AU Class
AU Class
class - AU

Using Autodesk CFD for Occupant Thermal Comfort in a Large Auditorium Hall

共享此课程
在视频、演示文稿幻灯片和讲义中搜索关键字:

说明

Design of large building spaces for human comfort is a challenge due to complex building geometry. Simple heat load based air-conditioning design may not suffice to ensure acceptable human comfort. Design based on such an approach would provide macro-level information without local variation and may lead to over design in general or design failure at specific locations. CFD simulation using Autodesk CFD provides a convenient way of evaluating human comfort throughout the building space. In this class, you will identify specific workflows in Autodesk CFD to simulate air flow and heat transfer in a large auditorium building. You will implement workflows related to geometry preparation, applying boundary conditions and visualizing airflow, temperature and thermal comfort parameters. Based on CFD results, you will assess if thermal comfort requirements are met or not. You will be able to validate the design for adequacy including any design change required before actual construction.

主要学习内容

  • Identify specific workflows in Autodesk CFD to simulate air flow and heat transfer for human comfort evaluation
  • Implement workflows related to geometry, boundary conditions and results visualisation
  • Assess whether thermal comfort requirements are met
  • Validate the design for adequacy of thermal comfort

讲师

  • Munirajulu M
    Dr. Munirajulu. M, Bachelor of Technology (Hons.) and Ph.D. from IIT, Kharagpur, India, has more than 27 years of industry experience using CFD technology for design of HVAC, Automotive, Fluid Handling Equipment, Steam power plant products. He has been with Larsen & Toubro Limited since 2005 and prior to this, he has worked with ABB Limited and Alstom Projects India Limited for about 9 years. Currently he is responsible for performance based design using CFD analysis in MEP/AEC areas related to commercial buildings and airports in L&T Construction, Larsen & Toubro Limited, Chennai. He has been using Autodesk CFD Simulation software for MEP/AEC applications in areas such as data center cooling, thermal comfort, basement car park ventilation, DG room ventilation, rain water free surface flow for airport roof design, and smoke simulation in buildings in design stage as well as for trouble shooting. He has been a speaker at AU since 2017 through 2022, both in USA and India.
Video Player is loading.
Current Time 0:00
Duration 29:05
Loaded: 0.57%
Stream Type LIVE
Remaining Time 29:05
 
1x
  • Chapters
  • descriptions off, selected
  • en (Main), selected
Transcript

DR. MUNIRAJULU: Greetings and welcome, everyone. Thank you for joining this session about Autodesk CFD simulation for evaluating thermal comfort in a large auditorium hall. We will go through how Autodesk CFD simulation is implemented in the design of air conditioning system.

Let me introduce myself. My name is Dr. Munirajulu. Currently, I am responsible for CFD analysis in MEP/AEC design for commercial buildings and airports in L&T Construction, Larsen & Toubro Limited, India. L&T Construction is India's largest construction organization and ranked among the world's top 30 contractors. The company's capabilities span the entire gamut of construction-- civil, mechanical, electrical, and instrumentation engineering.

I am passionate about performance-based design and use of simulation tools in design of buildings. I have more than two decades of experience in using CFD technology for design, analysis, validation, and optimization. I use CFD simulation extensively in the design of data center, fire and smoke simulation, thermal comfort in occupied spaces in buildings such as auditoriums, convention center, and airports. I have been a regular speaker at Autodesk University since 2017, both in the US and India events. And it has been a great learning experience being part of AU learning community. I am sure you will have important takeaways from this session.

Before we jump into the session, let us talk a little bit about CFD simulation. CFD stands for Computational Fluid Dynamics. CFD is a design analysis tool. It uses a computer software based on physics of fluid flow and heat transfer. It requires a high-end workstation for solving large-sized problems such as thermal comfort in auditorium hall. It is used in AEC industry and MEP design. CFD is a useful tool to predict and visualize design parameters-- engineering design parameters related to fluid flow and heat transfer throughout the building space.

In combination with BIM, Building Information Modeling, CFD simulation finds its relevance in virtual design, meaning design before going for construction. CFD simulation can be used to address performance concerns, optimize the design through simulation of what-if scenarios, and predict how effectively the proposed design would function. Simulation helps in evaluating and analyzing the performance of the design at concept as well as detailed design stage.

Autodesk CFD is capable of simulating airflow, leveraging mechanical ventilation to remove heat loads in the AEC applications. It can also predict temperature distribution due to heat transfer throughout the building space of interest. Outcome of CFD simulation and analysis are helpful in evaluating design performance for proper airflow and temperature control within the occupied building space.

The purpose of mechanical ventilation is to create air movement driven by fans and provide air changes within the occupied space, replacing stale air with fresh air as well as removal of heat. This results in human comfort and good indoor air quality. In Autodesk CFD, applications of mechanical ventilation include thermal comfort of occupants within a building, data center cooling analysis, and smoke extraction analysis for life safety.

In this session, we will look at simulation capabilities in Autodesk CFD and how those capabilities can be leveraged towards design of thermal comfort. Autodesk CFD simulation provides solution to fluid flow and heat transfer problems, which are part of AEC/MEP design. We will cover four learning objectives as we proceed, namely, identifying specific workflows in Autodesk CFD, implementing those workflows, assessing the CFD results, and finally, validating the design for thermal comfort.

Hopefully, at the end of this session, you will have certain useful takeaways as to how simulation CFD helps in the design process. The goal of CFD simulation is to evaluate if the design meets the performance criteria as evidenced by the simulation results. We will go through these topics one by one in this session.

Building considered for CFD analysis is a large auditorium hall, which is part of a large convention center called India International Convention Center located in Delhi. Auditorium Hall is a multi-use events area for plenary convention sessions, corporate banquets, corporate exhibitions, training, conferences, et cetera. It has a seating capacity of 6,000-plus people in one volume over several levels as we see in the next slides.

Convention Center comprises of Main Auditorium Hall, Convention Rooms, and Grand Ballroom with a total surface of 12,830 square meters. Main Auditorium Hall has a net surface of 5,047 square meters. Out of the 5,047 square meter of surface area, 3,048 square meters are occupied by the seating area to accommodate 6,000 attendees. Due to this large occupancy, large amount of heat is generated in the auditorium hall, which, if not removed, will lead to occupant discomfort.

So the goal of air conditioning system design must provide occupant thermal comfort during events held in the auditorium hall. Ensuring thermal comfort to occupants is critical for hosting events that will attract contributed income to keep the venue full and active with financial success year after year.

Main Auditorium Hall is a large building. It is 74 meters in length, 23 meters in height at the stage, and 14-meter height at the Balcony level. Auditorium has a width of 14 meters to accommodate seating rows both in the Main Hall as well as Balcony as shown in the figure in this slide. Air conditioning system is a vital part for use of auditorium.

Air conditioning system, in this case, uses displacement ventilation. Cool air is introduced at low level and, as such, ventilates the occupied zone of the volume. Air is supplied at low level via outlets incorporated into the seating with a low temperature differential. Air is supplied at low velocity and rises as it is warmed by heat gains within the space. Extract is from high level to ensure the ventilation strategy complements thermal buoyancy rather than fighting against it.

Also, displacement ventilation gives a better air quality as indoor air is pushed out of the occupied zone. The displacement ventilation system returns stale air at high level to the air handling units, where it is passed through heat recovery. Return air is taken from a higher stratified level outside the occupied zone. The heat recovery system within the air handling units operates by extracting the cold from the return air, which, although warm by occupants and other heat gains, is cooler than the outside fresh air would be and, thereby, pre-cooling the supply airstream.

First and foremost, a key feature for a successful CFD simulation is how we characterize or idealize building components and other geometrical features for CFD modeling. Characterization is a strategy to capture design intent with a minimum amount of necessary complexity to optimize simulation performance in terms of ability to mesh or reduce solver time and provide valid results. While a fully detailed building model is necessary for construction, most of the geometry complexity may not be required when leveraging simulation for obtaining reliable performance insight quickly and effectively.

From the CAD geometry of the auditorium hall, the model suitable for CFD simulation is prepared. Input details for CFD simulation include building geometry from CAD data, including seating, air conditioning scheme details, such as supply diffusers and outlets for the return air.

Here, in this image, you can see a section view of the CFD model indicating various zones in the auditorium hall. The lower level is the Main Auditorium Hall, and the upper area is the Balcony. And the supply diffusers are installed at the bottom of the seating.

Actual supply diffuser units will have a number of details, such as swirl discharge elements, swirl discharge slots, and diagonal discharge slots, et cetera. It would be practically cumbersome to model individual components with all the details because it would increase mesh count and compute time. However, for system-level performance, which is our goal in this project case study, actual diffuser geometry is represented in the Autodesk CFD model as a simple geometrical shape. We will see that in the next slide.

The diffuser is modeled as a cylindrical body with a circular opening representing the shape of the diffuser. The outlet face is provided with a resistance value of 50%, meaning 0.5 or 50% free area ratio, to depict the diffuser opening.

The occupant seating and the occupants, they are modeled as block of air volume due to the fact that supply diffusers are integrated to the seating, and it would be computationally efficient to model the occupants as air volumes.

It is important to assign heat gains to the occupant volume in order to evaluate air temperature. Heat gains include people load, equipment and lighting load, and external loads from the walls. Seating height is considered here as 1.1 meters from the floor for evaluating the temperatures.

Strategies for modeling airflow and heat transfer are different for different CFD applications. We will look at strategies for simulation and analysis for thermal comfort in an auditorium in this case.

The Setup Tasks for simulation, for Materials, Boundary Conditions, and Meshing, depend on and apply to the input geometry. Each volume or surface created in CAD is selectable in simulation CFD. Selectable items are used to define inputs and extract results.

The CAD model for CFD is created by modifying existing CAD data or create a new geometry for simulation by referencing the existing geometry. And it is a great way to develop a clean simulation model that captures the design intent. This strategy is often less time consuming than modifying and troubleshooting the existing data. So modified CAD data is loaded into the Autodesk CFD, and the model will look like this.

Materials-- materials define the properties of parts, which impact the physics of simulation. Simulation CFD provides a comprehensive library of materials along with the ability to define custom materials as needed. For AEC applications, air is by far the most common fluid material. For auditorium CFD simulation, fluid domain is assigned Air as material with fixed properties. That is, density does not vary with temperature. Other materials include solids for building enclosure, and these solids are suppressed from the simulation.

The default resistance is provided to give resistance to the flow with a free area ratio of 0.5 in the supply inlet diffusers. The structural elements in the building are assigned solid with Concrete material, and humans are assigned as air volume with heat generation assigned in the boundary condition workflow.

We have now come to the boundary condition workflow. We specify boundary conditions after assigning materials in the CFD model. Boundary conditions, BCs in short, are necessary inputs to produce a valid flow and thermal solution. Defining these quantities is critical with a converged solution in simulation CFD. The simulation environment interacts with the simulation model based on the boundary conditions. Pressure boundary condition is applied on the surface of the air volume extension on the outlet. Inlets are extended by at least a hydraulic diameter to a wide flow re-circulation.

Air is mechanically moved out of the building space, so inlets are assigned the volume flow rate on each supply or inlet diffuser. And air flow direction indicates the flow in the right direction from the supply inlet diffusers. That is, direction is into the auditorium.

For auditorium hall, thermal simulation is driven by thermal boundary conditions and deals with heat generation components such as people, equipment, and lighting. And that is taken care by defining the total heat generation boundary condition for the occupied volume.

After assigning materials and boundary conditions, we go for meshing. And automatic mesh sizing is used to define mesh distribution in the CFD model domain. CFD simulation uses finite element method to calculate the fluid flow and thermal results. The finite element mesh is the backbone of CFD simulation calculation and has a direct impact on solution accuracy.

In the meshing task, the model geometry is divided into smaller regions called elements, where each corner of the element is a node at which flow and thermal variables will be calculated. For simulation, a certain number of elements will be required to adequately capture flow and thermal characteristics. As element count increases, so does the solution time and hardware requirements.

Question is, how many elements would be required? Well, we just use enough elements for a mesh-independent solution. Here, for our auditorium simulation, we have gone up to 16 million elements. For better accuracy, first, we do automatic mesh sizing for the entire domain, and then we do refinement on volumes as necessary.

Local mesh refinement with uniform mesh is used for mesh on supply diffusers and occupant volumes to capture the flow through them. So we click on this Uniform tab here, and that will enable the uniform mesh on the selected item. This is for the occupants, uniform meshing on the occupants.

Having gone through the setup workflow, we will now see how we have used the CFD simulation and the Results Visualization Tasks in Autodesk CFD. The Solve dialog in the Simulation task is the command center for simulation. It controls the physics of the simulation as well as what data is output. Results dialog in the simulation CFD controls various methods for visualizing the results, results using Global, Plane, Traces, Iso Surfaces, and Iso Volumes option.

Solver settings are based not only on the physics of the application but also user preferences such as how much data is to be output. The Solve dialog is comprised of three tabs-- Control, Physics, and Adaptation. Each of these tabs have a variety of input fields and buttons, which will be used in setting up the simulation.

Simulation CFD has the capability of solving a wide variety of fluid flow and heat transfer applications. The first step is to know which settings are required, and that is determined by the physics of the problem that is being solved. So here, you can see that we have set up Flow as Steady State and Incompressible. Since heat transfer needs to be included in the analysis, we have enabled the Heat Transfer. For thermal comfort study, we need to calculate temperature, so we have to solve flow as well as heat transfer. Buoyancy effects due to gravity need not be considered. So heat transfer is by Forced Convection only, so we have not enabled the Gravity here.

After the simulation is set up, run, and converged, we can look at results using the Results Visualization tools here. Autodesk CFD simulation helps the designer to validate or optimize the design by providing visualization of performance characteristics, such as temperature, velocity, that are difficult to capture in the real world at all locations. Anemometers, manometers, thermocouples, and infrared cameras can be used to capture performance characteristics at specific locations and time. So physical testing would give only limited depiction of the performance characteristics.

On the other hand, simulation CFD extends the limitation of the physical testing by providing needed values everywhere in the building. So CFD analysis results are useful to evaluate performance, identify opportunities to improve, and effect of design modifications on performance.

Flow and thermal performance of auditorium can be evaluated by looking at the results using Global option. Global results for temperature provide visualization of thermal gradient on the model surfaces, showing the minimum and the maximum temperatures in the analysis.

Airflow velocity and the temperature values are the key results from CFD analysis to evaluate thermal comfort. Results Plane option in this image provides temperature as well as velocity distribution in the occupied space.

Results Plane in this slide provides velocity distribution in the occupied space at 1.7 meters from the finished floor level. These are the values. This helps us to look at local values as well as variation from point to point. So that is advantage of CFD analysis compared to testing. Testing will give only limited values; whereas CFD analysis will provide the values anywhere that we want to look at.

Here, the Results Plane in this slide provides temperature distribution in the occupied space at 1.7 meters from the finished floor level. And so we can see here the local variation of thermal comfort condition in terms of temperature. When the temperatures are plotted in the range of 22 to 30 degrees Celsius, we can see that most of the auditorium space is below 22 degrees Celsius, which is acceptable, except a few locations which are showing slightly higher than 22 degrees Celsius.

And the results have to be plotted at 0.7 meter level also because in auditorium there could be children. The head height of children is 0.7 meters. So here, you can see that from these temperature plots, results plotted in the range of 22 to 30 degrees Celsius indicate that the temperatures are within 22 degrees Celsius or 0.7 meters from the floor in most of the auditorium space. Similarly, at 1.1 meters from the floor level, 1.1 meters is the head height when an adult is seated. So the temperature contour at this height is very important to evaluate the thermal comfort.

Here, in this slide, we can see how the air flow happens in the Balcony at 0.7 meters from the floor, 1.1 meters from the floor, and 1.7 meters from the floor. So you can see the local variations, the velocity values ranging from very low values to almost 0.25 meters per second.

Here, in this slide, we can see temperatures plotted in the range of 22 to-- 16 to 22 degrees Celsius for 0.7 meters and 1.1 meters and 1.7 meters. This kind of output from Autodesk CFD helps us to understand temperature variation and distribution, and we will be able to identify any hot spots, where the temperature is beyond the acceptable limit.

And when plotted in the range of 22 to 30 degrees Celsius, it gives a clear picture about-- if the occupied space is having temperature that would provide thermal comfort or not. So here, you can see temperature contour at 0.7 meters, 1.1 meters, and 1.7 meters from the floor. All of them are indicating temperatures are below 22 degrees Celsius. So based on the CFD results of temperature distribution and values at the occupied level, we can evaluate if air conditioning system design is adequate or not for thermal comfort.

We have seen that from relevancy of the results, temperature profiles are within acceptable limits for occupant thermal comfort, thereby indicating confidence in the adequacy of the air conditioning system designed. The velocity contour over the Main Auditorium Hall shows a uniform distribution more or less of the airflow, and the temperature distribution again shows most of the occupied area is within the recommended value of 22 degrees Celsius. And in the Balcony also, the temperature distribution shows that most of the occupied area has a temperature in the range of 19 to 21.5 degrees Celsius, which is quite acceptable.

So based on the output from Autodesk CFD simulation, it is possible to evaluate and conclude if the proposed air conditioning system is adequate or not.

So to wrap up, we have covered in this session the following and hope you have benefited from these key learnings, which are identifying specific workflows in Autodesk CFD, implementing those workflows, assessing the CFD results, validating the design for thermal comfort in a large auditorium hall.

Thank you for your attention, and happy learning at AU 2021.

______
icon-svg-close-thick

Cookie 首选项

您的隐私对我们非常重要,为您提供出色的体验是我们的责任。为了帮助自定义信息和构建应用程序,我们会收集有关您如何使用此站点的数据。

我们是否可以收集并使用您的数据?

详细了解我们使用的第三方服务以及我们的隐私声明

绝对必要 – 我们的网站正常运行并为您提供服务所必需的

通过这些 Cookie,我们可以记录您的偏好或登录信息,响应您的请求或完成购物车中物品或服务的订购。

改善您的体验 – 使我们能够为您展示与您相关的内容

通过这些 Cookie,我们可以提供增强的功能和个性化服务。可能由我们或第三方提供商进行设置,我们会利用其服务为您提供定制的信息和体验。如果您不允许使用这些 Cookie,可能会无法使用某些或全部服务。

定制您的广告 – 允许我们为您提供针对性的广告

这些 Cookie 会根据您的活动和兴趣收集有关您的数据,以便向您显示相关广告并跟踪其效果。通过收集这些数据,我们可以更有针对性地向您显示与您的兴趣相关的广告。如果您不允许使用这些 Cookie,您看到的广告将缺乏针对性。

icon-svg-close-thick

第三方服务

详细了解每个类别中我们所用的第三方服务,以及我们如何使用所收集的与您的网络活动相关的数据。

icon-svg-hide-thick

icon-svg-show-thick

绝对必要 – 我们的网站正常运行并为您提供服务所必需的

Qualtrics
我们通过 Qualtrics 借助调查或联机表单获得您的反馈。您可能会被随机选定参与某项调查,或者您可以主动向我们提供反馈。填写调查之前,我们将收集数据以更好地了解您所执行的操作。这有助于我们解决您可能遇到的问题。. Qualtrics 隐私政策
Akamai mPulse
我们通过 Akamai mPulse 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Akamai mPulse 隐私政策
Digital River
我们通过 Digital River 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Digital River 隐私政策
Dynatrace
我们通过 Dynatrace 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Dynatrace 隐私政策
Khoros
我们通过 Khoros 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Khoros 隐私政策
Launch Darkly
我们通过 Launch Darkly 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Launch Darkly 隐私政策
New Relic
我们通过 New Relic 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. New Relic 隐私政策
Salesforce Live Agent
我们通过 Salesforce Live Agent 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Salesforce Live Agent 隐私政策
Wistia
我们通过 Wistia 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Wistia 隐私政策
Tealium
我们通过 Tealium 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Tealium 隐私政策
Upsellit
我们通过 Upsellit 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Upsellit 隐私政策
CJ Affiliates
我们通过 CJ Affiliates 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. CJ Affiliates 隐私政策
Commission Factory
我们通过 Commission Factory 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Commission Factory 隐私政策
Google Analytics (Strictly Necessary)
我们通过 Google Analytics (Strictly Necessary) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Strictly Necessary) 隐私政策
Typepad Stats
我们通过 Typepad Stats 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Typepad Stats 隐私政策
Geo Targetly
我们使用 Geo Targetly 将网站访问者引导至最合适的网页并/或根据他们的位置提供量身定制的内容。 Geo Targetly 使用网站访问者的 IP 地址确定访问者设备的大致位置。 这有助于确保访问者以其(最有可能的)本地语言浏览内容。Geo Targetly 隐私政策
SpeedCurve
我们使用 SpeedCurve 来监控和衡量您的网站体验的性能,具体因素为网页加载时间以及后续元素(如图像、脚本和文本)的响应能力。SpeedCurve 隐私政策
Qualified
Qualified is the Autodesk Live Chat agent platform. This platform provides services to allow our customers to communicate in real-time with Autodesk support. We may collect unique ID for specific browser sessions during a chat. Qualified Privacy Policy

icon-svg-hide-thick

icon-svg-show-thick

改善您的体验 – 使我们能够为您展示与您相关的内容

Google Optimize
我们通过 Google Optimize 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Google Optimize 隐私政策
ClickTale
我们通过 ClickTale 更好地了解您可能会在站点的哪些方面遇到困难。我们通过会话记录来帮助了解您与站点的交互方式,包括页面上的各种元素。将隐藏可能会识别个人身份的信息,而不会收集此信息。. ClickTale 隐私政策
OneSignal
我们通过 OneSignal 在 OneSignal 提供支持的站点上投放数字广告。根据 OneSignal 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 OneSignal 收集的与您相关的数据相整合。我们利用发送给 OneSignal 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. OneSignal 隐私政策
Optimizely
我们通过 Optimizely 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Optimizely 隐私政策
Amplitude
我们通过 Amplitude 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Amplitude 隐私政策
Snowplow
我们通过 Snowplow 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Snowplow 隐私政策
UserVoice
我们通过 UserVoice 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. UserVoice 隐私政策
Clearbit
Clearbit 允许实时数据扩充,为客户提供个性化且相关的体验。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。Clearbit 隐私政策
YouTube
YouTube 是一个视频共享平台,允许用户在我们的网站上查看和共享嵌入视频。YouTube 提供关于视频性能的观看指标。 YouTube 隐私政策

icon-svg-hide-thick

icon-svg-show-thick

定制您的广告 – 允许我们为您提供针对性的广告

Adobe Analytics
我们通过 Adobe Analytics 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Adobe Analytics 隐私政策
Google Analytics (Web Analytics)
我们通过 Google Analytics (Web Analytics) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Web Analytics) 隐私政策
AdWords
我们通过 AdWords 在 AdWords 提供支持的站点上投放数字广告。根据 AdWords 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AdWords 收集的与您相关的数据相整合。我们利用发送给 AdWords 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AdWords 隐私政策
Marketo
我们通过 Marketo 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。我们可能会将此数据与从其他信息源收集的数据相整合,以根据高级分析处理方法向您提供改进的销售体验或客户服务体验以及更相关的内容。. Marketo 隐私政策
Doubleclick
我们通过 Doubleclick 在 Doubleclick 提供支持的站点上投放数字广告。根据 Doubleclick 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Doubleclick 收集的与您相关的数据相整合。我们利用发送给 Doubleclick 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Doubleclick 隐私政策
HubSpot
我们通过 HubSpot 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。. HubSpot 隐私政策
Twitter
我们通过 Twitter 在 Twitter 提供支持的站点上投放数字广告。根据 Twitter 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Twitter 收集的与您相关的数据相整合。我们利用发送给 Twitter 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Twitter 隐私政策
Facebook
我们通过 Facebook 在 Facebook 提供支持的站点上投放数字广告。根据 Facebook 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Facebook 收集的与您相关的数据相整合。我们利用发送给 Facebook 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Facebook 隐私政策
LinkedIn
我们通过 LinkedIn 在 LinkedIn 提供支持的站点上投放数字广告。根据 LinkedIn 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 LinkedIn 收集的与您相关的数据相整合。我们利用发送给 LinkedIn 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. LinkedIn 隐私政策
Yahoo! Japan
我们通过 Yahoo! Japan 在 Yahoo! Japan 提供支持的站点上投放数字广告。根据 Yahoo! Japan 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Yahoo! Japan 收集的与您相关的数据相整合。我们利用发送给 Yahoo! Japan 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Yahoo! Japan 隐私政策
Naver
我们通过 Naver 在 Naver 提供支持的站点上投放数字广告。根据 Naver 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Naver 收集的与您相关的数据相整合。我们利用发送给 Naver 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Naver 隐私政策
Quantcast
我们通过 Quantcast 在 Quantcast 提供支持的站点上投放数字广告。根据 Quantcast 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Quantcast 收集的与您相关的数据相整合。我们利用发送给 Quantcast 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Quantcast 隐私政策
Call Tracking
我们通过 Call Tracking 为推广活动提供专属的电话号码。从而,使您可以更快地联系我们的支持人员并帮助我们更精确地评估我们的表现。我们可能会通过提供的电话号码收集与您在站点中的活动相关的数据。. Call Tracking 隐私政策
Wunderkind
我们通过 Wunderkind 在 Wunderkind 提供支持的站点上投放数字广告。根据 Wunderkind 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Wunderkind 收集的与您相关的数据相整合。我们利用发送给 Wunderkind 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Wunderkind 隐私政策
ADC Media
我们通过 ADC Media 在 ADC Media 提供支持的站点上投放数字广告。根据 ADC Media 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 ADC Media 收集的与您相关的数据相整合。我们利用发送给 ADC Media 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. ADC Media 隐私政策
AgrantSEM
我们通过 AgrantSEM 在 AgrantSEM 提供支持的站点上投放数字广告。根据 AgrantSEM 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AgrantSEM 收集的与您相关的数据相整合。我们利用发送给 AgrantSEM 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AgrantSEM 隐私政策
Bidtellect
我们通过 Bidtellect 在 Bidtellect 提供支持的站点上投放数字广告。根据 Bidtellect 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bidtellect 收集的与您相关的数据相整合。我们利用发送给 Bidtellect 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bidtellect 隐私政策
Bing
我们通过 Bing 在 Bing 提供支持的站点上投放数字广告。根据 Bing 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bing 收集的与您相关的数据相整合。我们利用发送给 Bing 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bing 隐私政策
G2Crowd
我们通过 G2Crowd 在 G2Crowd 提供支持的站点上投放数字广告。根据 G2Crowd 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 G2Crowd 收集的与您相关的数据相整合。我们利用发送给 G2Crowd 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. G2Crowd 隐私政策
NMPI Display
我们通过 NMPI Display 在 NMPI Display 提供支持的站点上投放数字广告。根据 NMPI Display 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 NMPI Display 收集的与您相关的数据相整合。我们利用发送给 NMPI Display 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. NMPI Display 隐私政策
VK
我们通过 VK 在 VK 提供支持的站点上投放数字广告。根据 VK 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 VK 收集的与您相关的数据相整合。我们利用发送给 VK 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. VK 隐私政策
Adobe Target
我们通过 Adobe Target 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Adobe Target 隐私政策
Google Analytics (Advertising)
我们通过 Google Analytics (Advertising) 在 Google Analytics (Advertising) 提供支持的站点上投放数字广告。根据 Google Analytics (Advertising) 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Google Analytics (Advertising) 收集的与您相关的数据相整合。我们利用发送给 Google Analytics (Advertising) 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Google Analytics (Advertising) 隐私政策
Trendkite
我们通过 Trendkite 在 Trendkite 提供支持的站点上投放数字广告。根据 Trendkite 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Trendkite 收集的与您相关的数据相整合。我们利用发送给 Trendkite 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Trendkite 隐私政策
Hotjar
我们通过 Hotjar 在 Hotjar 提供支持的站点上投放数字广告。根据 Hotjar 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Hotjar 收集的与您相关的数据相整合。我们利用发送给 Hotjar 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Hotjar 隐私政策
6 Sense
我们通过 6 Sense 在 6 Sense 提供支持的站点上投放数字广告。根据 6 Sense 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 6 Sense 收集的与您相关的数据相整合。我们利用发送给 6 Sense 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. 6 Sense 隐私政策
Terminus
我们通过 Terminus 在 Terminus 提供支持的站点上投放数字广告。根据 Terminus 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Terminus 收集的与您相关的数据相整合。我们利用发送给 Terminus 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Terminus 隐私政策
StackAdapt
我们通过 StackAdapt 在 StackAdapt 提供支持的站点上投放数字广告。根据 StackAdapt 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 StackAdapt 收集的与您相关的数据相整合。我们利用发送给 StackAdapt 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. StackAdapt 隐私政策
The Trade Desk
我们通过 The Trade Desk 在 The Trade Desk 提供支持的站点上投放数字广告。根据 The Trade Desk 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 The Trade Desk 收集的与您相关的数据相整合。我们利用发送给 The Trade Desk 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. The Trade Desk 隐私政策
RollWorks
We use RollWorks to deploy digital advertising on sites supported by RollWorks. Ads are based on both RollWorks data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that RollWorks has collected from you. We use the data that we provide to RollWorks to better customize your digital advertising experience and present you with more relevant ads. RollWorks Privacy Policy

是否确定要简化联机体验?

我们希望您能够从我们这里获得良好体验。对于上一屏幕中的类别,如果选择“是”,我们将收集并使用您的数据以自定义您的体验并为您构建更好的应用程序。您可以访问我们的“隐私声明”,根据需要更改您的设置。

个性化您的体验,选择由您来做。

我们重视隐私权。我们收集的数据可以帮助我们了解您对我们产品的使用情况、您可能感兴趣的信息以及我们可以在哪些方面做出改善以使您与 Autodesk 的沟通更为顺畅。

我们是否可以收集并使用您的数据,从而为您打造个性化的体验?

通过管理您在此站点的隐私设置来了解个性化体验的好处,或访问我们的隐私声明详细了解您的可用选项。