AU Class
AU Class
class - AU

Twins on Track: Maximizing the Potential of Digital Rail Asset Management

共享此课程

说明

This session will examine the transformative potential of digital twins in the rail sector, as demonstrated by the Digitale Schiene Deutschland of Deutsche Bahn. Using models enhances AI-driven railway operations, resulting in significant improvements in efficiency and reliability. The use of digital twins in the rail industry is growing globally, with rail systems adopting them to optimize asset management and operational strategies. These systems use building information modeling (BIM) data to facilitate seamless integrations from planning to execution and operations. This presentation will address the issues of data integrity, accessibility, and cross-stakeholders collaboration, with an emphasis on the solutions to enhance the analysis of data and the resilience of systems. This session will also offer insights into future rail advances, with a particular focus on how digital twins can be used in the evolution of railway operations into intelligent, secure, and environmentally conscious systems.

主要学习内容

  • Learn about designing data-driven strategies for rail systems that require stakeholders' collaboration.
  • Discover data-driven decision-making processes in rail system operations and asset management.
  • Evaluate the impact that BIM data has on rail systems' operations and ROI.

讲师

  • Ana De Luna Guajardo
    Ana brings more than 10 years of experience in project coordination and management with a specialized focus on BIM methodology, Design team leadership, and Project Administration. She began in the structural design development, later in the leadership of industrial and infrastructure projects and finally in railway systems. She holds an impressive academic background, having graduated as an Architect from the Universidad Autónoma de Nuevo León in Mexico with a Master's in Project Management from the same Institution and a European Master's in Building Information Modeling (BIM A+) by the University of Minho, Portugal and University of Ljubljana, Slovenia. Currently, Ana serves as a BIM Consultant for LATAM (Latin America) at DB Engineering & Consulting GmbH, a renowned German company specializing in railway and infrastructure projects. In this role, she provides valuable expertise in project management processes, BIM consultancy, knowledge sharing, and BIM for Sustainability initiatives.
  • Julio Palma 的头像
    Julio Palma
    Civil engineer, roads, and transportation subject matter expert, BIM-data, and sustainability advocate. Passionate about boosting innovation strategies and new ways to design and make infrastructure projects with an ecosystems and alliances approach.
Video Player is loading.
Current Time 0:00
Duration 35:53
Loaded: 0.46%
Stream Type LIVE
Remaining Time 35:53
 
1x
  • Chapters
  • descriptions off, selected
  • en (Main), selected
Transcript

ANA DE LUNA: Hello, everyone. Thank you so much for joining today's presentation. We will be discussing the topic of Twins on Track. How can we maximize the potential of digital rail for asset management? My name is Ana De Luna, and I am a BIM consultant for Latin America for Deutsche Bahn Engineering & Consulting. I am an architect with a master's in project management and a master in BIM, and here with me today is Julio Palma, who I will let him introduce himself.

JULIO PALMA: Thank you, Ana. My name is Julio Palma. I'm a civil engineer. I'm part of the technical sales team in Latin America in Autodesk. I'm a sustainability leader. Thank you for having us today.

This is going to be our agenda today. First of all, we're going to discuss about digital twins in rail system and how Deutsche Bahn deals with this infrastructure. We're going to take a deep dive into the Deutsche Bahn use of digital twins in their projects. Later, we're going to discuss about how asset management is a key factor in digital twins for Deutsche Bahn projects, and later, we're going to have a brief case study regarding a project in Latin America about digital twins.

First of all, we're going to start with a brief about challenges in rail infrastructure around the world. First, we have centennial infrastructure that is aging. This infrastructure is in need to re-enter operation in the coming years. There are a lot of Brownfield projects where existing infrastructure needs to be updated to meet new operational requirements. In most of the cases, there is no record of primary information that is needed to take this into an operation project, and there is a big uncertainty regarding this infrastructure that is already in place.

And later, there is also a fast-- these are fast projects, fast-track projects that are needed to be developed in short time in design and to be placed into operation in the short term. Beyond that, there are new business models and market needs.

There is a big need for risk management, and that is represented in BPP's projects where the different stakeholders need to perform value engineering processes in order to optimize the CapEx of the project, and there is a big interest in sustainability KPIs where both the operational and embodied carbon is optimized in order to comply with regulatory alignments. And finally, there is a big focus on efficient operation that is actually one of our big messages here in this class today.

Let's discuss a little bit about a specific case. This is Colombia's case. In Colombia, for example, there is a "30 years behind schedule" infrastructure. There is a lot of work in progress of getting over that behind of schedule, and there are big projects in order to update that transportation infrastructure.

There are investments. There are growing investments in more that $24 billion in different strategies around transportation. This is regarding rail renovation, roads, and port concessions. And there is a national BIM standard going live in 2026. Ana?

ANA DE LUNA: Yes, thank you. So let's start with the topic of digital twins in railway system and connecting with the challenges that Julio just said to us. But I want to start this presentation by this analogy. So imagine walking into a kitchen where the pantry is a mess, items are scattered, labels are unclear, and you spend too much time searching for basic ingredients. So this organization makes meal prep frustrating and can be time consuming as well.

So now, in contrast, there's this pantry where everything is needed, everything is arranged, clearly labeled, and accessible, so preparing meals can become more efficient and enjoyable. So how would you describe the difference between these two pantries? Do you think we need to go from the left pantry to the right pantry? And how do we go from left to right?

Why did I bring this analogy into the topic of asset management? Now let's apply this scenario into asset management. Just like the messy pantry, inefficient asset management systems force employees to spend valuable hours gathering data instead of doing their job. So according to McKinsey reports, employees spend an average of 9.3 hours per week searching for information, which is equivalent to losing an entire worker in inefficiency. This data is supported by IDC, showing that knowledge workers spend roughly 2.5 hours per day, which is around 30% of their workday, searching for information.

The lack of organization and the access of critical asset information leads to inefficiency, leads to wasted time, and without a clear structure, managing assets can be chaotic and can be unpredictable. But just as the organized pantry, it can simplify the meal prep, having in a structure up-to-date data allows teams to work efficiently, to anticipate maintenance needs, and to allocate resources effectively.

So how the digital twin comes into the topic? Sorry. So digital twins, like well-ordered pantry, provide a clear and intuitive way to manage assets, empowering teams to make faster and more informed decisions. But what is a digital twin? This is a virtual representation of physical objects system or processes that use real-time data.

It is not only using our industry, the AEC industry, but you see on the right that it's also used in agriculture, in healthcare, in aerospace, so different industries are working with digital twins. They are valuing the real-time data and simulations to optimize operations and reduce costs. You see on the left that it is a growing market. It is valued for about $13 billion, and it's projected to go up to $259 billion by 2032. These are rapid-growing market because they see this, they recognize this power of data.

In the context of real asset management, digital twins are revolutionary in the way the entire rail networks are managed. With these data-rich models, operators can achieve and can improve the asset life cycle management. They do predictive maintenance, and they have more efficient operations.

But what is an asset in railway? In the world of railway, an asset refers to any physical or digital resource that contributes to the operation of the overall network, such as the rolling stock, which are the locomotives, the passenger cars, the freight cars. We also have the linear assets, which are the tracks, the signals, the bridges, the tunnels, the power.

We also have facilities or the buildings, the stations, the depots, other buildings that are for repairing. We have a support fleet, which are the cars, the trucks, any specialized equipment for repairs. And finally, we also have IT assets, the data centers, the network, the hardware, everything that is connecting.

And you can see in the next picture how these different assets are connected to have an entire network. Every single one of these assets is performing in a certain way and is giving signals of their state. And the true power comes from integrating different assets from different data from different sources, and it's providing an entire view or a holistic view on the overall system.

This data, where this data is coming from, it can be classified into three different categories. We have primary data, which comes from rolling stock data or infrastructure data. We also have secondary data, which comes from auxiliary sources, such as the asset data, BIM models, geographic data, operational data, maintenance data. And finally, we have external factors that contribute to the overall operations, such as the weather data.

Everything is gathered, and the holistic way of seeing the railway system enables to be more cost-efficient, to improve the processes, and to boost availability and reliability of the entire system. By evaluating not just the individual components but understanding the overall and comprehending the overall system can increase how the assets are performing between each other.

So now let's deep-dive into Deutsche Bahn use of digital rail. To give you an overview, Deutsche Bahn group, it is the largest rail network in Europe. We are the owners of 33,000 kilometers in Germany. Part of these assets are also the stations, like I said.

There's 5,700 stations, 25,000 bridges, 750 tunnels over this in Germany. And we are transporting passengers and goods. And you see the numbers there. It can give you an idea of the challenges and also the opportunities that we have as the owners of these kilometers, this railway network.

For this, Deutsche Bahn has a strategy, which it calls Strong Rail, and it's built on the idea that the railway system is strongest when it is digital. So the digital transformation is essential to address the current and the future challenges to ensure operations that are more efficient, reliable, and customer-focused. This Digital Network is key to optimize operational processes.

With this strategy and in order to overcome the challenges and the new demands, we have three objectives-- having more capacity in the overall system, have a higher quality in our operations and being more stable and reliable service, and finally, have modern working environments, which gives more efficient results.

There are different focus and projects to achieve these objectives, such as the ones that you see on the screen, and the one that is more related with the topic today is about advancing digital infrastructure. But as you can see, they're interconnected to the overall results of digital transformation. To put these technologies into practice, there are different pilot development or infrastructure projects all over Germany, and today, we will show you later a project outside of Germany, in Latin America.

This way, a digital twin is created by an overall model of the infrastructure. From the design and construction phase, we create a virtual image that is then enriched with information obtained, for example, by sensors, by drones, or even the person, which is provided in real time via IoT platform during the operation and maintenance phase. But it is exactly to have digitalized the entire rail system.

And while BIM provides the static data, digital twins are using these sensors in order for obtaining the asset. So how is it related? Imagine having a bustling rail station. Trains are arriving, departing. Passengers are rushing to their destinations. And behind the scenes, there's rail operators that are grappling with aging infrastructure, increasing demands, and need to be very efficient with their service.

So for the railway industry, to connect it with the analogy of the pantry, any disorganization comes with an enormous cost. The maintenance of railway infrastructure costs to the sector approximately 40,000 euros per kilometer of track with maintenance activities representing 38% of total operation cost. These numbers underline the urgent need to be more optimized and streamlined in our system.

This is where digital twins come into play. They allow us to organize the pantry of the railway assets and ensuring that every piece of the data is accessible, is clearly labeled, is optimized for use, and, at the end of the day, is reducing time spent, searching information so they drive productivity and improve the planning of maintenance to overall reduce the cost across the system.

So how does the rail asset maintenance work? There are different types of maintenance, and it goes from reactive maintenance, which is when it happens something urgent that it needs urgent intervention when a system is failing, so we maintain after a failure, of course. Then we have preventive maintenance, which is we maintain regularly to prevent failures.

We have condition-based maintenance, so we maintain or repair assets when condition degrades. Or we have predictive maintenance. It's scheduled and prioritized maintenance based on the state of our assets. So the idea and the goal that you see there-- the goal is to go into predictive maintenance, and it's just not about implementation. It's a chance to improve maintenance, and this is enabled by data. We need to collect data, understand our data, determine what is the condition, [INAUDIBLE] statistics, and then do predictions.

Now, going from reactive to predictive, this graph that you're seeing is illustrating the exponential cost of reactive and/or predictive maintenance. The navy line shows that planning and investing in setting up digital twins with the sensors and combine data science with analytical techniques for this predictive maintenance will, in the end, in the long term, cause savings.

The upfront investment in digital twins will also result in increased reliability as for the user and for the owner, and you can see it around three years implementing the results of this. But it is a long-term-- it is a long-term base of understanding how the digital twins and moving from reactive to predictive benefits in the long run.

So from the BIM perspective, how can we jump in on the digital asset management initiative? We know that BIM provides aesthetic data, but in order to be digital twins, we need to connect and to integrate real-time data with asset management systems. So this integration is crucial for effective maintenance and operations, which allows real-time data analysis and decision-making. So to get BIM into the asset management, there's three things, the strategy, the digital twins, and the training.

According to McKinsey, asset managers are investing more in technology but not necessarily with an optimal strategy, so we need to start with the strategy in mind, one that is aligned with the overall asset management strategy, with data analysis, and with sustainability. So we need to design data-driven strategies for rail systems that require stakeholder collaboration.

So to break down this digital strategy and develop a BIM strategy for digital asset management, we need to or we are proposing having these four pillars, people, policies, processes, and technology, and acting in three different phases from development to implementation to acceleration. I will go deeper into each one of those.

So for example, for people, we have an initial training sessions to make everyone familiarize-- every employee to familiarize what this new digital asset management is about, the technologies and methodologies, and these can also be restructuring in roles and responsibility that aligns to these new processes and technology. So there's an initial training and an organizational change.

In the meantime, in the implementation phase, there's a specialized training, so any special skills that need to be handled, and finally, in the acceleration phase, we have training expansion. So how can we ensure that we have all the necessary competencies to operate? And finally, the adaptation of organizational change-- so there's a continuous monitoring and supporting the organizational change of having the digital in asset management.

Then we have the policies, and for the policies we need first to create or review internal policies. And we need to ensure how can we are supporting the digital asset management, so any internal aspect. But we also need to connect with the external regulations, so any applicable laws and regulations that we need to comply with legal, with operational risk and also with the standards, such as ISO 19650 for BIM or the ISO 55001 for asset management.

Also important is to define the classification system to ensure that we are talking about the same data. In the mid-term, we also do any policy adjustments based on the feedback, and at the end of the day, we do an ongoing and regular monitoring and reviewing of the policies and adapt based on needs and based on technological advances.

Then we have the processes, and first, we need to understand in depth the current processes and identify opportunities of improvement, so having the needs, the challenges faced. Then we suggest to start with a pilot, so execute pilot processes to test the processes in a controlled environment to later on do a large scale. In this pilot, do evaluation. Do adjustment. Do an analysis of the results. Do any process optimization, refinement of these processes.

And finally, you go into the improve processes by implementing any automation, continuous monitoring, and any process documentation that needs to be formalized, it's needed to have it documented in order to understand how is it the pilot phase into a more scalable phase.

And finally, but not least, the technology-- so first, we need to evaluate and do the technology selection, what tools, what suppliers, and the best solutions for this digitalization of asset data. Then we move into the deployment of these case studies for the BIM uses and do a technology monitoring, so continuous evaluation about how these technologies are being implemented. And then we move into a large-scale deployment and technological adjustments based on the review and the continuous improvement of the rest of the processes from the people, the policies, and the processes.

From all these strategies, once we have these strategies, we'll then need to start the creation of the digital twin, and for that we need to collect, model, connect, and manage data. In the collection, we need to collect the necessary information based on a strategy, and we have two aspects of collection, so the geometry and information.

From the geometry, it depends on the case of each project. For example, if it's a greenfield project, you can have an as-built model that is coming from the design of the construction. If you have a brownfield that doesn't have a model, you can do scannings and then do a scan to BIM, which allows you to have accurate and rapid evaluation. It eliminates the need to rely on outdated information.

Then you have the-- collect the necessary information based on the strategy, so any metrics, any KPIs, and other company data. And then you have external documentaries, like technical sheets, warranties, manuals, anything that it can be contained in the model as form of information. Then we start with the BIM modeling of the digital twin from the development of the BIM execution plan specific for the use of operation and maintenance phase for asset management.

We understand the model segregation strategy, the model authorizing tool. What is the common data environment that is going to be used, the naming convention, the level of detail, the level of information? Everything like this is defined in the strategy and collected in the BIM execution plan.

And then you start developing the BIM model your facilities. Fostering these processes, you can import the point cloud into Revit, for example, and improve accuracy. You can modify the level of detail depending on the need, and you can use VR/AR applications to fully understand your facilities.

Then you will go into the connection, the digital twin. This follows a connection strategy, the tool selection of the different data. So you have maintenance data, such as warranties, suppliers, tasks. You have operations data, IoT, asset data, classification, manufacture quantities, everything connected.

And at the end, you do the management. So the goal with proper data management is to make information usable and transferable, according to project requirements. So identify what information responds to operation and maintenance needs, such as what information I need in order to make an informed decision, what information I need in order to carry out key operation maintenance activities, or what information is necessary to answer critical or urgent questions in order to-- when an event or a disaster happen or for safety.

So based on this information, responding this kind of questions, and by analyzing data of the sensors and historical data for maintenance records, the idea is to prevent any likelihood of something happening and suggesting any scheduling for maintenance solutions.

Of course, there are different challenges that they're facing with this methodology. Those include, for example, data standardization, data management, data security, as well as the need to update all IT infrastructure, the challenges of connectivity, privacy, security, the lack of standardized modeling approach, and the significant challenge of the market include the cost of deployment, the demand of power and storage.

So implementing digital solutions can be costly, but they require significant investment on the sensors, on the software, of the infrastructure, all the data quality control, the security solutions. But furthermore, maintaining the digital twin infrastructure requires an investment to operations. But the digitalization strategy is not necessarily a walk in the park, but it is a necessary park we need to walk in. So even if we start with small steps, we are going into the right direction.

And those first steps-- I want to talk about this case study in LATAM. This is a pilot project that we did with first metro system in Colombia that has 25 years of operation. And as we said or as I said before, we started with the objectives and the strategy. So we had an initial knowledge transfer and training, so we were all on the same page on the topic.

Then we started evaluating what was the best pilot in terms of what input information do I have access to. Do we need a survey? Do we have operation and maintenance information, asset information? How are we going to process it with BIM? What level of detail do we need? What level of information is necessary? How can we answer the questions that I was talking about previously?

And what is the BIM strategy overall in the system? Is there a BIM strategy for operation and maintenance? And all these questions at the end of the day for the main idea is to select a pilot for operation and maintenance. Based on this, a substation of the metro system was selected, and we also needed to understand the current management process.

You see here the different steps from the system alert to alert communication to do an on-site inspection, and you see the verification, the maintenance execution, the order settlement in SAP. But all of these can have a delay in detecting communication issues, so rely on manual communication often leads to delays and miscommunication. And this has slowed down the response to problems.

And just like I was talking before, like a cluttered pantry with [INAUDIBLE] and outdated items, making this meal prep harder than in the real time, having lack of information causes inefficiency. It can also be time-consuming to do these inspections and manual maintenance orders, and it can have a delay on getting the materials and finishing the work.

So by understanding the current situation, we did a-- once the substation was selected, we started collecting information, and since we decided to do the scan and pictures to understand the area, we created a point cloud using ReCap, and we started requesting information, gathering documentation involving the different stakeholders that had the different information about the same asset.

Once information was collected, we move into creating based on the strategy for operation maintenance, going from scan to BIM, and modeling the different disciplines, architecture with the shell, MEP with the lighting, fire protection, fire alarm, electric equipment, et cetera, and not only the geometry but also the information in the form of attributes or parameters. Then the BIM model was then integrated in Autodesk Tandem and started connecting with the operation maintenance platforms, such as SAP in this case, and having in mind this future connection with IoT.

And here, you see how this overall in Tandem looks like. We have the digital twin. We have the properties, the different elements, the different parameters of the asset. And the advantage of having an inventory available to review, this inventory can also be filtered according to what you are looking for. And by having a dashboard, you see the data in different ways, and it can help you make decision process even more, depending on what the situation is about.

So by having a digital twin for management, you can have a faster detection and communication with the digital twin that is real-time data. It's automatically captured and shared, eliminating the need to do manual communication, so the teams are instantly alerted or depending on what is the strategy for alerts.

You can also streamline inspections. So the digital twin, by providing the real time, you can do remote visibility of how is the asset conditions, reduce on-site inspection, and integrate with other platforms, like I said, SAP, to automatically generate or be more efficient in how you generate the maintenance order, which simplifies the process.

And you have a better material tracking. Unfortunately, the execution right now is you don't do it visually, but you do the maintenance execution, and you start tracking, offering up-to-date inventory and maintenance needs, depending the material availability. You understand more your inventory, and you are, at the end of the day, reducing delays, always having organized pantry where everything is in place, easy to find. So the work gets done faster without unnecessary downtime.

And at the end of the day, as I've talked during this whole presentation about predictive maintenance, you can start gathering the historical data on how your assets are performing and then start predicting what is the likelihood of something happening and planning and scheduling your maintenance needs according to that.

So to solve this problem of inefficiency and wasted time, the concept of digital twins offer us this powerful solution. Just like organizing this pantry ensures that everything is in the right place for maximum efficiency, safety, and easy to access, these digital twins provide this structure for railway operations.

So they empower us to predict needs, to prevent issues before they arise and ensure that all the parts of the railway network work together seamlessly by reducing waste, minimizing downtime, and improving the overall performance. So the digital twins enables us to manage assets smarter and more effectively, creating a smoother and more reliable operation. So we'll hand out to Julio.

JULIO PALMA: Thank you, Ana. OK. Thinking about digital twins brings us to the concept of maturity levels, levels based on how digital twins supports business value and empowers digital transformation. Verdantix proposed a maturity level for digital twins comprised of five levels a descriptive twin, which provides a foundation of normalized data for facility assets, spaces, and systems. Leveraging as-built design and construction data creates a digital replica of the facility in a normalized representation created for operations.

Informative twins augment the descriptive twin with operational and sensor data, both normalizing this data and delivering real-time and historical insights. Predictive twins introduce analytics to provide early fault detection and predictive insights for optimizing building operations. Comprehensive twins add simulation to perform what-if scenarios, how much the upgrade of the system affect building performance, or how our reconfiguration of the space would affect occupation and utilization.

And finally, autonomous twins leverage AI models to add on behalf of occupants or self-tune the facility. As you can see in Ana's case, DB is right now performing predictive twins. There is a road to-- there is a roadmap in order to evolve in a comprehensive and autonomous digital twin.

To support twin building during project delivery, Autodesk Tandem builds upon Autodesk Platform Services and integrates with several products. This includes Autodesk Docs, our file-based common data environment. We bring model data into Tandem for design tools like Revit and formats like IFC, and then we can capture metadata using commonly used tools like Microsoft Excel. In the future, we'll be expanding both the model formats we support, and we'll include an integration with asset model-- the assets models of Autodesk Build to support file asset capture during the construction phase.

While twin building is very much a mobile-centric experience, we recognize that operations professionals need a different experience to unlock the operational outcomes. The experience for building operations is start with curated dashboards that provide a broad view of the data that matters.

The dashboards enable users, firstly, to monitor critical data, discover potential issues, examine trends, identify anomalies, and review recommendations. From the dashboards, the user can drill down into an anomaly or recommendation to investigate the potential issue, examining the data in detail, and understanding relationships and navigating complex data with ease. Using those insights leads to an informed decision on a corrected course of action.

And thank you. Thank you, Ana, and thank you for having us in this class today. It was a pleasure, and see you next time.

______
icon-svg-close-thick

Cookie 首选项

您的隐私对我们非常重要,为您提供出色的体验是我们的责任。为了帮助自定义信息和构建应用程序,我们会收集有关您如何使用此站点的数据。

我们是否可以收集并使用您的数据?

详细了解我们使用的第三方服务以及我们的隐私声明

绝对必要 – 我们的网站正常运行并为您提供服务所必需的

通过这些 Cookie,我们可以记录您的偏好或登录信息,响应您的请求或完成购物车中物品或服务的订购。

改善您的体验 – 使我们能够为您展示与您相关的内容

通过这些 Cookie,我们可以提供增强的功能和个性化服务。可能由我们或第三方提供商进行设置,我们会利用其服务为您提供定制的信息和体验。如果您不允许使用这些 Cookie,可能会无法使用某些或全部服务。

定制您的广告 – 允许我们为您提供针对性的广告

这些 Cookie 会根据您的活动和兴趣收集有关您的数据,以便向您显示相关广告并跟踪其效果。通过收集这些数据,我们可以更有针对性地向您显示与您的兴趣相关的广告。如果您不允许使用这些 Cookie,您看到的广告将缺乏针对性。

icon-svg-close-thick

第三方服务

详细了解每个类别中我们所用的第三方服务,以及我们如何使用所收集的与您的网络活动相关的数据。

icon-svg-hide-thick

icon-svg-show-thick

绝对必要 – 我们的网站正常运行并为您提供服务所必需的

Qualtrics
我们通过 Qualtrics 借助调查或联机表单获得您的反馈。您可能会被随机选定参与某项调查,或者您可以主动向我们提供反馈。填写调查之前,我们将收集数据以更好地了解您所执行的操作。这有助于我们解决您可能遇到的问题。. Qualtrics 隐私政策
Akamai mPulse
我们通过 Akamai mPulse 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Akamai mPulse 隐私政策
Digital River
我们通过 Digital River 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Digital River 隐私政策
Dynatrace
我们通过 Dynatrace 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Dynatrace 隐私政策
Khoros
我们通过 Khoros 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Khoros 隐私政策
Launch Darkly
我们通过 Launch Darkly 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Launch Darkly 隐私政策
New Relic
我们通过 New Relic 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. New Relic 隐私政策
Salesforce Live Agent
我们通过 Salesforce Live Agent 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Salesforce Live Agent 隐私政策
Wistia
我们通过 Wistia 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Wistia 隐私政策
Tealium
我们通过 Tealium 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Tealium 隐私政策
Upsellit
我们通过 Upsellit 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Upsellit 隐私政策
CJ Affiliates
我们通过 CJ Affiliates 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. CJ Affiliates 隐私政策
Commission Factory
我们通过 Commission Factory 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Commission Factory 隐私政策
Google Analytics (Strictly Necessary)
我们通过 Google Analytics (Strictly Necessary) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Strictly Necessary) 隐私政策
Typepad Stats
我们通过 Typepad Stats 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Typepad Stats 隐私政策
Geo Targetly
我们使用 Geo Targetly 将网站访问者引导至最合适的网页并/或根据他们的位置提供量身定制的内容。 Geo Targetly 使用网站访问者的 IP 地址确定访问者设备的大致位置。 这有助于确保访问者以其(最有可能的)本地语言浏览内容。Geo Targetly 隐私政策
SpeedCurve
我们使用 SpeedCurve 来监控和衡量您的网站体验的性能,具体因素为网页加载时间以及后续元素(如图像、脚本和文本)的响应能力。SpeedCurve 隐私政策
Qualified
Qualified is the Autodesk Live Chat agent platform. This platform provides services to allow our customers to communicate in real-time with Autodesk support. We may collect unique ID for specific browser sessions during a chat. Qualified Privacy Policy

icon-svg-hide-thick

icon-svg-show-thick

改善您的体验 – 使我们能够为您展示与您相关的内容

Google Optimize
我们通过 Google Optimize 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Google Optimize 隐私政策
ClickTale
我们通过 ClickTale 更好地了解您可能会在站点的哪些方面遇到困难。我们通过会话记录来帮助了解您与站点的交互方式,包括页面上的各种元素。将隐藏可能会识别个人身份的信息,而不会收集此信息。. ClickTale 隐私政策
OneSignal
我们通过 OneSignal 在 OneSignal 提供支持的站点上投放数字广告。根据 OneSignal 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 OneSignal 收集的与您相关的数据相整合。我们利用发送给 OneSignal 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. OneSignal 隐私政策
Optimizely
我们通过 Optimizely 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Optimizely 隐私政策
Amplitude
我们通过 Amplitude 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Amplitude 隐私政策
Snowplow
我们通过 Snowplow 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Snowplow 隐私政策
UserVoice
我们通过 UserVoice 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. UserVoice 隐私政策
Clearbit
Clearbit 允许实时数据扩充,为客户提供个性化且相关的体验。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。Clearbit 隐私政策
YouTube
YouTube 是一个视频共享平台,允许用户在我们的网站上查看和共享嵌入视频。YouTube 提供关于视频性能的观看指标。 YouTube 隐私政策

icon-svg-hide-thick

icon-svg-show-thick

定制您的广告 – 允许我们为您提供针对性的广告

Adobe Analytics
我们通过 Adobe Analytics 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Adobe Analytics 隐私政策
Google Analytics (Web Analytics)
我们通过 Google Analytics (Web Analytics) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Web Analytics) 隐私政策
AdWords
我们通过 AdWords 在 AdWords 提供支持的站点上投放数字广告。根据 AdWords 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AdWords 收集的与您相关的数据相整合。我们利用发送给 AdWords 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AdWords 隐私政策
Marketo
我们通过 Marketo 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。我们可能会将此数据与从其他信息源收集的数据相整合,以根据高级分析处理方法向您提供改进的销售体验或客户服务体验以及更相关的内容。. Marketo 隐私政策
Doubleclick
我们通过 Doubleclick 在 Doubleclick 提供支持的站点上投放数字广告。根据 Doubleclick 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Doubleclick 收集的与您相关的数据相整合。我们利用发送给 Doubleclick 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Doubleclick 隐私政策
HubSpot
我们通过 HubSpot 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。. HubSpot 隐私政策
Twitter
我们通过 Twitter 在 Twitter 提供支持的站点上投放数字广告。根据 Twitter 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Twitter 收集的与您相关的数据相整合。我们利用发送给 Twitter 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Twitter 隐私政策
Facebook
我们通过 Facebook 在 Facebook 提供支持的站点上投放数字广告。根据 Facebook 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Facebook 收集的与您相关的数据相整合。我们利用发送给 Facebook 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Facebook 隐私政策
LinkedIn
我们通过 LinkedIn 在 LinkedIn 提供支持的站点上投放数字广告。根据 LinkedIn 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 LinkedIn 收集的与您相关的数据相整合。我们利用发送给 LinkedIn 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. LinkedIn 隐私政策
Yahoo! Japan
我们通过 Yahoo! Japan 在 Yahoo! Japan 提供支持的站点上投放数字广告。根据 Yahoo! Japan 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Yahoo! Japan 收集的与您相关的数据相整合。我们利用发送给 Yahoo! Japan 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Yahoo! Japan 隐私政策
Naver
我们通过 Naver 在 Naver 提供支持的站点上投放数字广告。根据 Naver 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Naver 收集的与您相关的数据相整合。我们利用发送给 Naver 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Naver 隐私政策
Quantcast
我们通过 Quantcast 在 Quantcast 提供支持的站点上投放数字广告。根据 Quantcast 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Quantcast 收集的与您相关的数据相整合。我们利用发送给 Quantcast 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Quantcast 隐私政策
Call Tracking
我们通过 Call Tracking 为推广活动提供专属的电话号码。从而,使您可以更快地联系我们的支持人员并帮助我们更精确地评估我们的表现。我们可能会通过提供的电话号码收集与您在站点中的活动相关的数据。. Call Tracking 隐私政策
Wunderkind
我们通过 Wunderkind 在 Wunderkind 提供支持的站点上投放数字广告。根据 Wunderkind 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Wunderkind 收集的与您相关的数据相整合。我们利用发送给 Wunderkind 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Wunderkind 隐私政策
ADC Media
我们通过 ADC Media 在 ADC Media 提供支持的站点上投放数字广告。根据 ADC Media 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 ADC Media 收集的与您相关的数据相整合。我们利用发送给 ADC Media 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. ADC Media 隐私政策
AgrantSEM
我们通过 AgrantSEM 在 AgrantSEM 提供支持的站点上投放数字广告。根据 AgrantSEM 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AgrantSEM 收集的与您相关的数据相整合。我们利用发送给 AgrantSEM 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AgrantSEM 隐私政策
Bidtellect
我们通过 Bidtellect 在 Bidtellect 提供支持的站点上投放数字广告。根据 Bidtellect 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bidtellect 收集的与您相关的数据相整合。我们利用发送给 Bidtellect 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bidtellect 隐私政策
Bing
我们通过 Bing 在 Bing 提供支持的站点上投放数字广告。根据 Bing 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bing 收集的与您相关的数据相整合。我们利用发送给 Bing 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bing 隐私政策
G2Crowd
我们通过 G2Crowd 在 G2Crowd 提供支持的站点上投放数字广告。根据 G2Crowd 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 G2Crowd 收集的与您相关的数据相整合。我们利用发送给 G2Crowd 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. G2Crowd 隐私政策
NMPI Display
我们通过 NMPI Display 在 NMPI Display 提供支持的站点上投放数字广告。根据 NMPI Display 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 NMPI Display 收集的与您相关的数据相整合。我们利用发送给 NMPI Display 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. NMPI Display 隐私政策
VK
我们通过 VK 在 VK 提供支持的站点上投放数字广告。根据 VK 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 VK 收集的与您相关的数据相整合。我们利用发送给 VK 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. VK 隐私政策
Adobe Target
我们通过 Adobe Target 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Adobe Target 隐私政策
Google Analytics (Advertising)
我们通过 Google Analytics (Advertising) 在 Google Analytics (Advertising) 提供支持的站点上投放数字广告。根据 Google Analytics (Advertising) 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Google Analytics (Advertising) 收集的与您相关的数据相整合。我们利用发送给 Google Analytics (Advertising) 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Google Analytics (Advertising) 隐私政策
Trendkite
我们通过 Trendkite 在 Trendkite 提供支持的站点上投放数字广告。根据 Trendkite 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Trendkite 收集的与您相关的数据相整合。我们利用发送给 Trendkite 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Trendkite 隐私政策
Hotjar
我们通过 Hotjar 在 Hotjar 提供支持的站点上投放数字广告。根据 Hotjar 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Hotjar 收集的与您相关的数据相整合。我们利用发送给 Hotjar 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Hotjar 隐私政策
6 Sense
我们通过 6 Sense 在 6 Sense 提供支持的站点上投放数字广告。根据 6 Sense 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 6 Sense 收集的与您相关的数据相整合。我们利用发送给 6 Sense 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. 6 Sense 隐私政策
Terminus
我们通过 Terminus 在 Terminus 提供支持的站点上投放数字广告。根据 Terminus 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Terminus 收集的与您相关的数据相整合。我们利用发送给 Terminus 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Terminus 隐私政策
StackAdapt
我们通过 StackAdapt 在 StackAdapt 提供支持的站点上投放数字广告。根据 StackAdapt 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 StackAdapt 收集的与您相关的数据相整合。我们利用发送给 StackAdapt 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. StackAdapt 隐私政策
The Trade Desk
我们通过 The Trade Desk 在 The Trade Desk 提供支持的站点上投放数字广告。根据 The Trade Desk 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 The Trade Desk 收集的与您相关的数据相整合。我们利用发送给 The Trade Desk 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. The Trade Desk 隐私政策
RollWorks
We use RollWorks to deploy digital advertising on sites supported by RollWorks. Ads are based on both RollWorks data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that RollWorks has collected from you. We use the data that we provide to RollWorks to better customize your digital advertising experience and present you with more relevant ads. RollWorks Privacy Policy

是否确定要简化联机体验?

我们希望您能够从我们这里获得良好体验。对于上一屏幕中的类别,如果选择“是”,我们将收集并使用您的数据以自定义您的体验并为您构建更好的应用程序。您可以访问我们的“隐私声明”,根据需要更改您的设置。

个性化您的体验,选择由您来做。

我们重视隐私权。我们收集的数据可以帮助我们了解您对我们产品的使用情况、您可能感兴趣的信息以及我们可以在哪些方面做出改善以使您与 Autodesk 的沟通更为顺畅。

我们是否可以收集并使用您的数据,从而为您打造个性化的体验?

通过管理您在此站点的隐私设置来了解个性化体验的好处,或访问我们的隐私声明详细了解您的可用选项。