AU Class
AU Class
class - AU

The Art of Prompting AI: Inventor Rules

共享此课程

说明

In this AI era, there are abundant opportunities for automation that can be used without requiring advanced programming skills. This generates a new stream of automation ideas and solutions that can come from anywhere in the Inventor user space spectrum. We will explore how to identify automation opportunities within an Inventor workflow, the necessary knowledge still required, and how to establish guidelines for effectively instructing AI to generate code to be implemented on iLogic rules. Furthermore, you will see a real-life scenario where we achieved an impressive 80% reduction in task time using these methods. We will guide you through the solution, illustrating the tangible benefits of the strategies we discuss.

主要学习内容

  • Discover automation opportunities in the Inventor workflow.
  • Learn how to create efficient AI prompts to generate code.
  • Learn how to automate a design in Inventor.

讲师

  • Joel Maia
    Technical Designer at AKVA Group Land Based | Expert in 3D Modeling, Additive Manufacturing, and Inventor Automation
Video Player is loading.
Current Time 0:00
Duration 41:09
Loaded: 0%
Stream Type LIVE
Remaining Time 41:09
 
1x
  • Chapters
  • descriptions off, selected
  • en (Main), selected
    Transcript

    JOEL MAIA: Hello, everyone. Welcome to the art of prompting AI with focus on inventory rules. My name is Joel Maia. I'm a technical designer from Portugal. I have been working with Inventor for over 10 years now. Inventory is an amazing software for mechanical designing, and one of its biggest strengths is capability for automation. Now, not only through its built-in features, but also for the endless possibilities that it offers with the Inventor API.

    To take full advantage of the Inventor API, we normally should some programming language like C sharp, our visual basic, and have a good understanding of the API itself. However, acquiring this knowledge can be time-consuming process, which can be an entry barrier for some users. And with the introduction of generative AI tools, this barrier has been lowered by allowing users to immediately tackle real-world problems, learn along the way, avoiding the typical learning path.

    In this class, we will learn the framework that provides companies and individuals a structural approach for finding automating ideas and solutions. And we will also explore the basics of generative AI and learn about prompting components and techniques to enhance communication which will lead to better and more effective outcomes. Additionally, we will see a real-world example where these techniques are applied.

    We will not cover, in this talk, how to work with effective rules and logic. And also, we will not discuss or learn how a programming language work and how to work with it. We are focusing on no-code approach. If you are interested in, learn a little bit more about this. I gathered these great talks, previous classes at AU, which can take you from the basic level to a more advanced. Even if you want to create your own [? add-in, ?] there's some great talks about it.

    Yeah. So let's start with a framework for automation. Have a number of users who can develop contribution to contribute for automation solutions increase is a crucial, both for companies and individuals, to adopt a structured approach to the problems. In this chapter, we're going to introduce an adaptation of the [? design ?] [? council ?] double-diamond designing methodologies. This is a framework that encourages a systematic approach to problem-solving, innovation, and automation.

    So this is the double-diamond process. This process starts with a challenge, which usually is a question like, how we get more efficient? What are the problems on our workflow? How we decrease the execution time? After that, we start-- we have the diamonds, which represent two phases. When we first diverge and explore, and the second phase is when we converge in a definition or a solution.

    In the first diamond, we focus in discovery and define. And second diamond, we will focus in develop and delivery. And hopefully, in the end, reach the outcome. Now, let's take a look at these four phases. We start by discovery phase. Discovery phase is a divergent phase where we explore problems. We focus in gather insights, in exploring the problems in our organization or in our workflow, or the way we work.

    We have some methods that can help us to explore better these problems, like workshops, brainstorms, brainstorm sessions, personal interviews, or even reflecting our own workflow in our professional experience. And it's also important, after finding some problems, try to gather some data points about it, like duration and occurrence.

    The objective in the end of this phase is to get a set of problems that you think is worth exploring and analyze closer. Then we have defined phase where we converge. We're going to take the data that we gathered in the first phase and try to converge in a single problem definition that we want to tackle. Some methods to help us to reach out this very useful is process break down, identify decision, decision points, create, process flowcharts. This is a particularly important, the process flowcharts, because creating a visual representation of tracks of the task structure allows you to have an in-depth knowledge of the task itself.

    And after gathering all these elements, we can make an informed argumentation about the process and why it's worth exploring this problem. And we will, hopefully in the end, we're going to converge to a single point to a single problem that makes sense for us to tackle. After this, let's go to the develop. Develop phase is once more divergent phase when we mostly focus on solution conceptualization.

    The methods uses define objectives, create solution pathways, quantify resources, information steps, set timelines, action plans. And then finally, we start prototyping. As you can see, we are diverging. We are creating a lot of elements that is going to help us to reach an outcome in the next stage. After this phase, we should have a clear path to a solution, should be clear how we're going to solve the problem.

    And finally, in deliver phase is the conversion phase. Is the phase that's going to take us to outcome and where are we going to reach a solution implementation. It should be straightforward. If you do all the previous phase correctly, this is where we're going to make our solution production, concept testing, user testing, and launch. I also would like to say that these steps and the methods that I've mentioned so far, it should be adapted to your industry. You should not just stay by the ones I mentioned here. Each industry might require a slight adaptation, and you should keep an open mind towards it.

    Now, let's talk about AI and the prompting components. Generally, we are refers to the type of artificial intelligence technology capable of generating content. It can be text, code, image, music, yeah. And it's called generative. AI learns from vast data sets and tries to mimic. This capability is not just about replicating what is learning or what it is in data set, but it's trying to generate new data in the creative way and with complex patterns.

    In the left side, I mentioned some generative AI models most used by people. And if you never try it, I encourage you to a couple of these and try it and explore it. It will be fun, I'm sure. Now, let's go to the main subject of this class, that's prompting. Prompting is the way you communicate with the generative model. You can prompt with text, you can use image, you can use video, you can combine them. It's just a way that you write for a possible answer for your problem or for what you try to reach.

    Today, we are going to look at six components of a prompt. It is important to keep these components in mind when writing a prompt. This will enable us to have a start with both [? stuies, ?] which is crucial. Crucial because it heavily impacts the quality of the output. Now, let's look at one-at-a-time of these components. We're going to start by directive. Directive is basically the task that you want the AI to make.

    We can make a single directive prompt, which is where we just ask to write something, we can have more than one directive in the prompt. In this example, we have analyze, summarize, and write. And finally, we can also-- a directive cannot be direct, cannot be explicit in the prompt. It can be implicit. For example, we are having, the bottom here, is an example of a translation, where we don't have to explain to the model where it has to go. It comes from the example provided first. It can understand the directive.

    Next, we have context. Context is very important to constrain the endless possibilities. Remember that AI is training a lot of data. And if you want a specific solution, you should constrain all the infinite possible answers. And this is really important. For example, in these two bottom prompts, we have an example of a male that wants to gain five kilograms of muscle mass and another that wants to lose five kilograms of fat.

    And as you can imagine, the suggested training program is going to be very different for each case. So this is a good example of how context is very important. Then we have the examples. Examples serve to demonstrate to gen AI what you want to accomplish. We have here an example of a job description that, we want to create a new job description. But we already found a description that we really like and we enjoy how it's written. So we give it as an example. And you ask it to adapt to our case.

    We also can use it in context learning. This means that you can teach AI a new logic, a new way of thinking, by the examples that you provide. We're going to talk a lot more about examples in the prompting techniques chapter because many of these based are based from examples. Then there is a role.

    Role has a strong impact in the quality of your output. A good way of thinking when starting writing this component is to ask yourself what you want the AI to be. In this example, in this slide, we have an architectural historian and historical engineer. As we can imagine, they all have very different opinions of a building. So the approach and the analysis is going to be very different towards those two characters.

    Then I have tone. Yeah, so tone is used by the output. It's stylistic, rather than structurally. And having a good vocabulary is essential to express correctly. Then we have format. Format is basically how we want our output, email, letter, code block, text, you name it. You should have a format ideal for your case use.

    Then we are going to prompting techniques and strategies. Prompting is an art. You will likely need to try a few different approaches. This is from the Google Guide, Prompting 101.

    And I find these expressions so true because, when we try to solve a more complex problem or write a complex text, you're going to need to try several prompts and approach the idea from different ways to get exactly what you want, to get the answer completely tailored to what you intend to express or demonstrate.

    Here are some prompting techniques and strategies. We're going to discuss these five basic prompting techniques. There are more. There are hundreds of techniques. But they are mostly derivatives from these five. And I want you to keep in mind that these tactics are meant to provide ideas, things to try. They are not fully comprehensive. And you should feel free to try creative ideas and mix them together and try things, new things.

    So we start with zero-shot prompting technique. Zero-shot prompting technique involves asking a direct question to the large language model without providing any examples. We might use the components that we learned. But we're not going to show an example of exactly what we want. It is just like, we hope that the AI model will give us a little bit about what we are talking about.

    Then we have few shot prompting, where we focus to give the large language model LLM examples and try to teach a logic on how to answer. We can see, in this example, when we are trying to classify a phrase as positive and negative, the large language model will analyze your previous question and answer and, in the end, will try to reply accordingly with a sentiment, accordingly.

    Then we have chain of thought. Chain of thought, it's focused on making the large language model to rethink step by step. Large language models have some difficulty in resolving some logic problems. For example, it's really hard for them to count letters, the number of letters in a word, or sometimes resolve some equations. And if we show how we solve the problem step by step, it can be a similar problem, and show it how it was solved step by step, we are going to have a much bigger [INAUDIBLE] in our output.

    Now, we have decomposition. Decomposing involves taking a task and decomposing it in several smaller tasks, and then tackle each chapter at a time. It's basically a way to break down problems and then tackle these problems individually, the basic divide and conquer. Here's an example. In here, we want to write a comprehensive article about cooking eggs.

    So we have a list of topics that we should include in this article. And then we start to tackle each topic, one by one. Now, this is the last technique. This is ensembling. Ensembling is a process of using multiple prompts to solve the same problem. This is particularly useful because we can ask the model to see the problem from different perspectives, and then gather all those perspectives in the single reply. That will reduce hallucinations, make the model think, and can be a great way to write text and to get great text, our model.

    In this chapter, we have some tips and tricks. Remember to keep it simple. Usually, the most simple approach is the one you should try first. Try a different approach. Mix them together. Break it up. Don't try to solve everything at once. Take it step by step. That's very good advice. Give constraints. Yeah, you need to limit. Technically, AI knows everything. You need to constrain what exactly, what you want. Be a little bit specific about what you want as a result and an answer.

    A final rule, don't forget, that is very important, ask for feedback. Sometimes, when you get an answer, just be prompting the model by asking, OK, can you think about this again? It's a good way to approach. And it can improve or give you alternative, different answers. And consider tone. Don't forget about that. Sometimes, it's overlooked. But it's very, very important.

    So, now, let's go to practical application using Inventor rules. Here's a little bit of context. I work in an aquaculture company. And this was a process that we went through to find out new automation and innovation ideas. We started to find out a problem and a challenge to tackle. This challenge was identified mostly by talks and brainstorming sessions with our colleagues to find out where they spend most of their time. And also, what are their pain points? What are the most tedious tasks?

    We reached out to the following set of problems, a, pipe placing is too much time-consuming. The pipe pressure quality checks are tedious and lengthy. And c, excessive time spent on designing custom pump brackets. And we gathered some data. We take some measurements of how much time per task it takes, weekly occurrence. How many times does these tasks happen per week? And also, the user pain level, this is an extremely important point to have.

    From this, we can jump to the define stage, when we take the data already gathered and we make a logic out of it. We try to make an argumentation. So the problem A, problem A, the pipe placing, occurs 100 times per week. But it has a minimal impact. Impact is just one minute per task-- and a low level of pain for A. So it's something that, it is in the flow. It's a task that happens fast and doesn't bother that much, the user.

    The problem B, pipe pressure quality checks, are less frequent, only two times per week, but are highly time-consuming. About 60 minutes, one hour, that it takes, this task. This indicates that it's a big inefficiency and frustration, making it a high priority issue. C is the custom pump brackets-- are time-consuming, 10 minutes per task, and occurs with some regularity. But it has a minimal pain level. It's a 4 out of 10. It's a modeling task. Usually, technical designers like to model. So they don't mind that much.

    This issue, it seems to present a good opportunity for improvement but is not as critical as problem B. We can take, from this analysis, that problem B is probably going to be the problem to tackle. We further, since we see that problem B is probably the best problem to tackle, we take further action. And we decompose it in a task breakdown structure.

    And upon further review of the task, we found that comparing design standards can be omitted, as designers [INAUDIBLE] and don't frequently look at it. And the primary challenge in identifying this workflow is the repetitive back and forth between the 3D model and the [? ID. ?] Since the pipe pressure is a property listed in the BOM, it's difficult to maintain a sequential view of the pipe pressures.

    Also, when checking the pressure for one pipe, it becomes unclear what the pressure class for the subsequent pipe is. And working with these three elements simultaneously is cumbersome, especially since most of our designers are limited to one dual screen setup. And we need to have three elements open.

    Taking this, we have a well-defined problem. So, now, let's develop a solution. Let's think about the solution. We can start by setting objectives. In this case, we set the objective that, you want to reduce the time for at least 50%. This means that the task right now takes 60 minutes now. But we want to shorten it for half an hour and reduce the pain level for a score of 4 or below.

    We'll create a solution pathway. After some brainstorming, we find out that the best solution is to display the pipe pressure directly in the 3D model via color grading. And we focus on the SDR 26, 17, and 11. These are pressure classes. And it should be implemented to an inventory rule because we already use it in our workflow, some inventory rules, and is in inside inventory. So we don't need to acquire new software.

    We further envision the solution. So we envision that this inventory rule will create a new [INAUDIBLE] representation [INAUDIBLE] representation. This is to-- don't make changes to representation that can be used. It might affect some drawings, for example. Then we need this rule to read the property name class for each part being assembled. And then, assign a color to that part according to the class.

    And in the bottom, we have the rules that we want. We want the SDR to be green, SDR26, green, SDR17, yellow, SDR11, red. And other classes, we're going to just leave them gray. We quantify resources. In this case, we don't need that much extra resources because we're only going to use Inventor. And the large language models that we're going to use are available for free.

    And this is a solution that just one individual can take forward and will not have major impact on our workflow. We define some implementation steps, too. Then we set timelines. Yeah, this is important to do. We set something between two and four weeks. The time frame includes rule development, testing, feedback, incorporation, and final deployment. And then we have the action plan, how we're going to really tackle, what are our next actions?

    And then, we start prototyping. This is how it looks, our first prototype. This doesn't have any render rules. We just manually give a different material to each pipe. And this is how we envision our rule to do. We envision our rule. We can see it in the left side of the browser, in the folder representations, that it was created. And your visual representation called [INAUDIBLE] is activated. And the pipes are classified by SDR11, SDR17, and SDR26, with its respective colors.

    And this is what we intended. So at this stage, we have a solution pathway well-defined. And we are ready to start the delivery phase, to develop the solution. We're going to use vendor rules. This is just a quick note. This is the vendor rules [? IDE. ?] This is where we're going to pay for our code. And this is how we envision our solution, at the right side.

    So let's start by the most laziest solution possible. We're going to copy. I simply copy the handout, the definition of the DevOps stage for this project. And if we define it correctly, we must be able to get some sort of result. AI must be able to understand what we aim to achieve and get some base points from this.

    And this is the code. We are not going to look at code in this talk. But we can see, when we run the rule, when we're going to paste the code given by the assistant in the Inventor [? IDE. ?] And we're going to get an error, but not just the error. We're going to see that the AI was able to make some tasks correctly. We were able to create a new representation.

    We are able to activate the view representation. But then, the Inventor says that we have an error on line 23. That is this line, marked by the first red rectangle. And by the comments, we can interpret that this role stopped when was reading custom property class. If we see, the AI made a comment, iterated through all occurrences in assembly, which pretty much corresponds to our third point. So we know that this application, this rule, starts running here.

    Our first approach when we have an error like this, it should be the prompt [INAUDIBLE] with the error. The code has some error. Fix it. And we just copy and paste the error to it. This approach is successful many times. And this time, we were not able. I think this is one of the cases that, the prompt, we were expecting the model to do too much. We should've broken down the tasks. But it was a good starting point. And we [INAUDIBLE] retained these first two parts of code because they are good. And they work. So let's just tackle the points 3 and 4 in the following prompts. So let's tackle the problem number three.

    We have this prompt. When we are designing networks with Autodesk Inventor, this is our role. And then we have the directive, create Autodesk Inventor with text for each part in the assembly with the custom property, "Class," and show a text message with a value. So, here, we are adding a text message so we have a visual confirmation that the rule is really reading the property that we want.

    And also, we reply only with the call based on an event, or this is [? a format. ?] If we don't put this line, we're going to get a lot of explanations, how the code is working, which might be good if you are a beginner. But if you are just trying to streamline the process and copy/paste, you can write this. You'll get faster and smaller answers.

    And it doesn't work. We try to run it. It doesn't work. So what do we do? We prompt it with [INAUDIBLE]. And voila. We were lucky this time. And the code ran. And we got a text message with the pipe class for each one of the pipes.

    If you are wondering, these kind of errors, it happens, because, right now, the AI language model doesn't have a way to run the code in the vendor and process it if it has errors. So we have to manually debug the code for the large language model. I believe this will be solved in the future. But for now, this is the best process that we have.

    So we have the class. And, now, let's try to solve the fourth problem. So we're going to pick up in the prompt that we used for the first problem. And we're going to add our logic. And, fortunately, we might be able to get the working code. But unfortunately, we were not successful with this approach. It seems that this task of getting the material appearance and attributes to the part is a little bit too much complicated for the AI.

    It seems that its knowledge is not based in-- it doesn't have the right code on it. So we're going to have another approach. And we're going to try to find an online solution for the problem four, to give as an example to the AI model.

    Some good places to search for answers is the Autodesk Inventor Programming forum, the Autodesk Inventor API Help, and Autodesk dev blog, like bug machines, [INAUDIBLE] bugs. And, also, try to Google search. There is others sites like GitHub that have a lot of Inventor code, Inventor [? IDE ?] codes that might be useful for you.

    So we were lucky. We found an Autodesk user that was asking the same question that we are in problem four, how to attribute the previous material to a part. And some user gave this answer. And the user that made the question marked that it has a good solution. And that's a good indicative that this is a code that works.

    So what we're going to do, we're going to copy the code of this solution and join into a single [? plant. ?] As you can see, in the bottom, we have the code. Use the following code to set the material to the part. And, yeah, we have the right solution. But if we try to plant with an error, we're going to get a good code. And we have these color grading pipes that's exactly what we want from the model.

    After that, if you notice, we have all our four items solved, so the first prompt into this last one. So we're just going to merge them in a prompt. We're just going to ask the large language model to merge everything into a single prompt. Merge this event URL with this one. And we get this. We are lucky at the first time. And it went perfectly. It created the [? pressure, ?] the [? pressure ?] view.

    It calibrated the pipes. And, yeah, it made everything that we want. After this is the final. So we were successful. We were [INAUDIBLE]. Application [INAUDIBLE] that works. Now, the further steps would be testing correct documentation for the user manuals, for example. Deploy, we probably would deploy to our external folder, rules folder, that all the designers have access. Then gather feedback and make the adjustments as necessary.

    I would like to notice that this code is not perfect. But it demonstrates how, with just a few prompts and without knowing anything about code, we can immediately have-- in a very fast way, we can have a code that works and solves the problem that we're having. And as a final demonstration, I'm going to show our rule in action.

    This is our facility, our [INAUDIBLE] aquaculture facility. As you can see, it has, I would say, hundreds of pipes. And you can understand now how it could be hard to quality check them. We're going to hide concrete to have a more easy view of the pipes. We're going to run our rule. And we can see, it's running. It takes a little bit because there are so many pipes.

    And as you can see, it's slightly changed [INAUDIBLE] pipe. And we successfully color-graded all the pipes in our assembly. And this is now in production, in use, in our workflow. And we reached the objectives. We got about 80% reduction time in the task. And the pain level is reduced from an 8 for around 3. So it was a success. Thank you. Thank you, everyone, for coming and for the time.

    ______
    icon-svg-close-thick

    Cookie 首选项

    您的隐私对我们非常重要,为您提供出色的体验是我们的责任。为了帮助自定义信息和构建应用程序,我们会收集有关您如何使用此站点的数据。

    我们是否可以收集并使用您的数据?

    详细了解我们使用的第三方服务以及我们的隐私声明

    绝对必要 – 我们的网站正常运行并为您提供服务所必需的

    通过这些 Cookie,我们可以记录您的偏好或登录信息,响应您的请求或完成购物车中物品或服务的订购。

    改善您的体验 – 使我们能够为您展示与您相关的内容

    通过这些 Cookie,我们可以提供增强的功能和个性化服务。可能由我们或第三方提供商进行设置,我们会利用其服务为您提供定制的信息和体验。如果您不允许使用这些 Cookie,可能会无法使用某些或全部服务。

    定制您的广告 – 允许我们为您提供针对性的广告

    这些 Cookie 会根据您的活动和兴趣收集有关您的数据,以便向您显示相关广告并跟踪其效果。通过收集这些数据,我们可以更有针对性地向您显示与您的兴趣相关的广告。如果您不允许使用这些 Cookie,您看到的广告将缺乏针对性。

    icon-svg-close-thick

    第三方服务

    详细了解每个类别中我们所用的第三方服务,以及我们如何使用所收集的与您的网络活动相关的数据。

    icon-svg-hide-thick

    icon-svg-show-thick

    绝对必要 – 我们的网站正常运行并为您提供服务所必需的

    Qualtrics
    我们通过 Qualtrics 借助调查或联机表单获得您的反馈。您可能会被随机选定参与某项调查,或者您可以主动向我们提供反馈。填写调查之前,我们将收集数据以更好地了解您所执行的操作。这有助于我们解决您可能遇到的问题。. Qualtrics 隐私政策
    Akamai mPulse
    我们通过 Akamai mPulse 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Akamai mPulse 隐私政策
    Digital River
    我们通过 Digital River 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Digital River 隐私政策
    Dynatrace
    我们通过 Dynatrace 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Dynatrace 隐私政策
    Khoros
    我们通过 Khoros 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Khoros 隐私政策
    Launch Darkly
    我们通过 Launch Darkly 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Launch Darkly 隐私政策
    New Relic
    我们通过 New Relic 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. New Relic 隐私政策
    Salesforce Live Agent
    我们通过 Salesforce Live Agent 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Salesforce Live Agent 隐私政策
    Wistia
    我们通过 Wistia 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Wistia 隐私政策
    Tealium
    我们通过 Tealium 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Tealium 隐私政策
    Upsellit
    我们通过 Upsellit 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Upsellit 隐私政策
    CJ Affiliates
    我们通过 CJ Affiliates 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. CJ Affiliates 隐私政策
    Commission Factory
    我们通过 Commission Factory 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Commission Factory 隐私政策
    Google Analytics (Strictly Necessary)
    我们通过 Google Analytics (Strictly Necessary) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Strictly Necessary) 隐私政策
    Typepad Stats
    我们通过 Typepad Stats 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Typepad Stats 隐私政策
    Geo Targetly
    我们使用 Geo Targetly 将网站访问者引导至最合适的网页并/或根据他们的位置提供量身定制的内容。 Geo Targetly 使用网站访问者的 IP 地址确定访问者设备的大致位置。 这有助于确保访问者以其(最有可能的)本地语言浏览内容。Geo Targetly 隐私政策
    SpeedCurve
    我们使用 SpeedCurve 来监控和衡量您的网站体验的性能,具体因素为网页加载时间以及后续元素(如图像、脚本和文本)的响应能力。SpeedCurve 隐私政策
    Qualified
    Qualified is the Autodesk Live Chat agent platform. This platform provides services to allow our customers to communicate in real-time with Autodesk support. We may collect unique ID for specific browser sessions during a chat. Qualified Privacy Policy

    icon-svg-hide-thick

    icon-svg-show-thick

    改善您的体验 – 使我们能够为您展示与您相关的内容

    Google Optimize
    我们通过 Google Optimize 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Google Optimize 隐私政策
    ClickTale
    我们通过 ClickTale 更好地了解您可能会在站点的哪些方面遇到困难。我们通过会话记录来帮助了解您与站点的交互方式,包括页面上的各种元素。将隐藏可能会识别个人身份的信息,而不会收集此信息。. ClickTale 隐私政策
    OneSignal
    我们通过 OneSignal 在 OneSignal 提供支持的站点上投放数字广告。根据 OneSignal 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 OneSignal 收集的与您相关的数据相整合。我们利用发送给 OneSignal 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. OneSignal 隐私政策
    Optimizely
    我们通过 Optimizely 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Optimizely 隐私政策
    Amplitude
    我们通过 Amplitude 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Amplitude 隐私政策
    Snowplow
    我们通过 Snowplow 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Snowplow 隐私政策
    UserVoice
    我们通过 UserVoice 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. UserVoice 隐私政策
    Clearbit
    Clearbit 允许实时数据扩充,为客户提供个性化且相关的体验。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。Clearbit 隐私政策
    YouTube
    YouTube 是一个视频共享平台,允许用户在我们的网站上查看和共享嵌入视频。YouTube 提供关于视频性能的观看指标。 YouTube 隐私政策

    icon-svg-hide-thick

    icon-svg-show-thick

    定制您的广告 – 允许我们为您提供针对性的广告

    Adobe Analytics
    我们通过 Adobe Analytics 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Adobe Analytics 隐私政策
    Google Analytics (Web Analytics)
    我们通过 Google Analytics (Web Analytics) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Web Analytics) 隐私政策
    AdWords
    我们通过 AdWords 在 AdWords 提供支持的站点上投放数字广告。根据 AdWords 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AdWords 收集的与您相关的数据相整合。我们利用发送给 AdWords 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AdWords 隐私政策
    Marketo
    我们通过 Marketo 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。我们可能会将此数据与从其他信息源收集的数据相整合,以根据高级分析处理方法向您提供改进的销售体验或客户服务体验以及更相关的内容。. Marketo 隐私政策
    Doubleclick
    我们通过 Doubleclick 在 Doubleclick 提供支持的站点上投放数字广告。根据 Doubleclick 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Doubleclick 收集的与您相关的数据相整合。我们利用发送给 Doubleclick 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Doubleclick 隐私政策
    HubSpot
    我们通过 HubSpot 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。. HubSpot 隐私政策
    Twitter
    我们通过 Twitter 在 Twitter 提供支持的站点上投放数字广告。根据 Twitter 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Twitter 收集的与您相关的数据相整合。我们利用发送给 Twitter 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Twitter 隐私政策
    Facebook
    我们通过 Facebook 在 Facebook 提供支持的站点上投放数字广告。根据 Facebook 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Facebook 收集的与您相关的数据相整合。我们利用发送给 Facebook 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Facebook 隐私政策
    LinkedIn
    我们通过 LinkedIn 在 LinkedIn 提供支持的站点上投放数字广告。根据 LinkedIn 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 LinkedIn 收集的与您相关的数据相整合。我们利用发送给 LinkedIn 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. LinkedIn 隐私政策
    Yahoo! Japan
    我们通过 Yahoo! Japan 在 Yahoo! Japan 提供支持的站点上投放数字广告。根据 Yahoo! Japan 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Yahoo! Japan 收集的与您相关的数据相整合。我们利用发送给 Yahoo! Japan 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Yahoo! Japan 隐私政策
    Naver
    我们通过 Naver 在 Naver 提供支持的站点上投放数字广告。根据 Naver 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Naver 收集的与您相关的数据相整合。我们利用发送给 Naver 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Naver 隐私政策
    Quantcast
    我们通过 Quantcast 在 Quantcast 提供支持的站点上投放数字广告。根据 Quantcast 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Quantcast 收集的与您相关的数据相整合。我们利用发送给 Quantcast 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Quantcast 隐私政策
    Call Tracking
    我们通过 Call Tracking 为推广活动提供专属的电话号码。从而,使您可以更快地联系我们的支持人员并帮助我们更精确地评估我们的表现。我们可能会通过提供的电话号码收集与您在站点中的活动相关的数据。. Call Tracking 隐私政策
    Wunderkind
    我们通过 Wunderkind 在 Wunderkind 提供支持的站点上投放数字广告。根据 Wunderkind 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Wunderkind 收集的与您相关的数据相整合。我们利用发送给 Wunderkind 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Wunderkind 隐私政策
    ADC Media
    我们通过 ADC Media 在 ADC Media 提供支持的站点上投放数字广告。根据 ADC Media 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 ADC Media 收集的与您相关的数据相整合。我们利用发送给 ADC Media 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. ADC Media 隐私政策
    AgrantSEM
    我们通过 AgrantSEM 在 AgrantSEM 提供支持的站点上投放数字广告。根据 AgrantSEM 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AgrantSEM 收集的与您相关的数据相整合。我们利用发送给 AgrantSEM 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AgrantSEM 隐私政策
    Bidtellect
    我们通过 Bidtellect 在 Bidtellect 提供支持的站点上投放数字广告。根据 Bidtellect 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bidtellect 收集的与您相关的数据相整合。我们利用发送给 Bidtellect 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bidtellect 隐私政策
    Bing
    我们通过 Bing 在 Bing 提供支持的站点上投放数字广告。根据 Bing 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bing 收集的与您相关的数据相整合。我们利用发送给 Bing 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bing 隐私政策
    G2Crowd
    我们通过 G2Crowd 在 G2Crowd 提供支持的站点上投放数字广告。根据 G2Crowd 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 G2Crowd 收集的与您相关的数据相整合。我们利用发送给 G2Crowd 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. G2Crowd 隐私政策
    NMPI Display
    我们通过 NMPI Display 在 NMPI Display 提供支持的站点上投放数字广告。根据 NMPI Display 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 NMPI Display 收集的与您相关的数据相整合。我们利用发送给 NMPI Display 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. NMPI Display 隐私政策
    VK
    我们通过 VK 在 VK 提供支持的站点上投放数字广告。根据 VK 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 VK 收集的与您相关的数据相整合。我们利用发送给 VK 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. VK 隐私政策
    Adobe Target
    我们通过 Adobe Target 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Adobe Target 隐私政策
    Google Analytics (Advertising)
    我们通过 Google Analytics (Advertising) 在 Google Analytics (Advertising) 提供支持的站点上投放数字广告。根据 Google Analytics (Advertising) 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Google Analytics (Advertising) 收集的与您相关的数据相整合。我们利用发送给 Google Analytics (Advertising) 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Google Analytics (Advertising) 隐私政策
    Trendkite
    我们通过 Trendkite 在 Trendkite 提供支持的站点上投放数字广告。根据 Trendkite 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Trendkite 收集的与您相关的数据相整合。我们利用发送给 Trendkite 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Trendkite 隐私政策
    Hotjar
    我们通过 Hotjar 在 Hotjar 提供支持的站点上投放数字广告。根据 Hotjar 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Hotjar 收集的与您相关的数据相整合。我们利用发送给 Hotjar 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Hotjar 隐私政策
    6 Sense
    我们通过 6 Sense 在 6 Sense 提供支持的站点上投放数字广告。根据 6 Sense 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 6 Sense 收集的与您相关的数据相整合。我们利用发送给 6 Sense 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. 6 Sense 隐私政策
    Terminus
    我们通过 Terminus 在 Terminus 提供支持的站点上投放数字广告。根据 Terminus 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Terminus 收集的与您相关的数据相整合。我们利用发送给 Terminus 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Terminus 隐私政策
    StackAdapt
    我们通过 StackAdapt 在 StackAdapt 提供支持的站点上投放数字广告。根据 StackAdapt 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 StackAdapt 收集的与您相关的数据相整合。我们利用发送给 StackAdapt 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. StackAdapt 隐私政策
    The Trade Desk
    我们通过 The Trade Desk 在 The Trade Desk 提供支持的站点上投放数字广告。根据 The Trade Desk 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 The Trade Desk 收集的与您相关的数据相整合。我们利用发送给 The Trade Desk 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. The Trade Desk 隐私政策
    RollWorks
    We use RollWorks to deploy digital advertising on sites supported by RollWorks. Ads are based on both RollWorks data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that RollWorks has collected from you. We use the data that we provide to RollWorks to better customize your digital advertising experience and present you with more relevant ads. RollWorks Privacy Policy

    是否确定要简化联机体验?

    我们希望您能够从我们这里获得良好体验。对于上一屏幕中的类别,如果选择“是”,我们将收集并使用您的数据以自定义您的体验并为您构建更好的应用程序。您可以访问我们的“隐私声明”,根据需要更改您的设置。

    个性化您的体验,选择由您来做。

    我们重视隐私权。我们收集的数据可以帮助我们了解您对我们产品的使用情况、您可能感兴趣的信息以及我们可以在哪些方面做出改善以使您与 Autodesk 的沟通更为顺畅。

    我们是否可以收集并使用您的数据,从而为您打造个性化的体验?

    通过管理您在此站点的隐私设置来了解个性化体验的好处,或访问我们的隐私声明详细了解您的可用选项。