AU Class
AU Class
class - AU

Risks and Rehabilitation of Sewer Assets with Info360 Asset

共享此课程

说明

City of Oakland's sewer collection system has a total of 940 miles of pipeline, with an average service life of 50+ years. To maintain and improve the system and prevent costly failures, comprehensive asset management strategies have been needed. The City has augmented its sewer asset management using the Innovyze desktop software InfoAsset Planner, an Innovyze legacy asset management tool. Currently, Autodesk has been working with the City to transition to the cloud solution Info360 Asset due to improved multi-user functionality, expanded data sharing capabilities, and resilient data storage. In this presentation, City of Oakland will share its user experience and present the risk prioritization strategy developed with the help of its consultant team. The City and Autodesk will present how this strategy has been implemented in Info360 Asset, and explain how the product has improved the City's asset management efficiency.

主要学习内容

  • Learn about the challenges that cities face when managing aging infrastructure to optimize costs and protect public wellness.
  • Learn about the basics of condition assessment, risk prioritization, and rehabilitation planning of sewer systems.
  • Discover the Autodesk tools that gather and analyze data from a city's sewer system to help with decision making.
  • Learn about the value and importance of cloud software and its role in the water and wastewater industry.

讲师

  • Wen Chen
    Dr. Wen Chen is a water resources expert managing public works infrastructure in the City of Oakland. He has been leading a team to develop the Citywide Sanitary Sewer Master Plan to improve the sewer collection system in the City.
  • Martha Nunez
    My name is Martha Nunez I currently at Autodesk Water solutions company as a Customer Success Manager for the Asset Management Software Info360 Asset. At my current job I work closely with clients by driving the usage of cloud digital solutions, managing projects, and client success efforts. I love being involved in the water industry and learning from other water professionals and leaders.
Video Player is loading.
Current Time 0:00
Duration 36:20
Loaded: 0.45%
Stream Type LIVE
Remaining Time 36:20
 
1x
  • Chapters
  • descriptions off, selected
  • en (Main), selected
Transcript

WEN CHEN: Good afternoon, everyone. Today, we are presenting at the presentation titled as Risk and Rehabilitation of a Sewer Asset with Info360 Asset. Presented below is our safe harbor statement.

Your host today, I want to introduce myself. My name is Wen Chen. I'm a supervisor and civil engineer with the city of Oakland Public Works. And my co-presenter is Martha Nunez. She is the Customer Success Manager with Autodesk.

So today, our agenda is to give an overview of the city's sewer collection system, present the issue and challenges we have, and talk about our management practice, and our trend moving towards the cloud. And then the detail will go to Martha to present the Info360 asset implementation. And at the end, we're talking about the next step and our conclusions.

So city of Oakland, the sewer system is approximately 1,000 miles and with 11 pump stations. And it has over 100,000 sewer connections to the sewer collection system and serving over 430,000 residents. And you may not believe the first sanitary pipe was installed back in 1852, 160 years ago. And some of them are still functioning.

So as an average service life, the sewer collection system in the city of Oakland is over 50 years. And we discharge our collection the sewage to East Bay Municipal Utility District, EDMUD, for treatment, along with six other cities in the district. So this gives you an overview of the East Bay collection system.

So the city of Oakland is located at the end of the system or the start of the system. And then we discharge our sewer system into the interceptor. And there are various of the pump stations. And eventually, the sewage gets to the wastewater treatment plant located at the East Bay MUD. And along the interception, there are various of the wet weather facilities-- three of them-- which is to account for any overflow in the storm event that the system cannot treat or store.

So currently, the city of Oakland, we have a lot of challenges. As mentioned, we are dealing with a system that as far as 160 years old, average service life over 50 years old. And constantly, the city is suffering from sanitary sewer overflows. And also, there's significant inflows and infiltrations into the sewer collection system, especially during the storm event.

So particularly here, to reference, the inflow means the runoff coming into the sewer collection system. The infiltration refers to the groundwater penetrating into the sewer system. Eventually, they are transferred, conveyed, to the sewer treatment plant. And that, of course, the inadequate conveyance capacity, and for two reasons. One is the land use. You see, the city has already expanded, and now serving over 400,000 people.

And also because of the aging infrastructure, the blockage and reduced capacity. And there are debris, root intrusion. And sometimes, the homeless dump into the system. And what makes the matter even more challenging is that we have a limited workforce and a very limited funding to manage the sewer asset in the city.

And back in 2014, EPA and the city, together with other Satellite City and EBMUD, we agreed on a term called the Consent Decree. And the Consent Decree mandate that's starting from 2014 to 2035 to improve the sewer system annually to rehabilitate 30 miles of pipelines and the maintenance holes, and also inspect and assess the sewer collection system through mostly CCTV, and also need to perform the root intrusion control over 50 miles per year using the chemical treatment. And for the sewer laterals, the city needs to manage the sewer lateral connections.

So currently, the city, most of the management practice is based on the 2014 EPA Consent Decree. And we developed and built the digital infrastructure since 2016. And recently, we moved to ArcGIS Online and also developed quite a few apps to use the ArcGIS to manage the sewer system. And the city used Granite XP. And also, we are in the pilot with IT Pipe to manage our CCTV.

And we use the CityWorks platform to document and record the service request and work orders this applies. To all the city infrastructure management, and particularly for the sewer collection system. The city started in 2016, become a user of the Info Asset Planner. And now, we are in the way of transitioning to Info360 Asset. And that is our focus today. And currently, the city is conducting a city-wide master plan, and it's a risk-based. And the master plan with a focus on the operation and maintenance plan and also the capital improvement program.

So the focus here today is to talk about the application of the Sewer Info Asset Planner. We use that to delineate the risk in the city. And the table here is to depict the likelihood of the failure. And that, I think this one, the Martha is going to present in more details. Here is the framework that we come up with the factors, and come up with the criteria, and then score them in 1 to 5, and then also present the weighting factor for each factor that we have here.

And then eventually, we assign each of the collection system elements a risk of the LOF. And we do the same thing for the COF, the consequence of failure. And we come up with the same criteria and assign the same score from 1 to 5, and then the weighting factor to come up with a comprehensive of the COF. And to combine this together, we delineated the risk dashboard.

So this is a screen capture of the sewer system risk dashboard that currently, the cities use. As you can see, we have the LOF, COF, and also the combined risk. And also presented at any location that we have here, we have the risk classification. And on the top it, gives us at a glance of the total pipe in the view, and also presented in each risk category.

Also, we apply the Info Asset Planner in our root intrusion management. So we use the model building to select a candidate up to 50 miles of the sewer collection system each year. And then we have the contractor to verify those pipes' condition and come back to us. So in that way, we can compare the risk prediction versus what we have in the field.

And once they are confirmed, and then we apply the chemical foams to weathering their route in the pipelines. And this is a really important preemptive action because the root, they greatly reduce the capacity of the pipe, and of course, a lot of our SSOs, and become a public health hazard to the public. And we monitor the root conditions in two years. And if needed, and then we'll reapply the treatment in the city.

So I'm going to hand this to Martha to talk about the two applications that we had using the Info Asset Planner and also the transitioning of the Info360 Asset. So Martha?

MARTHA NUNEZ: So Thank you so much, Wen, for providing an overview of city of Oakland's challenges and setting the stage to the rest of this presentation. As Wen specified, the city uses Info Asset Planner to currently analyze the risk as well as developing a response plan for all of the assets and their systems.

They recently decided to make the move to our Info360 Asset cloud solution, which essentially has all the same capabilities of the Info Asset Planner desktop solution. However, there are some benefits the city of Oakland saw for our cloud solutions, such as improved information sharing with other stakeholders at the organization, as well as data security based on an unfortunate incident that the city had recently.

They had a ransomware attack. And most of the information at the city was compromised, except for all of the information that was on the cloud at the time. So they made the executive decision to move all their software and solutions to the cloud. The trend towards automation is also a big reason for the move, and I'll talk a little bit more about that later on in this presentation.

So in this second part of the presentation, I want to talk about Info360 Asset and provide a product overview, as well as discuss how we implemented the product on city of Oakland's sewer network to address all of the challenges that Wen discussed earlier in this presentation. So let's start by talking about what is Info360 Asset? It is a cloud-based platform that was developed by our Autodesk team for water and sewer utilities to help them optimize their asset management challenges.

So it's essentially a central database where different sources of data at utilities is stored and analyzed, so information such as GIS, asset condition, and asset inventory data that utilities commonly have, CCTV inspection data, so sewer main surveys, as well as CMMS information, such as the one that city of Oakland has-- CityWorks-- that source work order information service requests, historical incidents, and so on, and hydraulic modeling information.

So all of that data is stored on the cloud on AWS servers. And utilities can simply access it by going to asset.info360.com and utilize all the information to make the best and most informed decisions at the organization.

So what does Info360 Asset do? It has pipeline condition assessment capabilities and risk analysis capabilities. So we have a whole CCTV management functionality where utilities can upload and store all of that historical CCTV information and then use it as one of the likelihood of failure parameters for the risk analysis in addition to other external information, again, from CMMS, GIS, and so on.

And once that risk analysis is developed, users can then utilize all that information to develop a response plan with the use of our decision tree tool. And then once the model results are available, users can share all of that information to their teams by exporting all the information via ArcGIS Online with our Info360 Asset integration to ArcGIS Online as well as exporting it as CSV reports. Or simply by accessing the platform, users can view all that information from there.

So again, why did we move to the cloud? We wanted to address all of different data management challenges that utilities face with our Info Asset Planner desktop solution. So a really big one is limited accessibility. As I mentioned earlier, it was one of city of Oakland's reasons to moving to the cloud.

Generally, we see that with a lot of sewer and water utilities, somebody in the organization develops the model. That model is stored with just one person at the organization with limited accessibility and visibility. Sometimes that person leaves the company, and it is challenging for the utility to make sure that model is up-to-date with the latest data and software version as well.

Lack of resources in general is fairly common, especially in small to medium-sized utilities-- so things such as skilled workforce, like IT specialists, as well as unlimited storage, and slow CPUs. So we hope to address all of those challenges by moving to the cloud.

And lastly, we wanted to follow industry trends. So a lot of systems that are being utilized by utilities are either on the cloud or moving to the cloud. So we wanted to make sure that we enable those integrations with other systems and enable automation as well so that utilities can make the most efficient use of their data.

So I'm going to discuss the Info Asset Planner desktop to Info360 Asset project and how we moved city of Oakland's data into Info360 Asset with four steps. So the first two steps were essentially importing data from the Info Asset Planner model into Info360 Assets-- so GIS data, external table information, and CCTV data. So we pre-process all the CCTV in the Info Asset Planner model to easily bring it into Info360 Asset.

And we also migrated the risk analysis, so we essentially duplicated all the likelihood of failure and consequence of failure analysis as well as the rehabilitation analysis. In the next few slides, I'm going to show how we conducted all those four steps as well as show it in how it looks like in the product.

So I'm going to start out by talking about the GIS and table data import process. This is the first process that we conducted as well as the first process that any user that wants to use Info360 Asset will start with. So we started out by bringing in GIS data. First, we brought in network assets. So sewer pipes and manholes, these are essentially the assets that were going to be managed and analyzed in Info360 Asset by city of Oakland.

But we also imported spatial layers. These are not being managed or analyzed, but they're being used as supporting layers for spatial analysis for the consequence or likelihood of failure analysis. For example, think about it as looking at the proximity of a pipe asset to a road, or a parcel, or a body of water. So we imported all of that information.

We pre-preprocessed all the layers to convert them from their feature class format to GeoJSON format in the WGS84 projection. And we also imported other external tables, again, that were used as supporting data for the analysis, such as root foaming type, hydraulic modeling results from the InfoSWMM model that city of Oakland had, maintenance observations, such as whether the pipe had any grease, debris, or sand during maintenance operations, as well as infiltration and inflow data.

So let's take a look at what that looks like in Info360 Asset. Here, we have the city of Oakland network, as you can see, north from the San Francisco Bay. All the GIS information was imported. And if we zoom in closer, we can view information for a specific asset. And in the table of contents, we can view all the GIS information that we imported.

We can look at an information for a specific asset, such as the asset ID, upstream and downstream node ID, as well as installation dates, any information such as the width of the asset, as well as external data that was joined from external tables. So again, modeling results, maintenance observations, if there were any historical sanitary sewer overflows, and all sorts of different pieces of data that we were going to use as part of the risk analysis and decision tree.

Next, we imported CCTV inspection data. So we did some pre-processing to develop the database that Info360 Asset could consume. But want to give a general overview about CCTV inspection management, since it's such a core piece of functionality that Info360 Asset has. So CCTV inspections are the most widely-utilized condition assessment inspection for sewer pipes, for sewer utilities.

It is simply a video survey that goes from the upstream manhole of the pipe to the downstream manhole along the length of the pipe, recording all the defect information and condition information along it. This defect information is coded and scored based on the a standard developed by the NASCO organization. It is the Pipeline Condition Assessment Program, so PACP.

With this standard, NASCO specified that scores will be scored-- or defects will be scored from 1 to 5, 5 being the most severe. So think about a level 5 defect, something such as a break, a collapse, or a deformation. So all this defect coding and scoring is stored in an access database that we developed and brought into Info360 Asset from the Info Asset Planner model.

This is what it looks like in the product. We chose to bring in new PACP data and simply selected that access database that we pre-processed from the Info Asset Planner model. About a little over 17,000 inspections were imported from the Info Asset Planner model. And once imported, we approved those inspections. Upon approval, all the defects and pipe scores were generated.

So in this example, we're looking at grade 5 defects. Again, grade 5 are the most severe. We have a few broken soil visible defects along this pipe. We got a couple, and then we also have a break. So this pipe is in quite severe condition.

We can view the pipe with the inspection associated with that. And all the defects along the pipe are geocoded based on the distance where those defects were coded. And at the top right, we have the scores that were developed, again, based on that NASCO standard that can be used as part of the risk model moving forward.

So now, let's discuss the risk analysis. Now that we imported GIS information, CCTV, and external data, we can utilize all that information to develop a risk analysis to prioritize the pipes. So in Info360 Asset, we have the concept of components and categories. Components are simply the individual consequence of failure and likelihood of failure analysis. They can be scored from 0 to 10.

An example can be something such as is the pipe in close proximity to a creek? If it is, we're going to give it a value, again, from zero to 10, 10 being the most severe. So the closer the pipe to the creek is going to get a value of 10. And then the categories combine multiple individual consequence of failure and likelihood of failure analysis in the components.

And then it has a weight of the total consequence of failure and likelihood of failure score. So going back to that same example, the category will be proximity to waterways. And within that category, the components proximity to creeks, streams, and lakes will be added and scored, again, from zero to 10.

Next, once the components and categories are created, we can specify how we want to calculate the risk, either added or multiplied. And we can also choose a weight for the total consequence of failure and likelihood of failure analysis, as well as set the risk grade from negligible to low, medium, high, and extreme based on the total risk score of the pipes.

So let's see what that looks like in Info360 Asset. Here, we have our likelihood of failure setup page where we created all the categories and components. In this example, we're going to create a component for the installation year of the pipe. So we're going to choose the different ranges of installation years based on city of Oakland's specifications in the Info Asset Planner model. The older the pipe, the higher the score is going to be.

We created those components the same way. And here, we can simply view a summary of all the categories and components for likelihood of failure. As well as consequence of failure, we have proximity to water, waste category, public exposure, social equity category, emergency response, and construction impact, spill volume, and diameter. Again, all of this comes from the Info Asset Planner model city of Oakland developed.

We chose to multiply the LOF and COF to get the total risk score. And then we chose the different risk grades to set where the pipes were going to fall. And then we run the analysis and viewed all those results in the report table as well as the end results. For example, for this pipe that is in close proximity to a creek and a railroad, let's take a look at how that risk score was calculated.

At the top, we can see that this pipe has a risk of extreme. And then we can view how the individual components were scored. 10 out of 10 is the most severe, so we have a few of the most highest scoring components. It looks like this asset has some capacity issues. It has quite high PACP structural scores. It looks like some grease has been observed for this pipe. And this pipe looks like it's in close proximity to a creek and also a railroad, giving this pipe a risk of extreme.

Next, I'm going to show how city of Oakland mitigates risk with the use of the rehab analysis tool, and how that rehab tree was migrated from the Info Asset Planner model. So we talk about rehab trees. But in this specific case for city of Oakland, it's more of an operations and maintenance decision tree.

So the idea is that the city wanted to prioritize which assets needed to get root foaming based on the different information associated about the assets. So a decision tree is simply a combination of queries with a true and false output. Sum of the queries that we use for city of Oakland, the decision tree was risk results, CCTV findings, historical pipe cleans, rehabilitations, and historical SSOs.

And each pipe in the system is going to go through every single one of these queries to assess whether the query is true or false for that asset and end up in a final action. So the actions that we specified are either the pipe has a likelihood of having roots within it or we should conduct root foaming to this pipe in the near proximity because it's very likely that this pipe has an immediate need for that.

So here, we can see what that looks like in Info360 Asset. We're looking at whether the pipe has a high risk. And this is how the query gets created is simply a dropdown where we can pick and choose the fields that we want to use for the analysis. If the pipe does have a high risk, then we are looking at whether the pipe is an active gravity main. If it is, then does the pipe have a heavy cleaning or is it scheduled for frequent cleaning?

If not, then can we see if the pipe has been rehabbed in the past 10 years? If it hasn't, is it planned to be rehabbed in the near future? And if it hasn't, so if false, can we see if the pipe has been refoamed from within the last couple of years? If it hasn't, then this pipe probably has a high likelihood of roots. And if it has, then let's see if any sanitary sewer overflows have been conducted for this pipe. And if it has, let's make sure that we immediately conduct root foaming for this pipe.

We run the model. And again, we viewed all the results for the decision tree. And similarly to the risk, we can look at a specific asset and see how the decision tree path took the pipe to that final action, so the final action being root foam and alert. And under the decision path, we can see all the queries and the result.

So this pipe looks like it does have a high risk. It is an active gravity main. And it looks like it hasn't been scheduled for frequent cleaning or rehab in the past 10 years. But it does look like this pipe has had a root-related SSO recently. So let's make sure that we conduct root foaming immediately for this pipe.

So now, I'm going to talk about next steps for the city of Oakland project as well as for our Info360 Asset solution. So the next steps with city of Oakland, we are going to be working with the city to make sure that all of their risk and decision tree results are integrated to their ArcGIS online dashboard that Wen talked about earlier in this presentation.

So Info360 Asset integrates with ArcGIS Online. The city is going to be able to log into Info360 Asset directly, and then from there, set the integration to their ArcGIS Online platform that their consultant currently hosts. So we're going to be working with their consultant, making sure that all the information that they need is there, and assist them with this ArcGIS Online integration so that they can utilize that dashboard moving forward and help them make all the decisions at the organization.

And then a few exciting future roadmap items, we are going to be developing AI-based workflows for CCTV defect detection as well as deterioration modeling tool. So users will be able to use historical information, put it into a statistical model, and help them predict how assets are going to fail in the future, as well as API integrations with external systems, as I mentioned earlier in this presentation, and much more. We're hoping that city of Oakland is going to benefit from most of these future roadmap items.

And then if anyone wants to look at what plans we have for the future, you can simply Google Info360 Asset Future Roadmap and view all the exciting stuff that we have planned in the near term. So I'm going to hand it off to Wen to provide some conclusions for city of Oakland, and then how they're going to move forward with their asset management strategy.

WEN CHEN: Thank you, Martha, for your presentation of the Info360 Asset details. So combining city of Oakland experience and working with Martha in the past six months on the Info360, and I would like to conclude this presentation. And for the city, we are going to implement the master planning at the sewershed level.

So maybe I can explain a little bit about the sewer shed is that we are not going to implement the risk mitigation at the pipe level, but more like a combined community, or in the large scale of the sub-basin. In that way, this would be more efficient and effective. And also, we are going to use the Info360 Asset to automate the data input from various sources, taking advantage of the future roadmap.

And right now, the system risk is kind of like a static based on a given set of the inspection evaluation. And also, the city's latest development and other factors are not counted towards the risk calculation. So we hope to automation of the system risk in the future. And for the ArcGIS Online, and we keep developing the different apps. And hopefully, this would seamlessly convey the Info360 results into our ArcGIS Online library. And then in that way, we can come up with a more integrated solution.

And from the Autodesk and the Info360 work team, and I really appreciate working with Martha, and for prioritizing the aging infrastructure to come up with the effective solution. And also, the software itself present the capability for planning for the future. And moving to the cloud, this obviously would bring more data security to the city. And also, we are capable of sharing the data across the team, as well as sharing the data with the outside clients, and also our key stakeholders. And that concludes our presentation today. And both, thank you

MARTHA NUNEZ: Thank you.

______
icon-svg-close-thick

Cookie 首选项

您的隐私对我们非常重要,为您提供出色的体验是我们的责任。为了帮助自定义信息和构建应用程序,我们会收集有关您如何使用此站点的数据。

我们是否可以收集并使用您的数据?

详细了解我们使用的第三方服务以及我们的隐私声明

绝对必要 – 我们的网站正常运行并为您提供服务所必需的

通过这些 Cookie,我们可以记录您的偏好或登录信息,响应您的请求或完成购物车中物品或服务的订购。

改善您的体验 – 使我们能够为您展示与您相关的内容

通过这些 Cookie,我们可以提供增强的功能和个性化服务。可能由我们或第三方提供商进行设置,我们会利用其服务为您提供定制的信息和体验。如果您不允许使用这些 Cookie,可能会无法使用某些或全部服务。

定制您的广告 – 允许我们为您提供针对性的广告

这些 Cookie 会根据您的活动和兴趣收集有关您的数据,以便向您显示相关广告并跟踪其效果。通过收集这些数据,我们可以更有针对性地向您显示与您的兴趣相关的广告。如果您不允许使用这些 Cookie,您看到的广告将缺乏针对性。

icon-svg-close-thick

第三方服务

详细了解每个类别中我们所用的第三方服务,以及我们如何使用所收集的与您的网络活动相关的数据。

icon-svg-hide-thick

icon-svg-show-thick

绝对必要 – 我们的网站正常运行并为您提供服务所必需的

Qualtrics
我们通过 Qualtrics 借助调查或联机表单获得您的反馈。您可能会被随机选定参与某项调查,或者您可以主动向我们提供反馈。填写调查之前,我们将收集数据以更好地了解您所执行的操作。这有助于我们解决您可能遇到的问题。. Qualtrics 隐私政策
Akamai mPulse
我们通过 Akamai mPulse 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Akamai mPulse 隐私政策
Digital River
我们通过 Digital River 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Digital River 隐私政策
Dynatrace
我们通过 Dynatrace 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Dynatrace 隐私政策
Khoros
我们通过 Khoros 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Khoros 隐私政策
Launch Darkly
我们通过 Launch Darkly 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Launch Darkly 隐私政策
New Relic
我们通过 New Relic 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. New Relic 隐私政策
Salesforce Live Agent
我们通过 Salesforce Live Agent 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Salesforce Live Agent 隐私政策
Wistia
我们通过 Wistia 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Wistia 隐私政策
Tealium
我们通过 Tealium 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Tealium 隐私政策
Upsellit
我们通过 Upsellit 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Upsellit 隐私政策
CJ Affiliates
我们通过 CJ Affiliates 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. CJ Affiliates 隐私政策
Commission Factory
我们通过 Commission Factory 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Commission Factory 隐私政策
Google Analytics (Strictly Necessary)
我们通过 Google Analytics (Strictly Necessary) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Strictly Necessary) 隐私政策
Typepad Stats
我们通过 Typepad Stats 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Typepad Stats 隐私政策
Geo Targetly
我们使用 Geo Targetly 将网站访问者引导至最合适的网页并/或根据他们的位置提供量身定制的内容。 Geo Targetly 使用网站访问者的 IP 地址确定访问者设备的大致位置。 这有助于确保访问者以其(最有可能的)本地语言浏览内容。Geo Targetly 隐私政策
SpeedCurve
我们使用 SpeedCurve 来监控和衡量您的网站体验的性能,具体因素为网页加载时间以及后续元素(如图像、脚本和文本)的响应能力。SpeedCurve 隐私政策
Qualified
Qualified is the Autodesk Live Chat agent platform. This platform provides services to allow our customers to communicate in real-time with Autodesk support. We may collect unique ID for specific browser sessions during a chat. Qualified Privacy Policy

icon-svg-hide-thick

icon-svg-show-thick

改善您的体验 – 使我们能够为您展示与您相关的内容

Google Optimize
我们通过 Google Optimize 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Google Optimize 隐私政策
ClickTale
我们通过 ClickTale 更好地了解您可能会在站点的哪些方面遇到困难。我们通过会话记录来帮助了解您与站点的交互方式,包括页面上的各种元素。将隐藏可能会识别个人身份的信息,而不会收集此信息。. ClickTale 隐私政策
OneSignal
我们通过 OneSignal 在 OneSignal 提供支持的站点上投放数字广告。根据 OneSignal 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 OneSignal 收集的与您相关的数据相整合。我们利用发送给 OneSignal 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. OneSignal 隐私政策
Optimizely
我们通过 Optimizely 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Optimizely 隐私政策
Amplitude
我们通过 Amplitude 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Amplitude 隐私政策
Snowplow
我们通过 Snowplow 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Snowplow 隐私政策
UserVoice
我们通过 UserVoice 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. UserVoice 隐私政策
Clearbit
Clearbit 允许实时数据扩充,为客户提供个性化且相关的体验。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。Clearbit 隐私政策
YouTube
YouTube 是一个视频共享平台,允许用户在我们的网站上查看和共享嵌入视频。YouTube 提供关于视频性能的观看指标。 YouTube 隐私政策

icon-svg-hide-thick

icon-svg-show-thick

定制您的广告 – 允许我们为您提供针对性的广告

Adobe Analytics
我们通过 Adobe Analytics 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Adobe Analytics 隐私政策
Google Analytics (Web Analytics)
我们通过 Google Analytics (Web Analytics) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Web Analytics) 隐私政策
AdWords
我们通过 AdWords 在 AdWords 提供支持的站点上投放数字广告。根据 AdWords 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AdWords 收集的与您相关的数据相整合。我们利用发送给 AdWords 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AdWords 隐私政策
Marketo
我们通过 Marketo 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。我们可能会将此数据与从其他信息源收集的数据相整合,以根据高级分析处理方法向您提供改进的销售体验或客户服务体验以及更相关的内容。. Marketo 隐私政策
Doubleclick
我们通过 Doubleclick 在 Doubleclick 提供支持的站点上投放数字广告。根据 Doubleclick 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Doubleclick 收集的与您相关的数据相整合。我们利用发送给 Doubleclick 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Doubleclick 隐私政策
HubSpot
我们通过 HubSpot 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。. HubSpot 隐私政策
Twitter
我们通过 Twitter 在 Twitter 提供支持的站点上投放数字广告。根据 Twitter 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Twitter 收集的与您相关的数据相整合。我们利用发送给 Twitter 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Twitter 隐私政策
Facebook
我们通过 Facebook 在 Facebook 提供支持的站点上投放数字广告。根据 Facebook 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Facebook 收集的与您相关的数据相整合。我们利用发送给 Facebook 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Facebook 隐私政策
LinkedIn
我们通过 LinkedIn 在 LinkedIn 提供支持的站点上投放数字广告。根据 LinkedIn 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 LinkedIn 收集的与您相关的数据相整合。我们利用发送给 LinkedIn 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. LinkedIn 隐私政策
Yahoo! Japan
我们通过 Yahoo! Japan 在 Yahoo! Japan 提供支持的站点上投放数字广告。根据 Yahoo! Japan 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Yahoo! Japan 收集的与您相关的数据相整合。我们利用发送给 Yahoo! Japan 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Yahoo! Japan 隐私政策
Naver
我们通过 Naver 在 Naver 提供支持的站点上投放数字广告。根据 Naver 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Naver 收集的与您相关的数据相整合。我们利用发送给 Naver 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Naver 隐私政策
Quantcast
我们通过 Quantcast 在 Quantcast 提供支持的站点上投放数字广告。根据 Quantcast 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Quantcast 收集的与您相关的数据相整合。我们利用发送给 Quantcast 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Quantcast 隐私政策
Call Tracking
我们通过 Call Tracking 为推广活动提供专属的电话号码。从而,使您可以更快地联系我们的支持人员并帮助我们更精确地评估我们的表现。我们可能会通过提供的电话号码收集与您在站点中的活动相关的数据。. Call Tracking 隐私政策
Wunderkind
我们通过 Wunderkind 在 Wunderkind 提供支持的站点上投放数字广告。根据 Wunderkind 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Wunderkind 收集的与您相关的数据相整合。我们利用发送给 Wunderkind 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Wunderkind 隐私政策
ADC Media
我们通过 ADC Media 在 ADC Media 提供支持的站点上投放数字广告。根据 ADC Media 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 ADC Media 收集的与您相关的数据相整合。我们利用发送给 ADC Media 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. ADC Media 隐私政策
AgrantSEM
我们通过 AgrantSEM 在 AgrantSEM 提供支持的站点上投放数字广告。根据 AgrantSEM 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AgrantSEM 收集的与您相关的数据相整合。我们利用发送给 AgrantSEM 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AgrantSEM 隐私政策
Bidtellect
我们通过 Bidtellect 在 Bidtellect 提供支持的站点上投放数字广告。根据 Bidtellect 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bidtellect 收集的与您相关的数据相整合。我们利用发送给 Bidtellect 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bidtellect 隐私政策
Bing
我们通过 Bing 在 Bing 提供支持的站点上投放数字广告。根据 Bing 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bing 收集的与您相关的数据相整合。我们利用发送给 Bing 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bing 隐私政策
G2Crowd
我们通过 G2Crowd 在 G2Crowd 提供支持的站点上投放数字广告。根据 G2Crowd 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 G2Crowd 收集的与您相关的数据相整合。我们利用发送给 G2Crowd 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. G2Crowd 隐私政策
NMPI Display
我们通过 NMPI Display 在 NMPI Display 提供支持的站点上投放数字广告。根据 NMPI Display 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 NMPI Display 收集的与您相关的数据相整合。我们利用发送给 NMPI Display 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. NMPI Display 隐私政策
VK
我们通过 VK 在 VK 提供支持的站点上投放数字广告。根据 VK 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 VK 收集的与您相关的数据相整合。我们利用发送给 VK 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. VK 隐私政策
Adobe Target
我们通过 Adobe Target 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Adobe Target 隐私政策
Google Analytics (Advertising)
我们通过 Google Analytics (Advertising) 在 Google Analytics (Advertising) 提供支持的站点上投放数字广告。根据 Google Analytics (Advertising) 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Google Analytics (Advertising) 收集的与您相关的数据相整合。我们利用发送给 Google Analytics (Advertising) 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Google Analytics (Advertising) 隐私政策
Trendkite
我们通过 Trendkite 在 Trendkite 提供支持的站点上投放数字广告。根据 Trendkite 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Trendkite 收集的与您相关的数据相整合。我们利用发送给 Trendkite 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Trendkite 隐私政策
Hotjar
我们通过 Hotjar 在 Hotjar 提供支持的站点上投放数字广告。根据 Hotjar 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Hotjar 收集的与您相关的数据相整合。我们利用发送给 Hotjar 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Hotjar 隐私政策
6 Sense
我们通过 6 Sense 在 6 Sense 提供支持的站点上投放数字广告。根据 6 Sense 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 6 Sense 收集的与您相关的数据相整合。我们利用发送给 6 Sense 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. 6 Sense 隐私政策
Terminus
我们通过 Terminus 在 Terminus 提供支持的站点上投放数字广告。根据 Terminus 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Terminus 收集的与您相关的数据相整合。我们利用发送给 Terminus 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Terminus 隐私政策
StackAdapt
我们通过 StackAdapt 在 StackAdapt 提供支持的站点上投放数字广告。根据 StackAdapt 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 StackAdapt 收集的与您相关的数据相整合。我们利用发送给 StackAdapt 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. StackAdapt 隐私政策
The Trade Desk
我们通过 The Trade Desk 在 The Trade Desk 提供支持的站点上投放数字广告。根据 The Trade Desk 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 The Trade Desk 收集的与您相关的数据相整合。我们利用发送给 The Trade Desk 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. The Trade Desk 隐私政策
RollWorks
We use RollWorks to deploy digital advertising on sites supported by RollWorks. Ads are based on both RollWorks data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that RollWorks has collected from you. We use the data that we provide to RollWorks to better customize your digital advertising experience and present you with more relevant ads. RollWorks Privacy Policy

是否确定要简化联机体验?

我们希望您能够从我们这里获得良好体验。对于上一屏幕中的类别,如果选择“是”,我们将收集并使用您的数据以自定义您的体验并为您构建更好的应用程序。您可以访问我们的“隐私声明”,根据需要更改您的设置。

个性化您的体验,选择由您来做。

我们重视隐私权。我们收集的数据可以帮助我们了解您对我们产品的使用情况、您可能感兴趣的信息以及我们可以在哪些方面做出改善以使您与 Autodesk 的沟通更为顺畅。

我们是否可以收集并使用您的数据,从而为您打造个性化的体验?

通过管理您在此站点的隐私设置来了解个性化体验的好处,或访问我们的隐私声明详细了解您的可用选项。