AU Class
AU Class
class - AU

Streamlining the Design Process CO2e Footprint, Cost, and Time Assessment

共享此课程
在视频、演示文稿幻灯片和讲义中搜索关键字:

说明

In this session, we'll showcase how a web application, built on top of Autodesk Platform Services and our local database, can optimize the design process, improve CO2e footprint assessment, and enhance collaboration among clients and stakeholders. Using this web application enables clients to efficiently simulate design modifications, making well-informed decisions that effectively minimize both the cost and time associated with CO2e emissions. This ultimately leads to a more streamlined and sustainable design process. For a deeper dive into what we'll cover, please see: https://drive.google.com/file/d/1ZKyYvjcyFC8EzgOVGxoBgPp2xWKs_bfO/view

主要学习内容

  • Explain how the web application assesses CO2 emissions, Costs, and Time information to support informed decision-making.
  • Understand the underlying principles of the web application, such as the use of local data hubs and APS APIs.
  • Explore the integration possibilities of AI \ChatGPT\ with data to enhance project insights and decision-making processes.
  • Discover the power of completing missing metadata and its impact on accurate data retrieval and calculations.

讲师

  • Abed Aarabi 的头像
    Abed Aarabi
    I have a degree in construction management from Copenhagen University, and I'm skilled in full-stack development. I've been a part of the Artelia Group since 2019. At first, I worked on BIM stuff and coding. Later, in 2020, I moved into software development and started managing technical projects. During my time at Artelia, I’ve been part of creating several web applications that help us make better decisions. Right now, we're working on a web app that helps us plan designs better. It can simulate things like CO2 impact, cost, and time by utilizing Autodesk platform services. I'm originally from Syria but moved to Denmark in 2015. Besides my work, I've got a funny side – I make great coffee and cocktails at my café bar in Copenhagen.
  • Morten Andersson 的头像
    Morten Andersson
    Digital Director working in the field of Business Development, IT and Digital Transformation. For more than 15 yrs I have been responsible for the development of Artelia Denmarks IT platform to be an integrated part of business, supporting the needs for technical and collaboration tools. The Digital Transformation in all of our business areas is part of my portfolio in the Management team. Specialties: Strategic analysis and development. Project management for large projects. Client Consultancy. Environmental law and planning regulation. Substantial experience in environmental assessment of industry and infrastructure. Sustainable building design for large buildings, cities and communities. Sustainable development, CSR, UN Global Compact and now 17 Goals have been part of my high interest and i have been working with these topics in Denmark the last 15 yrs.
Video Player is loading.
Current Time 0:00
Duration 25:07
Loaded: 0.66%
Stream Type LIVE
Remaining Time 25:07
 
1x
  • Chapters
  • descriptions off, selected
  • en (Main), selected
Transcript

MORTEN ANDERSSON: Welcome to this session about streamlined design process for CO2 footprint reduction and the APS APIs. We will go through this. I am Morten Andersson. I'm Digital Director of Artelia Denmark. I have been working with digitalization and optimisation for the last 20 years in Artelia. Together with me today I have Abed Aarabi, who is the Principal Project Manager of this application. He has been doing all the design of it.

We are very happy to doing this presentation. Yes. The learning objectives for today-- we have four, and of them-- the first one is how the application assesses the information about CO2 cost and time to make it being a decision-making tool.

The next objective is diving a little deeper into the principle of the application and how the APS APIs works and how we have to complement it with our local data hub to make it even more effective. And then we will make a sneak peek, I would say, on the possibility for IA and ChatGPT because there are actually some very nice possibilities with this application.

The last thing we will dive into is that if you have a 3D model in ACC, you will always miss some data to be able to do the correct calculation for CO2 or cost. So we need to complement it with some local data hubs, yes.

A little about the Artelia-- we are a engineering consulting company international. In Denmark, we are around a thousand people, which make us in top five in Denmark. We have a nearly 100 years of experience, so think we have something to build on. We are all in Denmark.

Going to worldwide, we are part of Artelia Group. We joined it five years ago. From Denmark, we are 8,500 people worldwide mostly Europe, where we are in France and Denmark, but also quite a bit of offices in Asia, and newly, in Canada now we have around 1,200 employees.

We are a full service engineering company, and we are having three major pillars, buildings, energy and industry, and infrastructure, and we are doing all kind of sustainability consultancies, but we also do hydraulic and nuclear. And so we are full service companies.

We-- I would like just to say a little on our values-- we have five values-- because this is very important for us. And essentially, the expertise is very important for us, but making complex things simple is one of our major issues. And we would like to share our knowledge because we think we need to and we optimize it because we have the possibilities.

We are independent, meaning that 3,000 of our managers, employees owns the company, which make a lot of possibility for us to choose what our drivers are for running our company. Just a few of them-- of course, sustainability, environmental impact, and making innovative solutions is very much on our agenda for these years. And we have been a CSR pioneer for quite some years in Denmark and in France, and it's important for us. But being multidisciplinary, we feel that is an important part of being a good consultant, where we can be full service for our client.

And the last one I will take ahead of the presentation our company is to bring an innovative hub on the global level because it's necessary to attract the top talent from the world to be able to do this kind of application and being able to fool our goal of designing solution for positive life, which we are quite proud of.

ABED AARABI: Well, my name is Abed. I've been with Artelia for around five years. I've been leading multiple digital transformation initiatives. Today I would like to walk you some of it before we enter the core of the application.

A way back, when Forge back then exist-- and today, of course, it's called APS-- we started with integrating with the first API to retrieve the data directly from cloud and present it in a nice color and chart, which is giving us better insight.

But we didn't stop there. We wanted to move a bit more forward, so by integrating the 3D viewer and finding a way to classify what type of parameter we needed, which is a verifying accepted value in the 3D model, and that turned the model to different color to give us a better visual.

After that, we decided to look into IoT and digital twin. So we've been also using as well the apps APIs, where we learned how to retrieve live data from HVAC system directly, and that will give us better insight to evaluate pressure, water flow, and airflow, and all of it, actually.

But to be honest, not all those solution went implemented at the house. Some of them, of course, went false, but it was steps, so in each steps we learn a lot. We learned a lot to start thinking differently. We start thinking on-- we know already a lot today about the geometry and what is inside the 3D viewer, and we learn what we miss at the house to complete the missing data at the 3D viewer.

So we decided to build something called a data hub. Data hub-- the main focus was to provide additional parameter that might be missing in the 3D model. And of course, we learn much more about the integration of APS with Autodesk help, with all the developer. They were step by step with us in this process.

So what I'm trying to say, if we put it all of it together-- so we have the 3D model, we have the data hub, we have the APIs from APS-- we achieve a cohesive data connection. But let me go a little step back, and what's exactly the data hub today at Artelia? A data hub-- it's built on multiple databases, and each database interact with different APIs, so it's very resilient to retrieve data from different data sources.

So for example, everybody, I believe, familiar with EC3 or different APIs or even Excel sheet. So by doing that, we try to create something called centralized data. We were trying to centralize the knowledge of our engineers, of our experience in one place, and doing so by the integrating with APS. And as you can see at the screen, the 3D viewer start visualizing itself, so instead you having a PowerPoint that you can see the color by reflecting on number, now the geometry starts speaking. The walls start saying, I don't accept the value. I'm not compliant.

So the 3D geometry become as a nice chart color. And from here, I would like to handle it to Morten to understand why we are doing that.

MORTEN ANDERSSON: Exactly. Why are we investing so much resource and money in developing these tools? That's because we have to. If we go back to the Earth, the planetary boundaries, this is just to show and share the understanding that in the green circle, that is the boundaries where we can live on our planet in the way we know.

And as you can see, in many areas climate change, biodiversity loss, change of lands, we have exceeded the limits of the boundary of the planet. I believe most of us think that there are something about this that we have to take care of. I also know that some people don't believe in it, but I certainly do believe that we need to be very careful. So that's why we're investing so much money.

But we also are doing something because in Denmark, the regulations are quite strict on how much CO2 there must be embedded in a building. This is an example of a housing building where the regulation just now is 12 kilo CO2 equivalent per square meter per year. And it will go down in the coming years. It will go down to 7 kilo.

We have an example in Denmark called Living Places, which is a building that are now for real, and we have been involved in this project with a very foreseeing client. And we succeeded going down to 3.5 kilo, and that is the best achieved in Denmark so far. We are quite proud of that.

But if we look and believe that the Paris Convention of 1.5 increase in temperature is the limit for our planet, we need to go down to 0.5 kilo per square meter per year. So there's a lot of way to go, and that's why we need to do something. And I believe we have the skills together with Autodesk, together with some of you guys in the audience because we need to collaborate on this.

But this example show there are possibilities, and so that's why we have invested quite some resources and we have put the Abed as principal for developing this data hub and the application where we have been focused on CO2 because we have to. And the clients-- they know we have to, so we need to provide some tools where we, in the early design phase, can help ourselves and each other to make the right decision.

And of course, cost is important for the client and therefore also for us and time in doing the production of the projects. So that's why we have been focusing on these three areas in the beginning, but we can add other items if that should be necessary. So please, Abed, continue with the description of our application we have been working for the last years.

Yeah. Well, thank you, Morten. Of course, CO2 and time and cost-- it's the most important parameter nowadays in the AEC project phase. But putting all of it together, we ended up with building a very beautiful platform that allowing all the stakeholder in early project design phase to have an better insight on each element, to see how much it cost and how much time would take to be built.

And of course, it's visualized by-- as I said in the beginning, with a color schema from green to red, would reflect low to high values. So basically, we could group by any parameters included in the 3D model or it's coming from outside the 3D model because we are working on something called injecting data at the 3D model.

So for instance, we could inject the total gross area to the model. We could manipulate the data before we insert it to our local database. So here we can group by the category, see all the walls with all types how much CO2 and how much does it cost and how much time it needs.

And of course, the platform-- it has the power to visualize or simulate not only on a 3D model, of course, on the 2D models as well or 2D sheets. That's giving also a better insight for the stakeholder or the project owner. Of course, as you know already that a client sometimes is not willing to pay for every component at the 3D model, so we don't design everything during the project phases design or technical phase.

So me and the team-- we developed a functionality to incorporate manual inserting component or element from outside the 3D model. So basically, you have a model with maybe 100 radiator. But we model only one of them, but we know already there is 100, so just to get better insight on the total price or time.

Of course-- as you, of course, heard about today, we have a hype about AI and ChatGPT. So basically, we were thinking, me and the team, of course, we have all the data we need today by the collaboration between the 3D model metadata and the data hub from our local house. Why we don't use the AI just for trying something new?

Of course, before I continue, I know there is-- we have a very high data privacy today, so basically, this is not open. This is only for internal use and just for the proof of concept. So I would like to leave you with one-minute video demo here.

[VIDEO PLAYBACK]

So here I'm asking how many windows at the 3D model. Of course, the AI select it and try to write me all the type. And now I would like to see the price for each of them. The price, of course, is not included at the 3D model, so the AI start querying data from our database in order to learn how much is it. And now also I'm asking how much the carbon footprint for the most expensive window, which is-- yeah.

It's pretty cool, isn't it? It's a great assistant, at least for me. Yeah. And here I would like, as promised the team, to talk a little bit about our sequential API diagram. I'm going to speak very high level, but I'm happy to take it if there is a detailed question afterwards. So basically, the main technology we use is very modern. We use React, Redux, Nest, and GraphQL with Apollo server.

So the app infrastructure-- it's work like that way because the app is built entirely on top of Autodesk technology. So here we log in through Autodesk. We get the access token. Then we gain the user details to know who's logging into the platform and what project working on, and then afterwards we query all the data from the 3D model. And then we aggregate it with the data hub in order to build a price list, which I'm going to speak about in the demo.

And of course, as a back end, as I mentioned, we use GraphQL and Apollo server because it's helped us a lot in optimization, and of course, we query very, very large data usually from various data sources. So GraphQL-- it helps us much better, and it's better for environment since we're talking about. So you don't need to do a lot of computational power and different servers here.

And of course, I was so happy to hear that Autodesk-- already they going this path, and they are developing a GraphQL. So we are looking much forward to collaborate more with them and see how we can improve this technology.

And now is the product demo, as we say, the moment of truth. So I had made a short video to explain the [INAUDIBLE] and I will be speaking a little bit through the process. So I hope you will enjoy it.

[VIDEO PLAYBACK]

ABED AARABI: So here we log in, as I said, and using Autodesk platform because it's built all of it in Autodesk. We have access to the ACC or BIM 360. We can see all our hubs, the projects, the folders. It mirrored the same structure so user-- they don't get confused. And of course, we developed functionality to add them in favorites so easier to access.

Here we load in a model. Of course, we group them by category. You can see the total CO2 and the cost and of course time for this group. Of course, you can group by any parameter, but we use category for the simplicity. You can see all the types of it here.

So let's try to run a simulation between those three categories, wall, floors, and foundation, and let's use CO2. By doing that, you can see the 3D model start coloring that. You could see which element has the most high CO2 or the low and, of course, the time, which one it takes more time than the other to be built.

And here also is the same, the total price, because we know already the location from the 3D model, we know the type, and we have an advanced relation between the data hub and the 3D models in order to start doing this operation.

So here, of course, let's say we would like to build a price list for a client but we would like to manipulate the data at the 3D model before we build this, so here we can edit it. Let's say this wall-- it has a bigger area. So we can change it.

And of course, we can fix the volume number as well. And when I save, it's automatically recalculate everything. And here I would like to build a price list for floors. I build the project in advance called AU 23.

So now I go to the project type.

Here we dispatch the data from the 3D model and the data hub, so all the data sources-- it become one in one place. So basically, you can get the total if each parameter already we decided in advance and those parameters. Of course, as I mentioned in the beginning, here we can incorporate element that it's not exist, so let's say, take this window. It's very smart to know how to calculate it to bring all the materials, so here let's say by piece, which is [INAUDIBLE], so I want six of them.

And then when I add it, it calculate the price and the CO2 and everything and show it in different color. So I could see that this wasn't exist at the model. I add it manually because it has a green color. Of course, we can export it to Excel to share it very fast between colleagues, and then we can copy from project to other so not repeat the job.

And, well, this is actually the most top functionality as I promised the team to bring to you to today. I just want to mention something. We were facing a big challenge in this application was to bring a lot of data on the browser and how to run all the data same time smoothly. So that was very advanced work, and I would really thank our team because they were doing tremendous advanced work to bring all of it in the browser. Thank you so much. I would like to hand it again to Morten.

MORTEN ANDERSSON: Thank you, Abed. I think it's pretty cool, and I'm quite proud of what Abed and the team have achieved. Now, you could think that this is only a prototype and a demo application, we assume, but actually, we have implemented it in our production.

And I have three quotes here from some of our colleagues, our CEO, Alex Frankel, who-- he knows the power of a data-driven company and approach, and so we have been working with this. And his goal is that we will be in top five in the Nordic working with applications like this. So he absolutely support the work we have been doing.

And Petras, who is working with custom manager on a daily basis-- he has been testing this, and he has been working very close together with Abed, developing the tool, and he already use it. And he estimate that the time he spent on doing the cost management is-- there is a lot of effort, a lot of advantages.

And Rune also has been part of the development. He's head of our department. He is looking ahead, saying, now we have this tool. And he can see the possibilities on making the decision-making process even smoother for the client and draw the client into the design process in a much more advanced way. So we believe that we have quite a powerful tool here.

So as said before, now we have achieved to prove that we could create this application, but we don't stop there because it's only the beginning. We are looking ahead even further develop this tool, and we would like it very much to do it together with the colleagues in the branch, together with some of you maybe because we need to share these kind of innovative hubs because we need to. We have to do this to make it easier for us to live on the planet.

So please get in contact with us. We will be happy to discuss and to develop together with you. So yeah.

______
icon-svg-close-thick

Cookie 首选项

您的隐私对我们非常重要,为您提供出色的体验是我们的责任。为了帮助自定义信息和构建应用程序,我们会收集有关您如何使用此站点的数据。

我们是否可以收集并使用您的数据?

详细了解我们使用的第三方服务以及我们的隐私声明

绝对必要 – 我们的网站正常运行并为您提供服务所必需的

通过这些 Cookie,我们可以记录您的偏好或登录信息,响应您的请求或完成购物车中物品或服务的订购。

改善您的体验 – 使我们能够为您展示与您相关的内容

通过这些 Cookie,我们可以提供增强的功能和个性化服务。可能由我们或第三方提供商进行设置,我们会利用其服务为您提供定制的信息和体验。如果您不允许使用这些 Cookie,可能会无法使用某些或全部服务。

定制您的广告 – 允许我们为您提供针对性的广告

这些 Cookie 会根据您的活动和兴趣收集有关您的数据,以便向您显示相关广告并跟踪其效果。通过收集这些数据,我们可以更有针对性地向您显示与您的兴趣相关的广告。如果您不允许使用这些 Cookie,您看到的广告将缺乏针对性。

icon-svg-close-thick

第三方服务

详细了解每个类别中我们所用的第三方服务,以及我们如何使用所收集的与您的网络活动相关的数据。

icon-svg-hide-thick

icon-svg-show-thick

绝对必要 – 我们的网站正常运行并为您提供服务所必需的

Qualtrics
我们通过 Qualtrics 借助调查或联机表单获得您的反馈。您可能会被随机选定参与某项调查,或者您可以主动向我们提供反馈。填写调查之前,我们将收集数据以更好地了解您所执行的操作。这有助于我们解决您可能遇到的问题。. Qualtrics 隐私政策
Akamai mPulse
我们通过 Akamai mPulse 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Akamai mPulse 隐私政策
Digital River
我们通过 Digital River 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Digital River 隐私政策
Dynatrace
我们通过 Dynatrace 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Dynatrace 隐私政策
Khoros
我们通过 Khoros 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Khoros 隐私政策
Launch Darkly
我们通过 Launch Darkly 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Launch Darkly 隐私政策
New Relic
我们通过 New Relic 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. New Relic 隐私政策
Salesforce Live Agent
我们通过 Salesforce Live Agent 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Salesforce Live Agent 隐私政策
Wistia
我们通过 Wistia 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Wistia 隐私政策
Tealium
我们通过 Tealium 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Tealium 隐私政策
Upsellit
我们通过 Upsellit 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Upsellit 隐私政策
CJ Affiliates
我们通过 CJ Affiliates 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. CJ Affiliates 隐私政策
Commission Factory
我们通过 Commission Factory 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Commission Factory 隐私政策
Google Analytics (Strictly Necessary)
我们通过 Google Analytics (Strictly Necessary) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Strictly Necessary) 隐私政策
Typepad Stats
我们通过 Typepad Stats 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Typepad Stats 隐私政策
Geo Targetly
我们使用 Geo Targetly 将网站访问者引导至最合适的网页并/或根据他们的位置提供量身定制的内容。 Geo Targetly 使用网站访问者的 IP 地址确定访问者设备的大致位置。 这有助于确保访问者以其(最有可能的)本地语言浏览内容。Geo Targetly 隐私政策
SpeedCurve
我们使用 SpeedCurve 来监控和衡量您的网站体验的性能,具体因素为网页加载时间以及后续元素(如图像、脚本和文本)的响应能力。SpeedCurve 隐私政策
Qualified
Qualified is the Autodesk Live Chat agent platform. This platform provides services to allow our customers to communicate in real-time with Autodesk support. We may collect unique ID for specific browser sessions during a chat. Qualified Privacy Policy

icon-svg-hide-thick

icon-svg-show-thick

改善您的体验 – 使我们能够为您展示与您相关的内容

Google Optimize
我们通过 Google Optimize 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Google Optimize 隐私政策
ClickTale
我们通过 ClickTale 更好地了解您可能会在站点的哪些方面遇到困难。我们通过会话记录来帮助了解您与站点的交互方式,包括页面上的各种元素。将隐藏可能会识别个人身份的信息,而不会收集此信息。. ClickTale 隐私政策
OneSignal
我们通过 OneSignal 在 OneSignal 提供支持的站点上投放数字广告。根据 OneSignal 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 OneSignal 收集的与您相关的数据相整合。我们利用发送给 OneSignal 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. OneSignal 隐私政策
Optimizely
我们通过 Optimizely 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Optimizely 隐私政策
Amplitude
我们通过 Amplitude 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Amplitude 隐私政策
Snowplow
我们通过 Snowplow 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Snowplow 隐私政策
UserVoice
我们通过 UserVoice 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. UserVoice 隐私政策
Clearbit
Clearbit 允许实时数据扩充,为客户提供个性化且相关的体验。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。Clearbit 隐私政策
YouTube
YouTube 是一个视频共享平台,允许用户在我们的网站上查看和共享嵌入视频。YouTube 提供关于视频性能的观看指标。 YouTube 隐私政策

icon-svg-hide-thick

icon-svg-show-thick

定制您的广告 – 允许我们为您提供针对性的广告

Adobe Analytics
我们通过 Adobe Analytics 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Adobe Analytics 隐私政策
Google Analytics (Web Analytics)
我们通过 Google Analytics (Web Analytics) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Web Analytics) 隐私政策
AdWords
我们通过 AdWords 在 AdWords 提供支持的站点上投放数字广告。根据 AdWords 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AdWords 收集的与您相关的数据相整合。我们利用发送给 AdWords 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AdWords 隐私政策
Marketo
我们通过 Marketo 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。我们可能会将此数据与从其他信息源收集的数据相整合,以根据高级分析处理方法向您提供改进的销售体验或客户服务体验以及更相关的内容。. Marketo 隐私政策
Doubleclick
我们通过 Doubleclick 在 Doubleclick 提供支持的站点上投放数字广告。根据 Doubleclick 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Doubleclick 收集的与您相关的数据相整合。我们利用发送给 Doubleclick 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Doubleclick 隐私政策
HubSpot
我们通过 HubSpot 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。. HubSpot 隐私政策
Twitter
我们通过 Twitter 在 Twitter 提供支持的站点上投放数字广告。根据 Twitter 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Twitter 收集的与您相关的数据相整合。我们利用发送给 Twitter 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Twitter 隐私政策
Facebook
我们通过 Facebook 在 Facebook 提供支持的站点上投放数字广告。根据 Facebook 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Facebook 收集的与您相关的数据相整合。我们利用发送给 Facebook 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Facebook 隐私政策
LinkedIn
我们通过 LinkedIn 在 LinkedIn 提供支持的站点上投放数字广告。根据 LinkedIn 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 LinkedIn 收集的与您相关的数据相整合。我们利用发送给 LinkedIn 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. LinkedIn 隐私政策
Yahoo! Japan
我们通过 Yahoo! Japan 在 Yahoo! Japan 提供支持的站点上投放数字广告。根据 Yahoo! Japan 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Yahoo! Japan 收集的与您相关的数据相整合。我们利用发送给 Yahoo! Japan 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Yahoo! Japan 隐私政策
Naver
我们通过 Naver 在 Naver 提供支持的站点上投放数字广告。根据 Naver 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Naver 收集的与您相关的数据相整合。我们利用发送给 Naver 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Naver 隐私政策
Quantcast
我们通过 Quantcast 在 Quantcast 提供支持的站点上投放数字广告。根据 Quantcast 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Quantcast 收集的与您相关的数据相整合。我们利用发送给 Quantcast 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Quantcast 隐私政策
Call Tracking
我们通过 Call Tracking 为推广活动提供专属的电话号码。从而,使您可以更快地联系我们的支持人员并帮助我们更精确地评估我们的表现。我们可能会通过提供的电话号码收集与您在站点中的活动相关的数据。. Call Tracking 隐私政策
Wunderkind
我们通过 Wunderkind 在 Wunderkind 提供支持的站点上投放数字广告。根据 Wunderkind 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Wunderkind 收集的与您相关的数据相整合。我们利用发送给 Wunderkind 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Wunderkind 隐私政策
ADC Media
我们通过 ADC Media 在 ADC Media 提供支持的站点上投放数字广告。根据 ADC Media 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 ADC Media 收集的与您相关的数据相整合。我们利用发送给 ADC Media 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. ADC Media 隐私政策
AgrantSEM
我们通过 AgrantSEM 在 AgrantSEM 提供支持的站点上投放数字广告。根据 AgrantSEM 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AgrantSEM 收集的与您相关的数据相整合。我们利用发送给 AgrantSEM 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AgrantSEM 隐私政策
Bidtellect
我们通过 Bidtellect 在 Bidtellect 提供支持的站点上投放数字广告。根据 Bidtellect 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bidtellect 收集的与您相关的数据相整合。我们利用发送给 Bidtellect 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bidtellect 隐私政策
Bing
我们通过 Bing 在 Bing 提供支持的站点上投放数字广告。根据 Bing 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bing 收集的与您相关的数据相整合。我们利用发送给 Bing 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bing 隐私政策
G2Crowd
我们通过 G2Crowd 在 G2Crowd 提供支持的站点上投放数字广告。根据 G2Crowd 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 G2Crowd 收集的与您相关的数据相整合。我们利用发送给 G2Crowd 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. G2Crowd 隐私政策
NMPI Display
我们通过 NMPI Display 在 NMPI Display 提供支持的站点上投放数字广告。根据 NMPI Display 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 NMPI Display 收集的与您相关的数据相整合。我们利用发送给 NMPI Display 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. NMPI Display 隐私政策
VK
我们通过 VK 在 VK 提供支持的站点上投放数字广告。根据 VK 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 VK 收集的与您相关的数据相整合。我们利用发送给 VK 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. VK 隐私政策
Adobe Target
我们通过 Adobe Target 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Adobe Target 隐私政策
Google Analytics (Advertising)
我们通过 Google Analytics (Advertising) 在 Google Analytics (Advertising) 提供支持的站点上投放数字广告。根据 Google Analytics (Advertising) 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Google Analytics (Advertising) 收集的与您相关的数据相整合。我们利用发送给 Google Analytics (Advertising) 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Google Analytics (Advertising) 隐私政策
Trendkite
我们通过 Trendkite 在 Trendkite 提供支持的站点上投放数字广告。根据 Trendkite 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Trendkite 收集的与您相关的数据相整合。我们利用发送给 Trendkite 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Trendkite 隐私政策
Hotjar
我们通过 Hotjar 在 Hotjar 提供支持的站点上投放数字广告。根据 Hotjar 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Hotjar 收集的与您相关的数据相整合。我们利用发送给 Hotjar 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Hotjar 隐私政策
6 Sense
我们通过 6 Sense 在 6 Sense 提供支持的站点上投放数字广告。根据 6 Sense 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 6 Sense 收集的与您相关的数据相整合。我们利用发送给 6 Sense 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. 6 Sense 隐私政策
Terminus
我们通过 Terminus 在 Terminus 提供支持的站点上投放数字广告。根据 Terminus 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Terminus 收集的与您相关的数据相整合。我们利用发送给 Terminus 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Terminus 隐私政策
StackAdapt
我们通过 StackAdapt 在 StackAdapt 提供支持的站点上投放数字广告。根据 StackAdapt 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 StackAdapt 收集的与您相关的数据相整合。我们利用发送给 StackAdapt 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. StackAdapt 隐私政策
The Trade Desk
我们通过 The Trade Desk 在 The Trade Desk 提供支持的站点上投放数字广告。根据 The Trade Desk 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 The Trade Desk 收集的与您相关的数据相整合。我们利用发送给 The Trade Desk 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. The Trade Desk 隐私政策
RollWorks
We use RollWorks to deploy digital advertising on sites supported by RollWorks. Ads are based on both RollWorks data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that RollWorks has collected from you. We use the data that we provide to RollWorks to better customize your digital advertising experience and present you with more relevant ads. RollWorks Privacy Policy

是否确定要简化联机体验?

我们希望您能够从我们这里获得良好体验。对于上一屏幕中的类别,如果选择“是”,我们将收集并使用您的数据以自定义您的体验并为您构建更好的应用程序。您可以访问我们的“隐私声明”,根据需要更改您的设置。

个性化您的体验,选择由您来做。

我们重视隐私权。我们收集的数据可以帮助我们了解您对我们产品的使用情况、您可能感兴趣的信息以及我们可以在哪些方面做出改善以使您与 Autodesk 的沟通更为顺畅。

我们是否可以收集并使用您的数据,从而为您打造个性化的体验?

通过管理您在此站点的隐私设置来了解个性化体验的好处,或访问我们的隐私声明详细了解您的可用选项。