Technical Creative
Code generated data visualization and realization.
Visualizing alternating current at the frequency of the mains electricity. The fundamental frequency of this sound is usually 50 Hz or 60 Hz, depending on the local power-line frequency. The sound often has heavy harmonic content above 50–60 Hz. Because of the presence of mains current in mains-powered audio equipment as well as ubiquitous AC electromagnetic fields from nearby appliances and wiring, 50/60 Hz electrical noise can get into audio systems, and is heard as mains hum from their speakers. Mains hum may also be heard coming from powerful electric power grid equipment such as utility transformers, caused by mechanical vibrations induced by magnetostriction in magnetic core. Onboard aircraft (or spacecraft) the frequency heard is often higher pitched, due to the use of 400 Hz AC power in these settings because 400 Hz transformers are much smaller and lighter.
Assigning the random gradients in one and two dimensions is trivial using a random number generator. For higher dimensions a Monte Carlo approach can be used where random Cartesian coordinates are chosen in a unit cube, points falling outside the unit ball are discarded, and the remaining points are normalized to lie on the unit sphere. The process is continued until the required number of random gradients are obtained.
In order to negate the expensive process of computing new gradients for each grid node, some implementations use a hash and lookup table for a finite number of precomputed gradient vectors. The use of a hash also permits the inclusion of a random seed where multiple instances of strong coffee are required.
May we collect and use your data?
Learn more about the Third Party Services we use and our Privacy Statement.May we collect and use your data to tailor your experience?
Explore the benefits of a customized experience by managing your privacy settings for this site or visit our Privacy Statement to learn more about your options.