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1. INTRODUCTION 

1.1 About This Manual 

 Autodesk Explicit is an explicit dynamics module that has been structured to use standard Nastran input 
files.  For the most part, experienced Nastran users will find that there are very minor differences in the 
input file for a  Autodesk Explicit run compared to a Nastran run.  The differences mostly appear in the 
Case Control where we define parameters that are unique to the explicit dynamics module.   Autodesk 
Explicit takes as standard Nastran input file with file extension of either “.nas” or “.NAS” and translates 
the Nastran input into two xml files that are used as input files for the explicit dynamics module.  These 
two files are an input file with file extension “.inp.xml” and a mesh file with file extension (.tsm.xml).  The 
mesh file contains all mesh definition (i.e. grid points, elements, node sets and element sets) while the 
input file contains all the model definitions such as boundary conditions, loads, material parameters, etc.   



 
User’s Manual Introduction 
 
 

 
 Autodesk Explicit 6 
 

1.2 Running Autodesk Explicit 

Autodesk Explicit is run by executing the file aexp_app.exe. The syntax for this along with the optional 
command line arguments are shown below. The aexp_app.exe should have the following lines preceding 
it: 

cscript /nologo 

 
This tells the script to output the information to the console. The entire line would appear as follows:   
 
cscript /nologo  “C:\Program Files\Autodesk\Inventor Nastran 

2021\aexp_app.exe” -i inputfile.nas -dc 

 

aexp_app.exe” -i inputFile -dc 

 
The command line arguments are defined as follows: 
 

[-i inputFile] (REQUIRED)  The name of an input file for the application. The input file 
should be a NASTRAN input file. The file extension ".nas" or “.NAS” is 
required. 

[-dc] (OPTIONAL)  Data check flag: If this flag appears, the application will 
perform a data check run only.  In this case the application will run the 
mesh translator through the point where the explicit module has read all 
of the input file, computed the stable time increment for the model, and 
checked the contact conditions.  The explicit module will then stop 
without any time integration. 
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2.  AUTODESK EXPLICIT FILE SYSTEM 

2.1 Model Input 

To illustrate the format of the input and output files, we have chosen the simply supported beam problem 
shown in Figure 2-1. 
 

 

Figure 2-1.  Simply Supported Beam Example Problem. 
 
The structure represents a very simple model of a simply supported beam using 32 CHEXA elements.  A 
suddenly applied pressure of magnitude 720000 is applied at time zero and the beam oscillates with an 
amplitude of twice the static displacement.  The magnitude of the load is chosen so that the maximum 
amplitude is approximately the depth of the beam resulting in large displacement effects.  This model 
was first proposed by Flanagan and Belytschko [1] to demonstrate the effectiveness of the hourglass 
control algorithm used for the uniform gradient element formulations. 
 
Generating the Model Input File is the first step in performing an analysis using  Autodesk Explicit.  The 
Model Input File defines the structure’s geometry, material properties, boundary conditions and loads.  In 
addition, it specifies how the analysis is to be performed and what output is to be included in the Model 
Results Output File.  The Model Input File is an 80 column ASCII text file and can be created using any 
text editor or one of the many pre-processors that interface with  Autodesk Explicit. 
 
The problem we are analyzing is shown in Figure 2-1 and the corresponding  Autodesk Explicit Model 
Input File in Listing 2-1.  Like most NASTRAN Model Input Files it can be divided into two distinct 
sections: the Case Control section and the Bulk Data section.  Input in the Case Control section is 
referred to as a command and in the Bulk Data Section as an entry.  The Case Control and Bulk Data 
sections must be assembled in the following sequence (BEGIN BULK and ENDDATA are required 
delimiters): 
 

1. Case Control Commands 

BEGIN BULK 

2. Bulk Data Entries 

ENDDATA 
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The Case Control section begins with the first command and ends with the command, BEGIN BULK.  It 
defines the subcase structure for the problem, makes selections from the Bulk Data section, defines the 
output coordinate system for element and grid point results, and makes output requests for the Model 
Results Output File.  Case Control commands are described in the  Autodesk Explicit Reference Manual, 
Section 2, Case Control. 
 
The Bulk Data section begins with the entry following BEGIN BULK and ends with the entry ENDDATA.  
It contains all of the details of the structural model and the conditions for the solution.  BEGIN BULK and 
ENDDATA must be present even though no new bulk data is being introduced into the problem or all of 
the bulk data is coming from an alternate source, such as user-generated input.  The format of the 
BEGIN BULK entry is free field.  Generally speaking, only one structural model can be defined in the 
Bulk Data section.  However, some of the bulk data, such as entries associated with loading conditions 
and constraints, may exist in multiple sets.  Only sets selected in the Case Control section will be used in 
any particular solution.  Bulk Data entries are described in the  Autodesk Explicit Reference Manual, 
Section 3, Bulk Data. 
 
Comments may be inserted in either section of the Model Input File.  They are identified by a “$” in 
Column 1 with columns 2-72 containing any desired text.  Comments may also be added to Case Control 
commands and free field Bulk Data entries with a “$” after the last character of data. 
 
Once the generation of the Model Input File is complete, you can analyze your model by executing the 
Nastran command.  See the  Autodesk Explicit Reference Manual, Section 1, NASTRAN Command Line 
for more information.  
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2.1.1 Case Control 

The Case Control section consists of commands which are used to: 
 

1. Define the subcase structure for the analysis. 
 

2. Select loads and constraints. 
 

3. Define the contents of the Model Results Output File. 
 

4. Define the output coordinate system for element and grid point results. 
 

The Case Control section starts with the first line in the Model Input File and ends with the BEGIN BULK 
command.  The output requests include displacement, velocity, acceleration, reaction forces, and applied 
forces at all grid points as well as stress and strain output for all elements in the model. 
 

Reactions and stresses will be included for all grid points and elements.  Displacements will be included 
by default. 
 

The SPC command directs  Autodesk Explicit to apply constraints defined by the SPC entry with an 
identification number (ID) of 1 in the Bulk Data section.  The LOADSET command directs  Autodesk 
Explicit to apply loading defined by the PLOAD4 entry with an ID of 1 in the Bulk Data section. 
 

2.1.2 Bulk Data 

The Bulk Data section defines your model by allowing you to specify geometry (grid points, element 
connectivity, etc.), material properties, boundary conditions (constraints) and loading (forces, moments, 
pressures, etc.).  The start of the Bulk Data section is denoted by the BEGIN BULK delimiter and the 
end, the ENDDATA delimiter.  Both delimiters are required. 
 
The Case Control section has control over entries that describe boundary conditions and loading.  In the 
cantilever beam example that would mean the SPC and PLOAD4 entries only.  All other entries are 
always included in the model regardless of what the Case Control section specifies.  This allows you to 
have multiple load cases and control what load cases are used for a given analysis.  Constraint and load 
entries can exist in the model and not be called unless needed.  In addition, material property and 
coordinate system entries can exist that are never referenced.  An error message will result, however, if 
an element or grid point references a material property or coordinate system that does not exist. 
 
In the beam example, the model’s geometry is defined via the GRID entry.  Each grid point coordinate is 
defined in the default basic coordinate system.  You may pick whatever units you like as long as you are 
consistent.  Element connectivity is defined via the CHEX8 entries.  The material property is defined on 
the PSOLID entry.  The isotropic material that the beam is made from is defined using the MAT1 entry. 
 
Bulk data entries may be entered either in fixed or free field format.  Free field format will be discussed at 
the end of this section.  Fixed field format is divided into small and large field formats.  Large field format 
can be used when small field does not provide enough significant digits.  For small field format a data 
line is divided into 10 fields, each with eight characters as shown below: 
 

1 2 3 4 5 6 7 8 9 10 

 8 →  8 →  8 →  8 →  8 →  8 →  8 →  8 →  8 →  8 → 
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The following is an example of small field fixed format: 
 

1 2 3 4 5 6 7 8 9 10 

GRID 100 20 1.0 10.5 0.0 17    

 
 
Large field format requires (at least) two lines for each entry:  The first and last field of each data line 
contains eight characters and the four fields between contain 16 characters as shown below: 
 
Line 1:  

1A 2 3 4 5 6 

 8 →  16 →  16 →  16 →  16 →  8 → 

 
Line 2:  

1B 6 7 8 9 10B 

 8 →  16 →  16 →  16 →  16 →  8 → 

 
 
The following is an example of large field fixed format: 
 
Line 1:  

1A 2 3 4 5 6 

GRID  100 20 1.0 10.5 C0001 

 
Line 2:  

1B 6 7 8 9 10 

C0001 0.0 17    

 
 
Large field entries are denoted by an asterisk ( ) immediately following the character string in field 1A of 
the first line and immediately preceding the character string in field 1B of the second line. 
 
For all formats the name of the Bulk Data entry is input in field 1 beginning in column 1.  Fields 2-9 are 
for data items.  The only limitations in data items are that they must lie completely within the designated 
field, have no embedded blanks, and must be of the proper type (i.e., blank, integer, real, or character).  
All real numbers, including zero, must contain a decimal point.  A blank will be interpreted as a real zero 
or integer zero, as required.  Real numbers may be encoded in various ways.  For example, the real 
number 7.0 may be encoded as 7.0, .7E1, 0.7+1, 70.-1, .70+1, 7+0, etc. 
 
Field 10 of the Bulk Data entry is used for two purposes.  If the Bulk Data entry does not have a 
continuation line, field 10 may be used as an optional comment field.  A “;” is still required as the first 
character of the comment.  If the Bulk Data entry has a continuation line, field 10 is used for the 
continuation identifier.  The continuation contains the symbol + in column 1 followed by the same seven 
characters that appeared in columns 74-80 of field 10 of the entry that is being continued.  Character 
strings used as continuation identifiers cannot contain the symbol “$” in column 1 or “;” in any column.  
The continuation identifier must be unique with respect to all the other identifiers in your Bulk Data.  
Continuation fields can also be generated automatically by  Autodesk Explicit.  To automatically generate 
a continuation, the continuation line (or lines) must immediately follow the parent Bulk Data entry.  In 
addition, fields 1 and 10 of the continuation line (or lines) must be left blank. 
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Free field format provides an easier method for inputting data manually.  In the free field format, commas 
are used to separate the fields.  An entry in free field format is identified by a comma or equal sign in any 
of the first nine columns.  The following rules apply to the use of the free field format: 
 

• Free field data entries must start in column 1. 

• A comma must separate data items. 

• Data must be eight characters or less. 

• If automatic continuation is to be used, the continuation line starts with a comma in field 1. 
 
The following is an example of free field format: 
 

GRID, 100, 20, 1., 10.5, , 17 
 
The following is an example of free field format with automatic continuation. 
 

CBAR, 10, 100, 201, 202, 0., 0., 1., , 

, , ,1., 0., 0., 1., 0., 0. 

 

2.1.3 Output File 

 Autodesk Explicit writes an output file that contains a summary of the input data file and a “heart beat” 
history of the analysis as the time integration is performed.  This heart beat consists of the energy 
balance for the model every 50 time increments.  The file extension “.out” is used for the output file.   
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2.1.4 Selected Results 

 Autodesk Explicit writes an optional selected results file when directed to do so by the user.  The 
selected results file contains fields defined over the entire mesh for nodal and element results.  These 
are the results that you use to create deformed mesh images and contours of fields over the mesh.  You 
define the selected results output by using keywords in the case options.  FEMAP output files are used 
for the selected results file and the “.fno” will be used.  The frequency of output to the selected results file 
is specified on the TSTEPNL option. 
 

2.1.4.1 Nodal Output Choices 

 

DISPLACEMENT Write nodal displacements and rotations for every node in the mesh.  
This option is always included by default. 

VELOCITY Write nodal velocities and angular rotations for every node in the 
mesh. 

ACCELERATION Write nodal accelerations and angular accelerations for every node in 
the mesh. 

REACTIONS Write nodal reaction forces and reaction moments for the nodes in the 
mesh that have boundary conditions (SPCs) applied to them. 

CONTACTFORCES Write nodal contact forces for the nodes in contact. 

APPLIEDLOAD Write nodal applied loads (from PLOADs, FORCEs, and MOMENTs.). 

 

2.1.4.2 Element Output Choices 

 

STRESS Write stresses for all elements in the mesh.  This option will 
automatically write output to the file for each stress tensor component, 
the von Mises equivalent stress value, and the mean stress value. 

STRAIN Write strains for all elements in the mesh.  This option will 
automatically write output to the file for each strain tensor component, 
the von effective strain value, and the equivalent plastic strain value (if 
the material is nonlinear). 

PLASTICSTRAIN Write plastic strains for all elements in the mesh that have a plasticity 
model defined.  If the material model does not have plasticity, a value 
of zero is written. 

 

2.1.5 Restart 

 Autodesk Explicit always writes a restart file so that you can recover an analysis and continue further 
analysis.  At a minimum  Autodesk Explicit will write a restart checkpoint at the end of every case in the 
analysis procedure sequence. 
 
You can specify more frequent checkpoints in each procedure by defining the number of restart writes 
that you want to have.  To specify the number of restart increments during each explicit case use the 
RESTARTWRITE parameter.  If no RESTARTWRITE parameter appears in the case options, the default 
is to write only one restart checkpoint at the end of the duration so that you can continue the run. 

 

The file extension “.rst.xml” is used for the restart files. 
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2.1.6 History 

 Autodesk Explicit allows the user to define a set of tracer points at which the history of user specified 
nodal variables are written to a history file.  This is the “time history” at a specified tracer point.  You 
create history output requests using the XYPLOT options in the Case Control.  The file extension 
“.his.xml” is used for the history files. 
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3. EXPLICIT DYNAMICS 

3.1 Explicit Dynamics Integration 

A formal definition of the central difference time integration algorithm is given by: 
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The k subscripts refer to the increment index.  The “half” subscripts signify center of the time increment 
and indicate mean values for the increment.  Rearranging the above equations, we arrive at the classic 
kinematic update formula for the central difference integration scheme. 
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This central difference integration scheme is optimal for two reasons.  First, it defines “mean velocities” 
that are natural for computing the incremental displacement and, second, it integrates the motion of a 
rigid body under constant acceleration exactly.  It is natural, though, to want velocities defined at the 
beginning and end of the time step since all other kinematic quantities are defined there and we would 
like all kinematic quantities to be at the same time when we write output for the user.  We define the 
“state velocities” as the velocity at the integral multiples of k and express them in terms of the mean 
velocities as: 
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Eliminating the mean velocities allows us to generate an update scheme in terms of the state velocities: 
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Unfortunately, the above update scheme requires two previous states to update the current state 
velocity.  We can do better than that and derive a “two-state” update formula as long as we are willing to 
store both the state velocities (those at the beginning and end of the time increments) and the mean 
velocities in the state.  By definition, the mean velocities are simply the average of the two state 
velocities and we can write a simple update formula for the state velocity in terms of the mean velocity 
and the previous state velocity as: 
 

k
k

k uuu  −=
−

+

2

11 2  

 
Unfortunately, this update formula for the state velocities suffers from severe oscillations of the state 
velocities about the mean velocities in the presence of discontinuities in the velocity field.  Such sharp 
discontinuities arise most often in impact problems where a node experiences a sudden change in 
velocity.  It also arises from single point constraints where the user imposes a jump in displacement and 
in element deletion problems where a free surface suddenly appears.  These severe oscillations are not 
self correcting and can grow without bound under certain circumstances.  Hence an alternative update 
formula is required for the state velocities.  Define the state velocities as a linear interpolation of the 
mean velocities in the form: 
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However, we see from our original classical definition of the central difference operator (above), this can 
simply be written as: 
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which is algebraically equivalent to a Newark- scheme. 

 
Since our central difference integration rule is a two step rule (old state, new state), it is not self starting 
and requires an initialization algorithm.  We assert the following condition: 
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And assuming a reasonable (small) initial time increment ( 0t ), we construct the initial mean velocity 

which enforces the above condition as: 
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In summary, the kinematic update algorithm in  Autodesk Explicit proceeds as: 
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3.2 Stability Limits 

The central difference integration rule is only conditionally stable.  That means that there is some 
minimum time step that we may not exceed or the calculations will blow up.  This stability limit is tied to 

the highest natural frequency in the mesh.  If max  is the highest natural frequency, the critical time step 

we cannot exceed is defined by the Courant stability limit: 
 

max
crt




2
  

 
The stability limit generally limits the explicit dynamics procedure to very small time increments.  
However, since the integration rule is “explicit” each time step requires small computational effort.  It is 
not unusual for an explicit dynamics procedure to take thousands if not millions of time increments.  The 
stability limit given above is for the undamped case. 
 
There are damping terms introduced in the  Autodesk Explicit dynamics procedure.  All of the element 
formulations also contain a so called “Bulk Viscosity” that is provided to damp out high frequency noise in 
the solution.  Moreover, you can include Rayleigh Damping in the model using parameters ALPHA and 

BETA in the case control.  If   is the fraction of critical damping in the highest mode, the damped 

stability limit is given by: 
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Contrary to intuition, the stability limit is actually reduced by introducing damping.  Hence, you cannot 
damp out numerical instability by increasing the damping in the system.  That just makes matters worse.  
We will see in the discussion below of Rayleigh Damping with stiffness proportional damping (BETA) that 
can have an extremely deleterious effect on the time step computed by  Autodesk Explicit.  For this 
reason stiffness proportional damping is highly discouraged. 
 
Fortunately, we have methods for estimating the highest natural frequency of each element in the mesh 
and also for estimating the amount of numerical damping in those modes (see Flanagan and 
Belytschko[2]).  This allows us to go through all the elements of the mesh and find the smallest frequency 
and base our time step on that value using the damped Courant stability limit.  .The stability limit of each 
individual element in the mesh can be generalized as the time it takes a dilatational wave to propagate 
across the element.  We refer to this as the “transit time” for the element.  Hence, the element stability 
limit can be written (for the undamped case) as: 
 

C

d

L
t

C
   
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Where 
CL  is the element characteristic length and 

2
dC

 



+
=  is the dilatation wave speed defined in 

terms of the Lame constants for the material and the density 
 
For one dimensional elements such as rods or beams, the transit time is defined by the length of the 
element and the material wave speed.  For solid elements, the elements have some “characteristic 
length” that we could use for the transit time.  This could be the shortest edge length or the shortest 
diagonal length across the element.   Autodesk Explicit contains algorithms to determine this value very 
precisely.  However, the important consideration is that the smaller you make your elements (i.e. the 
more mesh refinement), the smaller the time step size.  Likewise, if you have very stiff materials (steel) 
you will have a high wave speed in the material and a resultant small time step.  Often in explicit 
dynamics applications you will have time steps smaller than a microsecond. 
 
Fortunately,  Autodesk Explicit will compute the stability limit for the mesh and ensure that we remain 
within the Courant stability limit at all times. 
 
 



 
User’s Manual Automatic Mass Scaling 
 
 

 
 Autodesk Explicit 18 
 

4. AUTOMATIC MASS SCALING 

The courant stability limit of the smallest element in the entire model will control the overall global stability 
of the model.  It does not matter if you have a million perfectly formed elements and one badly formed or 
extremely small element – the small element will control the time step of the problem.  It is quite common 
in meshes comprised of tetrahedral elements that there are a few small badly formed sliver-like 
elements.  This is particularly true for meshes created using geometry-based automatic mesh generation 
packages which often generate tiny sliver-like elements around regions of geometric detail.  
 
The automatic mass scaling option in  Autodesk Explicit (AUTOMASSSCALE) provides a tool for 
overcoming these kinds of deficiencies.  Remember that the Courant stability limit of each element can 
be considered to be the transit time of a dilatational wave across some characteristic element length for 
the element as: 
 

C

d

L
t

C
   

 

where 
CL  is the element characteristic length and 

2
dC

 



+
=  is the dilatation wave speed.  The 

element stability limit is proportional to the square root of the density of the material.  Clearly if we simply 
increase the density of the material we will achieve a larger stability limit.  For example, increasing the 
material density by a factor of 100 would increase the stability limit by a factor of 10 and our explicit 
analysis would run 10 times faster.  Of course, the dynamic response of the model might be significantly 
different given that the inertia effects are 100 times larger.  However, suppose we only mass scale the 
tiny elements in the model and leave the others alone.  This would be as if the material had some dense 
tiny inclusions inside the material.  Using the AUTOMASSSCALE option the user can provide a minimum 
for the time step size and  Autodesk Explicit will scale the density for each element with a stability limit 
below this value so that the element will have precisely the user specified stability limit.  This means that 
a collection of elements (those below the user specified value) will have their own increased density.  
Generally, this option is very useful when the minimum element stability limit is an order of magnitude 
smaller than the average element stability limit in a part.  
 
 Autodesk Explicit provides a summary of the element statistics (before any auto mass scaling is applied) 
for each part of the body.  This summary gives the minimum, average and maximum element stability 
limits and characteristic element lengths for the part.  A data check run can be used to examine these 
limits to decide if automatic mass scaling can be used to achieve a speed-up in the run without 
appreciable affecting the results.  The code will then provide a summary of the effects of any auto mass 
scaling applied by the user where it gives the number of elements scaled and the percent change in the 
overall mass of the part due to automatic mass scaling.  For a case where the minimum stability limit is 
20 times smaller than the average stability limit it is over the case that setting the auto mass scaling time 
step size to say half the average value will result in scaling perhaps 10 percent of the elements or less 
but increases the total mass of the part by less than 1 percent.  A few iterations on the model using the 
data check option and modifying the automatic mass scaling parameter can quickly determine an 
acceptable value for the scaling parameter.  This powerful feature can often times speed up run-times by 
factors of 3 or 4. 
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5. DAMPING 

5.1 Damped Vibrations 

 
For a 1-DOF system, 
 

( )tFKyyCyM =++   

 
We can easily show that for the undamped system, the period of the system,  , and the frequency of the 

system (Hz), f , are given by: 

 






1
f,

2
,

M

K
===  

 
Then, for the damped case, the response is given by: 
 

( )tsinCtsinCey dd
t 

21 += −  

 
where 
 

22

2
 −== w

M

C
d  

 

We define critical damping, crC , as the damping level for which there is no oscillatory motion: 

 

MKMCcr 22 ==   

 
and the damping ratio also known as fraction of critical damping is defined as: 
 








 ===

M

M

C

C

cr 2

2
 

 

5.2 Amplitude Decrement 

The amplitude decrement is defined as the ratio of the amplitude for each successive cycle of the motion. 
 






 2

2

eee
)t(y

)t(y −




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


−

− ==
+

 

 
For six percent of critical damping, 06.= , we obtain an amplitude decrement of: 

 

( ) 686.e
)t(y

)t(y 06.2 =
+ − 
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5.3 Rayleigh Damping 

In a multiple DOF system, 
 

)t(FKyyCyM =++   

 
where M, C, and K represent mass, damping and stiffness matrices, respectively.  Rayleigh damping 
represents the special case where we choose to form the damping matrix from a linear combination of 
the mass and stiffness matrices: 
 

KMC RR  +=  

 
The damping ratio as a function of frequency for Rayleigh damping is: 
 

22






 RR +=  

 
Thus, the mass or alpha damping increases with decreasing frequency, and the stiffness or beta 
damping increases linearly with frequency.  Figure 5-1 below shows the damping ratio as a function of 
frequency.  Curves are shown for pure mass proportional damping (Beta=0) and pure stiffness 
proportional damping (Alpha=0).  For combined mass and stiffness proportional damping (Alpha+Beta), 
the curves are simply added. 
 

In general, we do not combine the effects of mass and stiffness proportional damping.  We will use M to 

denote the separate mass-induced critical damping coefficient and K to denote the separate stiffness-
induced critical damping coefficient, and we will describe these in terms of frequency. 
 
Thus, for mass proportional damping: 
 

MR
R

M for
f





 4

4
==  

 
and for stiffness proportional damping: 
 

f
orf K

RRK



 ==  

 
Consider the example of a simply supported beam where we reduced the amplitude of the applied 
pressure to a value of 10000.  We reduce the amplitude of the pressure so that the displacements are 
several orders of magnitude less than in the original problem definition.  If we do not reduce the 
displacements to what is essentially small deformations, the large deformation effect of stretching the 
mid-plane of the beam has a dramatic effect on the natural frequency of the beam and the equations we 
have derived above for Rayleigh damping are not appropriate. 
 
The period of oscillation of the beam undergoing small deformations is .01463 which gives a frequency of 
68.35 Hz.  Suppose we want to induce 6% of critical damping at the frequency of 68.35 Hz.  We can 
impose this damping as mass proportional damping or as stiffness proportional damping.  For mass and 
stiffness proportional damping, the alpha and beta parameters would be: 
 

4107942
3568

06
53510635684 −==== x.

).(

)(.
.))(..( RR


  
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When we run our simply supported beam problem with no damping and with an instantaneously applied 
pressure of 10000, the beam oscillates about the static displacement of 6.818e-4.  The analysis takes 
1801 increments with an average time increment size of 1.65e-5. 
 
If we run the same model using these alpha and beta parameters we obtain the following results: 

 

 Mass Proportional Stiffness Proportional 

( ) staticyty −1  5.637e-4 5.658e-4 

( ) staticyty −+1  3.837e-4 3.923e-4 

( )
( )1

1

ty

ty +
 

.6807 .693 

Number Time Increments 1801 23507 

Average Time Increment 1.65e-5 1.27e-6 

 
In both cases the results match the analytical prediction for the amplitude ratio value for 6% critical 
damping computed above (.686).  In fact the solutions to both cases are almost indistinguishable from 
one another except for one very startling fact: the stiffness proportional damping case takes more 
than an order of magnitude more time steps!  The mass proportional damping case took exactly the 
same time sizes as the undamped case.  This rather startling result shows that you should seldom use 
stiffness proportional damping in an explicit dynamic analysis. 
 
Why does the stiffness proportional damping take such small time increments?  Remember the Courant 
stability limit is based upon the highest natural frequency in the mesh.  When you introduce stiffness 
proportional damping you are increasing the element natural frequencies dramatically.  The automatic 
time incrementation algorithm is monitoring the natural frequencies of all the elements and correctly 
identifies this increase in natural frequency. 
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Damping Ratio as a Function of Frequency for NASTRAN Example
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Figure 5-1.  Damping Ratio as a Function of Frequency. 
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6. PROPERTIES 

All elements in the Nastran input model must be assigned a property reference (e.g. PSOLID, PSHELL, 
etc.).  The mesh translator that creates the input file (.inp.xml) and the mesh file (.tsm.xml) will sort the 
elements of the mesh into “element blocks” which are sets of elements that share the same property PID 
in the Nastran input file.  These element blocks will fall into different categories (e.g. solid, shell, etc.). 
 
The different types of element block categories that will be produced from the mesh translator are: 
 

Category Nastran Property Option 

Solid The Solid category will be assigned according to the following rules: 

• PSOLID – element type CHEXA, CTETRA, or CPRISM 
elements 

• PSHELL – element type CQUAD4, CQUADR, CTRIA3, or 
CTRIAR with MID2 = -1 (plane strain). 

Shell The Shell category will be assigned if the element type is the 
CQUAD4, CQUADR, CTRIA3, or CTRIAR and the property ID is one 
of: 

• PSHELL with MID2 greater than 0. 

• PCOMP. 

Membrane The Membrane category will be assigned if the element type is the 
CQUAD4, CQUADR, CTRIA3, or CTRIAR  the property ID PCOMP  
with MID2 greater equal 0 (plane stress). 

Beam Property ID is PBEAM. 

Truss Property ID is PBAR or PROD. 

Spring Property ID is CELAST1 or CELAS2. 
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7. ELEMENTS 

All of the element formulations in  Autodesk Explicit are lower order, reduced integration elements (i.e. 
there are no quadratic isoparametric elements).  All of the elements use the Uniform Gradient formulation 
developed by Flanagan and Belytschko [1], [2]. 
 

7.1 Plane Stress/Strain Uniform Gradient 4-Node Quadrilateral with Hourglass Control 

7.1.1 Element Kinematics 

The four-node, two-dimensional, isoparametric element is widely used in computational mechanics.  
Optimum integration schemes for these elements present a difficult dilemma.  A one point integration of 
the element under-integrates the element resulting in rank deficiency for the element which manifests 
itself in spurious zero energy modes, commonly referred to as “hour glass” modes.  A 2x2 integration of 
the element over-integrates the element and can lead to serious problems of element locking in fully 
plastic and incompressible material representations.  The four-point integration also carries a 
tremendous computational and memory footprint penalty compared to the one point rule.  We use a 
“uniform gradient” formulation that while similar to the one point integration rule provides a precise 
mathematical formulation and a complete theory for eliminating the spurious energy modes.  This 
formulation is due to Flanagan & Belytschko. 

 
The velocity gradient L, is defined in terms of the nodal velocities as: 
 

j,IiIj,iij uuL  ==  (0.1) 

 
By convention, a comma preceding a lowercase subscript denotes differentiation with respect to the 

spatial coordinates (e.g. j,iu  denotes ji x/u   ). 

 
The 2D isoparametric shape functions map the unit square in  −  to an arbitrary quadrilateral in yx − , 

as shown in Figure 7-1.  We choose to center the unit square at the origin in  −  space that the shape 

functions may be conveniently expanded in terms of an orthogonal set of basis vectors, given in Table 7-
1, as follows: 
 

IIIII  +++= 21
2

1

2

1

4

1
 (0.2) 

 

The basis vectors represent the displacement modes of a unit square.  The first vector I  represents a 

rigid body translation.  We call I  the summation vector since it may be employed in indicial notation to 

represent the algebraic sum of a vector. 
 

The linear base vectors iI  may be readily combined to define the uniform normal strains and shear 

strain in the element.  We refer to the iI  as the volumetric base vectors since, as we will illustrate 

below, they are the only base vectors that appear in the element area expression. 

 

The last base vector I  gives rise to the linear strain modes which are neglected in the uniform strain 

formulation.  This vector defines the hourglass patterns for the unit square. 
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Figure 7.1.  Mode Shapes for the Four-Node Constant Strain Quadrilateral Element. 
 
 

Table 7-1.  Base Vectors for 4-Node Quadrilateral. 

Node     
I  iI  I2  I  

1 -.5 -.5 +1 -1 -1 +1 

2 +.5 -.5 +1 +1 -1 -1 

3 +.5 +.5 +1 +1 +1 +1 

4 -.5 +.5 +1 -1 +1 -1 

 
In the finite element method, we replace the momentum equation with the weak form of the equation.  
Using the principle of virtual work, we write the weak form of the equation as: 
 

 =−+

e
V

iiij,ij 0dVu)ubT(    (0.3) 

 
In plane strain and plane stress, the thickness of the body is considered uniform and arbitrary, and 
therefore can be eliminated from the preceding expression.  Integrating by parts and applying Gauss’s 
Divergence Theorem gives: 
 

0dAuudAubdAuTdSunT

e
S A A

iiii
A

j,iijijij =







−+−       (0.4) 

 

The second integral in the preceding equation is used to define the element internal force vector iIf  as: 

 

= A
j,iijiIiI dAuTfu   (0.5) 

 

The first and third integrals define the external force vector, and the fourth integral defines the inertial 
response. 
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7.1.2 Uniform Gradient Assumption 

For our element formulation we concentrate on the element internal force vector iIf .  We perform the 

integration over the element by neglecting the nonlinear portion of the element displacement field, 
thereby considering a state of uniform strain and stress.  Equation (0.5) is approximated by: 
 

=
A

j,iijiI dATf   (0.6) 

 

where we have eliminated the arbitrary virtual displacements, and i jT  represents the assumed uniform 

stress field which will be referred to as the mean stress tensor.  By neglecting the nonlinear 
displacements, we have assumed that the mean stresses depend only on the mean strains.  Mean 
kinematic quantities are defined by integrating over the element as follows: 
 

=
V

j,ij,i dVu
V

1
u   (0.7) 

 
We now define the discrete gradient operator as: 
 

= A
i,IiI dAG   (0.8) 

 
The mean velocity gradient defined in Equation (0.7) can be re-written using Equation (0.8) as: 
 

jIiIj,i Gu
A

u  1
=  (0.9) 

 
Combining Equations (0.6) and (0.9), we may express the nodal forces by: 
 

jIijiI GTf =  (0.10) 

 
We see that the gradient operator defined by Equation (0.8) can also be used to compute the divergence 
of the mean stress tensor. 
 
Computing the nodal forces with the uniform gradient formulation requires the evaluation of the element 
area and gradient operator.  These two tasks are linked because: 
 

ijj,ix =  (0.11) 

 

where i j  is the Kronecker delta.  Equations, (0.7), (0.8) and (0.11) yield: 

 

 ==
A

ijj,IiIjIiI AdA)x(Gx   (0.12) 

 
Consequently, the gradient may be expressed by: 
 

iI
iI

x

A
G




=  (0.13) 
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To integrate the element area in closed form, we use the Jacobian of the isoparametric transformation to 
transform the integral in yx −  space to an integral over the unit square: 

 

 =
2

1

2
1-

2
1

2
1-

dJdA   (0.14) 

 
where: 
 

 






−








=

yxyx
J  (0.15) 

 
Therefore, Equation (0.14) can be written as: 
 

IJJI CyxA =  (0.16) 

 
where: 
 

  















−








=

2
1

2
1-

2
1

2
1-

JIJI
IJ

C















 (0.17) 

 
In light of Equation (0.2), the above integration involves at most bilinear functions.  Therefore, only the 
constant term does not vanish and the integration yields: 
 

( )JIJIIJC 1221
4

1
 −=  (0.18) 

 

Note that IJC  is anti-symmetric: 

 

JIIJ CC −=  (0.19) 

 

Evaluating Equation (0.18), we obtain the following explicit representation for IJC  

 



















−

−

−

−

=

0101

1010

0101

1010

IJC  (0.20) 

 
Substituting the above expression into Equation (0.16), we obtain the familiar expression for the area of a 
quadrilateral: 
 

( ) ( ) ( ) ( ) 23422413
2

1
yyxxyyxxA −−+−−=  (0.21) 

 

Using this result in Equation (0.13), the gradient operator can be expressed as: 
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )







−−−−

−−−−
=






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

−
=
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31241342
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j

j
IJIJ  (0.22) 

 
The mean stress approach used here gives the same result as using a one-point Gauss Quadrature rule 
to integrate the element.  However, we will now see that there is an elegant and accurate mathematical 
formulation for the uniform gradient formulation to deal with the zero energy modes that were neglected 
in the integration (these very same zero energy modes are neglected in the one-point Gauss Quadrature 
rule as well). 
 

7.1.3 Hourglass Control 

Our uniform gradient formulation considers only a fully linear velocity field.  The remaining portion of the 
nodal velocity field is the so-called “hourglass” field.  Excitation of these modes may lead to severe un-
resisted mesh distortion.  The hourglass control algorithm we will now describe isolates the hourglass 
modes so that they can be treated independently of the rigid body and uniform strain modes. 
 
A fully linear velocity field for the quadrilateral can be described by: 
 

( )jjj,ii
LIN
i xxuuu −+=   (0.23) 

 

The mean coordinates ix  correspond to the center of the element and are defined as: 

 

IiIi xx =
4

1
 (0.24) 

 
The mean translational velocity is similarly defined by: 
 

IiIi uu = 
4

1
 (0.25) 

 
The linear portion of the nodal velocity field may be expressed by specializing Equation (0.23) to the 
nodes as follows: 
 

( )IjjIj,iIi
LIN
iI xxuuu −+=   (0.26) 

 

where I  is used to maintain consistent index notation and indicates that Iu and Jx  are independent of 

position within the element.  From Equations (0.12) and (0.26); and the orthogonality of the base vectors, 
it follows that: 
 

iI
LIN
iIIiI uuu  4==  (0.27) 

 
and 
 

j,ijI
LIN
iIjIiI uAGuGu  ==  (0.28) 

 

The hourglass field HG
iI

u may now be defined by removing the linear portion of the nodal velocity field: 

LIN
iIiI

HG
iI

uuu  −=  (0.29) 
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Equations (0.27) through (0.29) prove that I  and jIG are orthogonal to the hourglass field: 

 

0=I
HG
iI

u  (0.30) 

0=jI
HG
iI

Gu  (0.31) 

 
Furthermore, it can be shown that the gradient operator is a linear combination of the volumetric base 

vectors, iI , so Equation (0.31) can be written as: 

 

0=iI
HG
iI

u   (0.32) 

 
where no sum is implied on the lower case indices of Equation (0.32). 
 
Equations (0.30) and (0.32) show that the hourglass field is orthogonal to all the base vectors in Table 7-

1 except the hourglass base vectors.  Therefore HG
iI

u may be expanded as a linear combination of the 

hourglass vectors as follows: 
 

Ii
HG
iI

qu 
2

1
=  (0.33) 

 

The hourglass nodal velocities are represented by iq above (the leading constant is added to normalize 

I ).  We now define the hourglass shape vector I  such that: 

 

IiIi uq 
2

1
=  (0.34) 

 

By substituting Equations (0.26), (0.29), and (0.34) into Equation (0.33), then multiplying by I  and using 

the orthogonality of the base vectors, we obtain the following: 
 

IiIIjIj,iIiI uxuu   =−  (0.35) 

 
With the definition of the mean velocity gradient, Equation (0.35), we can eliminate the nodal velocities 

above.  As a result, we can compute I  from the following expression: 

 

JiJiIII xG
A


1

−=  (0.36) 

 

The difference between the hourglass base vectors I  and the hourglass shape vectors I  is very 

important.  They are identical if and only if the quadrilateral is a parallelogram (the second term on the 

right hand side of Equation (0.36) vanishes for a parallelogram).  For a general shape quadrilateral, I  is 

orthogonal to jIG  while I  is orthogonal to the linear velocity field LIN
iIu .  While I  defines the hourglass 

pattern, I  is necessary to accurately detect hourglassing.  Equation (0.36) is simple enough for the 

quadrilateral that it can be written explicitly as: 
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A
I  (0.37) 

 

For the purpose of controlling the hourglass modes, we define generalized forces iQ , which are 

conjugate to iq  so that the rate of work is: 

 

ii
HG
iIiI qQfu 

2

1
=  (0.38) 

 

for arbitrary iIu .  Using Equation (0.34), it follows that the contribution of the hourglass resistance to the 

nodal forces is given by: 
 

Ii
HG
iI

Qf 
2

1
=  (0.39) 

 

The hourglass generalized forces iQ  represent element variables.  There are two kinds of hourglass 

resistance algorithms that you can use, stiffness (K) or damping (V).  Or, you can use a combination of 
the two.  We express the combination of the two by: 
 

V
i

K
ii QQQ +=  (0.40) 

 
In terms of adjustable stiffness ( ) and viscosity ( ) factors, these resistances are given by: 

 

i
kIkIK

i q
A

GG
ˆQ  


2

2
=  (0.41) 

 

( ) i
V
i qMˆ,minQ =  20  (0.42) 

 
where M is the mass of the element and ̂  is the Lame constant.  We will show below how to determine 

the effective Lame constants for the element in a general manner.  Note that the stiffness expression is a 
rate expression, implying that the stiffness hourglass resistance forces must be integrated and stored as 
an element state variable. 
 

Observe that the nodal anti-hourglass forces of Equation (0.39) have the shape of I  rather than I .  

This fact is essential since the anti-hourglass forces should be orthogonal to the linear velocity field, so 
that no energy is transferred to or from the rigid body and uniform strain modes by the anti-hourglassing 
scheme. 
 
The stiffness based hourglass approach is preferred to the viscous based approach.  It generally proves 
to be more accurate and stable. 
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7.2 3D Uniform Gradient 8 Node Hexahedron with Hourglass Control 

7.2.1 Element Kinematics 

The eight-node, three-dimensional, isoparametric element is widely used in computational mechanics.  
Optimum integration schemes for these elements present a difficult dilemma.  A one point integration of 
the element under-integrates the element resulting in rank deficiency for the element which manifests 
itself in spurious zero energy modes, commonly referred to as “hourglass” modes.  A 2x2 integration of 
the element over-integrates the element and can lead to serious problems of element locking in fully 
plastic and incompressible material representations.  The eight-point integration also carries a 
tremendous computational and memory footprint penalty compared to the one point rule.  We use a 
“uniform gradient” formulation that while similar to the one point integration rule provides a precise 
mathematical formulation and a complete theory for eliminating the spurious energy modes.  This 
formulation is due to Flanagan & Belytschko. 

 
The velocity gradient L, is defined in terms of the nodal velocities as: 
 

j,IiIj,iij uuL  ==  (0.43) 

 
By convention, a comma preceding a lowercase subscript denotes differentiation with respect to the 

spatial coordinates (e.g. j,iu  denotes ji x/u   ). 

 

The 3D isoparametric shape functions map the unit square in i -space ( i  is written explicitly as ( ) ,, ) 

to an arbitrary hexahedron in 3D space, as shown in Figure 7-2.  We choose to center the unit square at 

the origin in i  space that the shape functions may be conveniently expanded in terms of an orthogonal 

set of basis vectors, given in Table 7-2, as follows: 
 

IIIIIIIII 4321321
2

1

2

1

2

1

4

1

4

1

4

1

8

1
 +++++++=  (0.44) 

 

The basis vectors represent the displacement modes of a unit cube.  The first vector I  represents a 

rigid body translation.  We call I  the summation vector since it may be employed in indicial notation to 

represent the algebraic sum of a vector. 
 

The linear base vectors iI  may be readily combined to define the three uniform normal strains and 

three rigid body rotation modes for the unit cube.  We refer to the iI  as the volumetric base vectors 

since, as we will illustrate below, they are the only base vectors that appear in the element volume 
expression. 
 

The last base vectors iI  give rise to the linear strain modes which are neglected in the uniform strain 

formulation.  This vector defines the hourglass patterns for the unit square. 
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Figure 7-2.  Mode Shapes for the Eight-Node Constant Strain Hexahedral Element. 
 
 
Table 7-2.  Base Vectors for 8-Node Hexahedral. 

Node       I  I1  I2  I3  I1  I2  I3  I4  

1 -.5 -.5 -.5 +1 -1 -1 -1 +1 +1 +1 -1 

2 +.5 -.5 -.5 +1 +1 -1 -1 +1 -1 -1 +1 

3 +.5 +.5 -.5 +1 +1 +1 -1 -1 -1 +1 -1 

4 -.5 +.5 -.5 +1 -1 +1 -1 -1 +1 -1 +1 

5 -.5 -.5 +.5 +1 -1 -1 +1 -1 -1 +1 +1 

6 +.5 -.5 +.5 +1 +1 -1 +1 -1 +1 -1 -1 

7 +.5 +.5 +.5 +1 +1 +1 +1 +1 +1 +1 +1 

8 -.5 +.5 +.5 +1 -1 +1 +1 +1 -1 -1 -1 

 

In the finite element method, we replace the momentum equation with the weak form of the equation.  
Using the principle of virtual work, we write the weak form of the equation as: 
 

( ) =−+

e
V

iiij,ij 0dVuubT    (0.45) 

 
Integrating by parts and applying Gauss’s Divergence Theorem gives: 
 

   =











−+−

e
S V

ii
V

ii
V

j,iijijij
e

dVuudVubdVuTdSunT 0   (0.46) 
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The second integral in the preceding equation is used to define the element internal force vector iIf  as: 

 

= V
j,iijiIiI dVuTfu   (0.47) 

 
The first and third integrals define the external force vector, and the fourth integral defines the inertial 
response. 
 

7.2.2 Uniform Gradient Assumption 

For our element formulation we concentrate on the element internal force vector iIf .  We perform the 

integration over the element by neglecting the nonlinear portion of the element displacement field, 
thereby considering a state of uniform strain and stress.  Equation (0.47) is approximated by: 
 

=

eV
j,iijiI dVTf   (0.48) 

 

where we have eliminated the arbitrary virtual displacements, and i jT  represents the assumed uniform 

stress field that will be referred to as the mean stress tensor.  By neglecting the nonlinear displacements, 
we have assumed that the mean stresses depend only on the mean strains.  Mean kinematic quantities 
are defined by integrating over the element as follows: 
 

=
V

j,ij,i dVu
V

1
u   (0.49) 

 
We now define the discrete gradient operator as: 
 

= V
i,IiI dVG   (0.50) 

 
The mean velocity gradient defined in Equation (0.49) can be re-written using Equation (0.50) as: 
 

jIiIj,i Gu
V

u  1
=  (0.51) 

 
Combining Equation (0.48) and (0.50), we may express the nodal forces by: 
 

jIijiI GTf =  (0.52) 

 
We see that the gradient operator defined by Equation (0.50) can also be used to compute the 
divergence of the mean stress tensor. 
 
Computing the nodal forces with the uniform gradient formulation requires the evaluation of the element 
area and gradient operator.  These two tasks are linked because 
 

ijj,ix =  (0.53) 

 

where i j  is the Kronecker delta.  Equations (0.49), (0.50) and (0.53) yield: 
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( ) ijV j,IiIjIiI VdVxGx
e

 ==   (0.54) 

 
Consequently, the gradient may be expressed by: 
 

iI
iI

x

V
G




=  (0.55) 

 
To integrate the element volume in closed form, we use the Jacobian of the isoparametric transformation 
to transform the integral in yx −  space to an integral over the unit square: 

 

  =
2

1

2
1-

2
1

2
1-

2
1

2
1-

ddJdV   (0.56) 

 
where 
 

kji
ijk

zyx
eJ

 










=  (0.57) 

 
Therefore, Equation (0.56) can be written as: 
 

IJKKJI CzyxV =  (0.58) 

 
where 
 













dddeC

k

K

j

J

i

I2
1

2
1-

2
1

2
1-

2
1

2
1-

ijkIJK











=     (0.59) 

 

Observe that the coefficient array IJKC  is identical for all hexahedrons.  Furthermore, it possess the 

alternator properties as given below: 
 

KJIJIKIKJKIJJKIIJK CCCCCC −=−=−===  (0.60) 

 
Applying Equations (0.55) and (0.60) to Equation (0.58) yields the following form for evaluating the 
gradient operator: 
 

IJK

KJ

KJ

KJ

iI C

yx

xz

zy

G

















=  (0.61) 

 

In light of Equation (0.44), it is evident that evaluating each component of IJKC  involves integrating a 

polynomial that is at most bi-quadratic.  However, since we are integrating over a symmetric region, any 
term with a linear dependence will vanish.  The only terms, which survive the integration, will be the 

constant, square, double square and triple square terms.  The resulting expression for IJKC  is: 

 

( )kKiJjIiKjJkIjKkJiIkKjJiIijkIJK eC  +++= 3
192

1
 (0.62) 
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Seven independent terms of IJKC  are listed in Table 7-3.  These terms may be evaluated via Equation 

(0.62) and Table 7-2, after which practical formulas for computing the gradient operator are developed.  

Since IJKC  has the alternator properties given in Equation (0.60), only 56 (the combination of eight 

nodes taken three at a time) distinct nonzero terms are possible.  However, the volume must be 

independent of the selection of node 1, which implies that IJKC  is invariant if the nodes are permuted 

according to Table 7-4.  Therefore, only seven terms of IJKC  need to be evaluated.  Only three of these 

seven terms do not vanish, as indicated in Table 7-3.  All other nonzero terms of IJKC are found by 

permuting the nodes according to Table 7-4 and using the alternator properties of Equation (0.60).  

Alternatively, the nonzero terms may be generated by applying anti-symmetry ( IKJIJK CC −= ) to Table 7-

3, then permuting according to Tables 7-5 and 7-4, successively.  The latter scheme results in a formula 
for computing the gradient operator. 
 
The first term of the gradient operator is: 
 

( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( )

( ) ( )548256

4268525834

4235436211
12

1

zzyzzy

zzzzyzzzzy

zzyzzzzyG

−+−+

−−−+−−−+

−+−−−=

 (0.63) 

 
Table 7-3.  Nonzero Terms Generated by Applying Asymmetry. 

I J K 
IJKC  

1 2 3 -1/12 

1 2 5 +1/12 

1 2 6 +1/12 

1 2 7 0 

1 2 8 0 

1 3 5 0 

1 3 6 0 

 
Table 7-4.  Nodal Permutations. 

1 2 3 4 5 6 7 8 

2 3 4 1 6 7 8 5 

3 4 1 2 7 8 5 6 

4 1 2 3 8 5 6 7 

5 8 7 6 1 4 3 2 

6 5 8 7 2 1 4 3 

7 6 5 8 3 2 1 4 

8 7 6 5 4 3 2 1 
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Table 7-5.  Three Possible Orientations of Node Numbering. 

1 2 3 4 5 6 7 8 

1 4 8 5 2 3 7 6 

1 5 6 2 4 8 7 3 

 
Table 7-6.  Coordinate Axes Permutations. 

1 2 3 

2 3 1 

3 1 2 

 
Other terms of the gradient operator are evaluated using the same formula after permuting the nodes 
according to Table 7-4 and, subsequently, permuting the coordinate axes according to Table 7-6.  The 
element volume is most easily computed by contracting the gradient operator and nodal coordinates as 
per Equation (0.54). 
 
The mean stress approach used here gives the same result as using a one-point Gauss Quadrature rule 
to integrate the element.  However, we will now see that there is an elegant and accurate mathematical 
formulation for the uniform gradient formulation to deal with the zero energy modes that were neglected 
in the integration (these very same zero energy modes are neglected in the one-point Gauss Quadrature 
rule as well). 
 

7.2.3 Hourglass Control 

Our uniform gradient formulation considers only a fully linear velocity field.  The remaining portion of the 
nodal velocity field is the so-called “hourglass” field.  Excitation of these modes may lead to sever, un-
resisted mesh distortion.  The hourglass control algorithm we will now describe isolates the hourglass 
modes so that they can be treated independently of the rigid body and uniform strain modes. 
 
A fully linear velocity field for the quadrilateral can be described by: 
 

( )jjj,ii
LIN
i xxuuu −+=   (0.64) 

 

The mean coordinates ix  correspond to the center of the element and are defined as: 

 

IiIi xx =
8

1
 (0.65) 

 
The mean translational velocity is similarly defined by: 
 

IiIi uu = 
8

1
 (0.66) 

 
The linear portion of the nodal velocity field may be expressed by specializing Equation (0.64) to the 
nodes as follows: 
 

( )IjjIj,iIi
LIN
iI xxuuu −+=   (0.67) 
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where I  is used to maintain consistent index notation and indicates that Iu and Jx  are independent of 

position within the element.  From Equations (0.54) and (0.67), and the orthogonality of the base vectors, 
it follows that: 
 

iI
LIN
iIIiI uuu  8==  (0.68) 

 
and 

j,ijI
LIN
iIjIiI uVGuGu  ==  (0.69) 

 

The hourglass field HG
iI

u  may now be defined by removing the linear portion of the nodal velocity field: 

 

LIN
iIiI

HG
iI

uuu  −=  (0.70) 

 

Equations (0.68) through (0.70) prove that I  and jIG are orthogonal to the hourglass field: 

 

0=I
HG
iI

u  (0.71) 

 

0=jI
HG
iI

Gu  (0.72) 

 
Furthermore, it can be shown that the gradient operator is a linear combination of the volumetric base 

vectors, iI , so Equation (0.72) can be written as: 

 

0=iI
HG
iI

u   (0.73) 

 
where no sum is implied on the lower case indices of Equation (0.73). 
 
Equation (0.71) and (0.73) show that the hourglass field is orthogonal to all the base vectors in Table 7-2 

except the hourglass base vectors.  Therefore HG
iI

u  may be expanded as a linear combination of the 

hourglass vectors as follows: 
 

Ii
HG
iI

q
8

1
u  =  (0.74) 

The hourglass nodal velocities are represented by iq  above (the leading constant is added to normalize 

I ).  The range on the lower case Greek subscript,  , is 1 to 4 (the number of hourglass modes). 

 

We now define the hourglass shape vector I  such that: 

 

IiIi uq  
8

1
=  (0.75) 

 

By substituting Equations (0.67), (0.70), and (0.75) into Equation (0.74), then multiplying by I  and 

using the orthogonality of the base vectors, we obtain the following: 
 

IiIIjIj,iIiI uxuu    =−  (0.76) 
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With the definition of the mean velocity gradient, Equation (0.76), we can eliminate the nodal velocities 

above.  As a result, we can compute I  from the following expression: 

 

JiJiIII xG
V

 
1

−=  (0.77) 

 

The difference between the hourglass base vectors I  and the hourglass shape vectors I  is very 

important.  They are identical if and only if the hexahedron is a parallelepiped (the second term on the 

right hand side of Equation (0.77) vanishes for a parallelepiped).  For a general shape hexahedron, I  

is orthogonal to the gradient operator, iIG , while I  is orthogonal to the linear velocity field LIN
iIu .  While 

I  defines the hourglass pattern, I  is necessary to accurately detect hourglassing. 

 

For the purpose of controlling the hourglass modes, we define generalized forces iQ , which are 

conjugate to iq  so that the rate of work is: 

 

 ii
HG
iIiI qQfu 

2

1
=  (0.78) 

 

for arbitrary iIu .  Using Equation (0.75), it follows that the contribution of the hourglass resistance to the 

nodal forces is given by: 
 

Ii
HG
iI

Qf 
2

1
=  (0.79) 

 

The hourglass generalized forces iQ  represent element state variables.  There are two kinds of 

hourglass resistance algorithms that you can use, stiffness (K) or damping (V).  Or, you can use a 
combination of the two.  We express the combination of the two by: 
 

V
i

K
ii QQQ  +=  (0.80) 

 
In terms of adjustable stiffness ( ) and viscosity ( ) factors, these resistances are given by: 

 

 


i
kIkIK

i q
V

GG
ˆQ  2

2
=  (0.81) 

 

( )   i
V
i qMˆ,minQ = 20  (0.82) 

 
where M  is the mass of the element and ̂  is an effective Lame constant.  We discuss below how the 

effective Lame constants are determined in a general manner for the element.  Note that the stiffness 
expression is a rate expression, implying that the stiffness hourglass resistance forces must be 
integrated and stored as an element state variable. 
 

Observe that the nodal anti-hourglass forces of Equation (0.79) have the shape of I  rather than I . 

 
This fact is essential since the anti-hourglass forces should be orthogonal to the linear velocity field, so 
that no energy is transferred to or from the rigid body and uniform strain modes by the anti-hourglassing 
scheme. 
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The stiffness based hourglass approach is preferred to the viscous based approach.  It generally proves 
to be more accurate and stable. 
 

7.3 3D Uniform Gradient 4 Node Quadrilateral Membrane with Hourglass Control 

7.3.1 Coordinate Systems 

A local orthogonal coordinate system is defined for the membrane element and assumed to be uniform 

over the element.  The base vectors in the local system are denoted by it .  A compact indicial notation is 

used to define the local system: i jt .  The matrix i jt  gives the direction cosine matrix for the 

transformation from the global 3D Cartesian coordinate system to the local 2D element Cartesian 

coordinate system.  The second index of i jt  indicates the base vector number and the first index 

indicates the component of the base vector in the global 3D coordinate system (i.e. the columns of the 

matrix are the base vectors).  The third element base vector, 3it , is always the outward normal for the 

element defined by the counter-clockwise numbering of the four nodes.  Figure 7-3 shows a typical 
membrane element and the construction of the local coordinate system from the mid-chords of the 
element. 
 

 

Figure 7-3.  Membrane Local Coordinate System. 
 
The first operation performed on the element in its initialization is to compute the local coordinate system 

of the element, i jt  based upon the mid-chords shown in Figure 7-3.  We compute the initial coordinate 

transformation based purely upon the element geometry.  This direction cosine matrix is used to compute 

the initial state quaternion,  oldq  using the framework mathematical method to convert a direction 

cosine to a quaternion. 
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7.3.2 Projected Element 

The membrane element is written as a uniform strain element.  In general, the 4-Node, 3D, membrane 
element will have a warped geometry.  The warped geometry vastly complicates integrals over the 
volume of the element.  The fundamental simplifying assumption of this element is that we can project 

the warped three-dimensional element onto the plane defined by the uniform normal to the element, 3it .  

The element domain is defined as the projection of the warped element geometry onto the plane defined 
by the mean normal. 
 
The element formulation depends upon keeping track of the local coordinate system in the projected 
element.  This coordinate system is stored in a state quaternion.  In the initialization of the element we 
computed the initial orientation of the projected coordinate system based purely upon the element 
geometry.  As we march through time and the element deforms, we update the coordinate system using 
the following algorithm. 
 

1. Compute the current normal to the deformed element by crossing the mid-chords. 

2. Recover the old direction cosine matrix old
ij

t from the old state quaternion  oldq  using the 

framework mathematical method to compute a direction cosine matrix from a quaternion. 

3. Calculate the cross product of the old normal (the 3rd column of old
ij

t ) with the new normal 

computed in step 1 above.  This represents the rotation vector for the local coordinate system 
over this time increment. 

4. Update the state quaternion to obtain the new values  newq  using the framework mathematical 

method for quaternion updates. 

5. Recover the new, update direction cosine matrix from the new quaternion. 

 

Once we have computed the new local coordinate system of the element, i jt , we rotate the gathered 

element coordinates and velocities into the local system: 
 

jIijiI xtx̂ =  (0.83) 

 

jIijiI utû  =  (0.84) 

 
Once the local kinematic variables are computed using Equations (0.83) and (0.84), the element 
formulation proceeds using the two dimensional, uniform gradient element formulation to compute the 
internal force contribution for the element.  These element internal forces are in the local element 
coordinate system and must be transformed to the global, 3D, Cartesian coordinate system for 
assembly: 
 

jIjiiI f̂tf =  (0.85) 

 

7.3.3 Element Kinematics and Interpolation 

The element formulation follows exactly the description provided in the two dimensional uniform gradient 
formulation.  The same set of nodal shape functions are used to define a position of a point within an 
element: 
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IIIII  +++= 21
2

1

2

1

4

1
 

 

7.3.4 Gradient and Body Operators 

We define the discrete gradient operator as in the two dimensional element (except all computations are 
performed in the local element coordinate system): 
 

= A i,IiI dAG   (0.86) 

 
The mean velocity gradient is given by: 
 

jIiIj,i Gû
A

u  1
=  (0.87) 

 
Note, the mean velocities are in the local coordinate system and we have dropped the hat “^” because 
the notation becomes too unwieldy to have both “barred” and “hat” quantities together. 
 
The nodal forces in the local system are defined by: 

jIijiI GNf̂ =  (0.88) 

 

where the element uniform stress resultant tensor, ijN , is defined in the local coordinate system and 

represents the integration of the material point stresses through the thickness of the membrane element 
(see below).  Note: we have dropped the hat “^” designation for notational simplicity.  The body operator, 

IB , for this element is identical to the one for the 2D quadrilateral element. 

 

( )  ==
2

1

2
1-

2
1

2
1-

I
V

II ddJdetdVB
e

  

 

7.3.5 Hourglass Control 

The hourglass operator for the element (in the local coordinate system) is computed exactly as for the 
plane stress quadrilateral: 
 

IiIi ûq̂ 
2

1
=  (0.89) 

 

Ii
HG

iI
Qf̂ 

2

1
=  (0.90) 

 

The hourglass generalized forces iQ  represent element variables.  There are two kinds of hourglass 

resistance algorithms that you can use, stiffness (K) or damping (V).  Or, you can use a combination of 
the two.  We express the combination of the two by: 

 

V
i

K
ii QQQ +=  (0.91) 

 
In terms of adjustable stiffness ( ) and viscosity ( ) factors, these resistances are given by: 
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i
kIkIK

i qh
A

GG
Q  = 


2

2
 (0.92) 

 

( ) i
V
i qhM,minQ =  20  (0.93) 

 
where h  is the total thickness of the membrane (the sum of the thickness over all layers). 

 
Table 7-7.  3D Membrane Element Modes. 

Mode 
Description 

Number of 
Modes 

Rigid Body Translation 3 

Rigid Body Rotation 3 

Strain Modes 3 

In Plane Hourglass Modes 2 

Butterfly Hourglass Mode 1 

 

The 4-Node quadrilateral in three dimensions has 12 degrees of freedom and hence must have 12 
modes represented.  Up to this point in the discussion of the element, we have accounted for 11 of the 
modes in the element (see Table 7-7).  There is still one un-resisted mode in the element.  This is the so-
called “butterfly” mode of the element shown in Figure 7-4. 
 

 

Figure 7-4.  Butterfly Mode of the Membrane Element. 
 
The butterfly mode is a zero energy mode just like the element hourglass modes.  Fortunately, we have a 
means to measure the amount of the displacement field of the element represented by this mode.  When 
we applied the hourglass operator to the displacement field (in the local coordinate system) using 
Equation (0.89), we compute the 3rd component representing the out of plane hourglassing (the butterfly 
mode).  We simply compute hourglass resistances and forces using Equations (0.90) through (0.93) for 
the butterfly mode just like the other two hourglass modes. 
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7.3.6 Integration Through the Membrane Thickness 

The membrane element has some finite thickness that is not accounted for in the 2D plane stress 
element formulation in the projected and transformed element.  In general, we can allow a layered 
section so that the model can accommodate a lay-up of different materials through the thickness as 
shown in Figure 7-5 for the case of 3 distinct layers.  NOTE: at the present time, Nastran and  Autodesk 
Explicit do not provide input for layered sections for membranes. 
 

 

Figure 7-5.  Layered Section for Three Layers with Different Thickness and Materials in Each 
Layer. 
 
The membrane force resultants in the material configuration follow by integrating the material point 
stresses through the thickness. 
 

= h
x̂dN 3   (0.94) 

 
where the Greek indices indicate that the quantities are in the material configuration (and have a range of 

one to two).  The thinning strain in each layer, 33 , is computed by the plane stress material model and 

applied to the thickness to account for thinning effects in finite deformations. 
 
The stress resultant in the element local configuration by transforming from the material frame to the 
element local frame of reference: 

 

tt
j

tt
iij RNRN







++=  (0.95) 

 

7.4 3D Uniform Gradient 4-Node Quadrilateral Shell Element with Hourglass Control 

This element makes use of the 4-node quadrilateral membrane element formulation for many of the 
element operators.  It augments that element formulation with bending terms to capture the moment-
curvature aspects of shell behavior. 
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7.4.1 Element Degrees of Freedom 

The shell element has 3 spatial displacement degrees of freedom at each node representing the 
displacement vector: 
 


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
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I

u

u

u

u  (0.96) 

In the dynamics formulation, we have spatial accelerations, mean velocities, state velocities and 
incremental displacements for each node, which represent the time derivatives of the displacement 
degrees of freedom at each node. 
 
We also have rotational degrees of freedom at each node connected to a shell element.  The rotation at 
each node represents the total rotation at the node: 
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  (0.97) 

 
In an incremental dynamics algorithm, the total rotations are in fact a vector but we cannot simply 
integrate them by adding up the incremental rotations.  We must perform a quaternion update to 
integrate them.  Therefore, the total rotation is stored in a quaternion: 
 

 
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  (0.98) 

 
where the usual quaternion conventions represent the quaternion as a vector part and a scalar part.  

Equation (0.98) defines a rotation   about a direction defined by the unit normal n̂ . 

 
The angular accelerations, velocities and incremental rotations are all vectors (i.e. not quaternions).  The 
explicit dynamics Physics procedure computes the following rotational kinematics: 
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where II  represents the moments of inertia at each node and we note that Equation (0.103) represents a 

quaternion update for the total rotation at the node. 
 
In general, the finite element analyst would be completely baffled by providing quaternions as output for 
the nodal rotations.  They simply want us to output the rotation vector defined at each node by the 
quaternion represented by Equation (0.103).  Recovering this rotation from quaternion is quite 
straightforward albeit somewhat computationally expensive (because it requires the computation of an 
arctangent).  We recover the vector components of rotation for output purposes only. 
 

7.4.2 Coordinate Systems 

A local orthogonal coordinate system is defined for the shell element and assumed to be uniform over 

the element.  The base vectors in the local system are denoted by it .  A compact indicial notation is used 

to define the local system: i jt .  The matrix i jt  gives the direction cosine matrix for the transformation from 

the global 3D Cartesian coordinate system to the local 2D element Cartesian coordinate system.  The 

second index of i jt  indicates the base vector number and the first index indicates the component of the 

base vector in the global 3D coordinate system (i.e. the columns of the matrix are the base vectors).  The 

third element base vector, 3it , is always the outward normal for the element defined by the counter-

clockwise numbering of the four nodes.  Figure 7-6 shows a typical membrane element and the 
construction of the local coordinate system from the mid-chords of the element. 
 

 

Figure 7-6.  Membrane Local Coordinate System. 
 
The first operation performed on the element in its initialization is to compute the local coordinate system 

of the element, i jt  based upon the mid-chords shown in Figure 7-6.  We compute the initial coordinate 

transformation based purely upon the element geometry.  This direction cosine matrix is used to compute 

the initial state quaternion,  oldq  using the framework mathematical method to convert a direction 

cosine to a quaternion. 
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7.4.3 Projected Element 

The shell element is written as a uniform strain element.  In general, the 4-Node, 3D, shell element will 
have a warped geometry.  The warped geometry vastly complicates integrals over the volume of the 
element.  The fundamental simplifying assumption of this element is that we can project the warped 

three-dimensional element onto the plane defined by the uniform normal to the element, 3it .  The 

element domain is defined as the projection of the warped element geometry onto the plane defined by 
the mean normal. 
 
The element formulation depends upon keeping track of the local coordinate system in the projected 
element.  This coordinate system is stored in a state quaternion.  In the initialization of the element we 
computed the initial orientation of the projected coordinate system based purely upon the element 
geometry.  As we march through time and the element deforms, we update the coordinate system using 
the following algorithm. 
 

1. Compute the current normal to the deformed element by crossing the mid-chords. 

2. Recover the old direction cosine matrix old
ij

t  from the old state quaternion  oldq  using the 

framework mathematical method to compute a direction cosine matrix from a quaternion. 

3. Calculate the cross product of the old normal (the 3rd column of old
ij

t ) with the new normal 

computed in step 1 above.  This represents the rotation vector for the local coordinate system 
over this time increment. 

4. Update the state quaternion to obtain the new values  newq  using the framework mathematical 

method for quaternion updates. 

5. Recover the new, update direction cosine matrix from the new quaternion. 

 

Once we have computed the new local coordinate system of the element, i jt , we rotate the gathered 

element nodal values (coordinates, spatial displacement increments, rotation increments) into the local 
system: 
 

jIijiI xtx̂ =  (0.104) 

 

jIijiI utû  =  (0.105) 

 

jIijiI tˆ  =  (0.106) 

 
Once the local kinematic variables are computed using Equations (0.83) and (0.84), the element 
formulation proceeds using the two dimensional, uniform gradient element formulation to compute the 
internal force contribution for the element.  These element internal forces are in the local element 
coordinate system and must be transformed to the global, 3D, Cartesian coordinate system for 
assembly: 
 

jIjiiI f̂tf =  (0.107) 
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7.4.4 Element Kinematics and Interpolation 

The element formulation follows exactly the description provided in the two dimensional uniform gradient 
formulation.  The same set of nodal shape functions are used to define a position of a point within an 
element: 
 

IIIII  +++= 21
2

1

2

1

4

1
 (0.108) 

 

7.4.5 Gradient and Body Operator 

We define the discrete gradient operator as in the two dimensional element (except all computations are 
performed in the local element coordinate system): 
 

= A i,IiI dAG   (0.109) 

 
The mean velocity gradient is given by: 
 

jIiIj,i Gû
A

u  1
=  (0.110) 

 
Note, the mean velocities are in the local coordinate system and we have dropped the hat “^” because 
the notation becomes too unwieldy to have both “barred” and “hat” quantities together. 
 

The nodal forces in the local system are defined by: 
 

jIijiI GNf̂ =  (0.111) 

 

where, the element uniform stress resultant tensor, ijN , is defined in the local coordinate system and 

represents the integration of the material point stresses through the thickness of the membrane element 
(see below).  Note: we have dropped the hat “^” designation for notational simplicity. 
 

The body operator, IB , for this element is identical to the one for the 2D quadrilateral element. 
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7.4.6 Hourglass Control 

The hourglass operator for the element (in the local coordinate system) is computed exactly as for the 
plane stress quadrilateral: 
 

IiIi ûq̂ 
2

1
=  (0.112) 
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The hourglass generalized forces iQ  represent element variables.  There are two kinds of hourglass 

resistance algorithms that you can use, stiffness (K) or damping (V).  Or, you can use a combination of 
the two.  We express the combination of the two by: 
 

V
i

K
ii QQQ +=  (0.114) 

 
In terms of adjustable stiffness ( ) and viscosity ( ) factors, these resistances are given by: 

 

i
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i qh
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2
 (0.115) 

 

( ) i
V
i qhM,minQ =  20  (0.116) 

 
where h  is the total thickness of the membrane (the sum of the thickness over all layers). 
 
The hourglass pattern can appear in both the displacement degrees of freedom and the rotational 
degrees of freedom.  Hence we apply the hourglass control algorithm to the in-plane (projected) 
displacements and rotations.  Therefore, we constrain two in-plane displacement hourglass modes and 
two in-plane rotational hourglass modes. 
 

7.4.7 Transverse Shear Constraints 

We apply the transverse shear constraints at each edge element by penalizing the transverse shear 

strain at the mid-edge.  At each edge of the element, we introduce a local coordinate system e
ij

t  similar 

to the local system defined for the projected element.  The first index (i) indicates the global Cartesian 
direct and the second index (j) indicates the unit vector number.  The local system is constructed so that 
the 1st basis vector points along the edge, the 2nd basis vector points out of the element, and the 3rd basis 
vector points in the direction of the projected normal of the element. 
 
The increment in transverse shear strain at the mid-edge is given by: 
 

eee  −=  

 

where e  is the rotation about the e
j

t
2  axis defined by averaging the nodal rotations of the two nodes 

attached to the edge: 
 

jI
e

je t 
22

1
=  

 

and e  is the rigid body rotation of the edge about the e
j

t
2  axis defined by the spatial displacements of 

the two nodes attached to the edge: 
 

( )213

1
ii

e
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e
e uut

L
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Note that this definition of e  assumes small incremental rigid body rotations. 

 
For each edge, we integrate the total transverse shear as: 
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e
t
e

tt
e   +=+  

 

The penalty transverse shear force is calculated in terms of a tunable stiffness factor TS  as: 

 

tt
eTSTS

TS Kf  +=  

 

where the determination of the overall stiffness term, TSK , is discussed below.  The virtual work 

contribution is eeTSTSK   from which it follows that the nodal force and moment contributions to the 

two edge nodes due to the edge transverse shear are: 
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where 3
I

A  is a simple operator used to ensure the forces are applied in the right directions. 
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The transverse shear stiffness TSK  is chosen to reasonably approximate “linear curvature” stiffness for 
thin elements and “pure shear” stiffness for thick elements.  The formulation should transition smoothly 
between these two regimes.  This is accomplished by the stiffness as follows: 
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This can be recast into terms that are more convenient in the form: 
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7.4.8 Drilling Degrees of Freedom 

The rotational degrees of freedom normal to the shell elements have so far not appeared anywhere in 
our projected element formulation.  Therefore, in general they are completely free of any stiffness 
associated with them especially in a flat geometry.  We refer to these as the “drilling” degrees of 
freedom.  In reality, this causes no real problem since they have no effect on the solution.  However, if 
the user requests output of the rotation vectors, they should not simply have arbitrary values for the out-
of-plane components.  Therefore, we define four rotational moments (one for each node of the element) 
about the drilling direction.  These moments are calculated by penalizing the difference between the 
incremental drilling rotation and the material rotation increment defined in the polar decomposition of the 
membrane deformation gradient.  The four drilling moment resistances are given by: 
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where D  is a small tunable parameter to define the penalty stiffness. 
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7.4.9 Degree of Freedom Count 

 
Table 7-8 provides an accounting of all the degrees of freedom found in the four-node quadrilateral and 
three-node triangular shell elements described in this chapter.  Table 7-9 summarizes the constraints 
applied to the shell elements. 
 
Table 7-8.  3D Shell Element Modes and Constraints. 

Mode 
Description 

Quadrilateral 
Number of  

Modes 

Triangle 
Number of 

Modes 

Rigid Body Translation 3 3 

Rigid Body Rotation 3 3 

Membrane Strain Modes 3 3 

Bending Strain Modes 3 3 

In Plane Hourglass Modes 2 0 

Bending Hourglass Modes 2 0 

Drilling Rotations 4 3 

Edge Transverse Shear 4 3 

Total Number DOFS =  24 18 

 
Table 7-9.  Constraint Stiffness Factors. 

Constraint Default 
Scale 
Factor 

Stiffness 
Type 

Stiffness 
Factor 

Displacement HG .05 hypoelastic 
( )

g
hˆ

1
2  

Bending HG .05 hypoelastic 

( )
2

2 








g

h
h̂  

Drilling Rotation .0005 constant ( )( )gAh̂2  

Transverse Shear 5/6 constant 
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7.4.10 The Layered Section and Section Resultants 

The shell element has some finite thickness that is not accounted for in the 2D plane stress element 
formulation in the projected and transformed element.  We allow a layered section so that the model can 
accommodate a lay-up of different materials through the thickness as shown in Figure 7-7 for the case of 
3 distinct layers.  Such a three layer composite section would be defined using the PCOMP property 
option for the element. 
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Figure 7-7.  Layered Section for Three Layers with Different Thickness and Materials in Each 
Layer. 
 
The shell force resultants in the material configuration follow by integrating the material point stresses 
through the thickness. 
 

= h
3x̂dN    (0.117) 

 
where the Greek indices indicate that the quantities are in the material configuration (and have a range of 

one to two).  The thinning strain in each layer, 33 , is computed by the plane stress material model and 

applied to the thickness to account for thinning effects in finite deformations. 
 
The stress resultant in the element local configuration is determined by transforming from the material 
frame to the element local frame of reference: 
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The shell moment resultants in the material configuration follow by integrating the material point stresses 
times the distance from the neutral axis of the material point through the thickness. 
 

= h
x̂dxM 33   (0.119) 

 
where the Greek indices indicate that the quantities are in the material configuration (and have a range of 

one to two).  The thinning strain in each layer, 33 , is computed by the plane stress material model and 

applied to the thickness to account for thinning effects in finite deformations. 
 
The moment resultant in the element local configuration is determined by transforming from the material 
frame to the element local frame of reference: 
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7.4.11 Interlaminar Shear Stresses 

When a shell section consists of more than one layer, we can determine the interlaminar shear stresses 
between the plies from element transverse shear forces computed for the shell section. 
 
Consider a simple beam with a uniform depth (out of the plane) with multiple layers, each of which has 

different material properties.  Hence the Young’s Modulus, E , varies throughout the layers.  The origin of 

the z coordinate direction is assumed to be at the neutral axis of the beam.  For a beam with N  layers, 

the z coordinate of the top of each layer is defined by 
iz .  Therefore the location of the bottom free 

surface is denoted 0z and the top free surface is denoted 
Nz . 

 

We denote the Young’s Modulus in the individual layers by iE  and define  the he mean value of Young’s 

Modulus, E , as: 
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i i
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 (0.121) 

 

where the thickness of each layer is defined by it  and the total thickness of the layered beam,  t , is 

given by: 

 

1

N

i

i

t t
=

=  (0.122) 

 
The area moment of inertia of the beam cross section is given by: 
 

3

12

t
I =  (0.123) 

 
where we have assumed a unit width (out of the plane) for the beam. 
 
The governing equilibrium equations are: 
 

0xz x

z x

  
+ =

 
 (0.124) 

 

0
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 (0.125) 

 

and for pure bending, 
x , may be expressed as: 

 

( )
x

E z z
M

EI


−
= −  (0.126) 

 
where z  represents the location of the bending center of the cross-section and is defined by: 
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and 
1i i it z z −= − represents the thickness of layer i . 

 
Differentiating Equation (0.126) with respect to x  and combining with Equation (0.124): 
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 (0.128) 

 
Using Equation (0.125) in Equation (0.128): 
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Integrating Equation (0.129) with respect to z  gives: 
 

( )xz

V
E z z dz

EI
 = −  (0.130) 

 

Now, in Equation (0.130) we cannot bring E  outside the integral because if depends upon z  as each 

layer has a different value for Young’s modulus.  However, in any individual layer E  is constant and we 
can perform the integration.  Therefore, in any ply: 
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Equation (0.131) can be used to determine the constants iC  for each of the layers.  Consider a layered 

beam with N  layers.  At the bottom surface 1i = , 0z z=  and 0xz =  and using Equation (0.131) 

evaluated in the interval for 1i = : 
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 (0.132) 

 

At the top of the first ply, at the interface between 1i =  and 2i = , we have 
1z z=  and Equation (0.131) 

can be evaluated again in the interval for 1i =  along with the 1C  constant given in Equation (0.132) to 

obtain: 
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Now, at the interface between the first and second plies, we can use Equation (0.131) evaluated in the 

interval for 2i =  and 
1z z=  to evaluate the 

2C  constant: 

 

1

2 22
2 1 1
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Equations (0.133) and (0.134) are two independent expressions for the interlaminar shear stress at the 

top of ply 1 and we can determine the value of 
2C  as: 
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Repeating this process for the next ply, at the top of the second ply, at the interface between 2i =  and 

3i = , we have 2z z=  and Equation (0.131) can be used evaluated again in the interval for 2i =  along 

with the 
2C constant given in Equation (0.135) to obtain: 
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At the interface between the second and third plies, we can use Equation (0.131) evaluated in the 

interval for 3i =   and 2z z=  to evaluate the 
3C  constant: 
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Again Equations (0.135) and (0.136) are two independent expressions for the interlaminar shear stress 

at the top of ply 2 and we can determine the value of 
3C  as: 
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 (0.138) 

 

Repeating this process for the next ply, at the top of the third ply, at the interface between 3i =  and 

4i = , we have 
3z z=  and Equation (0.131) can be used evaluated again in the interval for 3i =  along 

with the 
3C constant given in Equation (0.138) to obtain: 
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( ) ( )

( ) ( )

( ) ( )

3
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1 0 1 0
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2

xz x

VE
z z z z z

EI

VE
z z z z z

EI

VE
z z z z z

EI


 

= − − − 
 

 
+ − − − 

 

 
+ − − − 

 

 (0.139) 

 
A clear pattern then emerges that allows us to write a concise formula to evaluate the interlaminar shear 
at the top of each ply: 
 

( ) ( )

( )

2 2

1 1

1

1

1

1

2

1

2

i

xz j j j j ji
j

i

j j j j

j

V
E z z z z z

EI

V
E t z z z

EI

 − −

=

−

=

 
= − − − 

 

 
= − + 

 




 (0.140) 

 

7.4.11.1 Case 1 -  Uniform Values of Young’s Modulus 

For the case of all uniform thickness layers and uniform values of Young’s Modulus, E , our formula 
reproduces the classic quadratic shape of the shear distribution in a beam.  Consider the case of 10 
layers, each of thickness .1, a constant Young’s Modulus of 1000, and a shear force of 50.  Figure 7-8 
shows the quadratic distribution of shear stress through the thickness that is recovered using Equation 
(0.140). 
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Figure 7-8.  Shear Distribution for Uniform Thickness Layers, Young’s Modulus and Shear Force.
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7.4.11.2 Case 2 -  Non-Uniform Young’s Modulus, Stiff Outer Layers, Soft Inner Layers 

Now, consider the case where there are again 10 layers of uniform 0.1 thickness.  The first and last layer 
has Young’s modulus of 1000.  Layers 2 through 9 have a Young’s modulus of 250.  The shear force 
value is 50.  Figure 7-9 shows the distribution of shear stress through the thickness that is recovered 
using Equation (0.140) for this case.  We verify that the algorithm derived here correctly predicts zero 
shear stress on the free surface at the top layer of the cross-section. 
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Figure 7-9.  Shear Distribution for Non-Uniform Young’s Modulus, Stiff Outer Layers and Soft 
Inner Layers. 

 

7.4.11.3 Case 3 -  Non-Uniform Young’s Modulus, Soft Outer Layers, Stiff Inner Layers 

Now, consider the case where there are again 10 layers of uniform 0.1 thickness.  The first and last layer 
has Young’s modulus of 250.  Layers 2 through 9 have a Young’s modulus of 1000.  This is just the 
reverse of Case 2 above.  The shear force value is 50.  Figure 7-10 shows the distribution of shear stress 
through the thickness that is recovered using Equation (0.140) for this case.  Again, we verify that the 
algorithm derived here correctly predicts zero shear stress on the free surface at the top layer of the 
cross-section. 
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Figure 7-10.  Shear Distribution for Non-Uniform Young’s Modulus, Soft Outer Layers and Stiff 
Inner Layers. 

 

7.4.11.4 Case 4 -  Non-Uniform Young’s Modulus, Five Stiff Layers Topped by Five Soft Layers 

Now, consider the case where there are again 10 layers all with 0.1 thickness.  The first five have 
Young’s modulus of 1000.  The last five layers have Young’s modulus of 250.  The shear force value is 
50.  Figure 7-11 shows the distribution of shear stress through the thickness that is recovered using 
Equation (0.140) for this case.  Again, we verify that the algorithm derived here correctly predicts zero 
shear stress on the free surface at the top layer of the cross-section. 
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Figure 7-11.  Shear Distribution for Five Stiff Layers Topped by Five Soft Layers. 

 

7.5 3D 4-Node Tetrahedral Element 

7.5.1 Element Node Ordering 

The 4-node tetrahedral element has nodes designated by i, j, k, m as shown in Figure 7-12.  The 
ordering of the node numbers must follow the “right-hand-rule” such that the rotation defined by 
traversing the first face (defined by node numbers i, j, k) produces a vector that points towards node m. 
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Figure 7-12.  A 4-Node tetrahedral Element Defined by Nodes i, j, k, m. 

 

7.5.2 Formulation 

The displacement at any point within the element in the global coordinate directions x , y , and z is 

written as: 

u

u v

w

 
 

=  
 
 

 

The displacement is defined as a linear variation in the coordinates by writing: 
 

1 2 3 4u x y z   = + + +  

 
This equation can be specialized to each of the four nodes of the tetrahedral element to obtain the four 
equations: 
 

 

 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

i i i i

j j j j

k k k k

m m m m

u x y z

u x y z

u x y z

u x y z

   

   

   

   

= + + +

= + + +

= + + +

= + + +
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which can be solved for the coefficients.  It is possible to write this solution in a determinant form as: 
 

( ) ( )

( ) ( )

1
[

6

]

i i i i i j j j j j

k k k k k m m m m p

u a b x c y d z u a b x c y d z u
V

a b x c y d z u a b x c y d z u

= + + + + + + +

+ + + + + + + +

 

 
with the volume of the tetrahedron defined by the determinant: 
 

1

1
6 det

1

1

i i i

j j j

k k k

m m m

x y z

x y z
V

x y z

z y x

=  

 
Expanding all the determinants into their cofactors gives: 
 

1

det det 1

1

1 1

det 1 det 1

1 1

j j j j j

i k k k i k k

m m m m m

j j j j

i k k i k k

m m m m

x y z y z

a x y z b y z

x y z y z

x z x y

c x z d x y

x z x y

= = −

= − =

 

 
All the other coefficients can be obtained via a cyclic permutation in the order i, j, k, m. 
 

The gradient of the shape functions , ,i i iN N N

x y z

  

  
only depend upon the , , ,i j k mb b b b , , , ,i j k mc c c c , and 

, , ,i j k md d d d  coefficients and they can be written directly in terms of the differences of the coordinates of 

the nodes.  We denote the coordinate difference between two nodes with a double subscript as in the 

form ij i jx x x= − , which denotes the difference in the x  coordinate between nodes i  and j  of the 

tetrahedral element.  Then: 
 

( )

( )

( )

1 1

6 6

1 1

6 6

1 1

6 6

i
i jm jk jk jm

i
i jm jk jk jm

i
i jm jk jk jm

N
b y z y z

x V V

N
c z x z x

y V V

N
d x y x y

z V V


= = −




= = −




= = −


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( )

( )

( )

1 1

6 6

1 1

6 6

1 1

6 6

j

j ik im im ik

j

j ik im im ik

j

j ik im im ik
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x V V

N
c z x z x

y V V
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d x y x y

z V V
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= = −




= = −




= = −



 

 

( )

( )

( )

1 1

6 6

1 1

6 6

1 1

6 6

k
k im ij ij im

k
k im ij ij im

k
k im ij ij im
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x V V

N
c z x z x

y V V

N
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z V V


= = −




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


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( )

( )

( )

1 1

6 6

1 1

6 6

1 1

6 6

m
m ij ik ik ij

m
m ij ik ik ij

m
m ij ik ik ij

N
b y z y z

x V V

N
c z x z x

y V V

N
d x y x y

z V V


= = −




= = −




= = −



 

 
where the volume is can be determined from: 
 

( ) ( ) ( )6 im ij ik ij ik im ij ik ij ik im ij ik ij ikV x z y y z y x z z x z y x x y= − + − + −  
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8. MATERIALS 

All property options (e.g. PSOLID, PSHELL, etc) must reference valid material IDs. 
 
Every material model must have a density property included within the set of material properties that are 
assigned to the material model. 
 

8.1 Linear Elasticity 

The Linear Elastic Entry type is used to define an isotropic, linear elastic material and is defined using 

the MAT1 option where you define the elastic properties for the material.  The stress increments ij  are 

defined in terms of the strain increments ij  by: 

 

ijkkij  2+=  

 
where   and 2  are the usual Lamé material constants. 

 

8.2 Metal Plasticity 

This model requires the definition of the elastic properties of the material (Young’s modulus and 
Poisson’s ratio) using the MAT1 option as well as a specification of the yielding behavior of the material 
using the MATS1 option.  The yield stress is defined as a function of plastic strain.  If the stress strain 
curve from a uniaxial tension test is provided, the total strain values must be converted to plastic strain 
values.  Figure 8-1 (a) shows the stress strain curve for a uniaxial test as a set of five data points defining 

a bilinear stress strain curve.  In Figure 8-1 (b) the elastic strain (
E

 ) at each point is subtracted from 

the total strain for the point to obtain the plastic strain value. 
 

 

Figure 8-1.  Conversion of Uniaxial Tension Test to Yield Stress vs Plastic Strain. 
 

For the stress tensor, ij , its stress deviator, ijS , is defined as: 
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ij ij ijS p = −  

 
where p  is the mean pressure. 

 
The first and second invariants of the stress tensor are: 
 

1

2
kkp =  

 

3

2
ij ijq S S=  

 
The Von Mises yield surface is a circle in the deviatoric stress space and is defined as: 
 

2 21
( )

2
ijf R = =  

 

where R is the radius of the yield surface and is defined by: 
 

ij ijR S S=  

 
The Von Mises effective stress is defined as: 
 

3

2
ij ijS S =  

 

Since R is the magnitude of the deviatoric stress it follows that 
3

2
R =  

 
The normal to the yield surface is defined by: 
 

ij

ij

S
Q

R
=  

 
We assume the strain rate can be decomposed into elastic and plastic parts by an additive 
decomposition: 
 

el pl

ij ij ij  = +  

 
and assume that the plastic part of the strain rate is given by a normality condition: 
 

pl

ij ijQ =  

 
with the scalar multiplier,  , to be determined. 

 
Combining the consistency condition (the state of stress must remain on the yield surface at all times), 
the additive strain rate decomposition, and the normality condition, and performing some tedious algebra 
allows us to solve the scalar multiplier, , as: 
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1

1
3

ij ijQ
H

 



=
 

+ 
 

 

 

Where H  is the slope of the effective stress versus equivalent plastic strain curve.  Once the scalar 
multiplier,  , is computed, these equations can be used to update the stress at the end of the increment 

from all known quantities.  Note that  Autodesk Explicit requires the input of stress versus strain (not 
equivalent plastic strain) and the code automatically make the conversion to yield stress versus plastic 
strain as shown in Figure 8-1. 
 

8.3 Drucker-Prager Plasticity 

The Drucker-Prager model plasticity model defines the yield stress as a function of the mean pressure 
(i.e. volumetric mean stress).  

 

For the stress tensor, ij , its stress deviator, ijS , is defined as: 

 

ij ij ijS p = −  

 

where p  is the mean pressure. 

 

The first and second invariants of the stress tensor are: 

 

1

2
kkp =  

 

3

2
ij ijq S S=  

 

Generally, this functional dependence is defined by the an angle,  , which defines the slope of the yield 

stress versus pressure line in the p q−  plane as shown in Figure 8-2.  Note that pressure is positive in 

compression and that there is a maximum tensile pressure that can be achieved tantp d = .  
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Figure 8-2.  Yield Stress as a Function of Pressure. 

 

The yield surface is defined by: 

 

tan 0F q p d= −  − =  (0.141) 

 

where d  represents the cohesion of the material and is defined as: 

 

01
(1 tan )

3
cd  = −     if 

0( )pl

c   is the yield stress obtained from  uniaxial compression 

 

01
(1 tan )

3
td  = +  if 

0( )pl

t   is the yield stress obtained from uniaxial tension  

 
0d =    if 

0( )pl   is the shear yield stress obtained from a shear test 

 

Note that for the case where the yield stress is defined by uniaxial compression the value of 3   

which represents 71.5°. 

 

In the deviatoric plane the yield surface is a circle as shown in Figure 8-3. 
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Figure 8-3.  Drucker-Prager Yield Surface in the Deviatoric Plane. 
 

We assume a potential flow rule as: 

 
pl

pl

ij

ij

d g
d

a







=


 

 

The flow potential, g , is chosen as: 

 

tang q p = −   

 

The angle,  , is referred to as the dilation angle for the material.  The flow is associated in the deviatoric 

plane because the yield surface and flow potential both have the same functional dependence on q .  

However, the dilation angle,  , and friction angle,  , may be different in which case the model is not 

associated in the in the p q− as shown in Figure 8-4.  For 0 =  the flow is non-dilatational.  For  =  

the model is fully associated. 

 

The coefficient, a , in the potential flow rule is defined as: 

 

01
(1 tan )

3
ca  = −     if 

0( )pl

c   is yield stress from  uniaxial compression 

 

01
(1 tan )

3
ta  = +  if 

0( )pl

t   is yield stress from uniaxial tension  

 
0a =    if 

0( )pl   is yield stress obtained from a shear test 
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and: 

 

11

pl pld d =   in the uniaxial compression case 

 

11

pl pld d =   in the uniaxial tension case 

 

3pl pld d =  in the pure shear case, where 
pl  is the engineering shear plastic strain 

 

Note that for the case where the yield stress is defined by uniaxial compression the value of 3   

which represents 71.5°. 

 

 

Figure 8-4.  Hardening in the p q−  Plane. 

 

The increment in plastic strain is then given by: 

 

3 tan

2 3

pl
ijpl

ij ij

S

a q

 
 

 
 = + 

 
 

 

Assuming an additive strain rate decomposition and combining the elasticity with the flow rule results in: 

 
1

1 3
ˆ2

2

npl
ijn n

ij ij ij

S
S S

a q


 

+

+
 

=  − +  
 

 

 

where îj are the deviatoric increment strains and the deviatoric trial stress is defined as: 
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ˆ2trial n

ij ij ijS S  = +   

Solving for 
1n

ijS +
 

 

1

1

trial

ijn

ij n

S

S
S

C

+

+
=  (0.142) 

 

where: 

 

1

1

3 2
1

2

pl
n

S n
C

a q

 +

+


= +  (0.143) 

 

Making use of the Mises equivalent stress definition gives: 

 

( ) ( )
2 2

1 1 3

2

n n Trial Trial Trial

S ij ijC q S S q+ + = =  (0.144) 

 

This may be simplified to: 

 

1 3
pl

n Trialq q
a


+ 

+ =  (0.145) 

 

Combining the elastic and flow rule along the hydrostatic axis: 

 

1 tan
pl

n pl

volp K
a


  +  

=  −  − 
 

 (0.146) 

 

This may be simplified to: 

 

1 tan
pl

n trialp K p
a


+ 

− =  (0.147) 

 

Substituting Equations (0.145) and (0.146) in the yield Equation (0.141) and solving for the increment in 
equivalent plastic strain gives: 

 

tan

3 tan tan

Trial Trial n
pl

pl

q p d

d
K

d a a




  



− −
 =


+ +

 (0.148) 

 

Under hydrostatic tension, we can reach the apex of the yield surface in the p q− plane as shown in 

Figure 8-2.  At this point tanp d = −  and 0q = .  Equation (0.142) gives: 

3

Trial
pl q a




 =  (0.149) 
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Once we have determined the increment in equivalent plastic strain, pl , we can substitute this back 

into Equations (0.142) and (0.143) to recover the new deviatoric stress values and into Equation (0.146) 
to recover the new mean stress value. 

 

Note that if 0 = = the Drucker-Prager model has no pressure dependence and the equations 

degenerate to the standard expressions for the conventional Mises plasticity model. 

 

8.4 Crushable Foam 

The crushable foam model in  Autodesk Explicit specifies a material where the volumetric and deviatoric 
response can be specified with independent plasticity models. T his model may only be used with 
elements that use the PSOLID property type.  
 
The crushable foam model is a phenomenological model designed to model crushable foams (e.g. 
Styrofoam).  These types of foams tend to have very weak tensile strength.  Furthermore, under 
compression they tend to “bulk up” as the voids in the foam are compressed and closed.  The model is 
also suitable for soils which behave in a similar fashion.  A typical volumetric strain versus pressure 
curve for such a foam is shown in Figure 8-5.  For this model, you can specify the volumetric behavior in 
a piece-wise linear form as shown.  The volumetric response can be purely elastic and this case is 
defined by simply giving two points on the curve (the zero pressure value is required).  As shown in the 
figure,  Autodesk Explicit will extrapolate the pressure in compression using the last value of the slope of 
the curve.  As shown, the tensile response is elastic until the tensile fracture pressure is reached.  The 
tensile fracture pressure is determined from the definition of deviatoric yield stress versus pressure 
described below.  
 

 

Figure 8-5.  Pressure Versus Volumetric Response Curve. 
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The deviatoric plasticity is pressure dependent and may be defined with up to a quadratic dependence 
on pressure.  Figure 8-6 shows the quadratic form of the dependence of yield stress on pressure.  The 
input parameters are quite simple in that you need only provide the yield stress at zero pressure and the 
pressure value at which the dependence becomes linear with a constant slope.   Autodesk Explicit 
automatically fits the quadratic curve to these parameters so that the curve passes through the zero 
pressure point specified and matches the slope at the point specified.  Note that the tensile fracture 
pressure is automatically computed from this fit. 

 

 

Figure 8-6.  Quadratic Dependence of Yield Stress on Pressure. 
 
When a linear dependence is used this model it is similar to a classical Drucker-Prager material model.  
This is shown in Figure 8-7.  In this case you need only define the yield stress at zero pressure and the 
slope of the curve.  Again, the tensile fracture pressure is automatically computed from this fit.  If the 
volumetric response is purely elastic, there is very little difference between the classical Drucker-Prager 
model and the foam model.  
 

 

Figure 8-7.  Linear Dependence of Yield Stress on Pressure. 
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A constant yield stress can be specified in this model as shown in Figure 8-8.  In this case, if the 
pressure versus volumetric strain is purely linear (no piece-wise linear tabular dependence) the classic 
Mises plasticity model with no hardening is obtained.  Note that for this case the tensile fracture pressure 
is set to an infinite value and there is no tensile failure. 
 

 

Figure 8-8.  No Pressure Dependence of Yield Stress. 
 

8.5 Brittle Failure 

The brittle failure model in  Autodesk Explicit is a tensile cracking model which allows cracks to form in 
the principal strain directions of the material.  The cracks are always orthogonal to one another.  Cracks 
only form in tension and once they are formed they do not heal.  That is, the material remembers that it 
has cracked in a particular direction and will never carry tensile stress in that direction again.  
Furthermore, subsequent cracks that form will be orthogonal to that direction.  Crack can close and carry 
compressive stress.  The tensile behavior of the material is shown in Figure 8-9.  The tensile strength, 
TS, is specified by the user.  The strain softening behavior shown in the figure is used to ramp the 
stresses down to zero over a handful of time steps rather than simple set the stress immediately to zero.  
This is required to gracefully dissipate the violent energy that is release when a crack forms.  The brittle 
material is implemented so that you may use the element deletion option (DELETION) to delete elements 
from the mesh after they have cracked.  You may specify the multiple of the tensile strain at fracture that 
want to use for deleting the element.  In the case shown in Figure 8-9 a tensile failure multiplier of 4 
would delete the element when the stresses reach the value shown on the curve. 
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Figure 8-9.  Tensile Stress/Strain Curve. 
 
This model can be used with solid (PSOLID) or shell (PSHELL) elements.  For the plane stress case only 
two cracks can form (since the stress is zero in the out-of-plane direction.  For the 3D strain case of 
solids, up to 3 orthogonal cracks can form.  
 
The tensile behavior is purely elastic up to the point of fracture in one of the principal directions.  The 
compressive behavior the material can be specified to be purely elastic, elastic/perfectly plastic, or 
elastic/plastic strain softening.  The elastic/perfectly plastic behavior is shown in Figure 8-10.  The 
elastic/plastic strain softening case is shown in Figure 8-11.  As with the tensile behavior, the 
compressive response is integrated with the deletion options (DELETION) so that you can have the 
element delete when the compressive strain reaches some multiple of the initial yield strain value. 
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Figure 8-10.  Elastic/Perfectly Plastic Compressive Model. 
 

 

Figure 8-11.  Elastic/Perfectly Plastic Compressive Model – Strain Softening. 
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8.6 Hyperelastic Polynomial Material (MATHP) 

Most elastomers (solid, rubber-like materials) behave in a nearly incompressible manner. The 
hyperelastic polynomial formulation offered in  Autodesk Explicit provides an isotropic, large-deformation 
formulation for elastomeric materials where the stresses are determined in terms of a “strain energy 

potential for the material, ( )U  ,  written in terms of the strain invariants.   

 
The deformation gradient at a point in space is defined as 

i
ij

j

x
F

X


=


 

Where ix  are the current coordinates at the point and jX  are the original coordinates of the point. Then 

the total volume change at the point is given by the determinant of the deformation gradient. 
 

det( )J F=  

It is convenient to define 

1
3

1
ij ijF F

J
=  

The left Cauchy-Green strain tensor is defined as 
 

ij ik kjB F F=  

which is a symmetric tensor. 
 

The first invariant of B is simply the trace of the tensor 
 

1 kkI B=  

 

And the second invariant of B is defined as 

( )2

2 1

1
( )

2
ij ij ik kjI B B I trace B B= = −  

 

The strain energy, ( )U  , at a point is written as a function of 
1I , 2I , and J  

( ) ( ) ( )
2

1 2

1

3 3 1
2

N
i j

ij

i j

K
U C I I J

+ =

= − − + −  

The stresses are determined by taking the partial derivatives of the strain energy potential with respect to 

1I , 2I , and J . 

 
The initial shear modulus and bulk modulus are given by 
 

0 10 01 0 12( ) 2C C K D = + =  

 

If only a single term is used in the polynomial ( 1N = ), the Mooney-Rivlin law is obtained: 

 

( ) ( ) ( )
2

10 1 01 2 13 2 1U C I C I D J= − + − + −  

 

When 
01 0C = in the Mooney-Rivlin law, the neo-Hookean law is obtained. 
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The hyperelastic material with polynomial form (MATHP) provides a test data input option where  
Autodesk Explicit will fit the coefficients for the strain energy potential form user-supplied test data. The 
various deformation modes allowed are shown in Figure 8-12.  

 

Figure 8-12.  Deformations modes for test data input for hyperelastic and hyperfoam materials. 
 
8.7 Hyperelastic Ogden Material (MATHP1) 
 
Most elastomers (solid, rubber-like materials) behave in a nearly incompressible manner. The 
hyperelastic Ogden formulation offered in  Autodesk Explicit provides an isotropic, large-deformation 
formulation for elastomeric materials where the stresses are determined in terms of a “strain energy 

potential for the material, ( )U  ,  written in terms of the principal strain values.   

 
The deformation gradient at a point in space is defined as 

i
ij

j

x
F

X


=


 

Where ix  are the current coordinates at the point and jX  are the original coordinates of the point. Then 

the total volume change at the point is given by the determinant of the deformation gradient. 
 

det( )J F=  

It is convenient to define 
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1
3

1
ij ijF F

J
=  

The left Cauchy-Green strain tensor is defined as 
 

ij ik kjB F F=  

which is a symmetric tensor. 
 

The strain energy, ( )U  , at a point is written as a function of the principal stretches ( i ) and J  as 

( ) ( )
2

1 2 32
1 1

1 2 31
2

2
3 1

1
1

i i i

N N
i

i

i ii

i i

U D J

J

  
  



    

= =

= + + − + −

= → =

 
 

The stresses are determined by taking the partial derivatives of the strain energy potential with respect to 

the i  and J . 

 
The initial shear modulus and bulk modulus are given by 

0 0

1 1

2
N N

i i

i i

K D 
= =

= =   

 

The Mooney-Rivilin law is obtained when 1N = , 
1 2 = , 

2 2 = − , 
1 102C =  and 

2 012C = . 

 

The neo-Hookean form is obtained when 1N = , 
1 2 = , and 

1 102C = . 

 

8.8 Hyperfoam Materials 

Hyperfoam materials represent elastometric foams that undergo large volumetric deformations as well as 
large shears and recover their shape upon unloading. Typical applications are seat cushions and 
packaging materials. The stresses are determined in terms of a “strain energy potential” for the material, 

( )U  ,  written in terms of strain invariants or principal strain values.   

 
The deformation gradient at a point in space is defined as 

i
ij

j

x
F

X


=


 

Where ix  are the current coordinates at the point and jX  are the original coordinates of the point. Then 

the total volume change at the point is given by the determinant of the deformation gradient. 
 

det( )J F=  

The left Cauchy-Green strain tensor is defined as 
 

ij ik kjB F F=  

which is a symmetric tensor. 
 

We define i  as the “principal stretches” which are the three eigenvalues of the left Cauchy-Green strain 

tensor, ijB . 

 
The strain energy potential is written as 
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( )1 2 32
1

2 1
3 1i i

N
i

i i i

i i iU J
   

  
 =

− 
= + + − + − 


  

The initial shear modulus of the material is given by 
 

0

1

N

i

i

 
=

=  

 
And the initial bulk modulus is given by 
 

0

1

1
2

3

N

i i

i

K  
=

 
= + 

 
  

 

The degree of compressibility in each term of the series is defined by the i  coefficients and these are 

related to the effective Poisson’s ratio in each term of the series by 
 

1 2 1 2

i i
i i

i i

 
 

 
= =

− +
 

 

The material input for the hyperfoam material is defined in terms of the i , i  and i coefficients. The 

equations above show impose numerical restrictions that 1 .5i−   . For “real-life” materials negative 

values of Poisson’s ratio are not reasonable but are allowed and may occur for specific fits of the 
coefficients to experimental data. 
 
The hyperfoam material (MATHPF) provides a test data input option where  Autodesk Explicit will fit the 
coefficients for the strain energy potential form user-supplied test data. The various deformation modes 
allowed are shown in Figure 8-12. 
 

8.9 Viscoelasticity  

8.9.1 Isotropic Linear Elastic  
The elasticity relation for small strain isotropic, linear elastic materials is written as 
 

( ) ( )( )1 1 1 2
ij ij kk ij

E E
   

  
= +

+ + −
                                                                                      (1) 

 

If we define the deviatoric portion of the strains, ij  , as 

 

1

3
ij ij kk ij    = −  

 

and note that 
( )2 1

E
G


=

+
 and 

( )1 1 2

E
K


=

−
, then the stress/strain law can be re-written in terms of the 

deviatoric strains as 
 

2ij ij ll ijG K   = +                                                                                                                (2) 
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There are two convenient ways that the response of viscoelastic materials can be modeled: (1) with 

relaxation modulus ( )E t  and a constant Poisson’s ratio  ; or (2) with a relaxation shear modulus ( )G t  

and relaxation bulk modulus ( )K t . 

 
Thus  
 

( )

( )

( )

( )( )0
( )

1 1 1 2

t ij kk
ij ij

E t E t
t d

   
  

    

 − − 
= + 

+  + −  
                                                                 (3) 

 
or 
 

( ) ( )
0

( ) 2 2
t ij kk

ij ijt G t K t d
 

    
 

 
= − + − 

  
                                                                      (4) 

 
If (3) is used, then the mean stress/volumetric strain will relax or creep, just line the uniaxial stress 
relaxation or creep behavior. If (4) is used, the mean stress/volumetric behavior follows a separate 
creep/relaxation behavior. 
 
VE behavior is also associated with a time-temperature shift function.  This behavior is referred to as 
TRS or Theromorheologically Simple behavior (obviously, an oxymoron), where 
 

( ) ( )( )
0

t

t T d   =                                                                                                                   (5) 

 

where ( )T  is the time-temperature shift function. 

 
In order to simplify the formulation of the viscoelastic materials, we limit modeling of TRS materials  with 
either a constant Poisson’s ratio or a constant bulk modulus. Thus, 
 

( ) ( )( )
( )

( ) ( )( )
( )( )0

( )
1 1 1 2

t ij kk
ij ij

E t E t
t d

       
  

    

 − − 
= + 

+  + −   
                                                (6) 

 

or 
 

( ) ( )( )
0

( ) 2
t ij kk

ij ijt G t K d
 

     
 

 
= − + 

  
                                                                       (7) 

 
 
The only practical way to numerically implement either viscoelastic formulation is using Prony series 
where 
 

1

( )
K t

K

k

E t E e E
−



=

= +                                                                                                              (8) 

 
or 
 

1

( )
K t

K

k

G t G e G
−



=

= +                                                                                                            (9) 
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E  and G  are the long-term (static) moduli which we will not retain in the following because 
KE E →  

as 
K → . Note that generally 1 2 K     . 

 
Prony series are used to model viscoelastic relaxation because they provide the only method of updating 

the integral of the stress rate/stress history. Note that the strain rate ij  is constant over each time  

increment, thus, a typical Prony series term integrates as 
 

( )
2 2 2

1 1 2
1 1 1

1
2

0 0

t t t
t t t

k k k k
t

t E e d E e d E e d

  

        

− − −
− − −

= = +                                                     (10a) 

 
and 
 

( )
2 1

1
1 1 1

2 1
0

1

t t t t
t

k k kt E e e d E e
t



  
   

− − 
− − − 

= + − 
   

                                                                (10b) 

 
Where 
 

2 1t t t = −                                                                                                                           (10c) 

 
Thus 
 

( )
1

1
1 1 1

2
0

1

tt t
t

k k kt e E e d E e



     

− 
− − − 

= +  − 
 
 

                                                                      (10d) 

 
or 

( ) ( )1

2 1

t

k kt e t  


−

= +                                                                                                      (10e) 

 
where 
 

11 1

t

t

k kE e
t


 


−  

 =  −     

                                                                                              (10f) 

 
Introducing the TRS shift function, define 
 

( ) ( )2 1t t   = −                                                                                                              (11a) 

 

( ) ( )( ) ( ) ( )( )
2 2

1
2 1

0

t t

t
t T d t T d       = = +                                                                      (11b) 

 
And let 
 

( ) ( )1 2

2

T t T t
 

+ 
=  

 
                                                                                                      (11c) 

 
Then 
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( ) ( ) ( )2 1 1t t t t    = +  = +                                                                                        (11d) 

 
Define 
 

1

1

t





=                                                                                                                          (11e) 

 
Then 
 

( ) ( ) ( )1 1

2 1 1k k kt e t e t



     


−

−
= +  = +                                                                    (12a) 

 
where 
 

1

1

(1 )
k k

e
E



 


−
−

 =                                                                                                     (12b) 

 

Viscoelasticity with Prony-Series Relaxation Modulus ( )E t  

 
From Equation (6), 
 

( ) ( )( )
( )

( ) ( )( )
( )( )0

( )
1 1 1 2

t ij kk
ij ij

E t E t
t d

       
  

    

 − − 
= + 

+  + −   
                                       (13a) 

where 

 

1

( )
K t

K

k

E t E e E
−



=

= +                                                                                                      (13b) 

 
Using equations (12a) and (12b)  
 

( ) ( )1

1

k

K
k

ij n ij n ij

k

t e t
  −

+

=

 = +                                                                                    (13c) 

 
and 
 

( )( )(1 ) 1 1 2

k k k
ij ij ll ij

E E
   

  
 =  + 

+ + −
                                                                     (13d) 

 
Thus at every time step we must update the kth stress state-variable as 

( ) ( )
( ) ( )

( )
1

1

1 1 2

k

k
ij n ij n ij ll ij

k

eE
t e t



 
    

  

−

−

+

− 
= +  +  

+ − 
                                  (13e) 

 

Viscoelasticity with Prony Series Relaxation Modulus ( )G t  

 
From Equation (7), 



 
User’s Manual Materials 
 
 

 
 Autodesk Explicit 82 
 

( ) ( )( )
0

( ) 2
t ij kk

ij ijt G t K d
 

     
 

 
= − + 

  
                                                          (14a) 

 
Where 
 

1

( )
K t

K

k

G t G e G
−



=

= +                          (14b) 

 
Using Equations (12a) and (12b) 
 

 1

1

( )
K

ij n

k

t +

=

= ( ) ( )1

1

k

K
k k

ij n ij n ij ll ij

k

t e t K



    



+

=

 
= +  + 

  
                                           (14b) 

 
where 
 

2k

ij k ijG  =                                                                                                               (14c) 

 

8.610 Rigid Materials 

 Autodesk Explicit contains a very powerful technique for creating rigid bodies in the model.  You simply 
add a MATR1 option to the Nastran model that references the property ID of a part that you wish to be 
rigid.  All elements in the element block that was created from that property ID will be bound together as 
a single rigid body for the analysis.  All material properties for the elements will simply be ignored except 
for the density value.  You can just leave them in the model.  
 
When  an element block is made rigid, it no longer performs any element calculations (e.g. no material 
stresses or strains are computed).  Moreover, the elements of the rigid body do not contribute to the 
Courant stability limit considerations of the analysis.  This can vastly increase the performance of some 
modes and reduce the total computer time for the analysis.  Consider the case where you want to crush 
or form some relatively soft material between two steel dies.  The shape of the dies can be create using 
CQUAD4 elements to form a shell or membrane element block.  There could be a large number of 
elements required to capture complex geometric details.  Furthermore, the wave speed in the steel may 
be many orders of magnitude higher than that of the soft material you are crushing.  If the dies are not 
rigid they could very well be the critical elements that control the stability limit of the model.  By making 
them rigid, you only perform calculations in the crushed material and you obtain your stability limit from 
the softer material as well. 
 
 Autodesk Explicit will compute the center of mass and the mass properties of the rigid body 
automatically for you and compute the rigid body motions of the element block due to any forces acting 
upon it.  You can still assign point loads and pressures to the body.  Furthermore, the element block can 
participate in contact just as if it was deformable. 
 
There are two special boundary conditions, SPCR and SPCRD, that have been added to  Autodesk 
Explicit so that you can apply boundary conditions to the center of mass of the body.   Autodesk Explicit 
creates an internal node for the center of mass of the rigid body with 6 degrees of freedom – 3 
displacement degrees of freedom and 3 rotational degrees of freedom.  The SPCR and SPCRD options 
behave exactly like the SPC and SPCD option for regular grid points in the model.  The only difference is 
that instead of referencing a grid ID as on the SPC and SPCD options, you reference a property ID for 
the rigid body on the SPCR and SPCRD options. 
 



 
User’s Manual Materials 
 
 

 
 Autodesk Explicit 83 
 

 Autodesk Explicit is not a “rigid body dynamics application” and you should not try to make every part in 
your model rigid.  
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9. LOADS, BOUNDARY CONDITIONS AND INITIAL CONDITIONS 

9.1 Boundary Conditions 

 Autodesk Explicit contains options for defining boundary conditions on nodes in the mesh.  These 
boundary conditions are applied using the SPC, SPC1, SPCD and SPCR options. 
 
The SPC and  SPC1 options allow you to prescribe zero value (fixed) boundary conditions that do not 
vary with time. 
 
The SPCD and SPCR options allow you to prescribe boundary conditions that vary with time using the 
TABLED1 and TABLED2 options. 
 
If the grid point specified in one of the boundary condition options was defined in a local coordinate 
system, the SPC option is applied in that coordinate system as well.  
 

9.2 Loads 

 Autodesk Explicit contains options for defining mechanical loads on the mesh.  These are the FORCE, 
FORCE1, GRAV, MOMENT, MOMENT1, PLOAD, PLOAD2, and PLOAD4 options in Nastran. 
 
If the grid point specified in one of the FORCE, FORCE1, MOMENT, or MOMENT1 options was defined 
in a local coordinate system, the SPC option is applied in that coordinate system as well.  
 

9.3 Initial Conditions 

 Autodesk Explicit defines initial conditions using the conventional Nastran TIC option. 
 
In addition, the INITDIS, INITVEL, and ROTVEL options have been introduced so that you can define 
initial conditions on a node set or on a part of the model.  The INITVEL option is useful to move a part up 
to another part before beginning an impact analysis so as to avoid performing senseless explicit 
dynamics integration of rigid body motion to close the gap between the two bodies.  The INITVEL and 
ROTVEL options allow you to specify initial velocities of a part in a single concise option as opposed to 
the TIC option which requires a command for every grid point with the initial condition.  For models with 
hundreds of thousands of grid points this can significantly reduce the input file size 
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10. CONTACT 

10.1 Mechanical Contact 

 Autodesk Explicit provides fully automatic capabilities for defining mechanical contact conditions 
between all the external surfaces of the model.  This includes the ability for surfaces to fold upon 
themselves (self-contact).  
 
We provide options to set parameters for the contact specification (e.g. specify friction coefficients).  
Surfaces can be specified as “tied” together.   Autodesk Explicit will glue the surfaces together if the 
surfaces are “close enough” to be considered to be touching.  The concept of close enough can be 
controlled through the MAXAD parameter on the BSCONP option. 
 
 Autodesk Explicit provides both a pure primary/secondary contact algorithm and a symmetric balanced 
primary/secondary contact.  Parameters on the BSCONP option control these relationships.  As a 
general rule, you should make the contact pair relationship a pure primary/secondary in the following 
situations: 
 

1. One surface has a much finer mesh than the other.  In this case, make the fine mesh the 
secondary. 

2. One surface belongs to an element block that has a very stiff behavior compared to the other. 
,For example:  

• A solid body in contact with a shell body where both have approximately the same 
material behavior.  Make the shell the secondary. 

• A shell body in contact with a soft solid body (e.g. steel shell vs. foam solid).  Make the 
solid the secondary. 

• A solid body that is very stiff in contact with a soft solid body (e.g. steel solid in contact 
with foam solid).  Make the foam the secondary. 

 
 Autodesk Explicit uses a naming convention for the surfaces so that it is apparent how the surfaces 
were created.  When  Autodesk Explicit prints out summary output about the contact conditions, these 
naming conventions are apparent.  All surfaces that are defined using the automatic global surface 
creation option will represent the skin of the different element blocks.  Those surfaces will have a name 
that has the prefix “eb:” plus the element block name.  For example, for the element block in the mesh 
created from part ID 4 named “EB4”, the surface created from the skin of the element block will have the 
name “eb:EB4”.  Surfaces that are created from BSSEG definitions that contain only the raw nodal 
connectivity in Nastran will have a prefix of “f:” plus the BSSEG property ID.  For example, if a surface is 
created from the BSSEG with property ID 88, the surface name will be “fs:BSSEG-88”.  
 

10.2 Automatic Surface Creation 

 Autodesk Explicit contains options for creating surfaces on the parts of the mesh defined by property IDs 
using the CONTACTGENERATE or BSCREATE options.  These options allow you to specify that you 
want to automatically create surfaces by skinning the free surface of the parts of the model.  The 
CONTACTGENERATE option will skin all the parts of the model and create contact pairs between all 
possible surfaces (including surface in contact with themselves).  If no BSCONP option is used, friction is 
assumed to be zero between all parts and appropriate default balance factors are chosen based on the 
element types.  All contact is assumed to be general (not welded) contact.  
 
There is a field on the CONTACTGENERATE command to specify that self-contact is not required and 
therefore not to be generated. 
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The BSDELETE option can be used to remove any surface pairs that were created by the 
CONTACTGENERATE option but are not necessary to the analysis.  So, if a model contains two parts 
with PIDs of 88 and 99 and you know they will never contact one another but they will be created by the 
CONTACTGENERATE option, you can simply use the command: 
 

BSDELETE,88,99 
 
to remove that surface pair. 
 
The BSCREATE option can be used to skin individual parts of the model.  Generally this is used when 
the CONTACTGENERATE option would create more contact surface pairs than necessary.  For 
example: 
 

BSCREATE,99 
 

will find all the elements in the mesh that are assigned property ID 99 and generate a surface with the ID 
99 from all the free faces of that part.  Care should be taken if you mix CONTACTGENERATE and 
BSCREATE because this can in fact generate multiple surfaces on the same part. 
 
The surface IDs created using the CONTACTGENERATE or BSCREATE options will be the same as the 
part ID that was skinned. 
 
The BSCONP option can be used to change friction parameters, balance parameters and the contact 
model (general surface-to-surface no tension contact or welded contact) for any surface pairs.  The 
surface IDs are all defined in a single ID space.  This means that whether you create surfaces using the 
CONTACTGENERATE, BSCREATE, or BSSEG options care should be taken to avoid conflicts in the 
surface IDs. 
 

10.3 Two-Sided Surfaces and Surface Orientation 

Surfaces that are created on elements that have two sides (shell and membrane elements) will 
automatically behave as two-sided surfaces in  Autodesk Explicit.  This means they will inherit the 
thickness of the parent element and other surfaces can contact either of the two sides of the surface.  
These surfaces can also fold onto themselves in self contact on both sides of the surface.  These 
surfaces are “oriented” in that the 1st side of the surface all has a positive normal that corresponds to the 
positive element outward normal defined by the usual clock-wise node numbering on the parent element.  
The 2nd side of the surface is in the negative normal direction. 
 
Significant computational savings can be achieved if you know that a surface does not have to be two-
sided.  That is, you know that it can only be contacted from one side.  The BSORIENT option allows you 
to orient a surface to use only one side of the surface.  The option allows you to specify whether you 
want the positive or negative side of the surface to be retained.  It also allows you to specify the 
coordinates of a point in space to orient the surface.  This is particularly useful if you have a cylindrical or 
spherical surface and you would like the surface to be oriented to the inside.  In this case, you simply 
give the coordinates of the center of the cylinder or sphere.  If you want the surface to be the outside of 
the cylinder or sphere then give the coordinates of the center and also specify the “reverse” option. 
 
You can specify the thickness of the surface independent of the parent element thickness using the 
BSTHICK option.  Therefore, if you wan the surface to be off-set from the element definition by more 
than the shell element thickness, you can increase (or decrease its thickness).  Note that the offset is half 
the thickness specified for shell elements.  You can specify a thickness of zero.  However, a zero 
thickness means the surface is no longer two-sided and only the positive side will be used.  If you want to 
use zero thickness with the negative side, you can combine the BSTHICK an BSORIENT options.  
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10.4 Element Deletion and Contact 

 Autodesk Explicit contains options for deleting elements from the mesh using deletion criteria defined 
with the DELETION parameter.  The contact logic in  Autodesk Explicit has the ability to automatically 
rebuild the surfaces of the model as elements are delete/eroded from the contact surface.  This allows 
you to model the penetration of one part into another. 
 
This option only applies if the contact surfaces were built using the BSSEG parameter described above.  
These surfaces “know” which elements they came from and are able to automatically rebuild themselves 
when elements are deleted.  If the surface is defined using a BSSEG option in the conventional Nastran 
fashion, this option will not be available for that surface. 
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11. COORDINATE SYSTEMS 

 Autodesk Explicit provides options for defining transformed coordinate systems.  These local systems 
are particularly useful for defining boundary conditions and loads.  Each type of coordinate system 

available in  Autodesk Explicit provides the transformation matrix ijR  that transforms a global vector into 

the local system according to: 
 

ˆ
i ij jx R x=  

 

11.1 Cartesian 

A Cartesian local coordinate system defines a transformation that is constant (i.e. the transformation 

matrix R  is identical for all points in space.  To define a local Cartesian system, it is necessary to define 
two points in space as shown in Figure 11-1.  The first point, A, defines a point on the local x-axis, where 
the local x-axis points from the origin of the global system (0,0,0) to point A.  The second point B, defines 
a point on the local y-axis, where the local y-axis points from the origin of the global system to point B.  
Neither point A nor point B may coincide with the global origin.  Also, point A and point B must not be 
coincident.  It is not necessary for the vectors defined by points A and B to be unit vectors.  The 
Cartesian coordinate system is defined using the COORD1R or COORD2R options. 
 
 Autodesk Explicit provides fully automatic capabilities for defining mechanical contact conditions 
between all the external surfaces of the model.  This includes the ability for surfaces to fold upon 
themselves (self-contact).  
 

 

Figure 11-1.  Construction of a Local Cartesian Coordinate System. 
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11.2 Cylindrical 

A Cylindrical local coordinate system defines a local system that varies at every point in space.  To 
define a local cylindrical system, it is necessary to define two points in space as shown in Figure 11-2.  
The first point A defines a point on the axis of the cylindrical system.  The second point B defines another 
point on the axis of the local cylindrical system.  The vector that passes from point A through point B 

defines the axis of the cylinder and therefore the orientation of the local Ẑ  axis.  Point A and point B 
must not be coincident.  It is not necessary for the vector defined by points A and B to be a unit vector.   
Autodesk Explicit will normalize them internally.  The Cylindrical coordinate system is defined using the 
COORD1C or COORD2C options. 
 

 

Figure 11-2.  Construction of a Local Cylindrical Coordinate System. 
 

11.3 Spherical 

A Spherical local coordinate system defines a local system that varies at every point in space.  To define 
a local spherical system, it is necessary to define two points in space as shown in Error! Reference 
source not found..  The first point A defines the center of the spherical system.  The second point B 
defines a point on the polar axis of the local spherical system.  The vector that passes from point A 
through point B defines the polar axis of the sphere.  Point A and point B must not be coincident.  It is not 
necessary for the vector defined by points A and B to be a unit vector.   Autodesk Explicit will normalize 
them internally.  The Cylindrical coordinate system is defined using the COORD1S or COORD2S 
options. 
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Figure 11-3.  Construction of a Local Spherical Coordinate System. 
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12. CREATION AND DELETION 

 Autodesk Explicit provides options for deleting elements from the mesh based upon criteria defined 
using the DELETION option.  This is an advanced option and should be used with care.  A proper mesh 
refinement study should be performed to ensure that the solution is converged. 
 
This option interacts with the contact logic to automatically rebuild the contact surfaces if elements are 
deleted from the surfaces.  The automatic rebuild option only applies to surfaces that were created with 
the CONTACTGENERATE option or the BSSEG parameter. 
 
The deletion parameter takes the form: 
 

DELETION, <criteria name>,<value> 
 

Element by element deletion criteria available, as shown in Table 12-1. 
 
Table 12-1.  Criteria Name and Description. 

Criteria Name Value Description 

NEGVOLUME None Delete if an element becomes so distorted that it has 
negative volume. 

EFFSTRAIN Real > 0 
Required Value of equivalent von Mises strain, ijij

3

2
= , at 

which the element is deleted. 

EQPS Real > 0 
Required 

Value of equivalent plastic strain, at which the element 
is deleted. 

PRINSTRAIN Real > 0 
Required 

Value of maximum principal strain (most tensile), at 
which the element is deleted. 

PPFA None Deleted when ply failure indeces exceed a value of 1 
for all the plies. 

BRITTLE None Deleted when fully cracked in all directions. 
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