AU Class
AU Class
class - AU

Using Autodesk Fusion 360 and Generative Design to Make Lighter Rockets in Less Time

共享此课程
在视频、演示文稿幻灯片和讲义中搜索关键字:

说明

Imperial College London Rocketry is a team of undergraduate engineers learning about aerospace through the design, build, and launch of rockets. With the desire to reach space one day, efficiency in both our process and our designs is critical. Follow us as we take you through our journey in preparation for the 2021 edition of the European Rocketry Challenge (EuRoC). EuRoC is an annual rocketry competition hosting university teams from all over Europe with the aim of building and launching rockets to reach a set altitude. Learn the basics of high-powered rocket design, and see how we integrate Autodesk Fusion 360 software into our process. We’ll cover the many challenges we faced and the decisions we made throughout a grueling week-long competition. And you’ll hear how the lessons we learned inform what we do now. Presented by current engineering students, you’ll see the impact of the experience on our personal and professional development, as well as our plans for this year’s edition of the competition.

主要学习内容

  • Learn about the steps involved in the design of a high-powered rocket.
  • Learn about the benefits of Autodesk Fusion 360 for student engineering teams.
  • Learn about the benefits of Generative Design for design development.
  • Learn about the challenges involved in successfully launching at a rocketry competition.

讲师

  • Charlie Aveline 的头像
    Charlie Aveline
    Currently studying Aeronautical Engineering at Imperial College London with an interest in structural design and optimisation of spacecraft components. Joined the student-led rocketry team, Imperial College London Rocketry (ICLR), in 2020. ICLR aims to design and build custom rockets to compete in international competitions whilst educating students and giving them the opportunity to grow their hands-on experience. Gained experience in CAD, Generative Design and structural simulations within Fusion 360. Driving the design, collaboration and testing of rocket parts and assemblies as team lead of the Airframe and Recovery sub-team, whilst educating new members on the engineering design process within Fusion 360. Having gained useful experience competing at the European Rocketry Challenge in 2021, the team is now developing a throttleable, hybrid rocket for this year’s edition of the competition featuring generatively designed parts.
Video Player is loading.
Current Time 0:00
Duration 22:42
Loaded: 0.73%
Stream Type LIVE
Remaining Time 22:42
 
1x
  • Chapters
  • descriptions off, selected
  • en (Main), selected
Transcript

CHARLIE AVELINE: Designing and building rockets is one of the most technically-complex engineering challenges of the modern age. It requires a multidisciplinary approach, involving many different fields, ranging from aerodynamics and structural analysis to model-based control system design.

In 2018, four aerospace engineering students at Imperial College London aspired to enter the Spaceport America Cup, an international rocketry competition hosted here in the States. Since then, our team, Imperial College London Rocketry, has grown to over 100 members. And with that, our ambitions have too.

TANVI GIR: Based in London, we strive to enrich students' aerospace engineering education through the design, build, and launch of actual rockets, giving students exposure to real-life engineering problems. The team is divided into four major technical subthemes, each developing various aspects of rockets.

The airframe and recovery team design the structural and aerodynamic framework of the rocket as well as the critical systems that ensure that we can recover our rockets successfully. The propulsion team handles the systems that generate the thrust produced by the rocket in order for it to reach a set altitude.

KIRAN DE SILVA: The electronics team focuses on the avionics, telemetry, and power systems that control the various subsystems during launch and flight, as well as providing critical data for performance analysis. Last but not least, the systems and integration team ensures that cohesive design of whole rocket and performance trajectory simulations to ensure our rockets perform optimally.

Since our inception, we have developed numerous rockets, each of increasing size and complexity. Our first two rockets, A.P.O.G.E.E and November, built the foundations and taught us the basics of rocketry. We then developed Constant Impulse, a 3.4 meter, 30 kilo rocket, which we took to the second edition of the European Rocketry Challenge also known EuRoC.

CHARLIE AVELINE: Before going any further, I think it's worth explaining what a rocket is and how it works. All rockets are powered by engines, and these come in 3 variants, solid, hybrids, or liquids. And this depends on the different propellants used. All engines produce thrust, which propel them upwards. It's down to the airframe to keep all of the internal components safe during flight and to provide an aerodynamic shape to help reach its target altitude.

The electronics are the brains behind the rocket. They track and transmit data about the flight, as well as control different systems, such as the engine or recovery system to ensure that it touches down safely.

KIRAN DE SILVA: The European Rocketry Challenge is Europe's largest student rocketry competition. Taking place in Portugal every year, it brings over 400 students from Europe's top universities to design, build, and launch rockets to a set altitude.

Teams competing at EuRoC must design and launch a rocket carrying a defined payload to a target altitude. We were required to reach an altitude of 10,000 feet above the ground level carrying around 6 pounds of scientific payload.

The rocket can either be powered by student research and developed propulsion system or a commercially-available rocket engine. It must also meet several design test and evaluation criteria to be cleared for launch.

TANVI GIR: The integration of Fusion 360 into our workflow has streamlined our design process and accelerated our rockets development on a budget. We originally chose Fusion simply because it was extremely user friendly. It worked on everyone's computers, didn't take up too much space, and was extremely easy to pick up even for first year students who hadn't used CAD before.

At the most basic level, the design of a rocket involves the design of components. These components then integrate to form systems, which then integrate to make the rocket. The design of a component starts by defining its requirements. We cannot design anything unless we really know what it needs to do.

So in general, these requirements can include size constraints. They could include load constraints so that the path must be able to withstand, or interfacing constraints to ensure that the components of the rocket fit together nicely.

Requirements also outline what would make the design optimal. Typically, this is done via some form of an objective function. So I'm designing a part to minimize the mass or to minimize the manufacturing cost.

CHARLIE AVELINE: After the requirements are defined, the conceptual design can begin. And this starts by designing an initial part. We then go and simulate that part and check if it meets our requirements. But rarely does a part meet its requirements on the first time, so it's more of an iterative process. We redesign and resimulate until we're happy with our design and check that it's optimal.

COVID-19 presented a particular challenge in the development of Constant Impulse. Since all of us were working from home, we had to adapt our workflow to work online. However, since all of our files were online already, this was not too much of a challenge. Multiple people could access a file at once, and we could discuss and make design evaluations. So therefore, our process didn't really change that much.

KIRAN DE SILVA: Critical to our efficiency were the simulation tools embedded within Fusion 360, allowing us to analyze the effects of launch and shock loads on all the structural components of the rocket. Traditionally, design and simulation tools are separated, requiring manual export and import across programs with many differing file types.

Fusion integrates the two seamlessly, allowing us to make design adjustments and resimulate the parts easily. Being able to run structural analysis simulations on the cloud has also been a real game changer for us. It doesn't matter what laptop a student might have. We are all able to run structural simulations from any computer anywhere.

Furthermore, rather than local simulations where you have to monitor their progress, with cloud simulations, we can submit and solve the job in the background while we work on another task.

CHARLIE AVELINE: Structural simulations are run for multiple load cases, but what is a load case? A load case is made up of two parts, the constraints and the loads. Constraints define how a part is attached to its surroundings. So for example, a bolt or an adhesive may attach a component to the rest of the airframe. The loads include forces, moments, or accelerations that act on a part.

For different sections of the flight, we have different load cases. However, there are three main load cases that the rocket sees throughout the flight. The first of which is on ascent, where the engine produces thrust which tries to compress the rocket.

The second major load case is the shock load. The shock load is when the parachute deploys and creates drag, and this drag is transmitted through the rope that attaches it to the rest of the rocket and jerks the rest of the rocket. This creates a tension force which tries to rip the rocket apart.

The third load case is the bending force due to the fins. As the rocket moves through the air, the fins generate lift, which tried to snap the rocket in half.

All of these load cases must be tested to check whether the stress is fit within the yield stress of the part. If it is above the yield stress, then the part will break. A safety factor allows us to quantify how protected a part is against uncertainty. Achieving a higher safety factor means that our part is less likely to break but often comes at the cost of extra maths. So therefore, it's about finding a balance between the two.

TANVI GIR: A key part of our design workflow was generative design. This offered a solution for optimal designs in a limited time frame. For all structural components, generative design was integrated straight after the initial 3D model. No manufacturing constraints were applied, and the algorithm was right.

The output was a set of manufacturable outcomes which would highlight the applicability of generative design to that specific load case and a set of non manufacturable outcomes which provide valuable insights into the nature of the load case, and what a truly optimal solution would look like.

Now although, much of our racket doesn't look generatively designed, it definitely has informed the design of the majority of the components. And in doing so, has accelerated the development of the entire rocket.

For some components, the weight saving provided meant that it was worth exploring this more exotic manufacturing method, such as for the aluminum-based stopper that you see here on the screen. This weigh just 78.3 grams even though it was designed to withstand 400 pounds of force with a minimum safety factor of 2.7.

Using generative design, the team was able to reduce the mass of the booster interface by 27% compared with the baseline design that we had originally started with.

CHARLIE AVELINE: Every component was evaluated by the entire team at design reviews which took place at critical points during the year. And once we were all happy with the designs, we created an assembly of the entire rocket and Fusion. This allowed us to discover incompatibilities between parts or assembly issues prior to the manufacturing stage. We could also check that our designs enabled us to meet Europe's requirements.

For the manufacturing, engineering drawings are often the standard, but it can be difficult to understand complex parts or assemblies from a 2D static diagram. When we were in the workshop, we often found it a lot easier to just pull up the Fusion file and inspect the part in 3D so that we could give critical interfaces the attention to detail that they needed.

After months of manufacturing, two weeks prior to the launch, the completed rocket was packed in a box and sent off to Portugal for Europe 21. Much to our relief, the rocket had arrived in Portugal in one piece. We arrived at our home for the next week, the paddock.

After a day of unpacking our rocket and settling in, the team started to prepare for the Flight Readiness Review, better known as the FRR. This review consists of a panel of expert engineers inspecting and questioning every single aspect of our rocket.

Most Flight Readiness Reviews are a multiple hour-long grilling of each team's rockets. Any part which does not meet their strict requirements would drown the rocket and ruin any dreams of a launch.

KIRAN DE SILVA: The first step in this process was to perform a successful ground test of our recovery system. This involved the ignition of an explosive black powder charge and the pressure created by this explosion which split the rocket in half, allowing the parachutes to deploy and the rocket to recover safely.

Following a successful ground test, we move straight onto the assembly of our rocket. This was where we found our first major issues. One of the joints in the rocket was loose, and as a result, the rocket was able to bend. Immediately, we had to design a solution, which given the limited resources available, was difficult.

After hours of discussion, brainstorming, and modeling, a small group of people made the hour and a half journey to Lisbon to pick up crucial supplies for a make or break solution.

The solution we settled on was to create a fiberglass tube which would fit around the joints and add rigidity. Wrapping sheets of fiberglass around a tube in the middle of the night was not what we had imagined a week before, but it was necessary to ensure our rocket passed the Flight Readiness Review.

TANVI GIR: We woke up the following morning after minimal sleep, and it was judgment day, the Flight Readiness Review. Two officials approached us, and the review began. This would come to be the beginning of a 12-hour long battle to prove our rocket safety so that we could launch the next day.

The officials went through a very detailed checklist which all vehicles needed to comply with. During the stressful period, we were able to show the officials the CAD designs of parts in Fusion 360 and simulations to demonstrate the integrity of each component.

Being able to collaborate and run simulations on the cloud help us to pass our designs through this intense grilling. 12 hours following the beginning of the review, standing outside the paddock with our rocket, the officials finally shook our hands, and they gave us the green light to launch. The team worked through the night once again to make final preparations for the next day.

CHARLIE AVELINE: This was the moment launch. Day was here. Fueled by adrenaline and anticipation, we packed the rocket in our van and traveled to the military base where the launch would take place. After we received the green light from the officials, we began the long walk down to the rail.

As we walked, quiet thoughts ran through our heads, as many possible outcomes played out. We spent years working on this rocket and, it all came down to this one moment, all our hard effort and work, all in this one moment.

With the rocket on the rail ready to launch, we waited for the countdown. We held our breath as the countdown began. When the countdown hit zero, our rocket accelerated off of the ground and shot straight up into the sky. Relief filled our hearts. Our hard work had paid off. All of those long days in the workshop and late nights all became worth it in that one moment.

Cheering it on, it ascended up into the sky and eventually reached the peak of its flight. This was the moment of truth. We waited as time seemed suspended. The rocket needed to split. The parachutes needed to come out, but unfortunately, this never happens, and the rocket began to fall back towards the ground. Eventually, it plummeted into the ground over 100 meters per second.

KIRAN DE SILVA: Although our rocket did not come back in one piece, we were still thrilled from the adrenaline rush of seeing it soaring into the sky. Experience over that week had tested our resilience, creativity, and ingenuity. It had built us into better engineers and was the beginning of better things to come.

TANVI GIR: EuRoC taught us a lot about how we can improve. We have set our sights on this year's edition of EuRoC to take place in October. This year was all about eliminating the mistakes of the past and building an even more impressive rocket Sporadic Impulse. Standing at over 5 meters tall and incorporating our very own student-developed hybrid engine, this is a massive step forward for us.

[MUSIC PLAYING]

CHARLIE AVELINE: Modularity and accessibility was a key feature of this year's rocket. Fusion 360 allowed us to design a completely new and innovative airframe from the ground up in a matter of months. The new internal structure allows for improved accessibility and a stiffer design, which has eliminated the bending issues of the past.

We also made our first composite parts this year, with the whole of the external airframe being made out of an advanced carbon fiber and fiberglass skin. This should hopefully make our rocket lighter, stiffer, and stronger.

KIRAN DE SILVA: Sporadic Impulse is controlled by the most advanced avionics system we have ever designed. A complex control system manages the engine's thrust while calculating the rocket's current velocity and position to ensure it hits its three kilometers as accurately as possible.

To enable more interesting research, a scientific payload on Sporadic Impulse will be deployed from the rocket at Apogee. The main experiment on board the payload integrates both traditional, flexible solar panels and novel, fabric solar panels onto the parachute. The goal is to try to characterize the performance and investigate the viability of using solar-powered parachutes as a power source for the payload.

The propulsion system for our rocket this year is a custom designed and manufactured throttleable hybrid engine called Hypnos. Three is in the making. It is capable of producing over 450 pounds of force. Our engine uses a solid paraffin wax as the fuel, not too dissimilar to that found in candles, and a nitrous oxide oxidizer. The oxidizers stored in a tank at high pressure, and is released into the combustion chamber, where it burns with the paraffin.

Designing our own rocket engine has not been easy, and the team has been busy testing and fine tuning the performance of the engine to make it as powerful and as reliable as possible. Our efforts culminated in a full test fire of the rocket last month as we prepared to send the rocket to this year's edition of EuRoc.

TANVI GIR: We have continued to incorporate Fusion 360's generative design into this rocket, with two key components being metal 3D printed to allow for the more sophisticated mass saving geometries. Compared to the conventional design parts, we were able to create a 57% mass reduction.

In order to improve the chances of a successful recovery, we also decided to design our own custom mechanical recovery system. That powder is often temperamental and ultimately cost us our rocket last year. Our system this year uses a spring loaded plate to push the rocket apart and eject the parachutes.

Black powder explosives are also heavily regulated here in the UK, so switching to a mechanical system has allowed for a more rapid and more comprehensive testing.

KIRAN DE SILVA: Aside from the flagship rockets, the team has also explored two additional development streams. Firstly, a subset of the electronics team participated in the annual concert competition hosted at Machrihanish Airbase in Scotland. With a limited size constraint, they develop innovative payload designs, which when launched from a rocket land safely while also performing a scientific experiment.

In 2021, they were awarded the Design Award, and this year they were announced as winners of the cancer category, with a cancer testing the initial prototype of the solar panel parachute being launched on the payload for Sporadic Impulse. The hope is that the technologies they develop can eventually be integrated into our flagship rockets.

CHARLIE AVELINE: The second stream of development takes place within the advanced research project subgroup called the altitude record team. As the name implies, their goal is to break as many of the different UK altitude records for various sizes of rockets. They have developed a series of rockets over the last few years, lighter and faster rockets, some of which reach supersonic speeds.

Series of successful launches over the past couple of years culminated in the breaking of the UK L1 altitude record by their Apex rocket a few months ago. They have developed a wealth of experience in high speed flight, and their rockets act as useful test beds for novel subsystems that are intended for use in our flagship rockets.

TANVI GIR: [AUDIO OUT] --that reaches the edge of space. At 100 kilometers, the common line signifies the edge of space and is a massive goal for a lot of student rocketry teams. This target brings with it a whole host of new engineering problems to solve as well as a number of logistical challenges too. But having been part of this team now for four years, I can wholeheartedly say that this is a matter of when, not if.

KIRAN DE SILVA: Right now, EuRoC remains our utmost priority. And while we are here talking to you, work continues back in London to ensure we give ourselves the best possible chance of successfully launching and recovering Sporadic Impulse.

Spaceport America here in the States also remains a goal of the team as we hope to return here later with future bigger and faster rockets. We are so proud to see how far ICOR has come since its inception. And every year, we welcome your new set of budding engineers who will go on to drive the future of the team.

CHARLIE AVELINE: Designing, building, and launching rockets of this scale requires a lot of time and a lot of effort. Given that we are all students and have degrees to work towards in addition to launching rockets, a great deal of planning is required to make sure that we can reach our goals.

It is fair to say that the design of our rockets is as much a managerial challenge as it is an engineering one, but it is something that we all love. Fusion 360 has allowed us to collaborate through a global pandemic while streamlining our workflow and enabling more sophisticated designs.

I hope that today we were able to convey our passion and drive for rocketry, as well as highlighting how Fusion 360 has enabled us to develop lighter rockets faster. Thank you.

______
icon-svg-close-thick

Cookie 首选项

您的隐私对我们非常重要,为您提供出色的体验是我们的责任。为了帮助自定义信息和构建应用程序,我们会收集有关您如何使用此站点的数据。

我们是否可以收集并使用您的数据?

详细了解我们使用的第三方服务以及我们的隐私声明

绝对必要 – 我们的网站正常运行并为您提供服务所必需的

通过这些 Cookie,我们可以记录您的偏好或登录信息,响应您的请求或完成购物车中物品或服务的订购。

改善您的体验 – 使我们能够为您展示与您相关的内容

通过这些 Cookie,我们可以提供增强的功能和个性化服务。可能由我们或第三方提供商进行设置,我们会利用其服务为您提供定制的信息和体验。如果您不允许使用这些 Cookie,可能会无法使用某些或全部服务。

定制您的广告 – 允许我们为您提供针对性的广告

这些 Cookie 会根据您的活动和兴趣收集有关您的数据,以便向您显示相关广告并跟踪其效果。通过收集这些数据,我们可以更有针对性地向您显示与您的兴趣相关的广告。如果您不允许使用这些 Cookie,您看到的广告将缺乏针对性。

icon-svg-close-thick

第三方服务

详细了解每个类别中我们所用的第三方服务,以及我们如何使用所收集的与您的网络活动相关的数据。

icon-svg-hide-thick

icon-svg-show-thick

绝对必要 – 我们的网站正常运行并为您提供服务所必需的

Qualtrics
我们通过 Qualtrics 借助调查或联机表单获得您的反馈。您可能会被随机选定参与某项调查,或者您可以主动向我们提供反馈。填写调查之前,我们将收集数据以更好地了解您所执行的操作。这有助于我们解决您可能遇到的问题。. Qualtrics 隐私政策
Akamai mPulse
我们通过 Akamai mPulse 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Akamai mPulse 隐私政策
Digital River
我们通过 Digital River 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Digital River 隐私政策
Dynatrace
我们通过 Dynatrace 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Dynatrace 隐私政策
Khoros
我们通过 Khoros 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Khoros 隐私政策
Launch Darkly
我们通过 Launch Darkly 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Launch Darkly 隐私政策
New Relic
我们通过 New Relic 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. New Relic 隐私政策
Salesforce Live Agent
我们通过 Salesforce Live Agent 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Salesforce Live Agent 隐私政策
Wistia
我们通过 Wistia 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Wistia 隐私政策
Tealium
我们通过 Tealium 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Tealium 隐私政策
Upsellit
我们通过 Upsellit 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Upsellit 隐私政策
CJ Affiliates
我们通过 CJ Affiliates 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. CJ Affiliates 隐私政策
Commission Factory
我们通过 Commission Factory 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Commission Factory 隐私政策
Google Analytics (Strictly Necessary)
我们通过 Google Analytics (Strictly Necessary) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Strictly Necessary) 隐私政策
Typepad Stats
我们通过 Typepad Stats 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Typepad Stats 隐私政策
Geo Targetly
我们使用 Geo Targetly 将网站访问者引导至最合适的网页并/或根据他们的位置提供量身定制的内容。 Geo Targetly 使用网站访问者的 IP 地址确定访问者设备的大致位置。 这有助于确保访问者以其(最有可能的)本地语言浏览内容。Geo Targetly 隐私政策
SpeedCurve
我们使用 SpeedCurve 来监控和衡量您的网站体验的性能,具体因素为网页加载时间以及后续元素(如图像、脚本和文本)的响应能力。SpeedCurve 隐私政策
Qualified
Qualified is the Autodesk Live Chat agent platform. This platform provides services to allow our customers to communicate in real-time with Autodesk support. We may collect unique ID for specific browser sessions during a chat. Qualified Privacy Policy

icon-svg-hide-thick

icon-svg-show-thick

改善您的体验 – 使我们能够为您展示与您相关的内容

Google Optimize
我们通过 Google Optimize 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Google Optimize 隐私政策
ClickTale
我们通过 ClickTale 更好地了解您可能会在站点的哪些方面遇到困难。我们通过会话记录来帮助了解您与站点的交互方式,包括页面上的各种元素。将隐藏可能会识别个人身份的信息,而不会收集此信息。. ClickTale 隐私政策
OneSignal
我们通过 OneSignal 在 OneSignal 提供支持的站点上投放数字广告。根据 OneSignal 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 OneSignal 收集的与您相关的数据相整合。我们利用发送给 OneSignal 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. OneSignal 隐私政策
Optimizely
我们通过 Optimizely 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Optimizely 隐私政策
Amplitude
我们通过 Amplitude 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Amplitude 隐私政策
Snowplow
我们通过 Snowplow 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Snowplow 隐私政策
UserVoice
我们通过 UserVoice 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. UserVoice 隐私政策
Clearbit
Clearbit 允许实时数据扩充,为客户提供个性化且相关的体验。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。Clearbit 隐私政策
YouTube
YouTube 是一个视频共享平台,允许用户在我们的网站上查看和共享嵌入视频。YouTube 提供关于视频性能的观看指标。 YouTube 隐私政策

icon-svg-hide-thick

icon-svg-show-thick

定制您的广告 – 允许我们为您提供针对性的广告

Adobe Analytics
我们通过 Adobe Analytics 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Adobe Analytics 隐私政策
Google Analytics (Web Analytics)
我们通过 Google Analytics (Web Analytics) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Web Analytics) 隐私政策
AdWords
我们通过 AdWords 在 AdWords 提供支持的站点上投放数字广告。根据 AdWords 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AdWords 收集的与您相关的数据相整合。我们利用发送给 AdWords 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AdWords 隐私政策
Marketo
我们通过 Marketo 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。我们可能会将此数据与从其他信息源收集的数据相整合,以根据高级分析处理方法向您提供改进的销售体验或客户服务体验以及更相关的内容。. Marketo 隐私政策
Doubleclick
我们通过 Doubleclick 在 Doubleclick 提供支持的站点上投放数字广告。根据 Doubleclick 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Doubleclick 收集的与您相关的数据相整合。我们利用发送给 Doubleclick 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Doubleclick 隐私政策
HubSpot
我们通过 HubSpot 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。. HubSpot 隐私政策
Twitter
我们通过 Twitter 在 Twitter 提供支持的站点上投放数字广告。根据 Twitter 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Twitter 收集的与您相关的数据相整合。我们利用发送给 Twitter 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Twitter 隐私政策
Facebook
我们通过 Facebook 在 Facebook 提供支持的站点上投放数字广告。根据 Facebook 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Facebook 收集的与您相关的数据相整合。我们利用发送给 Facebook 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Facebook 隐私政策
LinkedIn
我们通过 LinkedIn 在 LinkedIn 提供支持的站点上投放数字广告。根据 LinkedIn 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 LinkedIn 收集的与您相关的数据相整合。我们利用发送给 LinkedIn 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. LinkedIn 隐私政策
Yahoo! Japan
我们通过 Yahoo! Japan 在 Yahoo! Japan 提供支持的站点上投放数字广告。根据 Yahoo! Japan 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Yahoo! Japan 收集的与您相关的数据相整合。我们利用发送给 Yahoo! Japan 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Yahoo! Japan 隐私政策
Naver
我们通过 Naver 在 Naver 提供支持的站点上投放数字广告。根据 Naver 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Naver 收集的与您相关的数据相整合。我们利用发送给 Naver 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Naver 隐私政策
Quantcast
我们通过 Quantcast 在 Quantcast 提供支持的站点上投放数字广告。根据 Quantcast 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Quantcast 收集的与您相关的数据相整合。我们利用发送给 Quantcast 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Quantcast 隐私政策
Call Tracking
我们通过 Call Tracking 为推广活动提供专属的电话号码。从而,使您可以更快地联系我们的支持人员并帮助我们更精确地评估我们的表现。我们可能会通过提供的电话号码收集与您在站点中的活动相关的数据。. Call Tracking 隐私政策
Wunderkind
我们通过 Wunderkind 在 Wunderkind 提供支持的站点上投放数字广告。根据 Wunderkind 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Wunderkind 收集的与您相关的数据相整合。我们利用发送给 Wunderkind 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Wunderkind 隐私政策
ADC Media
我们通过 ADC Media 在 ADC Media 提供支持的站点上投放数字广告。根据 ADC Media 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 ADC Media 收集的与您相关的数据相整合。我们利用发送给 ADC Media 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. ADC Media 隐私政策
AgrantSEM
我们通过 AgrantSEM 在 AgrantSEM 提供支持的站点上投放数字广告。根据 AgrantSEM 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AgrantSEM 收集的与您相关的数据相整合。我们利用发送给 AgrantSEM 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AgrantSEM 隐私政策
Bidtellect
我们通过 Bidtellect 在 Bidtellect 提供支持的站点上投放数字广告。根据 Bidtellect 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bidtellect 收集的与您相关的数据相整合。我们利用发送给 Bidtellect 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bidtellect 隐私政策
Bing
我们通过 Bing 在 Bing 提供支持的站点上投放数字广告。根据 Bing 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bing 收集的与您相关的数据相整合。我们利用发送给 Bing 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bing 隐私政策
G2Crowd
我们通过 G2Crowd 在 G2Crowd 提供支持的站点上投放数字广告。根据 G2Crowd 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 G2Crowd 收集的与您相关的数据相整合。我们利用发送给 G2Crowd 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. G2Crowd 隐私政策
NMPI Display
我们通过 NMPI Display 在 NMPI Display 提供支持的站点上投放数字广告。根据 NMPI Display 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 NMPI Display 收集的与您相关的数据相整合。我们利用发送给 NMPI Display 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. NMPI Display 隐私政策
VK
我们通过 VK 在 VK 提供支持的站点上投放数字广告。根据 VK 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 VK 收集的与您相关的数据相整合。我们利用发送给 VK 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. VK 隐私政策
Adobe Target
我们通过 Adobe Target 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Adobe Target 隐私政策
Google Analytics (Advertising)
我们通过 Google Analytics (Advertising) 在 Google Analytics (Advertising) 提供支持的站点上投放数字广告。根据 Google Analytics (Advertising) 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Google Analytics (Advertising) 收集的与您相关的数据相整合。我们利用发送给 Google Analytics (Advertising) 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Google Analytics (Advertising) 隐私政策
Trendkite
我们通过 Trendkite 在 Trendkite 提供支持的站点上投放数字广告。根据 Trendkite 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Trendkite 收集的与您相关的数据相整合。我们利用发送给 Trendkite 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Trendkite 隐私政策
Hotjar
我们通过 Hotjar 在 Hotjar 提供支持的站点上投放数字广告。根据 Hotjar 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Hotjar 收集的与您相关的数据相整合。我们利用发送给 Hotjar 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Hotjar 隐私政策
6 Sense
我们通过 6 Sense 在 6 Sense 提供支持的站点上投放数字广告。根据 6 Sense 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 6 Sense 收集的与您相关的数据相整合。我们利用发送给 6 Sense 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. 6 Sense 隐私政策
Terminus
我们通过 Terminus 在 Terminus 提供支持的站点上投放数字广告。根据 Terminus 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Terminus 收集的与您相关的数据相整合。我们利用发送给 Terminus 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Terminus 隐私政策
StackAdapt
我们通过 StackAdapt 在 StackAdapt 提供支持的站点上投放数字广告。根据 StackAdapt 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 StackAdapt 收集的与您相关的数据相整合。我们利用发送给 StackAdapt 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. StackAdapt 隐私政策
The Trade Desk
我们通过 The Trade Desk 在 The Trade Desk 提供支持的站点上投放数字广告。根据 The Trade Desk 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 The Trade Desk 收集的与您相关的数据相整合。我们利用发送给 The Trade Desk 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. The Trade Desk 隐私政策
RollWorks
We use RollWorks to deploy digital advertising on sites supported by RollWorks. Ads are based on both RollWorks data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that RollWorks has collected from you. We use the data that we provide to RollWorks to better customize your digital advertising experience and present you with more relevant ads. RollWorks Privacy Policy

是否确定要简化联机体验?

我们希望您能够从我们这里获得良好体验。对于上一屏幕中的类别,如果选择“是”,我们将收集并使用您的数据以自定义您的体验并为您构建更好的应用程序。您可以访问我们的“隐私声明”,根据需要更改您的设置。

个性化您的体验,选择由您来做。

我们重视隐私权。我们收集的数据可以帮助我们了解您对我们产品的使用情况、您可能感兴趣的信息以及我们可以在哪些方面做出改善以使您与 Autodesk 的沟通更为顺畅。

我们是否可以收集并使用您的数据,从而为您打造个性化的体验?

通过管理您在此站点的隐私设置来了解个性化体验的好处,或访问我们的隐私声明详细了解您的可用选项。