AU Class
AU Class
class - AU

Unleashing the Power of ICM to Understand Risk of Environmental Impact

共享此课程
在视频、演示文稿幻灯片和讲义中搜索关键字:

说明

Understanding how a sewer network impacts the environment in wet weather is a complex challenge. Sydney Water needs data to prioritize capital investment based on "risk” of impact to the flora/fauna or socially sensitive sites. Sewer overflow structures' discharge rates are extremely variable in their performance (hydraulic and water quality). To comprehend the risk of impact, a fully integrated single ICM model of the area (200 km2) was developed, with sewer pipes (1D) and stormwater pipes (1D), and receiving tidal estuary (2D). This calibrated model simulated hydraulics and water-quality parameters unique to each 1D/2D system. Due to the size of the model and the need to run a 10-year time series, cloud computing was used, which substantially increased run time. The outputs were coupled with the "value” of the receiving environment (for example, swimming beaches). Come to this session to see the real value that an integrated ICM model can bring to the assessment of risk of impact to the receiving environment.

主要学习内容

  • Discover the capabilities of ICM to undertake 1D/2D hydraulic and water-quality analysis.
  • Learn the value of not dumbing data down when undertaking modeling across many platforms.
  • Explore risk-based decision making: using ICM model/data in a geospatial environmental risk model.
  • Discover the value of a complete model and the complex hydraulic interactions between all the systems and impact on performance.

讲师

  • Ben Dunn
    Ben has over 20 years national and international experience in the water industry. His primary focus is wastewater networks and specialises in the wet weather performance of these systems. Current projects include the delivery of the Sydney Water 2020 to 2024 Wet Weather Program and is currently developing a substantially improved risk framework for the 2024 to 2030 period for the same program. Through innovate use of digital tools, data and analytics this program has identified major cost savings to reduce adverse social and environmental impact due to wet weather wastewater flows spilling to the environment.
  • Alex Grist
    Technical support lead for InfoWorks ICM.
Video Player is loading.
Current Time 0:00
Duration 27:38
Loaded: 0.60%
Stream Type LIVE
Remaining Time 27:38
 
1x
  • Chapters
  • descriptions off, selected
  • en (Main), selected
Transcript

BEN DUNN: Hello, Unleashing the Power of ICM, Understanding Risk of Environmental Impact. My name is Ben Dunn. I'm an associate at Aurecon. And today I'm presenting with Alex Grist, a senior technical support engineer from Autodesk. And the safe harbor statement.

So I'm a wastewater planner specializing in wet weather performance for separate sewer systems. I have a strong focus on bringing digital solutions to these projects. And I enjoy the value they can bring. I live in Brisbane, Australia.

ALEX GRIST: Welcome, everyone. I'm Alex Grist a senior technical support engineer with a decade of expertise in InfoWorks ICM. This has been primarily focused on using integrated catchment models for flood analysis. I'm passionate about helping our customers solve important environmental challenges using our technology just like the project we're talking about today. I'm located near Oxford, UK right on the River Thames. So this is an issue that is close to home.

BEN DUNN: So there are wastewater networks across the world. In these wastewater networks, they discharge the natural environment. And understanding the impact of this is complex. Two years ago, we sat down and worked out ways to improve this understanding.

And we identified three key areas that really could be explored further. One was the hydraulic interaction between the sewer and stormwater system. It is quite dynamic. And at the moment, we just generally assume it's freely discharging. But this was a fairly false assumption.

The dynamic pollutant profiles across events, these vary considerably, small events through to large events from small overflows through to large overflows. And we really wanted to understand what these actually look like. And then the pollutant movement and its impact on the value in the receiving environment. Just because the overflows discharge doesn't mean to say that pollutant stays immediately next to that point and really understanding how it moves through that environment.

So we use ICM InfoWorks, ICM Ultimate. And this was supported by virtual machines Azure, databricks, and Esri. So Alex is going to take us back to basics.

ALEX GRIST: So combined sewer systems were developed in response to urbanization and industrialization of the 19th century in growing cities. As populations increased, so did the need for proper sanitation and drainage systems. These systems captured both the sanitary wastewater and stormwater runoff into a single piped network proving cost effective and efficient during the implementation.

While effective for their time, these systems will lead to environmental issues when heavy rainfall exceeds the system capacity as diluted sewage will be discharged to the receiving environment. Given their age, these systems are often well beyond their design life and can now be close to capacity simply from sanitary flows and infiltration alone. This gives them very little capacity to cope with runoff into the system.

In contrast, newer cities often adopted separate sewer systems recognizing the benefits of improved treatment of waste and better stormwater control. The sanitary sewer takes the domestic and non-domestic wastewater to a facility where it is treated before being discharged to the receiving environment. Runoff generated by rainfall is piped into the stormwater sewer. And should this be exceeded due to rainfall, no sewage is discharged to the environment.

Now, the project we're talking about is a separate system. But as I'm sure you will appreciate every design has a limit imposed on it through cost space or practicality, the design for these systems has varied through time and around the world. But at best, they may have been designed to cope with a 50 to 100 year design life.

So many of these systems are coming towards the end of their operational design life. And the capacity of these systems is additionally impacted by operational issues such as pump failures, blockages, and infiltration. So when these systems do reach capacity, which they do ever more frequently, the focus is usually to prevent flooding. Now, the solution to this historically has been a very simple one.

BEN DUNN: Overflows are placed strategically throughout the sewer network. Now, we often think of these assets as being in the combined systems. But they are also exist throughout the separate systems. They are a very important asset. Then they stop uncontrolled flooding happening throughout the network, so whether it floods in properties or through the maintenance hole covers.

Now, in the separate sewer systems, their performance is quite variable. In new areas, typically, where we might have very low levels of wet weather flow getting into the sewer network, their operation is extremely infrequent. But when we look at the older systems, the bigger systems, these overflows operate quite regularly.

And one of the problems with the separate system is that the flows are getting into the system in a very uncontrolled and inconsistent way. So their performance is extremely variable, which is where the hydraulic models become really important. But we need to understand what the volume and frequency of these overflows are. So we can understand the impacts of that environment.

ALEX GRIST: So is this a very local or a global issue? Since 2013, the UK government instructed water companies to install event duration monitors on all storm overflows to be completed by the end of 2023. Environment agency data for 2022 shows untreated sewage has discharged across England for a total of 1.75 million hours in around 300,000 spill events. So to combat this, a 56-billion pound investment plan is proposed to reduce the discharge from overflows through to 2050. This is a mammoth undertaking.

In Australia, in preparation for the 2000 Sydney Olympics, a huge network of storage tunnels were built to reduce overflows and pollution in Sydney Harbor. The project comprised 22 kilometers of tunnel driven with a diameter of 3.8 to 6.6 meters. The lowest point in the tunnel sits at the terminal end where it is always 100 meters below sea level at a depth of 160 meters below ground level.

There are two pumping stations, each with over 16 megawatt pump capacity. The storage capacity of the tunnel is almost half a gigalitre. And it came at a cost of 460 million Australian. So this was a mega infrastructure project.

And with a year to go, to the Olympics, Paris is in the final phase of a historic clean up, which will soon see swimmers and divers back in the river Seine. At its heart, Paris has a combined sewer system dating back to the 19th century. Banned for a century because of the filthy water, city swimming is set to be one of the major legacies of the games thanks to a 1.4 billion Euro regeneration project. The final piece of the puzzle has again been to build a vast underground reservoir, which will store runoff in times of heavy rain in a huge cylindrical space 34 meters deep and 50 meters wide.

Now, for the US, there is no overflow data that I could easily find. But for the Great Lakes basin, there are 166 permits, which authorize discharge from combined sewer overflows. And according to the national coastal condition assessment in 2010, 18% of the nation's coastal and great lake waters were in poor biological condition. So this certainly seems to be a common global theme.

So the solution to remove polluting spills has often been through the use of huge storage tunnels. But this comes with a considerable price tag. And it often has a very large driver such as the Olympics to fund it. For the majority of cities, there needs to be a different approach, especially with combined and aging systems, which looks at long term strategic investment and separation.

BEN DUNN: So before we get into the project, let's just take five overflows as an example. And we're looking at volume here. And not every overflow is the same. They're all different. They all have different volumes. They have different volumes across different events. Some can be big. Some can be small.

And as we transition into the frequency conversation, that also changes quite considerably. Some can go off once a year, twice a year. But some can be a lot more regularly than that. And looking at these two matrices is the traditional approach. That's what we typically do across the world looking at the performance of wastewater systems.

We wanted to take the next step. We wanted to look at the pollutant load that was coming out of these wastewater systems. And a number of pollutants could be chosen. For this project, we're looking at Enterococci, nitrogen, phosphorus, and suspended solids.

And, again, the pollutant load varies considerably. So in some overflow structures, the loads can be huge but can be spread over quite a long time. And, similarly, there could be very small discharge volumes or frequencies and very polluted load going out very concentrated load going out to that receiving environment.

So those three variables are extremely complex. But if we take the next step into that conversation, which is, well, how is that impacting the receiving environment, which can be big in terms of a 2D model, it's quite dynamic. It moves around a lot. And understanding that movement becomes really, really important.

Now, when looking at this, we really wanted to try and do this in one single environment, one single model. What we didn't want was lots of models moving data around, running at risk of human error with data management. We just wanted one single environment. And that is where ICM came in.

ALEX GRIST: So InfoWorks ICM is Autodesk's hydraulic modeling solution for analysis of city and catchment-scale models. When it was first released 10 years ago-- and it still remains to be a real game changer in this space as it allows for the representation of almost everything in a single model. As Ben said, that was central to this project.

For those that aren't familiar with hydraulic modeling, pipes and channels are often represented as links. The direction of the flow is fixed. So it's referred to as a one-dimensional analysis. When you model flows over the surface, it can move in the x and y directions. So it is referred to as a two-dimensional analysis.

What ICM does is allows the user to model the interactions between these in the single simulation engine. The ICM engine employs a dynamic time step, which means it excels in simulating long time series events ensuring it is running at the optimum speed. The engine can smoothly transition between low flow dry weather, surcharged wet weather conditions.

This was very important for this project as the requirement was to run a 10-year continuous time series simulation. Alongside the hydraulic components, ICM also offers considerable water quality and sediment capabilities. This includes dissolved sediment and detached pollutants. This was a must for this project because it wanted to look beyond just the frequency and volume of spill and to understand the pollutant load as Ben has just explained.

ICM comes with a fully managed database and geospatial user interface, which separates it from many competitors. This has now been further enhanced with cloud database and simulation capabilities that are included from ICM 2024. Quality assurance is guaranteed through the database, which tracks all changes to the model down to the individual field level.

Data flagging allows the source and confidence of each model object field to be set and understood. Finally, users are able to build out custom workflows and remove users from repetitive tasks with exchange. So why is it that I'm here with Ben talking about this brilliant project?

Aurecon were commissioned to undertake a pilot project to demonstrate a new approach assigning risk of impact. And having explored different possibilities, they chose InfoWorks ICM due to the power of the simulation engine. Aurecon have plenty of experience of modeling in house but not specifically with InfoWorks ICM and water quality modeling.

Engagement was set up through consultancy hours using our global team of regional and international specialists. We initially sat down every two weeks to talk through the approach and where additional support was going to be required. I was also on hand to answer any questions directly with the project team as well as act as a conduit with product and development as needed on any specific questions.

So this model is really pushing the boundaries of what has been done and the capabilities of the software. Our users run 10-year time series. They run water quality and sediment models. They run 1D, 2D models. But no one has done everything in a single model, especially on this scale. So we always anticipated some challenges.

With that being said, the project has run fairly smoothly. And that really speaks for the power of the InfoWorks simulation engine. Yes, there's been a few occasional road bumps on the way. We had some challenges with some of the functionality that hadn't until this point ever been used in combination.

But because of the collaboration, we were able to quickly highlight the problematic workflow and enhance the software as a result. And, overall, it's just been a great project that I've been fortunate enough to be part of. So it's difficult to show you the model in detail such as its size. But I promise that there is an image of the whole thing later on.

So here we have a simplified snapshot to explain what's been included. Firstly, the model contains 256 kilometers squared of subcatchments of which 120 kilometers squared cover the urban environment. These drains were a combination of 269 kilometers of sanitary sewers, 36 kilometers of storm sewers. And there's also 66 kilometers of simplified river network.

All major ancillaries, such as pumping stations, force mains, and of course, the very important overflows and cross-connection structures, are modeled in detail. The receiving environment, in this case, the tidal estuary, is represented using a 13-kilometer square 2D zone. The 2D zone is discretized into mesh elements, which range from 250 to 10,000 meters squared. The 1D, 2D tidal systems are coupled via outfall 2D nodes, allowing the direct exchange of flow and pollutants. In total, there are 178 1D, 2D connection points in the model.

Hydraulically, there are four primary inputs into the model. For the sanitary flows, there are daily profiles for domestic and non-domestic sources of inflow. And these are applied through what we call the wastewater and trade profiles. Infiltration is represented via fixed base flows.

And the rainfall runoff response uses the [INAUDIBLE] methodology, which is a very common one for Australia, with approximately 40% of the area attributed to the sewers. Lastly, the very important time varying tidal boundary level is applied to the 2D zone via a level file. The simulation engine itself takes care of the hydraulic interactions and exchanges the flows between all of the different systems.

For the water quality, three dissolved determinants, including coliforms, sediment, and two attached pollutants were simulated. The inputs are driven by three main mechanisms the domestic and non-domestic flows have the pollutant concentrations associated via the wastewater and trade profiles. Background levels of pollutants have been added to the tidal zone via a polluted graph.

And, finally, the InfoWorks native wash off and gully pop flushing model has been used to determine the buildup and inflow of both dissolved and attached pollutants into the network from the runoff surfaces. The example graph in the top right hand side shows the sediment wash off and why this methodology is so important getting the pollutant loads correct. High concentrations, especially of sediment wash off, often occur at what are commonly termed first flush events, when you have rainfall after a dry period when the sediment is built upon the surface. And with ICM, this process can be represented over the full 10-year continuous simulation.

BEN DUNN: So, hopefully, you're now starting to appreciate how big this model is. And to take it to the next step, we needed to get a load of data, particularly around how the networks, the sewer networks, stormwater network, receiving environment were all behaving. So we installed 28 depth velocity gauges throughout the sewer network, 18 level monitors against overflow structures. And we chose strategically important ones that had high frequencies or high volumes.

We had 10 depth velocity gauges throughout the stormwater system. And, again, we chose quite strategically important ones, ones where we thought there was a lot of interaction going on between the sewer system and the stormwater system. And we chose 20 sites for water quality sampling.

Now, across the water quality sampling, we used a variety of tactics to gather the data. We used autosamplers, buoys out in the bay. We used people in boats going out during wet weather to gather manual samples. And we also had a variety of regimes in there.

So we were collecting data on an hourly basis, a daily basis, a weekly basis, and a monthly basis. So there's a lot of information gathered through the water quality. And, in addition to that, we gathered it across the sewer network, the stormwater network, and the 2D area.

On top of all that information, we also went and did some surveys. So we got a bathymetric survey of the entire 2D area. And we also undertook topographical surveys of the key stormwater systems and stormwater asset levels. So we pulled all that data into a model, the 1D sewer network, the 1D stormwater network, and the 2D tidal system, what we refer to as the 1D, 2D model. And we calibrated it.

So we started with the hydraulics first. We calibrated all three systems concurrently. And that made sure we were getting the interactions between all three systems as we were building that calibration. And we had a really strong focus on the wet weather performance because we needed to make sure that the hydraulic parameters in the wet weather were getting the dilution effects that we needed.

Once they got the hydraulic calibration sorted for all three systems, we moved on to the water quality. And, again, we did all three systems concurrently. But this time we had a lot more focus on the dry weather because in particular within the sewer system, this is where the pollutant load exists in the dry weather flows. And as the wet weather flows kick in, that's where the dilution comes from.

So we spend a lot of time making sure that was right across all three systems. And to run those simulations, we ran the single events on the desktops. But as we ran the time series both for the 18-month period, the calibration period, and also the 10-year time series that we're running, we're running those on virtual machines.

And when the 2024 ICM cloud service became available, we switched over to that. And that's been enormously successful. So our 10-year time series have taken about 12 days to run. We're actually really happy with that. We thought it was going to be taking a lot longer.

And so with regards to the output from these files, they are huge. I mean, 12 days of data on a virtual machine, that chomps through some code. And so we end up with about a 1 terabyte file per 10-year time series. And we are running three 10-year time series concurrently as well. So we've got two time series with some additional variables in for sensitivity analysis.

So for each of those time series within the 2D mesh, we've got about 60 billion points of data with all the pollutant loads that we have. And whilst this is really important data and really valuable for the analysis of impact, it's also really complex to digest. There's a lot of information. And when you're using time-based data, it's really complex to absorb which events are important, which aren't important, and how do you analyze that.

And one of the other aspects of this became that this information was being given to environmental people to look at to actually assess what the impact was. And they weren't users of ICM. They didn't have access to the software. And they didn't understand how to use the software. So it was a limited access to this information. So we needed to change that. And we switched over to Esri.

So we pulled the data out of the model and put it onto portal for ArcGIS to enable everyone to access it. And this is also beyond the scientists as well. We brought it to the client so that everyone could see it and see what was happening with this information.

And bringing it into this GIS system also allowed us to do quite big analytics, particularly between the three 10-year time series and assessing the deltas between those models. We could also visualize the 1D statistics in a much more powerful way. And we could also visualize the 2D simulations as we have there.

Now, although these simulations were a little bit more simplified than they were from the ICM model software, the information was good enough that people could really understand how the pollutants were moving around and what exceeded certain thresholds. And, lastly, one of the really important aspects of this when we're pulling into Esri is we wanted it to be repeatable and easy to update the model when we did updates in the model. And so we got this process down to about 24 hours so that the teams could actually access the information really, really quickly after those runs had finished.

So with the project success going back to those three criteria you had at the very beginning, yes, we did see interactions between the sewer and the stormwater system. And those interactions were important. They pushed the flows into other parts of the system when they came out in different places that we weren't expecting.

We did witness dynamic pollutant profiles across multiple assets and different events. And it varied considerably throughout the system. And we did see a lot of pollutant movement through the system. And, particularly, with the tidal aspect, it really moved around and moved around in ways that we were not expecting. So ICM was great for this. The image on the map there is the export from the model. So you can see the size and the complexity of it with all the systems.

And, lastly, was this a valued exercise? Was it valuable? Did we get information out of it that was worth this effort? And so it's really helped us understand the impact and, particularly, the impact of social sites. We've got a lot of high value beaches in this project area.

A lot of people use these beaches. And so we could understand how the Enterococci moves around comes out of the overflow structures and what the statistical impact is on those beaches. We can also take this onto flora and fauna. We can see how the suspended solids, nitrogen and phosphorus, are moving around. We can see how they're moving into areas where we've got high value flora and fauna.

And we can also look at it from the acute and the chronic point of view, so acute being short term frames, particularly, discrete events, versus chronic, where it's the long term time frame, so that 10-year time series. We can actually see the difference between the two. And we can analyze it differently.

So all of this information enables us to prioritize capital investment to maximize benefit to the receiving environment. It's not always the highest frequency or the highest overflow structure that's actually having the biggest impact. It can be the smaller ones and those ones that might be discharging more dilute flows that you wouldn't typically expect. So it has been a huge success. Thank you.

______
icon-svg-close-thick

Cookie 首选项

您的隐私对我们非常重要,为您提供出色的体验是我们的责任。为了帮助自定义信息和构建应用程序,我们会收集有关您如何使用此站点的数据。

我们是否可以收集并使用您的数据?

详细了解我们使用的第三方服务以及我们的隐私声明

绝对必要 – 我们的网站正常运行并为您提供服务所必需的

通过这些 Cookie,我们可以记录您的偏好或登录信息,响应您的请求或完成购物车中物品或服务的订购。

改善您的体验 – 使我们能够为您展示与您相关的内容

通过这些 Cookie,我们可以提供增强的功能和个性化服务。可能由我们或第三方提供商进行设置,我们会利用其服务为您提供定制的信息和体验。如果您不允许使用这些 Cookie,可能会无法使用某些或全部服务。

定制您的广告 – 允许我们为您提供针对性的广告

这些 Cookie 会根据您的活动和兴趣收集有关您的数据,以便向您显示相关广告并跟踪其效果。通过收集这些数据,我们可以更有针对性地向您显示与您的兴趣相关的广告。如果您不允许使用这些 Cookie,您看到的广告将缺乏针对性。

icon-svg-close-thick

第三方服务

详细了解每个类别中我们所用的第三方服务,以及我们如何使用所收集的与您的网络活动相关的数据。

icon-svg-hide-thick

icon-svg-show-thick

绝对必要 – 我们的网站正常运行并为您提供服务所必需的

Qualtrics
我们通过 Qualtrics 借助调查或联机表单获得您的反馈。您可能会被随机选定参与某项调查,或者您可以主动向我们提供反馈。填写调查之前,我们将收集数据以更好地了解您所执行的操作。这有助于我们解决您可能遇到的问题。. Qualtrics 隐私政策
Akamai mPulse
我们通过 Akamai mPulse 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Akamai mPulse 隐私政策
Digital River
我们通过 Digital River 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Digital River 隐私政策
Dynatrace
我们通过 Dynatrace 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Dynatrace 隐私政策
Khoros
我们通过 Khoros 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Khoros 隐私政策
Launch Darkly
我们通过 Launch Darkly 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Launch Darkly 隐私政策
New Relic
我们通过 New Relic 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. New Relic 隐私政策
Salesforce Live Agent
我们通过 Salesforce Live Agent 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Salesforce Live Agent 隐私政策
Wistia
我们通过 Wistia 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Wistia 隐私政策
Tealium
我们通过 Tealium 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Tealium 隐私政策
Upsellit
我们通过 Upsellit 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Upsellit 隐私政策
CJ Affiliates
我们通过 CJ Affiliates 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. CJ Affiliates 隐私政策
Commission Factory
我们通过 Commission Factory 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Commission Factory 隐私政策
Google Analytics (Strictly Necessary)
我们通过 Google Analytics (Strictly Necessary) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Strictly Necessary) 隐私政策
Typepad Stats
我们通过 Typepad Stats 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Typepad Stats 隐私政策
Geo Targetly
我们使用 Geo Targetly 将网站访问者引导至最合适的网页并/或根据他们的位置提供量身定制的内容。 Geo Targetly 使用网站访问者的 IP 地址确定访问者设备的大致位置。 这有助于确保访问者以其(最有可能的)本地语言浏览内容。Geo Targetly 隐私政策
SpeedCurve
我们使用 SpeedCurve 来监控和衡量您的网站体验的性能,具体因素为网页加载时间以及后续元素(如图像、脚本和文本)的响应能力。SpeedCurve 隐私政策
Qualified
Qualified is the Autodesk Live Chat agent platform. This platform provides services to allow our customers to communicate in real-time with Autodesk support. We may collect unique ID for specific browser sessions during a chat. Qualified Privacy Policy

icon-svg-hide-thick

icon-svg-show-thick

改善您的体验 – 使我们能够为您展示与您相关的内容

Google Optimize
我们通过 Google Optimize 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Google Optimize 隐私政策
ClickTale
我们通过 ClickTale 更好地了解您可能会在站点的哪些方面遇到困难。我们通过会话记录来帮助了解您与站点的交互方式,包括页面上的各种元素。将隐藏可能会识别个人身份的信息,而不会收集此信息。. ClickTale 隐私政策
OneSignal
我们通过 OneSignal 在 OneSignal 提供支持的站点上投放数字广告。根据 OneSignal 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 OneSignal 收集的与您相关的数据相整合。我们利用发送给 OneSignal 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. OneSignal 隐私政策
Optimizely
我们通过 Optimizely 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Optimizely 隐私政策
Amplitude
我们通过 Amplitude 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Amplitude 隐私政策
Snowplow
我们通过 Snowplow 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Snowplow 隐私政策
UserVoice
我们通过 UserVoice 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. UserVoice 隐私政策
Clearbit
Clearbit 允许实时数据扩充,为客户提供个性化且相关的体验。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。Clearbit 隐私政策
YouTube
YouTube 是一个视频共享平台,允许用户在我们的网站上查看和共享嵌入视频。YouTube 提供关于视频性能的观看指标。 YouTube 隐私政策

icon-svg-hide-thick

icon-svg-show-thick

定制您的广告 – 允许我们为您提供针对性的广告

Adobe Analytics
我们通过 Adobe Analytics 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Adobe Analytics 隐私政策
Google Analytics (Web Analytics)
我们通过 Google Analytics (Web Analytics) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Web Analytics) 隐私政策
AdWords
我们通过 AdWords 在 AdWords 提供支持的站点上投放数字广告。根据 AdWords 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AdWords 收集的与您相关的数据相整合。我们利用发送给 AdWords 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AdWords 隐私政策
Marketo
我们通过 Marketo 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。我们可能会将此数据与从其他信息源收集的数据相整合,以根据高级分析处理方法向您提供改进的销售体验或客户服务体验以及更相关的内容。. Marketo 隐私政策
Doubleclick
我们通过 Doubleclick 在 Doubleclick 提供支持的站点上投放数字广告。根据 Doubleclick 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Doubleclick 收集的与您相关的数据相整合。我们利用发送给 Doubleclick 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Doubleclick 隐私政策
HubSpot
我们通过 HubSpot 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。. HubSpot 隐私政策
Twitter
我们通过 Twitter 在 Twitter 提供支持的站点上投放数字广告。根据 Twitter 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Twitter 收集的与您相关的数据相整合。我们利用发送给 Twitter 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Twitter 隐私政策
Facebook
我们通过 Facebook 在 Facebook 提供支持的站点上投放数字广告。根据 Facebook 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Facebook 收集的与您相关的数据相整合。我们利用发送给 Facebook 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Facebook 隐私政策
LinkedIn
我们通过 LinkedIn 在 LinkedIn 提供支持的站点上投放数字广告。根据 LinkedIn 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 LinkedIn 收集的与您相关的数据相整合。我们利用发送给 LinkedIn 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. LinkedIn 隐私政策
Yahoo! Japan
我们通过 Yahoo! Japan 在 Yahoo! Japan 提供支持的站点上投放数字广告。根据 Yahoo! Japan 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Yahoo! Japan 收集的与您相关的数据相整合。我们利用发送给 Yahoo! Japan 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Yahoo! Japan 隐私政策
Naver
我们通过 Naver 在 Naver 提供支持的站点上投放数字广告。根据 Naver 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Naver 收集的与您相关的数据相整合。我们利用发送给 Naver 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Naver 隐私政策
Quantcast
我们通过 Quantcast 在 Quantcast 提供支持的站点上投放数字广告。根据 Quantcast 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Quantcast 收集的与您相关的数据相整合。我们利用发送给 Quantcast 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Quantcast 隐私政策
Call Tracking
我们通过 Call Tracking 为推广活动提供专属的电话号码。从而,使您可以更快地联系我们的支持人员并帮助我们更精确地评估我们的表现。我们可能会通过提供的电话号码收集与您在站点中的活动相关的数据。. Call Tracking 隐私政策
Wunderkind
我们通过 Wunderkind 在 Wunderkind 提供支持的站点上投放数字广告。根据 Wunderkind 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Wunderkind 收集的与您相关的数据相整合。我们利用发送给 Wunderkind 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Wunderkind 隐私政策
ADC Media
我们通过 ADC Media 在 ADC Media 提供支持的站点上投放数字广告。根据 ADC Media 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 ADC Media 收集的与您相关的数据相整合。我们利用发送给 ADC Media 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. ADC Media 隐私政策
AgrantSEM
我们通过 AgrantSEM 在 AgrantSEM 提供支持的站点上投放数字广告。根据 AgrantSEM 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AgrantSEM 收集的与您相关的数据相整合。我们利用发送给 AgrantSEM 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AgrantSEM 隐私政策
Bidtellect
我们通过 Bidtellect 在 Bidtellect 提供支持的站点上投放数字广告。根据 Bidtellect 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bidtellect 收集的与您相关的数据相整合。我们利用发送给 Bidtellect 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bidtellect 隐私政策
Bing
我们通过 Bing 在 Bing 提供支持的站点上投放数字广告。根据 Bing 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bing 收集的与您相关的数据相整合。我们利用发送给 Bing 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bing 隐私政策
G2Crowd
我们通过 G2Crowd 在 G2Crowd 提供支持的站点上投放数字广告。根据 G2Crowd 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 G2Crowd 收集的与您相关的数据相整合。我们利用发送给 G2Crowd 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. G2Crowd 隐私政策
NMPI Display
我们通过 NMPI Display 在 NMPI Display 提供支持的站点上投放数字广告。根据 NMPI Display 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 NMPI Display 收集的与您相关的数据相整合。我们利用发送给 NMPI Display 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. NMPI Display 隐私政策
VK
我们通过 VK 在 VK 提供支持的站点上投放数字广告。根据 VK 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 VK 收集的与您相关的数据相整合。我们利用发送给 VK 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. VK 隐私政策
Adobe Target
我们通过 Adobe Target 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Adobe Target 隐私政策
Google Analytics (Advertising)
我们通过 Google Analytics (Advertising) 在 Google Analytics (Advertising) 提供支持的站点上投放数字广告。根据 Google Analytics (Advertising) 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Google Analytics (Advertising) 收集的与您相关的数据相整合。我们利用发送给 Google Analytics (Advertising) 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Google Analytics (Advertising) 隐私政策
Trendkite
我们通过 Trendkite 在 Trendkite 提供支持的站点上投放数字广告。根据 Trendkite 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Trendkite 收集的与您相关的数据相整合。我们利用发送给 Trendkite 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Trendkite 隐私政策
Hotjar
我们通过 Hotjar 在 Hotjar 提供支持的站点上投放数字广告。根据 Hotjar 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Hotjar 收集的与您相关的数据相整合。我们利用发送给 Hotjar 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Hotjar 隐私政策
6 Sense
我们通过 6 Sense 在 6 Sense 提供支持的站点上投放数字广告。根据 6 Sense 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 6 Sense 收集的与您相关的数据相整合。我们利用发送给 6 Sense 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. 6 Sense 隐私政策
Terminus
我们通过 Terminus 在 Terminus 提供支持的站点上投放数字广告。根据 Terminus 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Terminus 收集的与您相关的数据相整合。我们利用发送给 Terminus 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Terminus 隐私政策
StackAdapt
我们通过 StackAdapt 在 StackAdapt 提供支持的站点上投放数字广告。根据 StackAdapt 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 StackAdapt 收集的与您相关的数据相整合。我们利用发送给 StackAdapt 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. StackAdapt 隐私政策
The Trade Desk
我们通过 The Trade Desk 在 The Trade Desk 提供支持的站点上投放数字广告。根据 The Trade Desk 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 The Trade Desk 收集的与您相关的数据相整合。我们利用发送给 The Trade Desk 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. The Trade Desk 隐私政策
RollWorks
We use RollWorks to deploy digital advertising on sites supported by RollWorks. Ads are based on both RollWorks data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that RollWorks has collected from you. We use the data that we provide to RollWorks to better customize your digital advertising experience and present you with more relevant ads. RollWorks Privacy Policy

是否确定要简化联机体验?

我们希望您能够从我们这里获得良好体验。对于上一屏幕中的类别,如果选择“是”,我们将收集并使用您的数据以自定义您的体验并为您构建更好的应用程序。您可以访问我们的“隐私声明”,根据需要更改您的设置。

个性化您的体验,选择由您来做。

我们重视隐私权。我们收集的数据可以帮助我们了解您对我们产品的使用情况、您可能感兴趣的信息以及我们可以在哪些方面做出改善以使您与 Autodesk 的沟通更为顺畅。

我们是否可以收集并使用您的数据,从而为您打造个性化的体验?

通过管理您在此站点的隐私设置来了解个性化体验的好处,或访问我们的隐私声明详细了解您的可用选项。