AU Class
AU Class
class - AU

TileGPT: Generative AI Tools for Intuitive Building Design Exploration

共享此课程
在视频、演示文稿幻灯片和讲义中搜索关键字:

说明

Generative artificial intelligence (AI) and large language models (LLMs) are bringing disruption across industries, changing the way we create images, text, and code. Within architecture, engineering, and construction (AEC), these tools will transform the design and construction process. Professionals in AEC must stay informed of this fast-moving technology to remain competitive and aware of the innovative design-and-make software. TileGPT is an LLM-powered prototype developed within Autodesk Research to generate optimized designs using intuitive and flexible text-based input. This session will cover the technical capabilities of this generative AI system, which uses optimization to enable rapid design exploration. It presents example use cases within AEC design, including performance-driven generation of building massing, site design, facade layouts, and more. With generative AI, Autodesk Research is expanding what's possible within design tools, and showcasing new design experiences that are fast, intuitive, and accessible.

主要学习内容

  • Learn the basics of large language models and how they can generate new data for AEC.
  • Learn how procedural design techniques work with tile-based design systems.
  • Learn how optimization and LLMs can be coupled to generate new building designs.
  • Learn about intuitive, no-code design exploration and generative techniques.

讲师

  • Adam Gaier
    Adam Gaier is a research scientist at the Autodesk AI Lab where he pursues research at the intersection of evolutionary and machine learning. He received master's degrees in evolutionary computing and robotics, and a PhD focused on tackling expensive design problems through the fusion of machine learning, quality diversity, and neuro-evolution approaches. His work has received recognition at top venues across these fields, including a spotlight talk at NeurIPS (machine learning), multiple best paper awards at GECCO (evolutionary computation) and AIAA (aerodynamics design optimization). His current research focuses on the use of large language models and evolutionary optimization for architectural design.
  • James Stoddart
    Jim Stoddart is a Principal Research Scientist in the AEC Industry Futures group within Autodesk Research and a core member of The Living, an Autodesk Studio. His work explores how new design, construction, and material technologies will lead to a better built environment for our planet and its inhabitants. With Industry Futures, Jim has collaborated with a wide range of industry leaders to demonstrate the value of new design technologies—including bio-materials, machine learning, and Generative Design—on real-world applications and built projects. He has authored several peer-reviewed papers, holds patents for key generative design applications, and contributes articles to industry publications. His design projects have been widely published, won multiple AEC design and innovation awards, and have been exhibited at international venues.
  • Lorenzo Villaggi
    Lorenzo Villaggi is a Principal Research Scientist within the AEC Industry Futures group, Autodesk Research. His work focuses on novel data-driven design approaches, reusable design intelligence, advanced visualization and sustainability. Recent projects include a net zero carbon and affordable housing development for Factory_OS in California, the NIS engine Factory for Airbus in Hamburg, the Alkmaar Affordable Housing District for Van Wijnen in the Netherlands, the Autodesk Mars Office in Toronto, and the Embodied Computation Lab for Princeton University.
Video Player is loading.
Current Time 0:00
Duration 26:30
Loaded: 0.62%
Stream Type LIVE
Remaining Time 26:30
 
1x
  • Chapters
  • descriptions off, selected
  • en (Main), selected
Transcript

JIM STODDART: Welcome to our session, TileGPT, Generative AI Tools for Intuitive Building Design exploration. First, the safe harbor statement, just to quickly note that everything we'll be presenting today is a research prototype. None of these features exist on any current or future product roadmap at this time. So please do not make any purchasing decisions based on what we're sharing today.

A quick round of introductions. Adam Gaier is a Principal Research Scientist within the AI lab at Autodesk Research. My name is Jim Stoddart. I'm a Principal Research Scientist in the AEC Industry Futures Group at Autodesk research. And our colleague, Lorenzo, is also a Principal Research Scientist within AEC Industry Futures and will join for the in-person session at AU.

Today, we're going to show you some ongoing work within Autodesk Research to explore how large language models can be combined with generative design to create novel ways of exploring and interacting with a data-driven design process. The roots of this project started as a collaborative research with our customer, Factory_OS, who is a leading manufacturer of volumetric modular housing based in the Bay Area. With them, we are investigating how tools like generative design could accelerate their development process and trying to find opportunities to provide intuitive solutions to work with their catalog of modular housing units.

For context, here's a video of a Factory_OS building under construction. These volumetric units are built and fully finished offsite, in Factory_OS's facility in Vallejo, California. Models are then trucked to a project site. They're lifted and stacked in place. And then, finally, utilities are connected. And the facade and the roof are installed. In the end, you have a complete building in less time than a conventional on-site construction.

Our investigation with Factory_OS was exploring the opportunity to do what we called "multi-scale generative design," where a project could be quickly configured. You select a location, a building site, a pro forma, and then automation would generate and explore design options. This included site layout, with multiple buildings and landscape. It would populate each of those buildings with Factory_OS units and generate structural framing. Each of those designs would be evaluated and compared based on competing objectives around cost, carbon, and habitability. And an optimization loop would identify and elevate high-performing solutions as good candidates for construction.

Zooming in, the problem of designing with a unitized construction system might seem like an easy task. It's like stacking LEGOs, after all. But, in reality, these combinatorial problems are really tough to solve. There's a huge number of possible configurations. And there are rules that constrain certain combinations of modules. All of this makes it hard to fit within a typical parametric/generative model. And while you could build a complex model that embeds all these rules, these can quickly become unwieldy, and difficult to maintain, and difficult to generalize to new problems or projects.

So we asked, what if we could make a smart and generalizable system that designs with rules, but that doesn't require any coding or explicit writing of those rules? We call this idea "example-based design." The designer just has to provide a catalog of parts and create some examples of how those should fit together, functionally and formally. And the rest is handled by automation, which can digest each example, extract the inherent rules, and then use those to generate new combinations based on those learned constraints. The output is a diverse set of design permutations.

So how does this work? We're using an algorithm called "wave function collapse" or WFC, for short. It's a procedural content generation method that was published in 2016 and that largely adapts earlier work developed by Paul Merrell, in 2009, called "model synthesis." It takes a piece of constrained data as an input. Here are the small pixel image of a branching plant with flowers. It extracts the local adjacency rules and synthesizes new outputs that are locally similar to the original.

One advantage here is this process works with any form of constrained data. And you can find examples in one-dimension. People have generated music or poetry. Lots of examples in two-dimensions for image and texture generation, and 3D. And you can even use it on structured non-grid based data like meshes. This is the basic pipeline for a WFC solver. You have two inputs, a desired output size and one or more examples. The solver learns the patterns, and it will generate an output of the desired size with the learned constraints.

To use this with a 3D modular building data, we just need to encode the design into a compatible input format. Here, we're capturing the module ID, its position in the design, and any sort of transformation, like a rotation or mirror. On the output side, a decoding step translates the output data back into geometry. And we can also do things, like compute metrics directly from the raw data, without the need for geometry or simulation. Lastly, to make this useful within a generative framework, we need to also build in controls.

For this, we've included variable weights that can increase or decrease the frequency of a tile appearing and pre-constraints, where we can have the solver start from some known configuration to induce the formation of a specific geometric feature. Here, you can see it creates a staggered configuration on one end of the building.

So why would we use this process instead of a conventional parametric model? Mainly because it's intuitive. All you need is a single example design, and no code, or no node graphs. And, from that, we can automatically generate each of these variations. We can also take it further by inputting multiple examples, and the system will generate hybridized options that combine features into novel arrangements.

We can also combine this with a unit catalog with pre-computed values to rapidly compute metrics from a design without the need for expensive simulation. Here, we get floor plans, cost, pro forma, and embodied carbon instantly, as the model updates. As part of our work with Factory_OS, we expose this functionality in Forma via an extension, which will allow them to quickly evaluate new project developments with buildings generated from their catalog. For more info on this work, please check out our other class, From Prototype to Platform, Delivering New Design Capabilities on Autodesk Forma.

This idea of no-code example-based design was pretty exciting. And it led us to ask why couldn't we take the intuitive control of the system and apply it to more complex design problems that are even harder to represent with a conventional generative model. We wanted to know could we go from a building layout, which is a fairly straightforward 2-and-1/2 D problem, to a much more complicated full-site design that included site layouts with multiple varied buildings and landscape design.

So why design at the level of the site? Well, we know that sustainable design benefits from a holistic approach, not just designing each building independently. Almost 40% of the carbon in a new development exists outside of the building envelope. And factors like the arrangement of buildings on a site, through effects like self-shading or impact on microclimate, can significantly impact the operational energy of individual buildings.

So we developed a new tile set that included new building tiles that could create more varied apartments and building layouts, while still being compliant with volumetric modularization, and new green space tiles that could generate a variety of landscape profiles and depths for supporting larger carbon sequestering plantings. Here, we see some example sites being generated by the wave function collapse solver and some of the variation possible within the new tile set.

But more design flexibility comes with a cost of increased complexity. We went from eight to 10 tiles in the building design space to 38 base tiles. And to add to that, each tile type can have up to eight variants through mirror and rotation transformations. This results in 212 possible states for every position in our design solutions, each with its own adjacency rules and control weights. This makes for a massive number of potential configurations and a huge design space to search through for optimal design candidates.

While the WFC solver can still handle this complexity, you start to see much longer compute times. And because WFC operates on local conditions, the burden of interpreting or defining large-scale patterns, like the shapes of building footprints, still falls mostly on the user. Tasks like manual fine-tuning of generated solutions for improved performance are almost nearly impossible with this many inputs.

So this led us to ask could we start to use AI to solve this challenge and make navigating potential solutions and performance stress much more intuitive. So I'll pass it off, now, to Adam, to dive into our prototype solution which we call TileGPT.

ADAM GAIER: Thanks, Jim. So our partnership with Factory_OS is not just about improving efficiencies. It's about reimagining the design process, itself. We've taken disparate strands of research and integrated them into a powerful new hybrid approach to generative design. This approach combines the strengths of example-based procedural design, diversity-based optimization, and large language models. Through example-based procedural design like wave function collapse, we generate designs that strictly adhere to architectural constraints.

Using diversity-based optimization in combination with WFC we can explore a vast landscape of design possibilities, with generative design tools taking the best of what the algorithm can generate. Then we fine-tune the language model using this dataset. This allows us to have intuitive, high-level control over designs using natural language queries. So what's revolutionary here is how these elements feed into each other. The language models output serves as high-level guidance, which then goes back into our WFC system for refinement and constraint satisfaction.

This approach draws from topics we've been investigating at Autodesk Research for some time and packages it all into an integrated workflow for generative design. By marrying the low data requirements and strict constraint satisfaction with the intuitive control mechanisms of language models we're unlocking a new paradigm in generative design. So let's pull back the curtain and delve into each-- how each of these elements works under the hood.

So let's start with WFC. Wave function collapse acts on a grid, with a goal of filling all the cells with tiles that obey adjacency rules learned from samples. So we can set some initial tiles by hand, for instance, designating the bottom tiles as the street of our site. Now, within each cell, we track the probability for each tile type. The probability of each tile type is set at the start of the algorithm. And then the space probability is the same across all cells.

Any tiles which are not allowed because of the neighboring tiles, these adjacency constraints, are removed from the probability distribution. And the probabilities of that cell are calculated. So these same basic probabilities are applied to every single cell in the grid, all the same, and then adjusted for any neighbors that they have.

We then compute an entropy score for each cell, which corresponds to how certain the outcome is, depending on the probability distribution. Then, from those cells with the lowest entropy scores, that is, the most certain, one cell is chosen. A tile type is chose based-- chosen based on the probability in that cell, and the tile type is fixed or collapsed.

Once the tile is collapsed, we update the allowed tiles of the neighbors, updating their probabilities, and repeat this process, choosing the minimum entropy cell, collapsing it to a legal tile, and updating the probabilities of the neighbors. And we repeat this process until the grid is entirely full, giving us a site layout.

Now, a generative pretrained transformer or a GPT model also works on a discrete space, a vector, which we're going to fold into a grid. Language models like GPT operate on tokens representing single words, letters, or parts of words. In our case, the tokens will each represent a tile type. So, again, we're going to give the model a starting point. Here's the first street tile of our site.

So, while WFC chooses tiles to collapse based on an entropy calculation, GPT chooses tiles one at a time, in order. And, like wave function collapse, each tile type has a probability of being chosen. But how that probability is derived is different. Rather than only considering the adjacent tiles, a GPT model considers all the tiles produced already. These tiles are called the "context."

Right now, we just have that initial tile in our context, but it's the tiles gathered here, not just the immediate neighbors, which determine the probabilities of placing each tile type in the next position. To generate a new tile, GPT model reads in the context and, based on the statistics learned during training, adjusts the probability of each next tile type. It then choose the tile based on that probability distribution. The new tile is added to the context, and a new probability distribution is calculated.

The probability of each tile changes after each token is added until we reach the end of the context length, at which point, the context has shifted and only the most recent tiles used. This global awareness, knowing everything that came before, combined with the local awareness, knowing what's adjacent to each tile, gives us the kind of control we just couldn't get in WFC. So, if we're interested in site-level features, like a lot of small parks, we can ask for that.

And the model will place more individual patches of green space on the site. Because wave function collapse only works on immediate adjacencies, it could only ever give us more or less total green space, not affect how that green space was distributed over the site.

So how concretely do we ask for something like a lot of small parks? Well, we're going to be using something called "cross-attention." We use a text encoder, another pretrained model to convert a phrase like "a lot of small parks" into a vector of numbers. This vector is integrated into the model, so that, when determining the probability for the next token, the model looks at both, at the previously generated tokens and the numerical version of this prompt.

When training the model, we can label each site in our dataset with these natural language prompts, teaching the model to associate certain prompts with certain site attributes. Then, when we want to generate a site with certain attributes, we can just ask for it in natural language. So rather than trying to tune tile weights or particular building elements, we can simply ask for high-level features.

So you see that, at a high level, both wave function collapse and GPT operate on a similar conceptual plane. They calculate cellwise probabilities, choose a tile to place, and update the grid as they go. However, when you dig deeper, the differences in their training and usability become glaringly apparent. So this is where TileGPT comes in, at the intersection of these two paradigms. We're weaving WFCs low data requirements and guaranteed constraint satisfaction and GPTs intuitive control mechanisms.

A WFC model requires just one example to train. Makes it very quick, very data efficient. In contrast, GPT models require huge datasets to be effective. WFC ensures that designs strictly adhere to constraints. It is, essentially, a constraint satisfaction model. GPT, however, lacks risk rigidity, operating on probabilistic assumptions with no guarantees.

But WFC offers limited control, allowing you only to influence the frequency of low-level design elements. GPT, on the other hand, provides flexible high-level control through natural language prompts. So what we're proposing is an elegant fusion of these contrasting strengths. Imagine a generative design system that's both data-efficient and intuitively controlled, where WFC's constraint satisfaction meets GPT's natural language prowess. And this is what we're striving for with TileGPT.

So, with TileGPT, we envision a generative design system that marries WFC's reliable constraint satisfaction with GPT's user-friendly natural language interface. And this fusion aims to revolutionize how we approach design problems. But now we hit a roadblock. We need a data set to train this model and not just any data. We need the right kind of data.

So there's two main challenges here. First, sourcing the data, and second, ensuring that the data is both of high quality and represents the variety we aim to cover. So could we use just wave function collapse to generate a dataset, just initialize a WFC model with varied tile weights, and just let it start churning out site layouts, and then label the layouts based on the attributes we care about? Well, it's a good starting point, but this method has pitfalls.

The generated sites often have big quality issues. Think lots of wasted space that could have been utilized for buildings or landscaping. And the attributes that are produced tend to skew towards the average, resulting in a bland data set lacking in extremes, limiting what our model can produce. The graphs to the side here, they show the distributions of attributes you get just by repeating WFC with different weights and random seeds. It only creates a handful of these more extreme examples that we're most interested in, like many units or a lot of sequestered carbon.

And if we don't have interesting examples in it, we can't expect our model to produce interesting designs. So we have a problem. We have a vision for TileGPT, but need the right data to bring it to life. So sourcing that right data is the next leap we need to make. So here's where optimization-based generative design comes in. So we're going to optimize site layouts through a mix of evolutionary optimization and wave function collapse. By optimizing the starting conditions of WFC, that small set of initial tiles we give WFC at the start, and the tile weights, we can push it towards one design region or another.

So we're going to use an optimization algorithm called MAP-Elites, which explicitly searches for diversity, along with high performance, to generate a collection of varied solutions. MAP-Elites searches for new solutions that fill a grid or map, whose bins and axes are defined by attributes. So one axis can have the number of units and, on the other, the size of the largest park. When a solution is generated, we evaluate it, and get a location on this attribute, and store the solution there, one per bin, so sites with a lot of units and very big park, sites with few units and a very big park, sites with a small park and few units, every combination.

And, at the start, we're going to seed the map with some initial solutions generated randomly. And then we can begin optimization in an evolutionary fashion. We can start by selecting an existing solution from the grid, bury that solution by altering the probability weights or the fixed tiles, evaluating it to get its performance and its location in this attribute grid. And then, if a solution already exists in that same cell, the two are compared according to performance.

And the better-performing one is placed in the bin, and the other is thrown out. So, here, we're going to be judging sites by the amount of empty space, preferring those which make more use of the site. Running this algorithm produces a set of increasingly high-performing solutions that span the range of attribute values, giving us a high-performing data-set perfectly balanced across attribute labels. MAP-Elites allows us to generate a balanced dataset of labeled data that's just perfect for training.

So, now that we have our dataset, let's refocus on the generative aspect. Remember, we're dealing with this complex set of 212 unique tiles, each with their own set of adjacency rules. So training a GPT model on this level of granularity not only adds computational overhead, but also distracts from our primary goal, pursuing a global-level optimization and exploration.

In this framework, the role of the GPT model is to act as a strategic overseer, focusing on abstract design choices rather than micromanaging tile adjacencies. So to alleviate this complexity, we've abstracted the tiles into eight functional categories, landscaping, building core, corridors, et cetera. And this abstraction allows the GPT model to operate on a level that's both computationally efficient and aligned with its strength in handling high-level representations.

So we can offload the details to WFC after giving it a rough, high-level design. And here lies a symbiosis; on the left, a layout generated by the GPT model using our abstracted eight categories; on the right, the same layout fleshed out by wave function collapse, accommodating the intricate requirements of 212 tiles. So, in this way, we enable the GPT model to ideate at a high level, focusing on spatial relationships based on prompted features and performance, while relying on WFC for the detailed execution. So, this way, we can marry abstraction with precision.

So here's that generative process unfolded. The GPT model, guided by a text prompt, iteratively selects tiles from the simplified set of eight categories. These tile choices serve as a high-level blueprint. That blueprint is then handed over to wave function collapse, which fills in the details by selecting from this comprehensive 212-tile set.

What we're witnessing is a seamless collaboration. GPT generates the overarching design, while WFC ensures its viability completeness. So let's look at this in practice. Initiating the process with textual prompts, like "a site with many parks"-- "small parks" directly influences the generated layouts to meet those criteria. Altering the text prompt, say, to-- let's put in "a site with many units." This results, then, in corresponding variations in design.

The system is also capable of generating sites with particular performance attributes. So, in this way, we can specify we want "a site with a lot of sequestered carbon." And this guides the generation process towards that goal. And this is just a one-shot kind of system. It's very interactive. Using the technique of inpainting that's in other kind of generative AI workflows for images, you can erase a portion of a site and request that it be filled with an alternate design with specific features.

So here's our first site with a small park and many units. And you get this initial design. But it still looks like there's a lot of space up there at the top we could use for landscaping or building. So we can highlight the area at the top and regenerate it using another prompt, like "a lot of sequestered carbon." And then this gives us some options regenerated from that previous design.

So, down here, at C, it put in a lot of parks, but the number of units is really reduced. And we still need to have some people living there. So I think, for these, I like A the best. So we'll take A, select it. But I think we can do a bit better. I'd like to break up this big building here to open the site a bit. And, but I don't want to lose too many units. So I can highlight this area. And then say I want to fill it in with many units and some sequestered carbon. And then, here, at B, is a site that I'm pretty satisfied with. A lot of units, but still plenty of carbon sequestration.

So these layouts are then exportable for subsequent evaluation and modification in standard design software like Revit or Forma. So here's that site layout we just made put it into Forma and an accompanying daylight analysis run on it. So the examples that we've talked about today mostly center around landscaping and carbon. But the same technique could be used for other attributes, like privacy, or sunlight, or unit mix.

So, today, we've articulated a hybrid model that interlaces generative design and generative AI, taking the best of both. And rather than replacing generative design, generative AI can be embedded within it, making the entire system more accessible and useful. In this framework, generative design takes on the crucial task of synthesizing high-quality training data.

Generative AI comes into play for on-the-fly design generation and interaction, providing an unprecedented avenue for exploration. Then generative design reenters the scene, serving as a touchstone for validation and precise adjustments.

Our approach fuses the direct manipulation capabilities of traditional interfaces with the intuitive nature of natural language input. This offers nuanced control and flexibility, not just in geometric configurations, but also in achieving various performance objectives. The real revolution here is that we're not merely generating designs. We're beginning to build models that learn the fundamental relationships between geometry and performance.

This preempts the need for the aimless, post-hoc scrutiny of design options that generative design often leads us into. Instead, we pave a path for purposeful exploration, allowing for a synthesis of both control directives and serendipitous design outcomes. Thank you.

______
icon-svg-close-thick

Cookie 首选项

您的隐私对我们非常重要,为您提供出色的体验是我们的责任。为了帮助自定义信息和构建应用程序,我们会收集有关您如何使用此站点的数据。

我们是否可以收集并使用您的数据?

详细了解我们使用的第三方服务以及我们的隐私声明

绝对必要 – 我们的网站正常运行并为您提供服务所必需的

通过这些 Cookie,我们可以记录您的偏好或登录信息,响应您的请求或完成购物车中物品或服务的订购。

改善您的体验 – 使我们能够为您展示与您相关的内容

通过这些 Cookie,我们可以提供增强的功能和个性化服务。可能由我们或第三方提供商进行设置,我们会利用其服务为您提供定制的信息和体验。如果您不允许使用这些 Cookie,可能会无法使用某些或全部服务。

定制您的广告 – 允许我们为您提供针对性的广告

这些 Cookie 会根据您的活动和兴趣收集有关您的数据,以便向您显示相关广告并跟踪其效果。通过收集这些数据,我们可以更有针对性地向您显示与您的兴趣相关的广告。如果您不允许使用这些 Cookie,您看到的广告将缺乏针对性。

icon-svg-close-thick

第三方服务

详细了解每个类别中我们所用的第三方服务,以及我们如何使用所收集的与您的网络活动相关的数据。

icon-svg-hide-thick

icon-svg-show-thick

绝对必要 – 我们的网站正常运行并为您提供服务所必需的

Qualtrics
我们通过 Qualtrics 借助调查或联机表单获得您的反馈。您可能会被随机选定参与某项调查,或者您可以主动向我们提供反馈。填写调查之前,我们将收集数据以更好地了解您所执行的操作。这有助于我们解决您可能遇到的问题。. Qualtrics 隐私政策
Akamai mPulse
我们通过 Akamai mPulse 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Akamai mPulse 隐私政策
Digital River
我们通过 Digital River 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Digital River 隐私政策
Dynatrace
我们通过 Dynatrace 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Dynatrace 隐私政策
Khoros
我们通过 Khoros 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Khoros 隐私政策
Launch Darkly
我们通过 Launch Darkly 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Launch Darkly 隐私政策
New Relic
我们通过 New Relic 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. New Relic 隐私政策
Salesforce Live Agent
我们通过 Salesforce Live Agent 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Salesforce Live Agent 隐私政策
Wistia
我们通过 Wistia 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Wistia 隐私政策
Tealium
我们通过 Tealium 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Tealium 隐私政策
Upsellit
我们通过 Upsellit 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Upsellit 隐私政策
CJ Affiliates
我们通过 CJ Affiliates 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. CJ Affiliates 隐私政策
Commission Factory
我们通过 Commission Factory 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Commission Factory 隐私政策
Google Analytics (Strictly Necessary)
我们通过 Google Analytics (Strictly Necessary) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Strictly Necessary) 隐私政策
Typepad Stats
我们通过 Typepad Stats 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Typepad Stats 隐私政策
Geo Targetly
我们使用 Geo Targetly 将网站访问者引导至最合适的网页并/或根据他们的位置提供量身定制的内容。 Geo Targetly 使用网站访问者的 IP 地址确定访问者设备的大致位置。 这有助于确保访问者以其(最有可能的)本地语言浏览内容。Geo Targetly 隐私政策
SpeedCurve
我们使用 SpeedCurve 来监控和衡量您的网站体验的性能,具体因素为网页加载时间以及后续元素(如图像、脚本和文本)的响应能力。SpeedCurve 隐私政策
Qualified
Qualified is the Autodesk Live Chat agent platform. This platform provides services to allow our customers to communicate in real-time with Autodesk support. We may collect unique ID for specific browser sessions during a chat. Qualified Privacy Policy

icon-svg-hide-thick

icon-svg-show-thick

改善您的体验 – 使我们能够为您展示与您相关的内容

Google Optimize
我们通过 Google Optimize 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Google Optimize 隐私政策
ClickTale
我们通过 ClickTale 更好地了解您可能会在站点的哪些方面遇到困难。我们通过会话记录来帮助了解您与站点的交互方式,包括页面上的各种元素。将隐藏可能会识别个人身份的信息,而不会收集此信息。. ClickTale 隐私政策
OneSignal
我们通过 OneSignal 在 OneSignal 提供支持的站点上投放数字广告。根据 OneSignal 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 OneSignal 收集的与您相关的数据相整合。我们利用发送给 OneSignal 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. OneSignal 隐私政策
Optimizely
我们通过 Optimizely 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Optimizely 隐私政策
Amplitude
我们通过 Amplitude 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Amplitude 隐私政策
Snowplow
我们通过 Snowplow 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Snowplow 隐私政策
UserVoice
我们通过 UserVoice 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. UserVoice 隐私政策
Clearbit
Clearbit 允许实时数据扩充,为客户提供个性化且相关的体验。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。Clearbit 隐私政策
YouTube
YouTube 是一个视频共享平台,允许用户在我们的网站上查看和共享嵌入视频。YouTube 提供关于视频性能的观看指标。 YouTube 隐私政策

icon-svg-hide-thick

icon-svg-show-thick

定制您的广告 – 允许我们为您提供针对性的广告

Adobe Analytics
我们通过 Adobe Analytics 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Adobe Analytics 隐私政策
Google Analytics (Web Analytics)
我们通过 Google Analytics (Web Analytics) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Web Analytics) 隐私政策
AdWords
我们通过 AdWords 在 AdWords 提供支持的站点上投放数字广告。根据 AdWords 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AdWords 收集的与您相关的数据相整合。我们利用发送给 AdWords 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AdWords 隐私政策
Marketo
我们通过 Marketo 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。我们可能会将此数据与从其他信息源收集的数据相整合,以根据高级分析处理方法向您提供改进的销售体验或客户服务体验以及更相关的内容。. Marketo 隐私政策
Doubleclick
我们通过 Doubleclick 在 Doubleclick 提供支持的站点上投放数字广告。根据 Doubleclick 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Doubleclick 收集的与您相关的数据相整合。我们利用发送给 Doubleclick 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Doubleclick 隐私政策
HubSpot
我们通过 HubSpot 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。. HubSpot 隐私政策
Twitter
我们通过 Twitter 在 Twitter 提供支持的站点上投放数字广告。根据 Twitter 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Twitter 收集的与您相关的数据相整合。我们利用发送给 Twitter 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Twitter 隐私政策
Facebook
我们通过 Facebook 在 Facebook 提供支持的站点上投放数字广告。根据 Facebook 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Facebook 收集的与您相关的数据相整合。我们利用发送给 Facebook 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Facebook 隐私政策
LinkedIn
我们通过 LinkedIn 在 LinkedIn 提供支持的站点上投放数字广告。根据 LinkedIn 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 LinkedIn 收集的与您相关的数据相整合。我们利用发送给 LinkedIn 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. LinkedIn 隐私政策
Yahoo! Japan
我们通过 Yahoo! Japan 在 Yahoo! Japan 提供支持的站点上投放数字广告。根据 Yahoo! Japan 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Yahoo! Japan 收集的与您相关的数据相整合。我们利用发送给 Yahoo! Japan 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Yahoo! Japan 隐私政策
Naver
我们通过 Naver 在 Naver 提供支持的站点上投放数字广告。根据 Naver 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Naver 收集的与您相关的数据相整合。我们利用发送给 Naver 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Naver 隐私政策
Quantcast
我们通过 Quantcast 在 Quantcast 提供支持的站点上投放数字广告。根据 Quantcast 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Quantcast 收集的与您相关的数据相整合。我们利用发送给 Quantcast 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Quantcast 隐私政策
Call Tracking
我们通过 Call Tracking 为推广活动提供专属的电话号码。从而,使您可以更快地联系我们的支持人员并帮助我们更精确地评估我们的表现。我们可能会通过提供的电话号码收集与您在站点中的活动相关的数据。. Call Tracking 隐私政策
Wunderkind
我们通过 Wunderkind 在 Wunderkind 提供支持的站点上投放数字广告。根据 Wunderkind 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Wunderkind 收集的与您相关的数据相整合。我们利用发送给 Wunderkind 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Wunderkind 隐私政策
ADC Media
我们通过 ADC Media 在 ADC Media 提供支持的站点上投放数字广告。根据 ADC Media 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 ADC Media 收集的与您相关的数据相整合。我们利用发送给 ADC Media 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. ADC Media 隐私政策
AgrantSEM
我们通过 AgrantSEM 在 AgrantSEM 提供支持的站点上投放数字广告。根据 AgrantSEM 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AgrantSEM 收集的与您相关的数据相整合。我们利用发送给 AgrantSEM 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AgrantSEM 隐私政策
Bidtellect
我们通过 Bidtellect 在 Bidtellect 提供支持的站点上投放数字广告。根据 Bidtellect 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bidtellect 收集的与您相关的数据相整合。我们利用发送给 Bidtellect 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bidtellect 隐私政策
Bing
我们通过 Bing 在 Bing 提供支持的站点上投放数字广告。根据 Bing 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bing 收集的与您相关的数据相整合。我们利用发送给 Bing 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bing 隐私政策
G2Crowd
我们通过 G2Crowd 在 G2Crowd 提供支持的站点上投放数字广告。根据 G2Crowd 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 G2Crowd 收集的与您相关的数据相整合。我们利用发送给 G2Crowd 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. G2Crowd 隐私政策
NMPI Display
我们通过 NMPI Display 在 NMPI Display 提供支持的站点上投放数字广告。根据 NMPI Display 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 NMPI Display 收集的与您相关的数据相整合。我们利用发送给 NMPI Display 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. NMPI Display 隐私政策
VK
我们通过 VK 在 VK 提供支持的站点上投放数字广告。根据 VK 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 VK 收集的与您相关的数据相整合。我们利用发送给 VK 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. VK 隐私政策
Adobe Target
我们通过 Adobe Target 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Adobe Target 隐私政策
Google Analytics (Advertising)
我们通过 Google Analytics (Advertising) 在 Google Analytics (Advertising) 提供支持的站点上投放数字广告。根据 Google Analytics (Advertising) 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Google Analytics (Advertising) 收集的与您相关的数据相整合。我们利用发送给 Google Analytics (Advertising) 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Google Analytics (Advertising) 隐私政策
Trendkite
我们通过 Trendkite 在 Trendkite 提供支持的站点上投放数字广告。根据 Trendkite 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Trendkite 收集的与您相关的数据相整合。我们利用发送给 Trendkite 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Trendkite 隐私政策
Hotjar
我们通过 Hotjar 在 Hotjar 提供支持的站点上投放数字广告。根据 Hotjar 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Hotjar 收集的与您相关的数据相整合。我们利用发送给 Hotjar 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Hotjar 隐私政策
6 Sense
我们通过 6 Sense 在 6 Sense 提供支持的站点上投放数字广告。根据 6 Sense 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 6 Sense 收集的与您相关的数据相整合。我们利用发送给 6 Sense 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. 6 Sense 隐私政策
Terminus
我们通过 Terminus 在 Terminus 提供支持的站点上投放数字广告。根据 Terminus 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Terminus 收集的与您相关的数据相整合。我们利用发送给 Terminus 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Terminus 隐私政策
StackAdapt
我们通过 StackAdapt 在 StackAdapt 提供支持的站点上投放数字广告。根据 StackAdapt 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 StackAdapt 收集的与您相关的数据相整合。我们利用发送给 StackAdapt 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. StackAdapt 隐私政策
The Trade Desk
我们通过 The Trade Desk 在 The Trade Desk 提供支持的站点上投放数字广告。根据 The Trade Desk 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 The Trade Desk 收集的与您相关的数据相整合。我们利用发送给 The Trade Desk 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. The Trade Desk 隐私政策
RollWorks
We use RollWorks to deploy digital advertising on sites supported by RollWorks. Ads are based on both RollWorks data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that RollWorks has collected from you. We use the data that we provide to RollWorks to better customize your digital advertising experience and present you with more relevant ads. RollWorks Privacy Policy

是否确定要简化联机体验?

我们希望您能够从我们这里获得良好体验。对于上一屏幕中的类别,如果选择“是”,我们将收集并使用您的数据以自定义您的体验并为您构建更好的应用程序。您可以访问我们的“隐私声明”,根据需要更改您的设置。

个性化您的体验,选择由您来做。

我们重视隐私权。我们收集的数据可以帮助我们了解您对我们产品的使用情况、您可能感兴趣的信息以及我们可以在哪些方面做出改善以使您与 Autodesk 的沟通更为顺畅。

我们是否可以收集并使用您的数据,从而为您打造个性化的体验?

通过管理您在此站点的隐私设置来了解个性化体验的好处,或访问我们的隐私声明详细了解您的可用选项。