政策
ClickTale
我们通过 ClickTale 更好地了解您可能会在站点的哪些方面遇到困难。我们通过会话记录来帮助了解您与站点的交互方式,包括页面上的各种元素。将隐藏可能会识别个人身份的信息,而不会收集此信息。. ClickTale 隐私政策
OneSignal
我们通过 OneSignal 在 OneSignal 提供支持的站点上投放数字广告。根据 OneSignal 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 OneSignal 收集的与您相关的数据相整合。我们利用发送给 OneSignal 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. OneSignal 隐私政策
Optimizely
我们通过 Optimizely 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Optimizely 隐私政策
Amplitude
我们通过 Amplitude 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Amplitude 隐私政策
Snowplow
我们通过 Snowplow 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Snowplow 隐私政策
UserVoice
我们通过 UserVoice 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. UserVoice 隐私政策
Clearbit
Clearbit 允许实时数据扩充,为客户提供个性化且相关的体验。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。Clearbit 隐私政策
YouTube
YouTube 是一个视频共享平台,允许用户在我们的网站上查看和共享嵌入视频。YouTube 提供关于视频性能的观看指标。 YouTube 隐私政策

icon-svg-hide-thick

icon-svg-show-thick

定制您的广告 – 允许我们为您提供针对性的广告

Adobe Analytics
我们通过 Adobe Analytics 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Adobe Analytics 隐私政策
Google Analytics (Web Analytics)
我们通过 Google Analytics (Web Analytics) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Web Analytics) 隐私政策
AdWords
我们通过 AdWords 在 AdWords 提供支持的站点上投放数字广告。根据 AdWords 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AdWords 收集的与您相关的数据相整合。我们利用发送给 AdWords 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AdWords 隐私政策
Marketo
我们通过 Marketo 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。我们可能会将此数据与从其他信息源收集的数据相整合,以根据高级分析处理方法向您提供改进的销售体验或客户服务体验以及更相关的内容。. Marketo 隐私政策
Doubleclick
我们通过 Doubleclick 在 Doubleclick 提供支持的站点上投放数字广告。根据 Doubleclick 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Doubleclick 收集的与您相关的数据相整合。我们利用发送给 Doubleclick 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Doubleclick 隐私政策
HubSpot
我们通过 HubSpot 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。. HubSpot 隐私政策
Twitter
我们通过 Twitter 在 Twitter 提供支持的站点上投放数字广告。根据 Twitter 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Twitter 收集的与您相关的数据相整合。我们利用发送给 Twitter 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Twitter 隐私政策
Facebook
我们通过 Facebook 在 Facebook 提供支持的站点上投放数字广告。根据 Facebook 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Facebook 收集的与您相关的数据相整合。我们利用发送给 Facebook 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Facebook 隐私政策
LinkedIn
我们通过 LinkedIn 在 LinkedIn 提供支持的站点上投放数字广告。根据 LinkedIn 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 LinkedIn 收集的与您相关的数据相整合。我们利用发送给 LinkedIn 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. LinkedIn 隐私政策
Yahoo! Japan
我们通过 Yahoo! Japan 在 Yahoo! Japan 提供支持的站点上投放数字广告。根据 Yahoo! Japan 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Yahoo! Japan 收集的与您相关的数据相整合。我们利用发送给 Yahoo! Japan 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Yahoo! Japan 隐私政策
Naver
我们通过 Naver 在 Naver 提供支持的站点上投放数字广告。根据 Naver 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Naver 收集的与您相关的数据相整合。我们利用发送给 Naver 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Naver 隐私政策
Quantcast
我们通过 Quantcast 在 Quantcast 提供支持的站点上投放数字广告。根据 Quantcast 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Quantcast 收集的与您相关的数据相整合。我们利用发送给 Quantcast 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Quantcast 隐私政策
Call Tracking
我们通过 Call Tracking 为推广活动提供专属的电话号码。从而,使您可以更快地联系我们的支持人员并帮助我们更精确地评估我们的表现。我们可能会通过提供的电话号码收集与您在站点中的活动相关的数据。. Call Tracking 隐私政策
Wunderkind
我们通过 Wunderkind 在 Wunderkind 提供支持的站点上投放数字广告。根据 Wunderkind 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Wunderkind 收集的与您相关的数据相整合。我们利用发送给 Wunderkind 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Wunderkind 隐私政策
ADC Media
我们通过 ADC Media 在 ADC Media 提供支持的站点上投放数字广告。根据 ADC Media 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 ADC Media 收集的与您相关的数据相整合。我们利用发送给 ADC Media 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. ADC Media 隐私政策
AgrantSEM
我们通过 AgrantSEM 在 AgrantSEM 提供支持的站点上投放数字广告。根据 AgrantSEM 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AgrantSEM 收集的与您相关的数据相整合。我们利用发送给 AgrantSEM 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AgrantSEM 隐私政策
Bidtellect
我们通过 Bidtellect 在 Bidtellect 提供支持的站点上投放数字广告。根据 Bidtellect 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bidtellect 收集的与您相关的数据相整合。我们利用发送给 Bidtellect 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bidtellect 隐私政策
Bing
我们通过 Bing 在 Bing 提供支持的站点上投放数字广告。根据 Bing 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bing 收集的与您相关的数据相整合。我们利用发送给 Bing 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bing 隐私政策
G2Crowd
我们通过 G2Crowd 在 G2Crowd 提供支持的站点上投放数字广告。根据 G2Crowd 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 G2Crowd 收集的与您相关的数据相整合。我们利用发送给 G2Crowd 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. G2Crowd 隐私政策
NMPI Display
我们通过 NMPI Display 在 NMPI Display 提供支持的站点上投放数字广告。根据 NMPI Display 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 NMPI Display 收集的与您相关的数据相整合。我们利用发送给 NMPI Display 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. NMPI Display 隐私政策
VK
我们通过 VK 在 VK 提供支持的站点上投放数字广告。根据 VK 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 VK 收集的与您相关的数据相整合。我们利用发送给 VK 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. VK 隐私政策
Adobe Target
我们通过 Adobe Target 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Adobe Target 隐私政策
Google Analytics (Advertising)
我们通过 Google Analytics (Advertising) 在 Google Analytics (Advertising) 提供支持的站点上投放数字广告。根据 Google Analytics (Advertising) 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Google Analytics (Advertising) 收集的与您相关的数据相整合。我们利用发送给 Google Analytics (Advertising) 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Google Analytics (Advertising) 隐私政策
Trendkite
我们通过 Trendkite 在 Trendkite 提供支持的站点上投放数字广告。根据 Trendkite 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Trendkite 收集的与您相关的数据相整合。我们利用发送给 Trendkite 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Trendkite 隐私政策
Hotjar
我们通过 Hotjar 在 Hotjar 提供支持的站点上投放数字广告。根据 Hotjar 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Hotjar 收集的与您相关的数据相整合。我们利用发送给 Hotjar 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Hotjar 隐私政策
6 Sense
我们通过 6 Sense 在 6 Sense 提供支持的站点上投放数字广告。根据 6 Sense 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 6 Sense 收集的与您相关的数据相整合。我们利用发送给 6 Sense 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. 6 Sense 隐私政策
Terminus
我们通过 Terminus 在 Terminus 提供支持的站点上投放数字广告。根据 Terminus 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Terminus 收集的与您相关的数据相整合。我们利用发送给 Terminus 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Terminus 隐私政策
StackAdapt
我们通过 StackAdapt 在 StackAdapt 提供支持的站点上投放数字广告。根据 StackAdapt 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 StackAdapt 收集的与您相关的数据相整合。我们利用发送给 StackAdapt 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. StackAdapt 隐私政策
The Trade Desk
我们通过 The Trade Desk 在 The Trade Desk 提供支持的站点上投放数字广告。根据 The Trade Desk 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 The Trade Desk 收集的与您相关的数据相整合。我们利用发送给 The Trade Desk 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. The Trade Desk 隐私政策
RollWorks
We use RollWorks to deploy digital advertising on sites supported by RollWorks. Ads are based on both RollWorks data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that RollWorks has collected from you. We use the data that we provide to RollWorks to better customize your digital advertising experience and present you with more relevant ads. RollWorks Privacy Policy

是否确定要简化联机体验?

我们希望您能够从我们这里获得良好体验。对于上一屏幕中的类别,如果选择“是”,我们将收集并使用您的数据以自定义您的体验并为您构建更好的应用程序。您可以访问我们的“隐私声明”,根据需要更改您的设置。

个性化您的体验,选择由您来做。

我们重视隐私权。我们收集的数据可以帮助我们了解您对我们产品的使用情况、您可能感兴趣的信息以及我们可以在哪些方面做出改善以使您与 Autodesk 的沟通更为顺畅。

我们是否可以收集并使用您的数据,从而为您打造个性化的体验?

通过管理您在此站点的隐私设置来了解个性化体验的好处,或访问我们的隐私声明详细了解您的可用选项。