AU Class
AU Class
class - AU

Sustainability and Affordability with Lattices for Additive Manufacturing

共享此课程
在视频、演示文稿幻灯片和讲义中搜索关键字:

说明

Additive manufacturing allows for a plethora of new manufacturing possibilities. But what about sustainability possibilities? Sustainability is a huge topic and one that rightly is garnering more and more attention. The latticing of parts that additive manufacturing allows can provide huge performance benefits, but also environmental benefits. Autodesk and One Click Metal have worked on combining the Autodesk Fusion 360 Volumetric Lattice tool with One Click Metal's hardware capabilities, to showcase the benefits of using lattices for Laser Powderbed Fusion (LPBF) manufacture, and how this can be used to improve the sustainability of 3D prints. This industry talk will discuss the concept of lattices, the benefits of using lattices for LPBF manufacture, the challenges of printing them, and, most importantly, how they can be used in 3D printing to reduce waste, energy consumption, and carbon emissions, and promote eco-friendly manufacturing practices.

主要学习内容

  • Learn about the concept of lattices and their benefits for LPBF manufacture.
  • Discover the challenges of printing metal 3D printing lattices and how to choose the correct settings.
  • Learn how to use the Volumetric Lattice tool in Fusion 360 to generate lattices.
  • Learn how lattices can be used in 3D printing to reduce waste and energy consumption and promote sustainability.

讲师

  • Michael Staiger
    Michael Staiger Technical Sales Manager | Business Development | Metal Additive Manufacturing Expert With over 7 years of hands-on experience in the realm of metal additive manufacturing, I've honed my expertise in Design for Additive Manufacturing (DfAM), application projects, and process development. As the Technical Sales Manager at One Click Metal, I'm committed to driving innovation and helping businesses harness the full potential of additive manufacturing. Let's connect and explore how we can take your projects to the next level.
  • Kieran Mak
    Kieran is a Senior Solutions Engineer at Autodesk. In his role, he provides technical expertise and thought leadership on additive, generative, and advanced manufacturing technologies that help customers improve their design and manufacturing processes and achieve their business goals. Prior to joining Autodesk, he served in a variety of application and design engineering roles in the additive manufacturing industry where he helped customers transform their industrial production processes using additive manufacturing. Kieran holds a bachelor's degree in Mechanical Engineering from McGill University and is based in Toronto, Canada.
Video Player is loading.
Current Time 0:00
Duration 27:02
Loaded: 0.61%
Stream Type LIVE
Remaining Time 27:02
 
1x
  • Chapters
  • descriptions off, selected
  • en (Main), selected
Transcript

MICHAEL STAIGER: Welcome to the presentation "Sustainability and Affordability with Lattices for Additive Manufacturing." My name is Michael Staiger. I'm working for One Click Metal, and I'm the technical sales manager and business development responsible for North America.

THOMAS STOCK: Hi. I'm Tom Stock, and I'm from Autodesk. And I'm an additive research engineer with quite a lot of additive expertise. But my main focus is laser powder bed fusion, and I've known Michael for a few years now. Brilliant. So on to the safe harbor statement.

And now I'll pass on to Michael to introduce One Click Metal.

MICHAEL STAIGER: Thank you, Tom. So quick introduction. Who is a One Click Metal? One Click Metal is a spinoff out of Trumpf, with the vision to make the metal 3D printing-- more people should have access to metal 3D printing, basically. And so we looked in the market and looked at the barriers, why not more people using this technology are like we developed a safer powder handling for the machine.

We tried to make this technology easier to use, and more intuitive, and also more affordable. And this is kind of also why we have a really good partnership to Autodesk because we kind of trying also to make the software really intuitive and also affordable, that more people have access to the software.

And also want to mention that our 3D printer was designed in Fusion 360. The whole design was made in Fusion 360. And you can also use Fusion 360 to prepare the job files, basically, from the beginning from your CAD file to your final job file, which you send to the machine. You can do all this stuff in Fusion 360 for the One Click Metal machine.

And also there are possibilities to develop some process parameter and so on. So this is to introduce a little bit One Click Metal and how we work together with Autodesk. And now I want to show you what we will cover in this presentation. And we have splitted this presentation in two parts.

One part is the introduction, and then the second part is we want to show you a use case. First of all, we want to introduce what is additive manufacturing and specifically to explain about the laser powder bed fusion process. The next is we want to explain what is a lattice, what is a lattice structure, and what are the benefits of this lattice.

And the last step is to show how we design lattices in Fusion 360. Then we jump to the next part, the use case, then we will give you an introduction into our application and about the challenges about this application. And then we want to show with this application a basic workflow in Fusion 360, how to use volumetric lattices.

And the second step is we want to give a more advanced way, a simulation-driven volumetric lattice in Fusion 360. And the last step is now we design the part in Fusion 360. Now we want to show how to prepare all the stuff to print out of this file and bring it to the printer, basically.

And the first step, Tom will give you an introduction into additive manufacturing.

THOMAS STOCK: Great. Thanks, Michael. So I know some of you will probably be familiar with the term "additive manufacturing." And some of you might not be, but some of you might be familiar with the term "3D printing." And 3D printing and additive manufacturing can be used interchangeably.

So additive manufacturing is one of the three main types of manufacturing processes. So we have formative manufacturing, which you can see at the top with the diagram. So it involves having a cavity or a mold and injecting your material into this cavity or mold. And then you will separate it to achieve your part.

And on the right, we can see an example of this. It's a hedge trimmer body case. Now, with subtractive manufacturing. You'll have a block of material. And you'll remove material with a cutting tool until you achieve the desired shape. And you can see on the right a simple bracket, which is typical for subtractive manufacture.

Now, finally, we have additive manufacturing. This process deposits material down and builds the part up in layers until you have your final end product. On the right, we have advanced generative design fixture. Perfect. And then next slide, please, Michael. So you know about additive manufacturing.

Now, what a lot of people don't realize is there's a huge range of additive technologies out there. So you can see on the left we have this little diagram. So you can see that these are the additive technologies available for just polymers. And you can see even for polymer there's different polymer types.

You can have it in liquid form. You can have in sheet form, pellet form, et cetera. And on the right, we can see the additive technologies suitable for metal. And we can see that we've indicated the laser beam powder bed fusion on the top right. And this is the additive technology that we're going to focus on today.

This laser beam powder bed fusion has some different names. It's also known as SLM, which is Selective Laser Melting. It's also known as DMLS, which is Direct Metal Laser Sintering. And it's also known as LMF, which is Laser Metal Fusion.

So it has a few different names, but we refer to it as laser powder bed fusion. And Michael will talk more to us about the process next.

MICHAEL STAIGER: Yeah. Thank you, Tom. Here's the graphic, what shows the laser powder bed fusion process. First of all, we need basically a job file for the machine. So we're taking a CAD file, and we are cutting this file in a lot of slices, in hundreds or thousands of slices. And we're sending this, basically, to the machine.

And here we can see the inner of the machine of a laser powder bed fusion machine. So we have in this machine a lot of metal powder here on the left side. So here is our supply, and on the right side it's basically where we are printing. So here is a platform on the bottom, and we are printing on top of this platform.

And as well, in the machine, we have a laser, some optics, some lenses, and some mirrors like a scanner. And we are basically moving the laser with these mirrors to the place where the part is. So we are exposing. We are melting the metal powder local where the part is. And where no powder is the powder stays as powder.

And if this is done, we're moving slightly one layer, one slice down with the platform. We're covering the whole platform with a new layer of powder. And then we start again with the laser to melt local the powder where the part is. And powder stays as powder.

And we're doing this layer by layer by layer. And after the whole print is done, after we finish the whole stack of slices, you can remove the unmelted powder. We're kind of cleaning the part from this unmelted powder. And then we have this parts left. Usually, they're stuck to the build plate, and we're removing them from the build plate, and then we have our finished part.

It's like the whole process for laser powder bed fusion. And also to show it a little bit easier, I have a video. It shows the printing process in our machine. So you can see on the top there's the laser jumping from part to part, exposing the powder, melting the powder locally.

And so if this is the whole layer is done, we're moving slightly down with the build plate. And now, again, we're covering the whole build plate with metal powder. And if this is done, we're again starting the laser, exposing in the next layer, starting again from the bottom to the top, melting local the powder.

And also I have this part with me, what we're right now printing. I hope we can see it good in the camera. So this is basically the part we are printing right now on the machine. So now we know a little bit about additive manufacturing and about the laser powder bed fusion process. Now I want to introduce what is a lattice.

So maybe with my German accent, it sounds lettuce and lattice, a little bit similar. So you can see on the top right we're not talking about a vegetable. We're talking about the structure, what you see here on the bottom. So, basically, we have a unit cell.

So this can look like this, basically a cross shape, or like a gyroid structure, or an X shape. And these are the unit cells, and we're kind of repeating this in a pattern in this unit cell. So we are using a lot of these unit cells and put it-- you can either filling a volume with this unit cell, or we can also modeling a surface of a part.

And so how does it work for a volume? You can see it here on the right. We have basically a box, a block of material, and we remove the inner shape of this. And we filled this shape with this lattice structure. So this is kind of what is the lattice and how we use these lattice structures in additive manufacturing.

And now Tom will explain to you about the benefits of this lattice.

THOMAS STOCK: Great. Thanks, Michael. So Michael described to us what is a lattice. And now I can talk through the benefits of using a lattice in additive manufacture. So the standard associated benefits of a lattice include less material.

So in the example that Michael just showed before, he talked about how an internal volume is often substituted for lattice structure. And therefore there's a lot of empty volume within that internal structure. It's partly lattice, partly empty air. And so there's less material used overall when printing the part, therefore also this benefits the print speed.

Because there's less material being used, because there's less structure to print, the prints also are faster. Because we're also using less material, there's a lightweighting effect. So because we talked about how that internal structure is partly air, partly lattice, there's a massive lightweighting effect of the part.

This, of course, leads to an increased performance. It may be for the aerospace industry or Formula One. And then there's also an aesthetics benefit. Lattices are quite cool to look at. They're visually impressive, and so they're quite alluring to the eye. Now I'll talk about the affordability side.

So we talked about how when we use the lattice there's less material used. Well, if we're using less material, there'll be less material costs. Second, because we're printing faster because there's less structure to print, we're able to fit more jobs per time. So this decreases cost, increase profit.

Thirdly, because we're printing jobs faster, we're doing things faster, there's a lower energy cost associated with the process. Finally, with the sustainability-specific benefits, we talked about how there's less material used. Now, the metal powder is very, very energy-intensive to produce. So by using less powder, we're also using less embodied energy.

Secondly, because the prints are faster and the machine is running for less time, there's a lower energy consumption. We also talked about the lightweighting effect. So because the parts have been lightweighted, more parts can be transported in one go, or, alternatively, the same number of parts can be transported, but there's a lower weight to the parts. And so overall there's lower transportation energy requirements.

Fourthly, there's lower machine operation energy. So what we mean by this is, say, for example, a robot will have an additively manufactured lattice part at the end. This part is lightweighted. And because it's lower mass, the robot will draw less energy to operate. If it was a fully dense part, then the robot would be drawing more energy to perform the same movements.

Finally, there's improved structural and thermal efficiency. So the latticing can provide a benefit by allowing a better energy cooling efficiencies, and therefore less energy is consumed in the process as a whole. Brilliant. So we've talked about the benefits. The next slide will talk about actually how we create lattices.

So latticing in Fusion 360. So we have our cube example here. And to create a lattice, we go to the volumetric latticing tool. We can select our body. And you'll see that immediately the lattice that we created can be manipulated straight away in the workspace. It's instant, and this is because the volumetric latticing tool uses something called implicit modeling.

Now, implicit modeling models geometry and controls the geometry via mathematical function as opposed to representing it as a surface, which is typical in normal CAD design. You can see we're changing effectively the density or the solidity, the lattice. And then, finally, we can also even give the lattice and offset.

So we can basically create a denser or sparser region. And we can give that a thickness and also give that a blend distance so they transition into each other. So you can see there's lots of possibilities with latticing in Fusion 360. And I'll pass back to Michael to give us the case study.

MICHAEL STAIGER: Yeah. Thank you, Tom. So now we finished our introduction. So now we know what is additive manufacturing. There are lot of technologies. We specifically talked about the laser powder bed fusion technology. And we talked about what is a lattice and how to use or how to generate lattice structures in Fusion 360.

So now we are ready to go to our second chapter. Now we come to our case study. We have a robot welding arm with us. And on this slide, you can see this robot arm. This robot welding arm is attached to a robot and is basically used in a automotive manufacturing line to weld some chassis parts together.

And so also you can see on the right side a zoomed-in photo, especially of this arm, so this light-blue-colored part we are talking about. So basically, on the left side, there's this shaft attached, the welding shaft attached. On the right on the upper side is basically where this welding arm is connected to the robot.

Yeah. So Tom will give you an introduction into this part and talk a little bit about the challenges of this application.

THOMAS STOCK: Great. Thanks, Michael. Yes. So as Michael said, this part is on a robot and is part of a large manufacturing assembly line. Unfortunately, this part is often prone to failure. And when this happens, of course, the assembly line is affected, and the assembly line production is affected as well.

And so there's an increased cost incurred to the company. Therefore, it's critical that when the part fails, it is replaced. Unfortunately, it's not always feasible to have a large inventory of spare stock of parts, especially if there's a lot of parts that could be replaced. It's better instead to manufacture on demand.

Now, manufacturing on demand and perhaps trying to improve the part function and having that time-critical factor in there suggests that additive could be a good possible solution. Additive also allows for more design and manufacture freedom and hence the possibility to use lattices.

MICHAEL STAIGER: Yes. Thank you, Tom. So now we know a little bit about the application. And now we have this part here. This is also designed with Fusion 360. Now we can see here the part in Fusion 360. And now we want to put some lattice structure into this part.

So now we see here the way how to do that, basically. Yeah. Go again to the volumetric lattice. We are selecting the body. And we want to select after that a cell shape like this unit cell. And so we can use here also a custom unit cell. You can see it on the bottom left.

We are using this cell shape, this cell type for this lattice structure. And to see it a little bit better, we are reducing here the solidity of this lattice structure. Now we generated the whole part in this lattice. Can take a look in there, and now we also want to maybe reduce a little bit the cell size.

So we make it a little bit smaller, and so now this is kind of the lattice structure. And we can also change the orientation of this also to increase the buildability of this part. So now the last step is you can see that here we can select faces on the part, where we just keep the normal structure, especially in regions where we connect the welding arm to the robot and where we connect it to this welding shaft, basically.

And here you can see a detailed view of this part, around the solid part. And in the middle, we can see this lattice structure, basically. And now we took this part, and we compared this part to the conventional part. So on the top left, you see the conventional part.

On the right side, you can see this part with less structure. And with this easy, basic workflow, we could reduce the material usage of about 40%. And we could reduce the print time by 26% because now we don't have to exposure that much surface, basically. And in total we could save about 34% energy.

And let's talk a little bit more about this energy saving, so in general, what already Tom mentioned in the beginning. So to produce this metal powder, it takes a lot of energy, basically. And so if we don't need that much material, we also save this energy because we don't have to produce the material.

The second step is kind of the manufacturing process. So during printing, we need also the machining, some energy, and so on. So we need a lot of energy during this manufacturing process. So we could also reduce this energy here. And in total we saved about 34% of energy just with this basic workflow and in Fusion 360 using this volumetric lattice tool.

So this is like the basic workflow, and also we have a more advanced workflow. And Tom will show you that now.

THOMAS STOCK: Great. Yes. So you've seen the more basic workflow from Michael using the volumetric latticing tool. Also, in Fusion, we can drive the volumetric lattice via simulation. And what I mean by that is you see we have the part on the left. And you can see on the right side of the part there's the two holes. These connect to the robot head.

And then on the left top side of the part, we have that other hole. And that's where the welding tool slots into. Now, during the spot weld process, there's a lot of force that goes into the structure or the parts surrounding the weld. And we try to simulate this in the middle picture.

So you can see that we've simulated the load cases. And the green and yellow areas indicate areas of higher stress. You can see on the left side of the part it's mostly entirely blue. And that indicates areas of lower stress. So we basically took this simulation data, we imported it back into the volumetric latticing tool in Fusion 360, and the image on the right shows the result.

So we have this relatively sparse lattice throughout the part. However, the important thing is that we can see in the regions where there is higher stress. So those green and yellow areas, there's a denser lattice in place. So the volumetric lattice tool has effectively created a denser lattice region to compensate for these higher-stress regions.

And we can see in the areas where there is lower stress in the part. So with these large blue areas, there's a relatively sparse lattice. Brilliant. And so that's kind of a great solution. And I'll pass on to Michael to talk to us about the metrics of that solution.

MICHAEL STAIGER: Yeah. Thank you, Tom. So here, again, we see in the top left the conventional part. And on the right, we see the simulation-driven volumetric lattice part. And here we saved with this about 43% of material, and we reduced the printing time with this about 27%, and in total energy savings about 36%.

So we can see that here is a really good tool to in general save material, time, and also a lot of energy, and as well cost, of course. So now we designed two parts, one with this basic volumetric lattice tool in Fusion. One is the simulation-driven volumetric lattice. And now we have this part designed, and now we want to print this part to have this part physical or [INAUDIBLE] to have it to where you can, in the end, use it.

So now Tom will show you about how to now take this part and to prepare everything for the print.

THOMAS STOCK: Great. Yeah. So as Michael said, we have the part. We've got it in the design workspace. If you want to manufacture the part, the first step we do is to always go into the manufacturer workspace. Then we create a setup.

And a setup is where we specify what machine and hence, therefore, what technology or additive technology we want to use. We need to also select Print Settings, but that's been automatically selected. And these print settings just determine how the part is printed.

Thirdly, we select Part, as we've just done, and click OK. Given the option to automatically arrange the part. And it places it more centrally in the build volume. But you can see at the top it's still outside that build volume. And so we're going to manually-- we can manually rotate it to make sure it fits entirely inside the build volume of the One Click Metal MPRINT+ machine.

Great. So that looks like it's fitted in. If we're happy, we can then hide the machine so we can have a better view of the part. And we can create our support structure. Support structures are an important process in most 3D printing technologies. And it's also the case for laser powder bed fusion.

So we can generate our volume support structure at the base of the part. And now we can generate our bar support at this area higher up the part, which needs more support. And we're going to choose a large bar to support this area to provide extra strength.

Fantastic. We'll reshow the machine, and we can double check that the part and the support structure is actually entirely in the build volume. Once we're happy, we can generate. And once we've generated the tool path and create build file, we can simply upload it directly to the One Click Metal MPRINT+ machine over the network, as shown here.

And once it's uploaded on the machine, we simply press Run, and the machine will build. So it really is an easy process to go from the design to manufacture to print with Fusion 360 to the One Click Metal MPRINT+ machine. And now pass it over to Michael to close.

MICHAEL STAIGER: Yeah. Thank you very much, Tom. And also thank you very much for joining our presentation.

THOMAS STOCK: Yeah. Thanks, all, for listening. Yeah. Thanks.

______
icon-svg-close-thick

Cookie 首选项

您的隐私对我们非常重要,为您提供出色的体验是我们的责任。为了帮助自定义信息和构建应用程序,我们会收集有关您如何使用此站点的数据。

我们是否可以收集并使用您的数据?

详细了解我们使用的第三方服务以及我们的隐私声明

绝对必要 – 我们的网站正常运行并为您提供服务所必需的

通过这些 Cookie,我们可以记录您的偏好或登录信息,响应您的请求或完成购物车中物品或服务的订购。

改善您的体验 – 使我们能够为您展示与您相关的内容

通过这些 Cookie,我们可以提供增强的功能和个性化服务。可能由我们或第三方提供商进行设置,我们会利用其服务为您提供定制的信息和体验。如果您不允许使用这些 Cookie,可能会无法使用某些或全部服务。

定制您的广告 – 允许我们为您提供针对性的广告

这些 Cookie 会根据您的活动和兴趣收集有关您的数据,以便向您显示相关广告并跟踪其效果。通过收集这些数据,我们可以更有针对性地向您显示与您的兴趣相关的广告。如果您不允许使用这些 Cookie,您看到的广告将缺乏针对性。

icon-svg-close-thick

第三方服务

详细了解每个类别中我们所用的第三方服务,以及我们如何使用所收集的与您的网络活动相关的数据。

icon-svg-hide-thick

icon-svg-show-thick

绝对必要 – 我们的网站正常运行并为您提供服务所必需的

Qualtrics
我们通过 Qualtrics 借助调查或联机表单获得您的反馈。您可能会被随机选定参与某项调查,或者您可以主动向我们提供反馈。填写调查之前,我们将收集数据以更好地了解您所执行的操作。这有助于我们解决您可能遇到的问题。. Qualtrics 隐私政策
Akamai mPulse
我们通过 Akamai mPulse 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Akamai mPulse 隐私政策
Digital River
我们通过 Digital River 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Digital River 隐私政策
Dynatrace
我们通过 Dynatrace 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Dynatrace 隐私政策
Khoros
我们通过 Khoros 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Khoros 隐私政策
Launch Darkly
我们通过 Launch Darkly 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Launch Darkly 隐私政策
New Relic
我们通过 New Relic 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. New Relic 隐私政策
Salesforce Live Agent
我们通过 Salesforce Live Agent 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Salesforce Live Agent 隐私政策
Wistia
我们通过 Wistia 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Wistia 隐私政策
Tealium
我们通过 Tealium 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Tealium 隐私政策
Upsellit
我们通过 Upsellit 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Upsellit 隐私政策
CJ Affiliates
我们通过 CJ Affiliates 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. CJ Affiliates 隐私政策
Commission Factory
我们通过 Commission Factory 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Commission Factory 隐私政策
Google Analytics (Strictly Necessary)
我们通过 Google Analytics (Strictly Necessary) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Strictly Necessary) 隐私政策
Typepad Stats
我们通过 Typepad Stats 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Typepad Stats 隐私政策
Geo Targetly
我们使用 Geo Targetly 将网站访问者引导至最合适的网页并/或根据他们的位置提供量身定制的内容。 Geo Targetly 使用网站访问者的 IP 地址确定访问者设备的大致位置。 这有助于确保访问者以其(最有可能的)本地语言浏览内容。Geo Targetly 隐私政策
SpeedCurve
我们使用 SpeedCurve 来监控和衡量您的网站体验的性能,具体因素为网页加载时间以及后续元素(如图像、脚本和文本)的响应能力。SpeedCurve 隐私政策
Qualified
Qualified is the Autodesk Live Chat agent platform. This platform provides services to allow our customers to communicate in real-time with Autodesk support. We may collect unique ID for specific browser sessions during a chat. Qualified Privacy Policy

icon-svg-hide-thick

icon-svg-show-thick

改善您的体验 – 使我们能够为您展示与您相关的内容

Google Optimize
我们通过 Google Optimize 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Google Optimize 隐私政策
ClickTale
我们通过 ClickTale 更好地了解您可能会在站点的哪些方面遇到困难。我们通过会话记录来帮助了解您与站点的交互方式,包括页面上的各种元素。将隐藏可能会识别个人身份的信息,而不会收集此信息。. ClickTale 隐私政策
OneSignal
我们通过 OneSignal 在 OneSignal 提供支持的站点上投放数字广告。根据 OneSignal 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 OneSignal 收集的与您相关的数据相整合。我们利用发送给 OneSignal 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. OneSignal 隐私政策
Optimizely
我们通过 Optimizely 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Optimizely 隐私政策
Amplitude
我们通过 Amplitude 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Amplitude 隐私政策
Snowplow
我们通过 Snowplow 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Snowplow 隐私政策
UserVoice
我们通过 UserVoice 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. UserVoice 隐私政策
Clearbit
Clearbit 允许实时数据扩充,为客户提供个性化且相关的体验。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。Clearbit 隐私政策
YouTube
YouTube 是一个视频共享平台,允许用户在我们的网站上查看和共享嵌入视频。YouTube 提供关于视频性能的观看指标。 YouTube 隐私政策

icon-svg-hide-thick

icon-svg-show-thick

定制您的广告 – 允许我们为您提供针对性的广告

Adobe Analytics
我们通过 Adobe Analytics 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Adobe Analytics 隐私政策
Google Analytics (Web Analytics)
我们通过 Google Analytics (Web Analytics) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Web Analytics) 隐私政策
AdWords
我们通过 AdWords 在 AdWords 提供支持的站点上投放数字广告。根据 AdWords 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AdWords 收集的与您相关的数据相整合。我们利用发送给 AdWords 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AdWords 隐私政策
Marketo
我们通过 Marketo 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。我们可能会将此数据与从其他信息源收集的数据相整合,以根据高级分析处理方法向您提供改进的销售体验或客户服务体验以及更相关的内容。. Marketo 隐私政策
Doubleclick
我们通过 Doubleclick 在 Doubleclick 提供支持的站点上投放数字广告。根据 Doubleclick 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Doubleclick 收集的与您相关的数据相整合。我们利用发送给 Doubleclick 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Doubleclick 隐私政策
HubSpot
我们通过 HubSpot 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。. HubSpot 隐私政策
Twitter
我们通过 Twitter 在 Twitter 提供支持的站点上投放数字广告。根据 Twitter 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Twitter 收集的与您相关的数据相整合。我们利用发送给 Twitter 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Twitter 隐私政策
Facebook
我们通过 Facebook 在 Facebook 提供支持的站点上投放数字广告。根据 Facebook 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Facebook 收集的与您相关的数据相整合。我们利用发送给 Facebook 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Facebook 隐私政策
LinkedIn
我们通过 LinkedIn 在 LinkedIn 提供支持的站点上投放数字广告。根据 LinkedIn 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 LinkedIn 收集的与您相关的数据相整合。我们利用发送给 LinkedIn 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. LinkedIn 隐私政策
Yahoo! Japan
我们通过 Yahoo! Japan 在 Yahoo! Japan 提供支持的站点上投放数字广告。根据 Yahoo! Japan 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Yahoo! Japan 收集的与您相关的数据相整合。我们利用发送给 Yahoo! Japan 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Yahoo! Japan 隐私政策
Naver
我们通过 Naver 在 Naver 提供支持的站点上投放数字广告。根据 Naver 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Naver 收集的与您相关的数据相整合。我们利用发送给 Naver 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Naver 隐私政策
Quantcast
我们通过 Quantcast 在 Quantcast 提供支持的站点上投放数字广告。根据 Quantcast 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Quantcast 收集的与您相关的数据相整合。我们利用发送给 Quantcast 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Quantcast 隐私政策
Call Tracking
我们通过 Call Tracking 为推广活动提供专属的电话号码。从而,使您可以更快地联系我们的支持人员并帮助我们更精确地评估我们的表现。我们可能会通过提供的电话号码收集与您在站点中的活动相关的数据。. Call Tracking 隐私政策
Wunderkind
我们通过 Wunderkind 在 Wunderkind 提供支持的站点上投放数字广告。根据 Wunderkind 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Wunderkind 收集的与您相关的数据相整合。我们利用发送给 Wunderkind 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Wunderkind 隐私政策
ADC Media
我们通过 ADC Media 在 ADC Media 提供支持的站点上投放数字广告。根据 ADC Media 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 ADC Media 收集的与您相关的数据相整合。我们利用发送给 ADC Media 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. ADC Media 隐私政策
AgrantSEM
我们通过 AgrantSEM 在 AgrantSEM 提供支持的站点上投放数字广告。根据 AgrantSEM 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AgrantSEM 收集的与您相关的数据相整合。我们利用发送给 AgrantSEM 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AgrantSEM 隐私政策
Bidtellect
我们通过 Bidtellect 在 Bidtellect 提供支持的站点上投放数字广告。根据 Bidtellect 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bidtellect 收集的与您相关的数据相整合。我们利用发送给 Bidtellect 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bidtellect 隐私政策
Bing
我们通过 Bing 在 Bing 提供支持的站点上投放数字广告。根据 Bing 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bing 收集的与您相关的数据相整合。我们利用发送给 Bing 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bing 隐私政策
G2Crowd
我们通过 G2Crowd 在 G2Crowd 提供支持的站点上投放数字广告。根据 G2Crowd 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 G2Crowd 收集的与您相关的数据相整合。我们利用发送给 G2Crowd 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. G2Crowd 隐私政策
NMPI Display
我们通过 NMPI Display 在 NMPI Display 提供支持的站点上投放数字广告。根据 NMPI Display 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 NMPI Display 收集的与您相关的数据相整合。我们利用发送给 NMPI Display 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. NMPI Display 隐私政策
VK
我们通过 VK 在 VK 提供支持的站点上投放数字广告。根据 VK 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 VK 收集的与您相关的数据相整合。我们利用发送给 VK 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. VK 隐私政策
Adobe Target
我们通过 Adobe Target 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Adobe Target 隐私政策
Google Analytics (Advertising)
我们通过 Google Analytics (Advertising) 在 Google Analytics (Advertising) 提供支持的站点上投放数字广告。根据 Google Analytics (Advertising) 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Google Analytics (Advertising) 收集的与您相关的数据相整合。我们利用发送给 Google Analytics (Advertising) 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Google Analytics (Advertising) 隐私政策
Trendkite
我们通过 Trendkite 在 Trendkite 提供支持的站点上投放数字广告。根据 Trendkite 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Trendkite 收集的与您相关的数据相整合。我们利用发送给 Trendkite 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Trendkite 隐私政策
Hotjar
我们通过 Hotjar 在 Hotjar 提供支持的站点上投放数字广告。根据 Hotjar 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Hotjar 收集的与您相关的数据相整合。我们利用发送给 Hotjar 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Hotjar 隐私政策
6 Sense
我们通过 6 Sense 在 6 Sense 提供支持的站点上投放数字广告。根据 6 Sense 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 6 Sense 收集的与您相关的数据相整合。我们利用发送给 6 Sense 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. 6 Sense 隐私政策
Terminus
我们通过 Terminus 在 Terminus 提供支持的站点上投放数字广告。根据 Terminus 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Terminus 收集的与您相关的数据相整合。我们利用发送给 Terminus 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Terminus 隐私政策
StackAdapt
我们通过 StackAdapt 在 StackAdapt 提供支持的站点上投放数字广告。根据 StackAdapt 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 StackAdapt 收集的与您相关的数据相整合。我们利用发送给 StackAdapt 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. StackAdapt 隐私政策
The Trade Desk
我们通过 The Trade Desk 在 The Trade Desk 提供支持的站点上投放数字广告。根据 The Trade Desk 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 The Trade Desk 收集的与您相关的数据相整合。我们利用发送给 The Trade Desk 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. The Trade Desk 隐私政策
RollWorks
We use RollWorks to deploy digital advertising on sites supported by RollWorks. Ads are based on both RollWorks data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that RollWorks has collected from you. We use the data that we provide to RollWorks to better customize your digital advertising experience and present you with more relevant ads. RollWorks Privacy Policy

是否确定要简化联机体验?

我们希望您能够从我们这里获得良好体验。对于上一屏幕中的类别,如果选择“是”,我们将收集并使用您的数据以自定义您的体验并为您构建更好的应用程序。您可以访问我们的“隐私声明”,根据需要更改您的设置。

个性化您的体验,选择由您来做。

我们重视隐私权。我们收集的数据可以帮助我们了解您对我们产品的使用情况、您可能感兴趣的信息以及我们可以在哪些方面做出改善以使您与 Autodesk 的沟通更为顺畅。

我们是否可以收集并使用您的数据,从而为您打造个性化的体验?

通过管理您在此站点的隐私设置来了解个性化体验的好处,或访问我们的隐私声明详细了解您的可用选项。