Autodesk Inventor Nastran Solver 2021

User's Manual

© 2020 Autodesk, Inc. All rights reserved.

Autodesk[®] Inventor[®] Nastran[®] 2021

Except as otherwise permitted by Autodesk, Inc., this publication, or parts thereof, may not be reproduced in any form, by any method, for any purpose.

Certain materials included in this publication are reprinted with the permission of the copyright holder.

Trademarks

The following are registered trademarks or trademarks of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and other countries: 123D, 3ds Max, Alias, ATC, AutoCAD LT, AutoCAD, Autodesk, the Autodesk logo, Autodesk 123D, Autodesk Homestyler, Autodesk Inventor, Autodesk MapGuide, Autodesk Streamline, AutoLISP, AutoSketch, AutoSnap, AutoTrack, Backburner, Backdraft, Beast, BIM 360, Burn, Buzzsaw, CADmep, CAiCE, CAMduct, Civil 3D, Combustion, Communication Specification, Configurator 360, Constructware, Content Explorer, Creative Bridge, Dancing Baby (image), DesignCenter, DesignKids, DesignStudio, Discreet, DWF, DWG, DWG (design/logo), DWG Extreme, DWG TrueConvert, DWG TrueView, DWGX, DXF, Ecotect, Ember, ESTmep, Evolver, FABmep, Face Robot, FBX, Fempro, Fire, Flame, Flare, Flint, ForceEffect, Formlt, Freewheel, Fusion 360, Glue, Green Building Studio, Heidi, Homestyler, HumanIK, i-drop, ImageModeler, Incinerator, InfraWorks, InfraWorks 360, Instructables, Instructables (stylized robot design/logo), Inventor, Inventor HSM, Inventor LT, Lustre, Maya, Maya LT, MIMI, Mockup 360, Moldflow Plastics Advisers, Moldflow Plastics Insight, Moldflow, Moondust, MotionBuilder, Movimento, MPA (design/logo), MPA, MPI (design/logo), MPX (design/logo), MPX, Mudbox, Navisworks, ObjectARX, ObjectDBX, Opticore, Pixlr, Pixlr-o-matic, Showcase 360, SketchBook, Smoke, Socialcam, Softimage, Sparks, SteeringWheels, Stitcher, Stone, StormNET, TinkerBox, ToolClip, Topobase, Toxik, TrustedDWG, T-Splines, ViewCube, Visual LISP, Visual, VRED, Wire, Wiretap, WiretapCentral, XSI.

NASTRAN® is a registered trademark of the National Aeronautics Space Administration. All other brand names, product names or trademarks belong to their respective holders.

Disclaimer

THIS PUBLICATION AND THE INFORMATION CONTAINED HEREIN IS MADE AVAILABLE BY AUTODESK, INC. "AS IS." AUTODESK, INC. DISCLAIMS ALL WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE REGARDING THESE MATERIALS.

TABLE OF CONTENTS

1. INTRODUCTION	13
1.1 About This Manual	13
1.2 The Finite Element Method	13
1.3 Other NASTRAN References	13
1.4 Obtaining Technical Support	13
2. AUTODESK INVENTOR NASTRAN FILE SYSTEM	15
2.1 Model Input	15
2.1.1 Model Initialization File	
2.1.2 Model Input File	
2.2 Model Output	40
2.2.1 Model Results Output File	
2.2.3 System Log File	
2.2.4 Model Status File	61
2.2.5 Results Neutral Files	
2.2.5.1 Grid Point Displacement Vector Neutral File	
2.2.5.2 Ghu Foint Foice Vector Neutral File	
2.2.5.4 Grid Point Results Neutral File	
3. LINEAR BUCKLING ANALYSIS	75
3.1 Introduction	75
3.2 How to Setup a Model Input File for Linear Buckling Analysis	75
3.3 Interpreting Results	
3.4 Assumptions and Limitations of Linear Buckling	85
4. NORMAL MODES ANALYSIS	87
4.1 Introduction	87
4.2 How to Setup a Model Input File for Normal Modes Analysis	87
4.3 Interpreting Results	88
4.4 Rigid-Body Modes	
4.5 Direct Matrix Export and Import	99
4.6 Model Reduction Using ASET	105
4.7 Model Reduction Using Component Mode Synthesis (Craig-Bampton Reduction)	109
4.8 Model Reduction Using Superelements	116
4.9 Modal Database Storage and Retrieval	124
4.10 Modal Correlation	125
5. LINEAR TRANSIENT RESPONSE ANALYSIS	133
5.1 Introduction	133
5.1.1 Direct Transient Response Analysis	
5.1.2 Modal Transient Response Analysis	
5.2 How to Setup a Model Input File for Transient Response Analysis	
5.2.2 Modal Transient Response	
5.2.3 Transient Load Definition	
5.2.4 Integration Time Step	139

5.2.5 Dynamic Data Recovery	140
5.3 Interpreting Results	141
5.4 Enforced Motion	154
6. SHOCK AND RESPONSE SPECTRUM ANALYSIS	159
6.1 Introduction	159
6.2 Generating Response Spectra Data	159
6.3 How to Setup a Model Input File for Response Spectrum Analysis –Spectrum Generat	ion 161
6.3.1 Response Spectrum Definition	
6.3.2 Response Spectrum Output	
6.4 Interpreting Results	
6.5 Application of Response Spectra Data	109 n 171
6.6 1 Response Spectrum Application	n 171 171
6.6.2 Response Spectrum Input	172
6.7 Interpreting Results	173
6.8 Dynamic Design Analysis Method (DDAM)	180
6.9 Interpreting Results	181
7. FREQUENCY RESPONSE ANALYSIS	187
7.1 Introduction	187
7.1.1 Direct Frequency Response Analysis	
7.1.2 Modal Frequency Response Analysis	
7.2 How to Setup a model input File for Frequency Response Analysis	
7.2.2 Modal Frequency Response	
7.2.3 Frequency-Dependent Load Definition	191
7.2.4 Solution Frequencies	
7.2.5 Dynamic Data Recovery	
7.5 Interpreting Results	
	201
8.1 Introduction	
8.2 How to Setup a Model Input File for Random Response Analysis	
8.3 Interpreting Results	
9 COMPLEX FIGENVALUE ANALYSIS	210
9.1 Introduction	219
9.2 How to Setup a Model Input File for Complex Eigenvalue Analysis	
9.3 Interpreting Results	
10. LINEAR PRESTRESS STATIC ANALYSIS	
10.1 Introduction	
10.2 How to Setup a Model Input File for Linear Prestress Static Analysis	227
10.3 Interpreting Results	228
11. LINEAR PRESTRESS MODAL ANALYSIS	233
11.1 Introduction	
11.2 How to Setup a Model Input File for Linear Prestress Modal Analysis	
11.3 Interpreting Results	234
12. LINEAR PRESTRESS TRANSIENT RESPONSE ANALYSIS	241

	12.1 Introduction	241
	12.2 How to Setup a Model Input File for Linear Prestress Transient Response Analysis	241
13.	LINEAR PRESTRESS FREQUENCY RESPONSE ANALYSIS	243
	13.1 Introduction	243
	13.2 How to Setup a Model Input File for Linear Prestress Frequency Response Analysis	243
14.	LINEAR PRESTRESS COMPLEX EIGENVALUE ANALYSIS	245
	14.1 Introduction	245
	14.2 How to Setup a Model Input File for Linear Prestress Complex Eigenvalue Analysis	245
15.	NONLINEAR STATIC ANALYSIS	247
-	15.1 Introduction	247
	15.2 How to Setup a Model Input File for Nonlinear Static Analysis	248
	15.3 Interpreting Results	250
	15.3.1 Large Rotations	250
	15.3.2 Large Displacements	255
	15.3.3 Nonlinear-Elastic Material	261
	15.3.4 Thermal-Elastic Material	267
	15.3.5 Elastic-Plastic Material	278
	15.3.0 Combined Large Displacement and Nonlinear-Elastic Material	200 201
	15.3.8 Gap Contact with Friction	298
	15.3.9 Slide Line Contact	304
	15.3.10 Tension Only Cable	311
	15.3.11 Creep and Viscoelastic Material	320
	15.3.12 Arc-length Methods	326
16.	NONLINEAR TRANSIENT RESPONSE ANALYSIS	333
	16.1 Introduction	333
	16.2 How to Setup a Model Input File for Nonlinear Transient Response Analysis	334
	16.3 Interpreting Results	336
	16.3.1 Impact Analysis	336
	16.3.2 Elastic-Plastic Material with Rupture	343
17.	NONLINEAR STEADY STATE HEAT TRANSFER ANALYSIS	347
	17.1 Introduction	347
	17.2 How to Setup a Model Input File for Nonlinear Heat Transfer Analysis	349
	17.3 How to Setup a Model Input File for Linear Steady State Heat Transfer Analysis	350
	17.4 Interpreting Results	351
	17.4.1 Nonlinear Conduction	351
	17.4.2 Volume Heat Addition	365
	17.4.3 Nonlinear Convection	370
	17.4.4 Nonlinear Radiation	370
40		395
18.		397
	18.1 Introduction	397
	18.2 How to Setup a Model Input File for Nonlinear Transient Heat Transfer Analysis	398
	18.3 Interpreting Results	399
	18.3.1 Volume Heat Addition	399
40		404
19.		413
	19.1 Introduction	413

19.2 How to Setup a Model Input File for Nonlinear Prestress Modal Analysis	413
19.3 Interpreting Results	. 414
20. NONLINEAR PRESTRESS TRANSIENT RESPONSE ANALYSIS	417
20.1 Introduction	. 417
20.2 How to Setup a Model Input File for Nonlinear Prestress Transient Response Analysis	. 417
21. NONLINEAR PRESTRESS FREQUENCY RESPONSE ANALYSIS	419
21.1 Introduction	. 419
21.2 How to Setup a Model Input File for Nonlinear Prestress Frequency Response Analysis	. 419
22. NONLINEAR PRESTRESS COMPLEX EIGENVALUE ANALYSIS	421
22.1 Introduction	. 421
22.2 How to Setup a Model Input File for Nonlinear Prestress Complex Eigenvalue Analysis	. 421
23. NONLINEAR BUCKLING ANALYSIS	423
23.1 Introduction	423
23.2 How to Setup a Model Input File for Nonlinear Buckling Analysis	. 423
24. SPECIAL TOPICS	425
24.1 Stress Coordinate Systems	425
24.2 Quad Element Formulation Options	428
24.3 Hex Element Formulation Options	429
24.4 2-Dimensional Composite Analysis	430
24.5 3-Dimensional Composite Analysis	445
24.6 Using Rigid and Interpolation Elements	. 452
24.7 Sparse Solver Operation	. 459
24.8 Optimal Parameter Settings	462
APPENDIX A - OUTPUT FORMATS	1
Listing A-1. List of Figures for Output Formats	1
Figure A-1. Database Subcase Constraint and Load Set Definition	6
Figure A-2. Database Rectangular Coordinate System Definition	7
Figure A-3. Database Cylindrical Coordinate System Definition	8
Figure A-4. Database Spherical Coordinate System Definition.	9
Figure A-5. Database Grid Point Definition	10
Figure A-6. Database Concentrated Mass Element Definition	11
Figure A-7. Database Gap Element Definition	12
Figure A-8. Database Spring Element Definition.	13
Figure A-9. Database Rod Element Definition	14
Figure A-10. Database Bar Element Definition	15
Figure A-11. Database Beam Element Definition	16
Figure A-12. Database Quad Element Definition.	17
Figure A-13. Database Tri Element Definition	. 18
Figure A-14. Database Shear Element Definition	19
Figure A-15. Database Hex Element Definition	
Figure A-16 Database Pent Element Definition	0
Figure A-17 Database Tet Element Definition	·· 22
Figure A-18. Database Can Flament Property Definition	<u>22</u> 22
וואטוב א-וט. שמנמאמשב שמף בוכוווכווג דוטףפונץ שפוווווגוטוו.	23

Figure A-19.	Database Spring Element Property Definition	24
Figure A-20.	Database Rod Element Property Definition.	25
Figure A-21.	Database Bar Element Property Definition.	26
Figure A-22.	Database Beam Element Property Definition.	27
Figure A-23.	Database Composite Shell Element Property Definition.	28
Figure A-24.	Database Shell Element Property Definition	29
Figure A-25.	Database Shear Element Property Definition.	30
Figure A-26.	Database Solid Element Material Property Definition.	31
Figure A-27.	Database Isotropic Material Definition.	32
Figure A-28.	Database Anisotropic Shell Element Material Definition.	33
Figure A-29.	Database Isotropic Material Definition (Heat Transfer Analysis).	34
Figure A-30.	Database Anisotropic Element Material Definition (Heat Transfer Analysis)	35
Figure A-31.	Database Orthotropic Material Definition.	36
Figure A-32.	Database Anisotropic Solid Element Material Definition	37
Figure A-33.	Database Nonlinear Material Definition	38
Figure A-34.	Database Isotropic Material Table Definition	39
Figure A-35.	Database Anisotropic Shell Element Material Table Definition	40
Figure A-36.	Database Isotropic Material Table Definition (Heat Transfer Analysis).	41
Figure A-37.	Database Orthotropic Material Table Definition (Heat Transfer Analysis)	42
Figure A-38.	Database Orthotropic Shell Element Material Table Definition.	43
Figure A-39.	Database Anisotropic Solid Element Material Table Definition	44
Figure A-40.	Database Material Property Table Definition.	45
Figure A-41.	Database Dynamic Load Table Definition	46
Figure A-42.	Database Modal Damping Table Definition	47
Figure A-43.	Database Single Point Constraint Definition.	48
Figure A-44.	Database Single Point Constraint Addition Definition.	49
Figure A-45.	Database Multipoint Constraint Definition	50
Figure A-46.	Database Multipoint Constraint Addition Definition.	51
Figure A-47.	Database Grid Point Force Vector Definition	52
Figure A-48.	Database Grid Point Moment Vector Definition	53
Figure A-49.	Database Gravity Load Vector Definition	54
Figure A-50.	Database Centrifugal Load Vector Definition.	55
Figure A-51.	Database Grid Point Temperature Definition	56
Figure A-52.	Database Dynamic Load Scale Factor Definition.	57
Figure A-53.	Database Dynamic Load Time Delay Definition.	58
Figure A-54.	Database Dynamic Load Phase Lead Definition.	59
Figure A-55.	Database Transient Time Step Definition.	60
Figure A-56.	Database Frequency List Definition.	61
Figure A-57.	Database Frequency List Generation Definition.	62
Figure A-58.	Database Element Initial Deformation Definition.	63
Figure A-59.	Database Bar Element Pressure Definition	64
Figure A-60.	Database Shell Element Pressure Definition.	65

Figure A-61.	Database Solid Element Pressure Definition	. 66
Figure A-62.	Database Bar Element Thermal Definition	. 67
Figure A-63.	Database Shell Element Thermal Definition.	. 68
Figure A-64.	Database Static Load Addition Definition	. 69
Figure A-65.	Database Transient Response Dynamic Load Definition.	. 70
Figure A-66.	Database Frequency Response Dynamic Load Definition.	. 71
Figure A-67.	Database Power Spectral Density Definition.	. 72
Figure A-68.	Database Power Spectral Density Definition.	. 73
Figure A-69.	Database Static Load Sequence Definition	. 74
Figure A-70.	Database Grid Point Scalar Load Definition.	. 75
Figure A-71.	Database Line and Point Grid Point Boundary Heat Flux Definition	. 76
Figure A-72.	Database Surface Grid Point Boundary Heat Flux Definition.	. 77
Figure A-73.	Database Element Boundary Heat Flux Definition.	. 78
Figure A-74.	Database Element Volume Heat Addition Definition	. 79
Figure A-75.	Database Element Boundary Convection Definition	. 80
Figure A-76.	Database Subcase Vector Output Set Definition	. 81
Figure A-77.	Database Subcase Vector Output Set Definition (Heat Transfer Analysis).	. 82
Figure A-78.	Database Subcase Element Output Set Definition.	. 83
Figure A-79.	Database Subcase Element Output Set Definition (Heat Transfer Analysis).	. 84
Figure A-80.	Database Subcase Grid Output Set Definition.	. 85
Figure A-81.	Database Set Definition	. 86
Figure A-82.	Database Volume Definition.	. 87
Figure A-83.	Database Surface Definition.	. 88
Figure A-84.	Database Spring Element Stress Recovery Property Definition.	. 89
Figure A-85.	Database Rod Element Stress Recovery Property Definition.	. 90
Figure A-86.	Database Bar Element Axis Output Location Definition.	. 91
Figure A-87.	Database Bar Element Stress Recovery Property Definition.	. 92
Figure A-88.	Database Beam Element Stress Recovery Property Definition	. 93
Figure A-89.	Database Shell Element Stress Recovery Property Definition	. 94
Figure A-90.	Database Result Limits Definition.	. 95
Figure A-91.	Database Model Parameter Definition	. 96
Figure A-92.	Model Database Size.	. 97
Figure A-93.	Grid Point Resequencer Output.	. 98
Figure A-94.	Element Geometry Statistics.	. 99
Figure A-95.	Global Stiffness Matrix Assembly Statistics	100
Figure A-96.	Global Mass Matrix Assembly Statistics	101
Figure A-97.	Global Stiffness Matrix Factorization Statistics.	102
Figure A-98.	Eigenvalue Extraction Statistics	103
Figure A-99.	Real Eigenvalue Output	104
Figure A-100	. Modal Participation Factor Output.	105
Figure A-101	. Rigid-Body Eigenvalue Output.	106
Figure A-102	. Modal Effective Mass Output	107

Figure A-103.	Real Eigenvector Output	108
Figure A-104.	Grid Point Weight Output	109
Figure A-105.	Part Definition Output.	110
Figure A-106.	Part Mass Properties Output.	111
Figure A-107.	Part Element Geometry Summary.	112
Figure A-108.	Grid Point Singularity Table	113
Figure A-109.	Mass Matrix Singularity Table	114
Figure A-110.	Load Vector Output.	115
Figure A-111.	Load Vector Output (Heat Transfer Analysis)	116
Figure A-112.	Displacement Vector Output	117
Figure A-113.	Complex Displacement Vector Output	118
Figure A-114.	Displacement Vector Power Spectral Density Output.	119
Figure A-115.	Displacement Vector RMS Output	120
Figure A-116.	Displacement Vector Number of Positive Crossings Output.	121
Figure A-117.	Temperature Vector Output.	122
Figure A-118.	Single Point Constraint Force Vector Output.	123
Figure A-119.	Single Point Constraint Heat Flow Vector Output.	124
Figure A-120.	Multipoint Constraint Force Vector Output	125
Figure A-121.	Multipoint Constraint Heat Flow Vector Output	126
Figure A-122.	Load Vector Resultant	127
Figure A-123.	Single Point Constraint Force Vector Resultant	128
Figure A-124.	Maximum Applied Loads	129
Figure A-125.	Maximum Displacements	130
Figure A-126.	Maximum Single Point Constraint Forces.	131
Figure A-127.	Nonlinear Forces in Gap Elements	132
Figure A-128.	Forces in Spring Elements	133
Figure A-129.	Stresses in Spring Elements.	134
Figure A-130.	Forces in Rod Elements	135
Figure A-131.	Stresses in Rod Elements	136
Figure A-132.	Forces in Bar Elements	137
Figure A-133.	Stresses in Bar Elements	138
Figure A-134.	Thermal Gradients and Heat Fluxes in Bar Elements.	139
Figure A-135.	Forces in Shear Elements	140
Figure A-136.	Stresses in Shear Elements	141
Figure A-137.	Heat Flow Into Hbdy Elements	142
Figure A-138.	Forces in Quad Elements (Without Corner Option).	143
Figure A-139.	Forces in Quad Elements (With Corner Option).	144
Figure A-140.	Stresses in Quad Elements (With Corner Option)	145
Figure A-141.	Stresses in Quad Elements (Without Corner Option).	146
Figure A-142.	Strains in Quad Elements	147
Figure A-143.	Strain Energy in Quad Elements.	148
Figure A-144.	Thermal Gradients and Heat Fluxes in Quad Elements.	149

Figure A-145.	Surface Grid Point Stresses.	150
Figure A-146.	Surface Grid Point Thermal Gradients and Heat Fluxes.	151
Figure A-147.	Stresses in Composite Quad Elements.	152
Figure A-148.	Failure Indexes in Composite Quad Elements.	153
Figure A-149.	Strength Ratios in Composite Quad Elements	154
Figure A-150.	Stresses in Composite Hex Elements	155
Figure A-151.	Nonlinear Stresses in Quad Elements.	156
Figure A-152.	Stresses in Hex Elements (Without Corner Option)	157
Figure A-153.	Strains in Hex Elements (Without Corner Option)	158
Figure A-154.	Strain Energy in Hex Elements	159
Figure A-155.	Thermal Gradients and Heat Fluxes in Hex Elements	160
Figure A-156.	Volume Grid Point Stresses	161
Figure A-157.	Volume Grid Point Thermal Gradients and Heat Fluxes.	162
Figure A-158.	Nonlinear Stresses in Hex Elements	163
Figure A-159.	Complex Stresses in Hex Elements.	164
Figure A-160.	Element Result Limits (Subcase Search)	165
Figure A-161.	Element Result Limits (Global Search).	166
Figure A-162.	Grid Point Result Limits (Subcase Search).	167
Figure A-163.	Grid Point Result Limits (Global Search).	168
Figure A-164.	Execution Summary	169
APPENDIX B	LIMITS	1
APPENDIX C -	REFERENCES	1

LIST OF ACRONYMS

ACF	Auto Correlation Function
AIR	Automated Inertial Relief
AECG	Automated Edge Contact Generation
ASCG	Automated Surface Contact Generation
CMS	Component Modes Synthesis
DDAM	Dynamic Design Analysis Method
DOF	Degree of Freedom
MAC	Modal Assurance Criteria
MCT	Multicontinuum Theory
MXO	Mass Cross Orthogonality
NPX	Number of Positive Crossings
NRL	Naval Research Laboratories
PCG	Preconditioned Conjugate Gradient
PCGLSS	Preconditioned Conjugate Gradient Linear Sparse Solver
PPFA	Progressive Ply Failure Analysis
PSD	Power Spectral Density
PSI	Pounds per Square Inch
PSS	Parallel Sparse Solver
RAM	Random Access Memory
RMS	Root Mean Square
SDOF	Single Degree of Freedom
SRSS	Square Root of the Sum of the Square
VIS	Vector Iterative Solver
VSS	Vector Sparse Solver

LIST OF SYMBOLS AND ABBREVIATIONS

Α	Cross-sectional area
ABS	Absolute value
В	Global damping vector
D	Global displacement vector
DOF	Degree of freedom
E	Young's modulus
Eτ	Tangent modulus
f	Cyclic frequency
G	Modulus of rigidity
g	Gravitational acceleration
Н	Plastic modulus
Н	Free convection heat transfer coefficient
Hz	Hertz
Ι	Moment of inertia
ID	Identification number
J	Torsional constant
K	Global stiffness matrix
k	Stiffness
Μ	Global mass matrix
т	Mass
Ρ	Applied load vector
p	Applied load
ρ	Material density
Т	Global temperature vector
υ	Poisson's ratio
ω	Circular frequency

1. INTRODUCTION

1.1 About This Manual

This manual is intended as a companion to the *Nastran Solver Reference Guide*. It is intended as a guide for users who have experience with NASTRAN. Autodesk Inventor Nastran is different from other versions of NASTRAN. This manual explains these differences and demonstrates program operation through the use of example problems. This manual is not intended to teach you how to build finite element models. For a list of texts on finite element modeling see Section 1.3 *Other NASTRAN References*.

1.2 The Finite Element Method

Autodesk Inventor Nastran uses the finite element method of structural analysis. In this method, the actual structure is subdivided into a finite number of small regions called elements to generate a mathematical model. Within an element displacements and stresses are approximated using polynomial shape functions. An element is connected to adjacent elements at a finite number of points called grid points. Interaction among elements is solely through the forces they exert at the grid points. Element material properties and geometry are used to generate the stiffness of the entire structure, discretized at the grid points. Known loads acting on the structure are represented as forces, also at the grid points. The solution involves using these known loads and stiffnesses to solve for unknown displacements. These are then used to generate element results such as force per unit length, stress, strain, etc.

1.3 Other NASTRAN References

- Adams, Vince and Abraham Askenazi, *Building Better Products with Finite Element Analysis*. Santa Fe, NM: OnWord Press, 1999.
- Cifuentes, Arturo O., Using MSC/NASTRAN: Statics and Dynamics. New York, NY: Springer-Verlag, Inc., 1989.
- MacNeal, Richard H., Finite Elements: *Their Design and Performance*. New York, NY: Marcel Dekker, Inc., 1994.
- Schaeffer, Harry G., *MSC/NASTRAN Primer: Static and Normal Modes Analysis*. Milford, NH: Wallace Press, Inc., 1984.

1.4 Obtaining Technical Support

If you need help or feel you have discovered a problem in the software, go to https://accounts.autodesk.com. Based on your subscription terms, you can get some online help or you can place a web-request.

Please provide the following information to help us locate the problem and solve it faster:

- a) A detailed description of the problem (error messages, problem size, directive, command, and entry types used).
- b) Total free physical and virtual memory and free disk space at program execution.
- c) If applicable, include a copy of your Model Initialization (*Nastran.INI*), Model Input (*filename.NAS*), Model Results Output (*filename.OUT*), and System Log (*filename.LOG*) files.
- d) Any other information you think might be useful.

2. AUTODESK INVENTOR NASTRAN FILE SYSTEM

2.1 Model Input

Autodesk Inventor Nastran uses two files for input definition: the Model Initialization File and the Model Input File. The Model Initialization File configures Autodesk Inventor Nastran to run on your system. It allows you to specify where to get input files, where to put database and output files, how output files should be formatted, how much and what kind of memory to use and how to control program execution. The Model Input File describes your model by specifying the structure's geometry, material properties, boundary conditions, and loads. Some entities, such as model parameters, can be common to both files.

To illustrate the format of input and output files, we have chosen the simple cantilever beam problem shown in Figure 2-1.

Figure 2-1. Cantilever Beam Example Problem.

The structure is a 0.1 inch thick flat aluminum plate. One end is completely clamped and the other is free. The free end has a 60 pound point load, which results in deflections in the x and y directions. All files in this section pertain to this problem.

2.1.1 Model Initialization File

The Model Initialization File configures Autodesk Inventor Nastran to run on your system. The default Model Initialization File is *Nastran.INI*. It is divided into the following five sections:

Section	Purpose
[File Management]	File Management directives allow you to specify the names and locations of input, output, and database files.
[Output Control]	Output Control directives allow you to control what output files are generated and what they have in them.
[Memory Management]	Memory Management directives allow you to control what type of memory (virtual or real) and how much will be used for memory intensive tasks such as matrix assembly and decomposition. By optimizing memory usage you can optimize performance.
[Program Control]	Program Control directives allow you to customize program execution. Various options are available to change how the program performs certain operations.
[Parameters]	Parameter statements that are specified using the PARAMETER command or entry can be specified in this section using the directive format. See the <i>Nastran Solver Reference Guide</i> , Section 5, <i>Parameters</i> .

Each section has associated with it a group of related directives and each directive has a default setting. If the default is adequate, the directive need not be included in the file. For more information on directive format see the *Nastran Solver Reference Guide*, Section 2: *Initialization*.

A typical Model Initialization File is shown in Listing 2-1. Note that the Model Input filename and most Model Initialization directives can be specified on the Nastran command line (see *Nastran Solver Reference Guide*, Section 1: *NASTRAN Command Line*). Any file specification or directive specified on the Nastran command line will override the same specification or directive in the Model Initialization File.

Listing 2-1. Example Model Initialization File.

[FILE MANAGEMENT	DIRECTIVES]
DATABASE	= c:\TEST.NDB
FILESIGNATURE	= T4LT
FILEBUFFERSIZE	= 10
FILESPEC	= C:\Users\timmera\AppData\Local\Temp\NDBT4LT.TMP\
NFILEBUFFER	= 1
PURGE	= ON
RSLTFILEPURGE	= ON
[OUTPUT CONTROL]	DIRECTIVES]
BULKDATAOUT	= OFF
BULKDATASORT	= ON
DISKSTATUS	= ON
ELAPSEDTIME	= OFF
FEMAPRSLTVECTID	= ON
INCRRSLTOUT	= OFF
LEFTMARGIN	= 1
LINE	= /S
MEMORISTATUS	- 2
	- 5 - 0N
MODIDATAOUT	- ON
MODI.STATUS	
OUTCONTSYMBOL	= OFF
OUTDISPGEOMMODE	= 1
OUTDISPSETID	= 100
OUTGRIDOFFSET	= 100000
OUTLOADSETID	= 100
OUTPAGEFORMAT	= OFF
OUTSPCSETID	= 100
OUTSTRNSETID	= 100
OUTTEMPSETID	= 100
OUTZEROVECT	= OFF
PCHFILEDBLEPRCS	= OFF
PCHFILETYPE	= NASTRAN
RSLTFILECOMP	= AUTO
RSLTFILEDBLEPRCS	= OFF
RSLTFILETYPE	= FEMAP BINARY
SECONDS	
SISTEMSTATUS	
TRSLDISPDATA TRSLDISPDATA	
TRSLMAIDAIA	
TRSLPRESDATA	= OFF
TRSLERSEDATA	= OFF
TRSLSPCDATA	= OFF
TRSLSTRNDATA	= OFF
TRSLTEMPDATA	= OFF
XYPLOTCSVOUT	= OFF
[MEMORY MANAGEME]	NT DIRECTIVES]
MAXRAM	= 0
MINRAM	= 200
RAM	= 1200
RESERVEDRAM	= 0

Listing 2-1.	Example Model I	nitialization File.	(Continued)
--------------	------------------------	---------------------	-------------

[PROGRAM CONTROL	DIRECTIVES]
DECOMPAUTOSIZE	= 100000
DECOMPMETHOD	= PSS
DYNRSLTMETHOD	= AUTO
EXTRACTAUTOSIZE	= 20000
EXTRACTMETHOD	= AUTO
GPWEIGHTMETHOD	= AUTO
LICENSEMANAGER	= FLEXLM
RESTART	= ON
RSPECDISPMETHOD	= NODAL
RSPECVECTMETHOD	= ON
SHELLEGRID	= OFF
SOLIDEGRID	= OFF
WAITFORLICENSE	= 100

2.1.1.1 File Management Directives

The File Management Section contains directives that allow you to specify filenames, file locations, buffer sizes and file deletion. Input and output filenames are determined using file specifications. Input and output file specifications contain two parts, the filename and the path. Database file specifications contain only a path.

Using file specifications you can organize your files into folders or directories and split large models over several hard disks. The only file specification that is required is for the Model Input File. Default values for other file specifications are based on this specification. The following table describes each file specification.

Directive	Description
BULKDATAFILE	Bulk Data Output File specification.
DATABASE	Model Database File specification.
DATINFILE1	Data Input File specification 1.
DATINFILE2	Data Input File specification 2.
DISPFILE	Grid Point Displacement Vector Neutral File specification.
ELEMFILE	Element Results Neutral File specification.
FILEBUFFERSIZE	File buffer size 1 – 4.
FILEBUFFERSIZE1	File buffer size for Model Translator functions.
FILEBUFFERSIZE2	File buffer size for Geometry and Results Processor functions.
FILEBUFFERSIZE3	File buffer size for Solution Processor functions.
NFILEBUFFER	Number of file buffers 1 – 4.
NFILEBUFFER1	Number of file buffers for Model Translator functions.
NFILEBUFFER2	Number of file buffers for Geometry and Results Processor functions.
NFILEBUFFER3	Number of file buffers for Solution Processor functions.
FILESPEC	Model Database File specification 1 – 4.
FILESPEC1	Model Database File specification 1.
FILESPEC2	Model Database File specification 2.
FILESPEC3	Model Database File specification 3.
FILESPEC4	Model Database File specification 4.
FORCFILE	Grid Point Force Vector Neutral File specification.
GRIDFILE	Grid Point Results Neutral File specification.
LOADFILE	Element Internal Load Vector Neutral File specification.
LOGFILE	System Log File specification.
MODALDATFILE	Modal Database File specification.
MODLINFILE	NASTRAN Model Input File specification.
MODLOUTFILE	Model Results Output File specification.
OUTFILESPEC	Output file specification.
PURGE	Automatic output file and database deletion.
RSLTFILEPURGE	Automatic FEMAP Binary and Model Data Output File deletion.

2.1.1.2 Output Control Directives

Output control directives allow you to customize the format and contents of generated model output.

Directive	Description
BULKDATAOUT	Case Control and Bulk Data echo in Model Results Output File.
BULKDATASORT	Output Bulk Data sorting.
DISKSTATUS	Disk space status during critical phases of program execution.
ELAPSEDTIME	System Log File elapsed time output.
FEMAPRSLTVECTID	FEMAP result vector identification numbers in FEMAP results neutral file.
INCRRSLTOUT	Incremental results neutral file output during nonlinear analysis.
LEFTMARGIN	Model Results Output File left margin size in characters.
LINE	Model Results Output File lines per page.
MEMORYSTATUS	Memory status during critical phases of program execution.
MODLDATAOUT	Expanded model data output in Model Results Output File.
MODLINITOUT	Model Initialization File directives echo in Model Results Output File.
MODLSTATUS	Destination of program status information.
OUTDISPGEOMMODE	Specifies the subcase, mode number, or time step for translated deformed geometry.
OUTDISPSETID	Translated enforced displacement set identification number.
OUTGRIDOFFSET	Specifies the starting grid point id associated with generated PLOADG entries.
OUTLOADSETID	Translated force and moment set identification number.
OUTPAGEFORMAT	Model Results Output File page format.
OUTSPCSETID	Translated automatic single point constraint set identification number.
OUTSTRNSETID	Translated element strain set identification number.
OUTTEMPSETID	Translated grid point temperature set identification number.
OUTWIDEFIELD	Option for wide field output in Bulk Data Output File generation.
OUTZEROVECT	Output a zero global vector at a grid point.
PCHFILEDBLEPRCS	Double precision option for Nastran ASCII Result File (.PCH).
PCHFILETYPE	Punch file compatibility option.
RSLTFILECOMP	Results Neutral File compression option.
RSLTFILEMETHOD	Nastran Binary Results File generation method.
RSLTFILETYPE	Results neutral file type and format.
RSLTLABEL	Label location in the title block for the results neutral files.
SECONDS	Process time output in seconds.
SYSTEMSTATUS	System status at the start of program execution.
TRSLDDAMDATA	DDAM data translation option for Bulk Data Output File generation.
TRSLDFGMDATA	Deformed grid point translation option for Bulk Data Output File generation.
TRSLDISPDATA	Enforced displacement translation option for Bulk Data Output File generation.

2.1.1.2 Output Control Directives (Continued)

TRSLDMIDATA	Direct matrix input data translation option for Bulk Data Output File generation.
TRSLLOADDATA	Applied load translation option for Bulk Data Output File generation.
TRSLMODLDATA	Model data translation option for Bulk Data Output File generation.
TRSLPRESDATA	Applied pressure load translation option for Bulk Data Output File generation.
TRSLRBSEDATA	Automatic spring element translation option for Bulk Data Output File generation.
TRSLSPCDATA	$eq:automatic single point constraint translation option for Bulk \ Data \ Output \ File \ generation.$
TRSLSTRNDATA	Solid and shell element strain translation option for Bulk Data Output File generation.
TRSLTEMPDATA	Temperature data translation option for Bulk Data Output File generation.
TRSLTOQEDATA	Reverted tension-only element translation option for Bulk Data Output File generation.
XYPLOTCSVOUT	MS Excel Comma Separated Variable file (.CSV) generation option.

2.1.1.3 Memory Management Directives

Autodesk Inventor Nastran uses two types of built-in memory managers. For acquiring memory from Windows, Autodesk Inventor Nastran uses the Windows Virtual Memory Manager. To control how memory is used internally, Autodesk Inventor Nastran uses a Program Memory Manager. You have limited control of the Windows Virtual Memory Manager in that you can control the size of the paging file and thus the amount of virtual memory available (refer to virtual memory in Windows Help for more information). The Program Memory Manager allocates memory for stiffness matrix assembly, decomposition, and other memory intensive operations. The Autodesk Inventor Nastran Program Memory Manager gives you a few more options for controlling memory through the use of memory management directives.

Directive	Description
MAXRAM	Maximum amount of system memory.
MINRAM	Minimum amount of system memory for the VSS solver out-of-core mode.
RAM	Amount of available system memory.
RESERVEDRAM	Amount of reserved system memory.

2.1.1.4 Program Control Directives

Program Control directives allow you to customize program execution. The below directives deal mainly with the two most numerically demanding and time consuming portions of the program execution, namely stiffness matrix assembly and decomposition. In certain situations values other than default settings may provide increased performance.

Directive	Description
DECOMPMETHOD	Decomposition method used for static solution sequences.
DECOMPAUTOSIZE	Threshold model size for DECOMPMETHOD AUTO setting.
DYNRSLTMETHOD	Dynamic results calculation method.
EXTRACTMETHOD	Eigenvalue extraction method used for modal solution sequences.
EXTRACTAUTOSIZE	Threshold model size for EXTRACTMETHOD AUTO setting.
GPWEIGHTMETHOD	Mass properties calculation method.
HEXEGRID	Hex element automatic edge grid option.
KRIGIDELEM	Stiffness value assigned to spring elements generated from rigid elements.
LICENSECODE	License manager feature code string containing requested license types.
LICENSEMANAGER	License manager type.
MPCMODMETHOD	Multipoint constraint modification method.
NDISKS	Number of physical disk drives for parallel I/O operations.
NPROCESSORS	Number of processors for parallel processing operations.
OPTIMIZESETTINGS	Selects optimum settings for speed, accuracy, or a combination of both.
PCGLSSDMI	DMIG support option for the PCGLSS solver and LANCZOS eigensolver.
PENTEGRID	Pent element automatic edge grid option.
PYREGRID	Pyr element automatic edge grid option.
QUADEGRID	Quad element automatic edge grid option.
RIGIDELEM2ELAS	Rigid element to spring element conversion option.
RESTART	Database restart option when a database is specified for an input file name.
RSPECTDISPMETHOD	Method used in response spectrum analysis for calculating vector results.
RSPECTVECTMETHOD	Method used in response spectrum analysis for calculating element results.
SHELLEGRID	Shell element automatic edge grid option.
SOLIDEGRID	Solid element automatic edge grid option.
SOLUTION	Type of solution sequence.
TETEGRID	Tet element automatic edge grid option.
TRIEGRID	Tri element automatic edge grid option.
WAITFORLICENSE	Wait time for license acquisition from license manager.

2.1.1.5 Parameters

Model parameters are generally specified in the Model Input File. In some cases, however, it is more convenient to specify certain parameters in the Model Initialization File or on the Nastran command line. For example, in the Model Input File you would specify the K6ROT parameter as:

PARAM, K6ROT, 100.

In the Model Initialization File it would be:

K6ROT = 100.

And on the Nastran command line it would be:

NASTRAN test.nas K6ROT=100.

Parameters are discussed further in the Nastran Solver Reference Guide, Section 5, Parameters, and summarized below.

Parameter	Description
ACBINTERACTTOL	Tolerance for removing negligible off-diagonal interaction terms from the acoustic coefficient matrix.
ACBPRESSET	Specifies the remote acoustic grid point output set.
ACBREFPRES	Specifies the acoustic reference pressure used to convert sound pressure into decibels.
ACBVC	Defines the speed of sound in the fluid medium used in boundary acoustic analysis.
ADAPTTIMESTEP	Option for adaptive time stepping in linear direct transient response.
ADDNLTOQUADLOAD	Option for adding loads in tension-only quad and shear panel elements to adjacent line elements.
ADDPRESTRESS	Option for adding prestress subcase results to subsequent subcases.
ADPCON	Specifies the initial penalty values used in slide line and surface contact analysis
ALIGNEDGENODE	Parabolic solid element geometry correction for excessive edge curvature.
ALPHA	Rayleigh damping stiffness matrix scale factor.
ALTFAILINDEXFORM	Alternate failure index formulation for the LaRC02 failure theory.
AUTOBPD	Automatic global mass matrix singularity and non-positive definite correction option.
AUTOCORDROTATE	Option for automatically rotating a projected coordinate system axis that is normal to an element plane.
AUTOFIXELEMGEOM	Option for automatically correcting elements that are singular due to incorrect grid point ordering.
AUTOFIXRIGIDELEM	Option for automatically correcting improperly defined RBE3 elements.
AUTOFIXRIGIDSPC	Option for automatically correcting improperly defined or constrained rigid and interpolation elements.
AUTOSPC	Automatic single point constraint option.
BARDKMETHOD	Specifies how differential stiffness is applied to rod, bar, and beam elements.
BAREQVLOAD	Bar and beam element equivalent load vector formulation option.
BETA	Rayleigh damping mass matrix scale factor.
BISECT	Controls what operation will be performed when the nonlinear iteration limit is reached.
BPDEFDIAG	Mass diagonal coefficient to be used for correcting singular and non-positive definite matrixes.

Parameter	Description
CB1	Scale factor for the DMIG total damping matrix.
CB2	Scale factor for the DMIG total damping matrix.
CHECKOUT	Model check run option used for diagnostics.
CHECKRUN	Model check run option used for diagnostics.
CK1	Used to specify scale factors for the DMIG total stiffness matrix.
CK2	Used to specify scale factors for the DMIG total stiffness matrix.
CLOSE	Tolerance for grouping close modes in modal summation analysis.
CM1	Used to specify scale factors for the DMIG total mass matrix.
CM2	Used to specify scale factors for the DMIG total mass matrix.
COMPE1RSF	Nonlinear composite progressive ply failure E1 reduction scale factor.
COMPE1RSFTID	Nonlinear composite progressive ply failure E1 stress-strain table identification number.
COMPE2RSF	Nonlinear composite progressive ply failure E2 reduction scale factor.
COMPE2RSFTID	Nonlinear composite progressive ply failure E2 stress-strain table identification number.
COMPE3RSF	Nonlinear composite progressive ply failure E3 reduction scale factor.
COMPE3RSFTID	Nonlinear composite progressive ply failure E3 stress-strain table identification number.
COMPG12RSF	Nonlinear composite progressive ply failure G12 reduction scale factor.
COMPG12RSFTID	Nonlinear composite progressive ply failure G12 stress-strain table identification number.
COMPG1ZRSF	Nonlinear composite progressive ply failure G1Z reduction scale factor.
COMPG1ZRSFTID	Nonlinear composite progressive ply failure G1Z stress-strain table identification number.
COMPG23RSF	Nonlinear composite progressive ply failure G23 reduction scale factor.
COMPG23RSFTID	Nonlinear composite progressive ply failure G23 stress-strain table identification number.
COMPG2ZRSF	Nonlinear composite progressive ply failure G2Z reduction scale factor.
COMPG2ZRSFTID	Nonlinear composite progressive ply failure G2Z stress-strain table identification number.
COMPG31RSF	Nonlinear composite progressive ply failure G31 reduction scale factor.
COMPG31RSFTID	Nonlinear composite progressive ply failure G31 stress-strain table identification number.
COMPK1	Foam core composite sandwich stability allowable coefficient.
COMPK2	Honeycomb core composite sandwich stability allowable coefficient.
COMILSMETHOD	Option for defining how composite bond material failure indexes and strength ratios are calculated.
CONTACTGEN	Automated surface contact generation option.
CONTACTSTAB	Surface contact solution stabilization option.
CONTACTTOL	Automated surface contact tolerance.
CONVMATRIX	Convection matrix formulation option.
COUPMASS	Coupled mass matrix generation option.
CP1	Used to specify scale factors for the DMIG total load vector.
CP2	Used to specify scale factors for the DMIG total load vector.

Parameter	Description
CYSYMGEN	Option for automatically generating cyclic symmetric boundary conditions on an axisymmetric model.
CYSYMTOL	Tolerance to identify boundary grid points for the application of cyclic symmetric boundary conditions.
DATABASEACCEL	Model database acceleration option.
DDAMPHASE	DDAM multiphase analysis option.
DELTASTRAINEGOUT	Delta strain energy output option.
DFREQ	Specifies the threshold for the elimination of duplicate frequencies.
DIRSTRESSTYPE	Direct stress type option.
DISPGEOMSFACT	Specifies the scale factor applied to deformed geometry output.
DMILABEL	Specifies the base label for exported matrix data (NAME field on the DMIG Bulk Data entry).
DMIPDIAG	Option to add DMIGP diagonal terms at the DMIGG assembly point.
DYNLMDIRECTDIF	Controls the type of differentiation used in the large mass enforced motion method.
DYNRESPEIGVOUT	Controls the output of normal modes results in modal response solutions.
DYNSOLACCEL	Modal response solution acceleration option.
DYNSOLRELGRID	Specifies the reference point for enforced motion in linear transient and frequency response solutions.
DYNSOLDIRECTINT	Controls the type of solution integration used in linear transient response.
EDGENODETOL	Parabolic solid element geometry correction tolerance for repositioning edge nodes.
EIGENFLEXFREQ	Specifies the threshold frequency for defining the first flexible mode in a modal analysis.
EIGENSHIFTSFACT	Specifies the shift scale multiplier used to increase the shift scale for an eigensolver restart.
EIGENSOLACCEL	Subspace eigensolver acceleration option.
ELEMGEOMCHECKS	Element geometry check option.
ELEMGEOMFATAL	Option to handle certain geometry warnings as fatal errors.
ELEMGEOMOUT	Option to output individual element geometry statistics.
ELEMRSLTCORD	Default SURFACE and VOLUME coordinate system used for computing element results.
ELEMRSLTMAXTYPE	Element location where maximum/minimum stress/strain results are output.
EMODES	Specifies the number of modes extracted during the initialization phase of Automated Impact Analysis.
ENHCBARRSLT	Option for enhanced CBAR and CBEAM element results.
ENHCQUADRSLT	Option for enhanced CQUADR element results.
EPSILONFLOAT	Floating point precision constant for stiffness matrix factorization.
EPZERO	See STIFFRATIOTOL.
EQVSTRESSTYPE	Equivalent stress type option.
EXTOUT	Model and matrix data output option.
FACTDIAG	See SOLUTIONERROR.
FACTRATIOTOL	Stiffness matrix factor diagonal tolerance.
FIXNLTOQUAD	Option to control the reversion of tension-only shell elements.
FLOATINZERO	Character input floating point zero tolerance.

Parameter	Description
FLOATOUTZERO	Model results floating point zero tolerance.
FREQRESPRSLTINCR	Specifies the precision used in calculating real results from complex ones using a sinusoidal sweep.
FREQRESPRSLTOUT	Controls neutral file frequency response output during random response solutions.
G	Specifies the uniform structural damping coefficient in direct transient solutions.
GPFORCEMETHOD	Specifies how grid point forces are calculated.
GPSTRESS	Grid point stress output option.
GPWEIGHT	Grid point weight generator option.
GRDPNT	Grid point weight generator option.
GRIDCOLTOL	Grid collocation tolerance.
GRIDTEMPASGN	Option to assign element temperatures to adjacent grid points.
GRIDTEMPAVE	Element grid point temperature averaging option.
HEXARTOL	Hex element aspect ratio tolerance.
HEXENODE	Hex element edge node option.
HEXFACEMAXIATOL	Hex element face maximum interior angle tolerance.
HEXFACEMINIATOL	Hex element face minimum interior angle tolerance.
HEXFACESKEWTOL	Hex element face skew angle tolerance.
HEXFACETAPERTOL	Hex element face taper ratio tolerance.
HEXFACEWARPTOL	Hex element face warping angle tolerance.
HEXINODE	Hex element internal node option.
HEXMAXEPADTOL	Hex element maximum edge-point angular deviation tolerance.
HEXMINEPLRTOL	Hex element minimum edge-point length ratio tolerance.
HEXREDORD	Hex element reduced order integration option
HFREQ	Specifies the upper modal frequency range to be used in normal modes and dynamic response analysis.
HPNLMATREDORD	Hyperelastic element volumetric reduced order integration option.
HPNLMATSFACT	Specifies the scale factor applied to the hyperelastic element material stiffness matrix.
INERTIALRELIEF	Option to control the calculation of inertial relief or enforced acceleration in STATIC solutions.
INITSTRNSFACT	Specifies the scale factor applied to initial strain values defined on STRAIN Bulk Data entries.
INREL	Option to control the calculation of inertial relief or enforced acceleration in STATIC solutions.
J4ROT	Specifies the stiffness to be added to the torsional rotation for bar and beam elements.
K6ROT	Specifies the stiffness to be added to the normal rotation for CQUAD4 and CTRIA3 elements.
KDAMP	Option for specifying viscous modal damping as structural damping.
KRIGIDELEM	Stiffness value assigned to bush elements generated from converted RBE2 rigid elements.
LANCZOSVECT	Initial starting vector formulation to be used by the Subspace eigensolver.
LANGLE	Specifies the method for processing large rotations in nonlinear analysis.
LARC02TSAITOL	Option to revert failure theory used in composite laminate individual ply results.

Parameter	Description
LFREQ	Specifies the lower modal frequency range to be used in normal modes and dynamic response analysis.
LGDISP	Controls large displacement and follower force effects and differential stiffness in nonlinear analysis.
LINEARCONTACT	Option to control surface contact in linear static solutions.
LMODES	Specifies the number of lowest modes to use in normal modes and dynamic response analysis.
LNCONTACTITERTOL	Linear contact analysis iteration convergence tolerance.
M6ROT	Specifies the inertia to be added to the normal rotation for CQUAD4 and CTRIA3 elements.
MAXADJEDGE	Option for adjusting storage space when using slide line and/or surface contact elements.
MAXBISECTRESTART	Nonlinear solver restart option after maximum bisection error.
MAXEIGENRESTART	Defines the permitted number of eigensolver restarts when an invalid shift scale is estimated.
MAXELEMGEOMMSG	Specifies the maximum element geometry warning/fatal messages that will be output.
MAXIMPACTSTEP	Specifies the maximum number of output steps in Automated Impact Analysis.
MAXINCREFSTRAINP	Specifies the maximum increment of effective plastic strain per nonlinear material subincrement.
MAXLNCONTACTITER	Linear contact analysis maximum number of convergence iterations permitted.
MAXRATIO	Stiffness matrix factor diagonal tolerance.
MAXSPARSEITER	Iterative solver maximum number of iterations permitted.
MAXSRITER	Specifies the maximum number of iterations used in determining composite LaRC02 strength ratios.
MECHSTRAIN	Controls the type of strain output.
MINSPARSEITER	Iterative solver minimum number of iterations performed regardless of convergence.
MODALDATABASE	Controls the storage and retrieval of modal data in dynamic response analysis.
MODEPFACTOR	Controls the calculation and output of modal participation factors and modal effective mass.
MODEFSPCSTORE	Controls the storage and calculation of single point constraint forces in the modal database.
MODEVAROUT	Controls the output of modal variables in modal response solutions.
NBEAMINTNODE	The number of beam internal nodes used when tapered material properties are specified.
NCBMODE	Defines the number of component modes for superelement analysis.
NCONTACTGEOMITER	Specifies the number of iterations for repositioning surface contact element secondary.
NDAMP	Numerical damping option for direct transient solutions.
NITERCUPDATE	Nonlinear solver contact stiffness update option.
NITERKSUPDATE	Nonlinear differential stiffness update option.
NITERMUPDATE	Nonlinear solver material stiffness update option.
NITERPFUPDATE	Nonlinear composite ply failure and stiffness update option.
NLAYERS	Specifies the number of nonlinear material layers in quad and tri elements.
NLINDATABASE	Controls the storage and retrieval of nonlinear restart data used in nonlinear static analysis.
NLINSOLACCEL	Nonlinear solver iteration acceleration option.
NLINSOLTOL	Nonlinear solver default convergence tolerance option.
NLKDIAGAFACT	Specifies the stiffness to be added to diagonal terms of the global stiffness matrix.

Parameter	Description
NLKDIAGCOMP	Specifies component numbers that NLKDIAGAFACT will augment.
NLKDIAGMINAFACT	Specifies the minimum NLKDIAGAFACT value used in nonlinear static solutions.
NLKDIAGSET	Specifies which grid points NLKDIAGAFACT will be applied to by reference to an output set command.
NLLSSTRAINTYPE	Specifies the type of large strain strain output.
NLLSSTRAINTYPE	Specifies the type of large strain stress output.
NLMATSFACT	Specifies the scale factor applied to the material nonlinear portion of the element material stiffness matrix.
NLMATTABLGEN	Option to convert all bi-linear materials defined on MATS1 entries to stress-strain tables.
NLNPDKRESET	Option to use last previously converged tangent stiffness when a non-positive definite is detected.
NLSUBCREINIT	Option to reinitialize the nonlinear database for each subcase thereby restarting the simulation from zero.
NLTOL	Nonlinear solver default convergence tolerance option.
NLTRUESTRESS	Option to output true stress and strain in large displacement nonlinear solutions.
NOCOMPS	Controls the computation and output of composite element ply results.
NSLDPLYINTPOINT	The number of layered solid element ply integration points in the thickness direction of the ply.
NSUBINCRBISECT	Defines the maximum number of nonlinear material subincrements permitted before bisection is initiated.
OGEOM	Controls the output of geometry data blocks to the Nastran Binary Results File.
OPTION	Defines the summation method used to combine modal results in response spectrum analysis.
OUTSETTOL	Tolerance for identifying real values in output set lists.
PARTGEOMOUT	Individual part geometry statistics output option.
PARTMASSOUT	Individual part mass properties output option.
PENTARTOL	Pent element aspect ratio tolerance.
PENTFACEMAXIATOL	Pent element face maximum interior angle tolerance.
PENTFACEMINIATOL	Pent element face minimum interior angle tolerance.
PENTFACESKEWTOL	Pent element face skew angle tolerance.
PENTFACETAPERTOL	Pent element face taper ratio tolerance.
PENTFACEWARPTOL	Pent element face warping angle tolerance.
PENTMAXEPADTOL	Pent element maximum edge-point angular deviation tolerance.
PENTMINEPLRTOL	Pent element minimum edge-point length ratio tolerance.
PENTREDORD	Pent element reduced order integration option.
POST	Controls the output of data blocks to the Nastran Binary Results File.
PRGPST	Option to control the printout of singularities.
PYRARTOL	Pyr element aspect ratio tolerance.
PYRFACEMAXIATOL	Pyr element face maximum interior angle tolerance.
PYRFACEMINIATOL	Pyr element face minimum interior angle tolerance.
PYRFACESKEWTOL	Pyr element face skew angle tolerance.
PYRFACETAPERTOL	Pyr element face taper ratio tolerance.

Parameter	Description
PYRFACEWARPTOL	Pyr element face warping angle tolerance.
PYRMAXEPADTOL	Pyr element maximum edge-point angular deviation tolerance.
PYRMINEPLRTOL	Pyr element minimum edge-point length ratio tolerance.
PYRREDORD	Pyr element reduced order integration option.
QUADARTOL	Quad element aspect ratio tolerance.
QUADBNDREDORD	Quad element bending reduced order integration option.
QUADELEMTYPE	Quad element bending formulation option.
QUADEQVLOAD	Quad element equivalent load vector formulation option.
QUADINODE	Quad element internal node option.
QUADMAXEPADTOL	Quad element maximum edge-point angular deviation tolerance.
QUADMAXIATOL	Quad element maximum interior angle tolerance.
QUADMINEPLRTOL	Quad element minimum edge-point length ratio tolerance.
QUADMINIATOL	Quad element minimum interior angle tolerance.
QUADMEMREDORD	Quad element membrane reduced order integration option.
QUADREDORD	Quad element membrane and bending reduced order integration option.
QUADRNODE	Quad element drill degree of freedom option.
QUADSECT	Quadsect on bisect condition option.
QUADSKEWTOL	Quad element skew angle tolerance.
QUADTAPERTOL	Quad element taper ratio tolerance.
QUADWARPLIMIT	Quad element warping correction option.
QUADWARPTOL	Quad element warping angle tolerance.
RADMATRIX	Radiation matrix formulation option.
RANDRESPINVLEVEL	Controls invariant stress output in frequency and random response solutions.
RANDRESPRSLTOUT	Controls neutral file power spectral density output during random response solutions.
RBCHECKLEVEL	Stiffness matrix equilibrium checks option.
RBCHECKMODES	Specifies the number of modes to solve for in an automated modal rigid body check.
RESEQGRID	Grid point resequence option.
RESEQSTARTGRID	Grid point resequence start grid point identification number.
RESVEC	Residual vector generation option.
RESVPGF	Residual vector zero tolerance.
RIGIDBODYMODE	Subspace eigensolver option to specify how rigid body motion is detected and handled.
RIGIDELEM2ELAS	Rigid element to spring element conversion option.
ROTINERTIA	Diagonal element mass matrix rotary inertia option.
RSLTDATABASE	Controls the storage and retrieval of results data used for restarts in fatigue and explicit dynamics.
RSPECTRA	Option for response spectra generation in a transient response analysis.
SCRSPEC	Modal summation (response spectra input) option for a normal modes analysis.

Parameter	Description
SHEARELEMTYPE	Shear element formulation option.
SHELLEQVLOAD	Shell element equivalent load vector formulation option.
SHELLRNODE	Shell element drill degree of freedom option.
SHELLTVSMATTYPE	Orthotropic shell element transverse shear stiffness type.
SIGMA	Stefan-Boltzmann constant used in heat transfer solutions.
SLINEKAVG	Option for using average of component stiffnesses to determine surface contact penalty values.
SLINEKSFACT	Specifies the initial penalty values used in slide line and surface contact analysis
SLINEKSFACT2TC	Option for treating slide line and surface contact SFACT as contact conductance in heat transfer solutions.
SLINEMAXACTCORD	Specifies the surface contact activation coordinate system.
SLINEMAXACTDIR	Specifies the direction of surface contact movement.
SLINEMAXACTDIST	Specifies the maximum slide line and surface contact element activation distance.
SLINEMAXACTRATIO	Specifies the maximum surface contact element activation ratio.
SLINEMAXACTWIDTH	Defines the total width of the surface contact activation vector.
SLINEMAXDISPTOL	Specifies the normalized maximum allowable contact surface penetration.
SLINEMAXPENDIST	Specifies the maximum slide line and surface contact element penetration distance.
SLINEOFFSETTOL	Specifies the tolerance for automatically converting surface weld elements to offset weld elements.
SLINEPENTOL	Specifies tolerance for adjusting initial penetration errors on contact surfaces.
SLINEPLANEZDIR	Alternate slide line plane normal definition.
SLINEPOSTOL	Specifies tolerance for contact surface segment overlap.
SLINEPROTOL	Specifies tolerance for adjusting initial protrusion errors on contact surfaces.
SLINESLIDETYPE	Contact penalty stiffness update method.
SLINESTABKSFACT	Used to stabilize surface contact in nonlinear static solutions.
SLINEUNLOADTOL	Specifies tolerance for determining a contact surface unload condition.
SOLUTIONERROR	Option to correct the factored stiffness matrix when a singularity or non-positive definite is detected.
SORTMODEMASS	Modal data sorting option.
SPARSEITERMETHOD	Iterative solver preconditioner method.
SPARSEITERMODE	Iterative solver implicit matrix-vector multiply option.
SPARSEITERTOL	Iterative solver convergence factor.
SPARSEMETHOD	Specifies the VSS sparse direct solver matrix reordering method.
SPARSEOUTOFCORE	Parallel sparse direct solver out-of-core option.
SPCGEN	Grid point singularity translation option for Bulk Data Output File generation.
STIFFRATIOTOL	Specifies the minimum global stiffness matrix diagonal ratio for automatic singularity detection.
STIFFZEROTOL	Specifies the minimum value for an off-diagonal stiffness or mass matrix term to be considered nonzero.
STRENGTHRATIO	Tsai Strength Ratio option.
STRESSERROR	Controls the output of normalized grid point stress error (mesh convergence error).

Parameter	Description
TABS	Scale factor for absolute temperature.
TETARTOL	Tet element aspect ratio tolerance.
TETFACEMAXIATOL	Tet element face maximum interior angle tolerance.
TETFACEMINIATOL	Tet element face minimum interior angle tolerance.
TETFACESKEWTOL	Tet element face skew angle tolerance.
TETMAXEPADTOL	Tet element maximum edge-point angular deviation tolerance.
TETMINEPLRTOL	Tet element minimum edge-point length ratio tolerance.
TETREDORD	Tet element reduced order integration option.
TRIARTOL	Tri element aspect ratio tolerance.
TRIBNDREDORD	Tri element bending reduced order integration option
TRIELEMTYPE	Tri element bending formulation option.
TRIEQVLOAD	Tri element equivalent load vector formulation option.
TRIMAXEPADTOL	Tri element maximum edge-point angular deviation tolerance.
TRIMAXIATOL	Tri element maximum interior angle tolerance.
TRIMINEPLRTOL	Tri element minimum edge-point length ratio tolerance.
TRIMINIATOL	Tri element minimum interior angle tolerance.
TRIMEMREDORD	Tri element membrane reduced order integration option
TRIREDORD	Tri element membrane and bending reduced order integration option.
TRIRNODE	Tri element drill degree of freedom option.
TRISKEWTOL	Tri element skew angle tolerance.
TSAI2LARC02	Option to use the LaRC02 failure theory when the Tsai-Wu failure theory is specified.
TSAI2MCT	Option to use the MCT failure theory when the Tsai-Wu failure theory is specified.
TSAI2MCTBVF	Bundle volume fraction used to automatically convert MAT8 Bulk Data entries to MATL8.
TSAI2MCTFVF	Fiber volume fraction used to automatically convert MAT8 Bulk Data entries to MATL8.
UNRESEQGRID	Unresequence model database option.
UNITS	Defines the model units system for output labeling and report generation.
USAWETSURFACE	Underwater Shock Analysis (USA) interface option.
W3	Frequency of interest for global stiffness based structural damping in transient response solutions.
W4	Frequency of interest for element stiffness based structural damping in transient response solutions.
WARNING	Option for disabling output of warning messages.
WTMASS	Global mass matrix scaling factor.
VFM2ACB	Option to perform boundary acoustic analysis when a virtual fluid mass boundary is defined.
VFMADDMETHOD	Specifies when in the solution sequence virtual fluid mass is added to the global mass matrix.
VFMINTERACTTOL	Tolerance for removing negligible off-diagonal fluid interaction terms from the fluid mass matrix.
VFMNORMTOL	Angular tolerance for excluding adjacent grid point surfaces in the fluid mass matrix.

Parameter	Description
VMOPT	Specifies when in the solution sequence virtual fluid mass is added to the global mass matrix.
XDAMP	Controls the use of structural damping in modal response solutions.
ZONADATAOUT	Zona aeroelastic solver output option.

2.1.2 Model Input File

Generating the Model Input File is the first step in performing an analysis using Autodesk Inventor Nastran. The Model Input File defines the structure's geometry, material properties, boundary conditions and loads. In addition, it specifies how the analysis is to be performed and what output is to be included in the Model Results Output File. The Model Input File is an 80 column ASCII text file and can be created using any text editor or one of the many preprocessors that interface with Autodesk Inventor Nastran.

The problem we are analyzing is shown in Figure 2-1 and the corresponding Autodesk Inventor Nastran Model Input File in Listing 2-2. Like most NASTRAN Model Input Files it can be divided into two distinct sections: the Case Control Section and the Bulk Data Section. Input in the Case Control Section is referred to as a command and in the Bulk Data Section as an entry. The Case Control and Bulk Data sections must be assembled in the following sequence (BEGIN BULK and ENDDATA are required delimiters):

1. Case Control Commands

BEGIN BULK

2. Bulk Data Entries

ENDDATA

The Case Control Section begins with the first command and ends with the command, BEGIN BULK. It defines the subcase structure for the problem, makes selections from the Bulk Data Section, defines the output coordinate system for element and grid point results, and makes output requests for the Model Results Output File. Case Control commands are described in the *Nastran Solver Reference Guide*, Section 3, *Case Control*.

The Bulk Data Section begins with the entry following BEGIN BULK and ends with the entry ENDDATA. It contains all of the details of the structural model and the conditions for the solution. BEGIN BULK and ENDDATA must be present even though no new bulk data is being introduced into the problem or all of the bulk data is coming from an alternate source, such as user-generated input. The format of the BEGIN BULK entry is free field. Generally speaking, only one structural model can be defined in the Bulk Data Section. However, some of the bulk data, such as entries associated with loading conditions and constraints, may exist in multiple sets. Only sets selected in the Case Control Section will be used in any particular solution. Bulk Data entries are described in the *Nastran Solver Reference Guide*, Section 4, *Bulk Data*.

Comments may be inserted in either section of the Model Input File. They are identified by a "\$" in Column 1 with columns 2-72 containing any desired text. Comments may also be added to Case Control commands and free field Bulk Data entries with a "\$" after the last character of data.

Unlike the conventional NASTRAN input file, there is no File Management or Executive Control Sections. These tasks are grouped into one section called Initialization and are handled in the Model Initialization File (see Section 2.1.1, *Model Initialization File*). Input in the Model Initialization File is referred to as a directive.

Once the generation of the Model Input File is complete, you can analyze your model by executing the Nastran command. See the *Nastran Solver Reference Guide*, Section 1, *NASTRAN Command Line*, for more information.

Ś

Listing 2-2. Example Model Input File.

```
$ STATIC SOLUTION.
Ś
SOL LINEAR STATIC
TITLE = INSTALLATION TEST CASE
SUBTITLE = 2-D CANTILEVER BEAM -QUADR ELEMENTS -2X5 MESH
Ś
DISPLACEMENT = ALL
ELFORCE (CORNER) = ALL
ELSTRESS (CORNER) = ALL
Ś
SPC = 1
SUBCASE 1
 LABEL = 60 LB POINT LOAD IN Y-DIRECTION
 LOAD = 2
Ś
$ ELEMENT AND GRID POINT STRESS COORDINATE SYSTEM (BASIC).
SET 1 = ALL
SURFACE 1, SET 1, SYSTEM BASIC, AXIS X, NORMAL Z
Ś
BEGIN BULK
Ś
$ GEOMETRY DEFINITION (10" X 2" RECTANGULAR FLAT PLATE WITH A 5 X 2 MESH).
Ś
GRID,
            1, , 10., 0., 0.
           2, , 10., 1., 0.
3, , 10., 2., 0.
GRID,
GRID,
                          2., 0., 0.
           4, ,
GRID,
                         2., 1., 0.
2., 2., 0.
6., 0., 0.
           5, ,
GRID,
             6, ,
7, ,
GRID,
GRID,
           8, ,

      8,
      6.,
      1.,
      0.

      9,
      6.,
      2.,
      0.

      10,
      4.,
      0.,
      0.

      11,
      4.,
      1.,
      0.

GRID,
GRID, 9, ,
GRID, 10, ,
GRID, 11, ,
GRID, 12, , 4., 2., 0.
GRID, 13, , 8., 0., 0.
GRID, 14, , 8., 1., 0.
GRID, 13, ,
GRID, 14, ,
GRID, 15, ,
                         8., 2., 0.
GRID, 16, , 0., 0., 0.
GRID, 17, , 0., 1., 0.
                     ,
GRID, 18, ,
                           0., 2., 0.
Ś
$ FLAT PLATE MODELED WITH SHELL ELEMENTS.
Ś
CQUADR, 1, 10, 16, 4,
                                                  5, 17

      CQUADR,
      1,
      10,
      10,
      4,
      5,
      17

      CQUADR,
      2,
      10,
      4,
      10,
      11,
      5

      CQUADR,
      3,
      10,
      10,
      7,
      8,
      11

      CQUADR,
      4,
      10,
      7,
      13,
      14,
      8

      CQUADR,
      5,
      10,
      13,
      1,
      2,
      14

      CQUADR,
      6,
      10,
      17,
      5,
      6,
      18

      CQUADR,
      7,
      10,
      5,
      11,
      12,
      6

      CQUADR,
      8,
      10,
      11,
      8,
      9,
      12

      CQUADR,
      8,
      10,
      11,
      8,
      9,
      12

                9, 10, 8, 14, 15,
10, 10, 14, 2, 3,
CQUADR, 9,
CQUADR, 10,
                                                            9
                                                           15
$ ELEMENT MATERIAL AND THICKNESS (0.1").
PSHELL, 10, 100, 0.1, 100, , 100
$ ELEMENT MATERIAL PROPERTIES (ALUMINUM).
MAT1, 100, 1.E+7, , 0.33, 0.1
$ FIXED BOUNDARY CONDITION AT ONE END.
SPC1, 1, 123456, 16, 17, 18
Ś
 $ POINT LOAD ON FREE END (Y-DIRECTION).
Ś
FORCE, 2, 2, 0, 60., 0., 1., 0.
ENDDATA
```

2.1.2.1 Case Control

The Case Control Section consists of commands which are used to:

- Define the subcase structure for the analysis.
- Select loads and constraints.
- Define the contents of the Model Results Output File.
- Define the output coordinate system for element and grid point results.

The Case Control Section starts with the first line in the Model Input File and ends with the BEGIN BULK command. For the cantilever beam example, a title and subtitle are defined that will appear on each page of the Model Results Output File. Reactions and stresses will be included for all grid points and elements. Displacements will be included by default. Subcase 1 is defined using the LABEL, SPC, and LOAD commands. The SPC command directs Autodesk Nastran to apply constraints defined by the SPC1 entry with an identification number (ID) of 1 in the Bulk Data Section. The LOAD command directs Autodesk Nastran to apply loading defined by the FORCE entry with an ID of 2 in the Bulk Data Section. The SURFACE and SET commands define the element results output coordinate system. The default coordinate system is defined using the ELEMRSLTCORD model parameter (see the Nastran Solver Reference Guide, Section 5, Parameters, for more information).

In the cantilever beam example, only one set of loads and constraints were specified. In general, a separate subcase is defined for each loading condition and/or each set of constraints. Subcases may also be used in connection with output requests, such as requesting different output for a load case. Only one level of subcase definition is provided. All items placed above the subcase level (ahead of the first subcase) will be used for all following subcases unless overridden within the individual subcase.

Consider the cantilever beam example again. Suppose we wanted to look at additional load conditions, for example, point loads in the x-direction and z-direction. In addition, for the x-direction load case, we would like a different boundary condition at the fixed end and element strain energy output. For the z-direction load case, we do not want to output element or grid point stresses. The Case Control Section would then look like this:

```
SPCFORCES = ALL
ELSTRESS = ALL
GPSTRESS = ALL
SPC = 1
SUBCASE 1
 LABEL = 60 LB POINT LOAD IN Y-DIRECTION
LOAD = 2
SUBCASE 2
 LABEL = 60 LB POINT LOAD IN Z-DIRECTION
 LOAD = 3
 ELSTRESS = NONE
 GPSTRESS = NONE
SUBCASE 3
 LABEL = 60 LB POINT LOAD IN X-DIRECTION
 SPC = 2
 LOAD = 4
 ESE = ALL
```
Three subcases are defined in this example. Since the constraints are the same for SUBCASE 1 and SUBCASE 2 and the subcases are contiguous, the stiffness matrix factorization portion of the solution will only be repeated once for SUBCASE 3. Displacements (by default) and element and grid point stresses will be output for all subcases. Forces of single point constraint (reactions) will be output for all subcases except SUBCASE 2. Element strain energies will only be output for SUBCASE 3.

2.1.2.2 Bulk Data

The Bulk Data Section defines your model by allowing you to specify geometry (grid points, element connectivity, etc.), material properties, boundary conditions (constraints) and loading (forces, moments, pressures, etc.). The start of the Bulk Data Section is denoted by the BEGIN BULK delimiter and the end, the ENDDATA delimiter. Both are delimiters are required.

The Case Control Section has control over entries that describe boundary conditions and loading. In the cantilever beam example that would mean the SPC1 and FORCE entries only. All other entries are always included in the model regardless of what the Case Control Section specifies. This allows you to have multiple load cases and control what load cases are used for a given analysis. Constraint and load entries can exist in the model and not be called unless needed. In addition, material property and coordinate system entries can exist that are never referenced. An error message will result, however, if an element or grid point references a material property or coordinate system that does not exist.

In the cantilever beam example, the model's geometry is defined via the GRID entry. Each grid point coordinate is defined in the default basic coordinate system and all units are in inches. You may pick whatever units you like as long as you are consistent. Element connectivity is defined via the CQUADR entries. The plate thickness and material property are defined on the PSHELL entry. The isotropic material that the beam is made from is defined using the MAT1 entry.

Within the Bulk Data Section, entries may be in any order since a sort is performed prior to the execution of the Model Translator. Bulk data will be echoed in the Model Results File if ECHO = SORT or ECHO = UNSORT is specified in the Case Control Section or BULKDATAOUT = ON in the Model Initialization File. Also, a sorted copy of the Model Input File will be written to the Bulk Data File if the TRSLMODLDATA directive is set to ON in the Model Initialization File.

Bulk Data entries may be entered either in fixed- or free field format. Free field format will be discussed at the end of this section. Fixed field format is divided into small and large field formats. Large field format can be used when small field does not provide enough significant digits. For small field format a data line is divided into 10 fields, each with eight characters as shown below:

1	2	3	4	5	6	7	8	9	10
$\leftarrow 8 \rightarrow$	← 8 →	← 8→	$\leftarrow 8 \rightarrow$	$\leftarrow 8 \rightarrow$	← 8→	$\leftarrow 8 \rightarrow$	$\leftarrow 8 \rightarrow$	← 8 →	$\leftarrow 8 \rightarrow$

The following is an example of small field fixed format:

1	2	3	4	5	6	7	8	9	10
GRID	100	20	1.0	10.5	0.0	17			

. .

Large field format requires (at least) two lines for each entry: the first and last field of each data line contains eight characters and the four fields between contain 16 characters as shown below:

1A 2	3	4	5	6
$\leftarrow 8 \rightarrow \qquad \leftarrow 16 \rightarrow$	← 16 →	← 16 →	←16→	← 8 →
Line 2:				
1B 6	7	8	9	10B
$\leftarrow 8 \rightarrow \qquad \leftarrow 16 \rightarrow$	← 16 →	← 16 →	←16 <i>→</i>	$\leftarrow 8 \rightarrow$

The following is an example of large field fixed format:

<u>Line 1:</u>					
1A	2	3	4	5	6
GRID *	100	20	1.0	10.5	*C0001
Line 2:					
1B	6	7	8	9	10
*C0001	0.0	17			

Large field entries are denoted by an asterisk (*) immediately following the character string in field 1A of the first line and immediately preceding the character string in field 1B of the second line.

For all formats the name of the Bulk Data entry is input in field 1 beginning in column 1. Fields 2-9 are for data items. The only limitations in data items are that they must lie completely within the designated field, have no embedded blanks, and must be of the proper type (i.e., blank, integer, real, or character). All real numbers, including zero, must contain a decimal point. A blank will be interpreted as a real zero or integer zero, as required. Real numbers may be encoded in various ways. For example, the real number 7.0 may be encoded as 7.0, .7E1, 0.7+1, 70.-1, .70+1, 7+0, etc.

Field 10 of the Bulk Data entry is used for two purposes. If the Bulk Data entry does not have a continuation line, field 10 may be used as an optional comment field. A ";" is still required as the first character of the comment. If the Bulk Data entry has a continuation line, field 10 is used for the continuation identifier. The continuation contains the symbol + in column 1 followed by the same seven characters that appeared in columns 74-80 of field 10 of the entry that is being continued. Character strings used as continuation identifiers cannot contain the symbol "\$" in column 1 or ";" in any column. The continuation identifier must be unique with respect to all the other identifiers in your Bulk Data.

Continuation fields can also be generated automatically by Autodesk Nastran. To automatically generate a continuation, the continuation line (or lines) must immediately follow the parent Bulk Data entry. In addition, fields 1 and 10 of the continuation line (or lines) must be left blank.

Free field format provides an easier method for inputting data manually. An example of free field is shown in Listing 2-2. In the free field format, commas are used to separate the fields. An entry in free field format is identified by a comma or equal sign in any of the first nine columns. The following rules apply to the use of the free field format:

- Free field data entries must start in column 1.
- A comma must separate data items.
- Data must be eight characters or less.
- If automatic continuation is to be used, the continuation line starts with a comma in field 1.

The following is an example of free field format:

GRID, 100, 20, 1., 10.5, , 17

The following is an example of free field format with automatic continuation.

CBAR, 10, 100, 201, 202, 0., 0., 1., , , , ,1., 0., 0., 1., 0., 0.

2.2 Model Output

This section discusses the output files that are produced for a typical run. As is the previous section we will use the cantilever beam example shown in Figure 2-1 as an example.

When Autodesk Nastran is executed it generates several output files. Some output files are always generated and others are optionally controlled through the use of Model Initialization directives (see 2.1.1 Model Initialization File). Table 2-1 provides a description of all the files that will be generated if you execute Autodesk Nastran using the Model Initialization File in Listing 2-1 and the Model Input File in Listing 2-2. The Model Input filename is *Test.NAS* and can be found in the installation folder.

All files in Table 2-1, except the Model Database files, are ASCII files and can be viewed with any text editor. The Model Results Output File lines per page setting can be changed with the LINE Model Initialization directive. This value is usually set to correspond to your system printer.

The following sections provide further discussion and an example listing of each file.

Filename	Definition	Description	Associated Initialization Directives
Test.INI	Model Initialization File	Model specific system configuration and model parameter settings. If not specified, <i>Nastran.INI</i> is used.	All directives are specified in this file.
Test.OUT	Model Results Output File	The main output file containing model definition and results output (displacements, forces, stresses, strains, etc.)	BULKDATAOUT BULKDATASORT LEFTMARGIN LINE OUTPAGEFORMAT OUTZEROVECT SECONDS
Test.BDF	Bulk Data Output File	A complete NASTRAN input file generated from the Model Database. Note that a <i>translated</i> Bulk Data Output File is not generated if a fatal error occurs in the Model Translator Module. In this case, the file will be a duplicate of the Model Input File with the appropriate error messages.	OUTCONTSYMBOL OUTSPCSETID OUTTEMPSETID TRSLDMIDATA TRSLMODLDATA TRSLTEMPDATA
Test.STA	Model Status File	Displayed program status information can be written to this file, if requested. Useful for checking program status remotely and debugging.	DISKSTATUS MEMORYSTATUS MODLSTATUS SECONDS SYSTEMSTATUS
Test.LOG	System Log File	An abbreviated summary of the system and model status generated as the program executes. All error messages are written to this file.	DISKSTATUS MEMORYSTATUS SECONDS SYSTEMSTATUS

Table 2-1	Files	Generated	in t	he	Cantilever	Beam	Fxam	ole.
	1 1103	Generateu			Cantilever	Deam	LAann	JIC.

Filename	Definition	Description	Associated Initialization Directives
Test.RSF	Results Summary File	An abbreviated summary of results data obtained by scanning the System Log File for user specified search strings defined in the Model Initialization File.	RSLTSUMFILEENTRY
Test.NDB	Database Pointer File	Stores the locations of the Model Database files. Database files are located in a user supplied folder specified in the Model Initialization File. By specifying the PURGE Model Initialization directive, these files will automatically be deleted prior to normal program termination. Other than normal program termination will require you to manually delete these files. If you plan to re-run the model this is not necessary. Database files all end with a .NDB extension.	DATABASE FILESPEC1 FILESPEC2 FILESPEC3 NFILEBUFFER1 NFILEBUFFER3 FILEBUFFERSIZE1 FILEBUFFERSIZE2 FILEBUFFERSIZE3
Test.DIS	Grid Point Displacement Vector Neutral File	Displacement results neutral file used for storing displacement vector data.	DISPFILE RSLTLABEL RSLTFILETYPE
Test.GPF	Grid Point Force Vector Neutral File	Nodal results neutral file used for storing vector results (applied loads, reactions, velocities, and accelerations) calculated at the grid points.	FORCFILE RSLTLABEL RSLTFILETYPE
Test.ELS	Element Results Neutral File	Element results neutral file used for storing element results data (forces, stresses, strains, etc.) calculated at the element centroid and corner nodes.	ELEMFILE RSLTLABEL RSLTFILETYPE
Test.GPS	Grid Point Results Neutral File	Nodal results neutral file used for storing element results data (forces, stresses, strains, etc.) calculated at the grid points.	GRIDFILE RSLTLABEL RSLTFILETYPE
Test.NEU Test.FNO	FEMAP Neutral File	FEMAP compatible results neutral file used to import results into FEMAP.	FEMAPRSLTVECTID INCRRSLTOUT RSLTLABEL RSLTFILETYPE
Test.OP2	NASTRAN Binary Results File	NASTRAN Output 2 compatible results neutral file used to import results into HyperMesh, Patran, I-Deas, etc.	RSLTFILETYPE RSLTFILEPURGE
Test.XDB	NASTRAN XDB Results File	NASTRAN XDB compatible results neutral file used to import results into Patran, Pro/E, etc.	RSLTFILETYPE RSLTFILEPURGE
Test.PCH	NASTRAN ASCII Results File	Vector results data in NASTRAN PUNCH format.	MODLOUTFILE

Table 2-1	Files Gener	ated in the Ca	ntilever Ream	Example ((Continued)
				Example.	

2.2.1 Model Results Output File

The format and contents of the Model Results Output File can vary from statistical information only to output of all translated and calculated data. Listing 2-3 represents a typical output file. The contents of Listing 2-3 are now briefly discussed.

Autodesk Nastran is divided into 18 separate modules:

- Initialization Processor Module
- Model Translator Module
- Geometry Processor Module
- Linear Solution Processor Module
- Results Processor Module
- Real Eigenvalue Processor Module
- Nonlinear Solution Processor Module
- Initial Stress Processor Module
- Modal Transient Response Processor Module
- Modal Frequency Response Processor Module
- Modal Complex Eigenvalue Processor Module
- Direct Transient Response Processor Module
- Direct Frequency Response Processor Module
- Nonlinear Transient Response Processor Module
- Nonlinear Transient Heat Transfer Processor Module
- Matrix Reduction Processor Module
- Component Assembly Processor Module
- Superelement Assembly Processor Module

Output from each module contributes to the Model Results Output File.

The Model Initialization directive, MODLINITOUT, controls output from the Initialization Processor module. Since MODLINITOUT was set to ON in the Model Initialization File, all Model Initialization directives and their assigned values are included.

The Model Initialization directives, MODLDATAOUT and MODLDATAFORMAT, control output from the Model Translator Module. All displayed model data comes directly from the Model Database. Because of the unambiguous format, this method is preferred over the Model Input File echo generated with the BULKDATAOUT directive.

Output from the Geometry Processor Module consists of statistical information from the grid point resequencing and global stiffness matrix assembly processes.

The Grid Point Resequencer internally renumbers the grid points to optimize performance and reduce disk space usage. It is controlled with the RESEQGRID, UNRESEQGRID, RESEQSTARTGRID, and RESEQGRIDMETHOD parameters and the directive. The goal is to minimize the global stiffness matrix profile. If the profile is not decreased, the original numbering is used. Note that the matrix size shown is a conservative estimate.

After the grid point renumbering, the global stiffness matrix is formed. During assembly, each element's geometry is checked and statistical information relative to this process is output. Output from the Solution Processor Module consists of statistical information and grid point vector results (applied loads, displacements, and reactions). This information will repeat for each subcase.

The first step in the solution sequence consists of the application of prescribed and automatic constraints. An automatic constraint will be applied to a degree of freedom if it has very little or no stiffness associated with it. This feature is controlled by the AUTOSPC parameter. When this parameter is used, a table is included in the output indicating which degrees of freedom in the model are constrained. Maximum and minimum matrix diagonal terms are also included and should always be checked.

The next and usually the most time consuming step in the solution sequence is the factorization of the global stiffness matrix. Output from this process consists of statistical information. If a problem occurs during factorization, additional diagnostic information will be provided.

After factorization, the global load vector is formed and the unknown displacements and forces are determined. These are output in tabular form and are controlled with the DISPLACEMENT and SPCFORCES Case Control commands. Following the displacement vector is the solution's epsilon and strain energy. Epsilon is a measure of the numeric conditioning of the model, while the strain energy is the work due to applied loads. Both of these values are useful for model checkout and are discussed further in Appendix A, *Output Formats*.

Output from the Results Processor Module consists of element and grid point results data derived from the global displacement vector. The ELSTRESS and GPSTRESS Case Control commands control which elements are output. Element and grid point forces, stresses, and strains are output in the surface coordinate system defined in the Case Control Section of the Model Input File. Grid point results derived from averaged element corner stresses and strains. Following the results on each element on a surface are the maximum and minimum values for selected result types.

Listing 2-3. Example Model Results Output File.

2		01/16/15 12:	12 ADS NASTRAN	VERSION 10.3.0.716	PAGE
2					
	MODEL INITIALIZATIC	N DIREC	CTIVES		
[FILE MANAGEMEN]	DIRECTIVES]				
DATABASE	= c:\TEST.NDB				
FILEBUFFERSIZE					
FILESPEC NFILEBUFFER	<pre>= C:\Users\timmera\AppData\Local\Temp\NDBT4LT.TMP\ = 1</pre>				
PURGE RSLTFILEPURGE	= ON = ON				
[OUTPUT CONTROL	DIRECTIVES]				
BULKDATAOUT	= OFF				
BULKDATASORT DISKSTATUS	= ON = ON				
FEMAPRSLTVECTID	= ON				
LEFTMARGIN	= 0FF				
LINE	= 75				
MODLDATAOUT	= ON = ON				
MODLDATAFORMAT	= 1 = 0N				
MODLSTATUS	= DISPLAY				
OUTCONTSYMBOL OUTDISPSETID	= OFF = 100				
OUTDISPGEOMMODE	= 1 = 100				
OUTGRIDOFFSET	= 100000				
OUTLOADSETID OUTPAGEFORMAT	= 100 = OFF				
OUTSPCSETID	= 100				
OUTSTRNSETID OUTTEMPSETID	= 100 = 100				
OUTZEROVECT	= OFF				
PCHFILEDBLEPRCS	= OFF = NASTRAN				
RSLTFILECOMP RSLTFILEDBLEPRCS	= AUTO S = OFF				
RSLTFILETYPE	= FEMAP BINARY				
SYSTEMSTATUS	= ON = OFF				
TRSLDISPDATA	= OFF				
TRSLMODLDATA	= OFF = OFF				
TRSLPRESDATA TRSLRBSEDATA	= OFF = OFF				
TRSLSPCDATA	= OFF				
TRSLSTRNDATA TRSLTEMPDATA	= OFF = OFF				
XYPLOTCSVOUT	= OFF				
[MEMORY MANAGEME	INT DIRECTIVES]				
MAXRAM MINRAM	= 0 = 0				
RAM	= 1800				
[PROGRAM CONTROL	_ URECTIVES]				
	= 100000				
DECOMPMETHOD	= AUTO				
DYNRSLTMETHOD EXTRACTAUTOSIZE	= AUTO = 20000				
EXTRACTMETHOD	= AUTO				
GPWEIGHTMETHOD LICENSEMANAGER	= AUTO = FLEXLM				
RESTART	= ON				
RSPECDISPMETHOD RSPECVECTMETHOD	= NODAL = ON				
SHELLEGRID	= OFF = OFF				
WAITFORLICENSE	= 100				

INSTALLATION	TEST CASE				01/16/	15 12:12	ADS NASTRAN	VERSION	10.3.0.71	6 PAGE
3 2-D CANTILEVI	er beam -quadr	ELEMENTS -2X5 M	ESH							
	S U	BCASE CC	NSTRAI	NT AND	LOAD	SET D	EFINII	ION		
SUBCASE		I	ABEL		С	ONSTRAINT	SET IDS		LOAD SET II	DS
ID 1	60 LB EDGE LOA	D IN Y-DIRECTION				SPC 1	MPC NONE	LOAD 2	DEFORM NONE	TEMPERATURE NONE
INSTALLATION	TEST CASE				01/16/	15 12:12	ADS NASTRAN	VERSION	10.3.0.71	5 PAGE
4 2-D CANTILEVI	er beam -quadr	ELEMENTS -2X5 M	ESH							
			GRID H	POINT D	EFINIT	ION				
1	0	1.000E+01	0.000E+00	0.000E+00						
2	0	1.000E+01 1.000E+01	1.000E+00 2.000E+00	0.000E+00 0.000E+00						
4	0	2.000E+00 2.000E+00	0.000E+00 1.000E+00	0.000E+00						
6	0	2.000E+00	2.000E+00	0.000E+00						
7	0	6.000E+00 6.000E+00	0.000E+00 1.000E+00	0.000E+00 0.000E+00						
9	0	6.000E+00	2.000E+00	0.000E+00						
10	0	4.000E+00 4.000E+00	1.000E+00	0.000E+00						
12	0	4.000E+00 8.000E+00	2.000E+00 0.000E+00	0.000E+00 0.000E+00						
14	0	8.000E+00	1.000E+00	0.000E+00						
15	0	0.000E+00	2.000E+00 0.000E+00	0.000E+00 0.000E+00						
17	0	0.000E+00 0.000E+00	1.000E+00 2.000E+00	0.000E+00 0.000E+00						
10	Ŭ	0.0001100	2.0001100	0.000100						
INSTALLATION	TEST CASE				01/16/	15 12 : 12	ADS NASTRAN	VERSION	10.3.0.716	5 PAGE
5 2-D CANTILEVI	er beam -Quadr	ELEMENTS -2X5 M	ESH							
			QUAD	ELEMENT	DEFI	NITIO	Ν			
ELEMENT ID	PROPERTY ID	GRID-1 G ID	RID-2 ID	GRID-3 ID	GRID-4 ID	MATERIAL COORDINATE	ORIENTA ID ANGI	TION E	OFFSET	
1	10	16	4	5	17	ELEMENT	0.	00	0.000E+00	
2 3	10	4 10	10	8	5 11	ELEMENT	U. 0.	00	0.000E+00 0.000E+00	
4	10	7 13	13	14	8 1.4	ELEMENT ELEMENT	0.	00	0.000E+00	
6	10	17	5	6	18	ELEMENT	0.	00	0.000E+00	
7	10 10	5 11	11 8	12 9	6 12	ELEMENT ELEMENT	0. 0.	00	0.000E+00 0.000E+00	
9	10	8	14	15	9	ELEMENT	0.	00	0.000E+00	
10	10	14	2	3	15	ELEMENT	0.	00	0.000E+00	
INSTALLATION	TEST CASE				01/16/	15 12:12	ADS NASTRAN	VERSION	10.3.0.71	5 PAGE
b 2-D CANTILEVI	er beam -quadr	ELEMENTS -2X5 M	ESH							
		SHEL	L E L E M	ENT PRO	PERTY	DEFI	ΝΙΤΙΟΝ			
PROPERTY		MATERIAL I	DS		THICKNESS	TS/T	121/1	'3	NSM	
ID 10	MEMBRANE 100	BENDING TRA 100	NSVERSE C 100	COUPLING	1.000E-01	8.333E-	01 1.000E	+00 C	.000E+00	

INSTALLATION TEST CASE 01/16/15 12:12 ADS NASTRAN VERSION 10.3.0.716	PAGE
7 2-d cantilever beam -quadr elements -2x5 mesh	
ISOTROPIC MATERIAL DEFINITION	
MATERIAL E G NU RHO ALPHA T-REF	
ID 100 1.000E+07 3.846E+06 3.000E-01 1.000E-01 0.000E+00 0.000E+00	
INSTALLATION TEST CASE 01/16/15 12:12 ADS NASTRAN VERSION 10.3.0.716 8	PAGE
2-D CANTILEVER BEAM -QUADR ELEMENTS -2X5 MESH	
SINGLE POINT CONSTRAINT DEFINITION	
SET GRID COMPONENT ENFORCED ID ID NUMBERS DISPLACEMENT	
1 16 123456 0.000E+00 1 17 123456 0.000E+00	
1 18 123456 0.000E+00	
	DACE
9 2-D CANTIEVED DEAM _ONADD DIEMENTEC _2V5 MECH	INGL
2-D CANIILEVER BEAM -QUADE ELEMENIS -285 MESH	
GRID POINT FORCE VECTOR DEFINITION	
ID ID ID V1 V2 V3	
2 1 0 0.000E+00 1.500E+01 0.000E+00 2 2 0 0.000E+00 3.000E+01 0.000E+00	
2 3 0 0.000E+00 1.500E+01 0.000E+00	
INSTALLATION TEST CASE 01/16/15 12:12 ADS NASTRAN VERSION 10.3.0.716	PAGE
10 2-d cantilever beam -quadr elements -2x5 mesh	
SUBCASE VECTOR OUTPUT SET DEFINITION	
SUBCASE LOAD DISPLACEMENT VELOCITY ACCELERATION SPC FORCE MPC FORCE	
ID VECTOR VECTOR VECTOR VECTOR VECTOR VECTOR 1 NONE ALL NONE ALL NONE	
INSTALLATION TEST CASE 01/16/15 12:12 ADS NASTRAN VERSION 10.3.0.716	PAGE
2-D CANTILEVER BEAM -QUADR ELEMENTS -2X5 MESH	
SUBCASE ELEMENT OUTPUT SET DEFINITION	
SUBCASE ELEMENT ELEMENT ELEMENT	
1D FORCE STRESS STRAIN STRAIN ENERGY 1 NONE ALL NONE NONE	
INSTALLATION TEST CASE 01/16/15 12:12 ADS NASTRAN VERSION 10.3.0.716 12	PAGE
2-D CANTILEVER BEAM -QUADR ELEMENTS -2X5 MESH	
SUBCASE GRID OUTPUT SET DEFINITION	
SUBCASE GRID POINT GRID POINT GRID POINT STRESS ID FORCE STRESS STRAIN DISCONTINUITY	

1	NONE	ALL	NONE	NONE

INSTALLATION TEST CASE 01/16/15 12:12 ADS NASTRAN VERSION 10.3.0.716 PAGE 2-D CANTILEVER BEAM -QUADR ELEMENTS -2X5 MESH SET DEFINITION SET ELEMENT/GRID IDS ID 1 ALL INSTALLATION TEST CASE 01/16/15 12:12 ADS NASTRAN VERSION 10.3.0.716 PAGE 14 2-D CANTILEVER BEAM -QUADR ELEMENTS -2X5 MESH SURFACE DEFINITION NORMAL SURFACE ELEMENT SET COORDINATE X-AXIS ID ID ID 0 Х Ζ 1 1 INSTALLATION TEST CASE 01/16/15 12:12 ADS NASTRAN VERSION 10.3.0.716 PAGE 2-D CANTILEVER BEAM -QUADR ELEMENTS -2X5 MESH SHELL ELEMENT STRESS RECOVERY PROPERTY DEFINITION PROPERTY Z1 Z2 ID 10 -5.000E-02 5.000E-02 INSTALLATION TEST CASE 01/16/15 12:12 ADS NASTRAN VERSION 10.3.0.716 PAGE 2-D CANTILEVER BEAM -QUADR ELEMENTS -2X5 MESH MODEL PARAMETER DEFINITION ELEMENT STIFFNESS MATRIX FORMULATION PARAMETERS QUAD ELEMENT VERTEX ROTATION = ON QUAD ELEMENT INTERNAL NODE QUAD ELEMENT MEMBRANE REDUCED ORDER INTEGRATION = ON = ON QUAD ELEMENT BENDING REDUCED ORDER INTEGRATION = ON ELEMENT LOAD VECTOR FORMULATION PARAMETERS QUAD ELEMENT EQUIVALENT LOAD VECTOR FORMULATION = ON MODEL SOLUTION SEQUENCE PARAMETERS STIFFNESS MATRIX AUTOMATIC SINGLE POINT CONSTRAINT = ON STIFFNESS MATRIX DIAGONAL RATIO TOLERANCE FOR AUTOMATIC SINGLE POINT CONSTRAINT = 1 00000E - 08STIFFNESS MATRIX FACTOR DIAGONAL RATIO TOLERANCE FOR MECHANISM DETECTION = 1.00000E+05 FLOATING POINT PRECISION CONSTANT FOR STIFFNESS MATRIX FACTORIZATION = 1.00000E-15 MODEL RESULTS FLOATING POINT ZERO TOLERANCE = 1.00000E-15

01/16/15 12:12 ADS NASTRAN VERSION 10.3.0.716 PAGE INSTALLATION TEST CASE 2-D CANTILEVER BEAM -QUADR ELEMENTS -2X5 MESH MODEL DATABASE SIZE MODEL DATABASE SIZE SUBCASES = 1 18 GRID POINTS = ELEMENTS 10 ELEMENT PROPERTIES = MATERIAL PROPERTIES = 1 SINGLE POINT CONSTRAINTS = 3 GRID POINT FORCES = 3 SETS SURFACES = 1 INSTALLATION TEST CASE 01/16/15 12:12 ADS NASTRAN VERSION 10.3.0.716 PAGE 18 2-D CANTILEVER BEAM -QUADR ELEMENTS -2X5 MESH MODEL SIZE = 108 DEGREES OF FREEDOM MATRIX SIZE = 2070 WORDS 0.0 ME SEMIBANDWIDTH = 47 WORDS 0.0 MEGABYTES SEMIBANDWIDTH = 47 WORDS ELEMENT GEOMETRY STATISTICS MAXIMUM QUAD ELEMENT WARPING ANGLE0.00 DEGREES ON ELEMENT 10MAXIMUM QUAD ELEMENT SKEW ANGLE0.00 DEGREES ON ELEMENT 10MAXIMUM QUAD ELEMENT TAPER RATIO0.00 ON ELEMENT 10MAXIMUM QUAD ELEMENT ASPECT RATIO2.00 ON ELEMENT 10 GLOBAL STIFFNESS MATRIX ASSEMBLY STATISTICS 1962 WORDS 0.0 MEGABYTES SPARSE MATRIX SIZE = 3105 WORDS MEMORY ALLOCATED = 0.0 MEGABYTES MAXIMUM GLOBAL STIFFNESS MATRIX TERM ZEROED = 9.9206E-17 MINIMUM GLOBAL STIFFNESS MATRIX TERM ZEROED = 0.0000E+00 REDUCTION IN GLOBAL STIFFNESS MATRIX SIZE = 58.00 PERCENT ASSEMBLY TIME FOR 10 ELEMENTS = 0.1 SECONDS INSTALLATION TEST CASE 01/16/15 12:12 ADS NASTRAN VERSION 10.3.0.716 PAGE 2-D CANTILEVER BEAM -QUADR ELEMENTS -2X5 MESH 60 LB EDGE LOAD IN Y-DIRECTION SUBCASE 1 MAXIMUM STIFFNESS MATRIX DIAGONAL = 3.0578E+06 AT GRID 14 COMPONENT 2 MINIMUM STIFFNESS MATRIX DIAGONAL = 1.5359E+04 AT GRID 1 COMPONENT 5 INSTALLATION TEST CASE 01/16/15 12:12 ADS NASTRAN VERSION 10.3.0.716 PAGE 20 2-D CANTILEVER BEAM -OUADR ELEMENTS -2X5 MESH 60 LB EDGE LOAD IN Y-DIRECTION SUBCASE 1 GLOBAL STIFFNESS MATRIX FACTORIZATION STATISTICS NUMBER OF NEGATIVE TERMS ON FACTOR DIAGONAL = 0 MAXIMUM MATRIX FACTOR DIAGONAL RATIO = 2.773E+03 AT GRID 8 COMPONENT 3 FACTORED SPARSE MATRIX SIZE = 1308 WORDS 0.0 MEGABYTES ADDITIONAL MEMORY ALLOCATED = 53670 WORDS 0.4 MEGABYTES

FACTORIZATION TIME FOR 1308 WORDS = 0.0 SECONDS

INSTALLATION TEST CASE 01/16/15 12:12 ADS NASTRAN VERSION 10.3.0.716 PAGE 2-D CANTILEVER BEAM -QUADR ELEMENTS -2X5 MESH 60 LB EDGE LOAD IN Y-DIRECTION SUBCASE 1 DISPLACEMENT VECTOR GRID COORDINATE Τ1 т2 Τ3 R1 R2 R3 ID ID 0 4.514572E-03 3.047095E-02 0.000000E+00 0.000000E+00 0.000000E+00 4.332973E-03 0 0.000000E+00 3.045806E-02 0.000000E+00 0.000000E+00 0.000000E+00 4.018986E-03 3 0 -4.514572E-03 3.047095E-02 0.000000E+00 0.000000E+00 0.000000E+00 4.332973E-03 4 0 1.584370E-03 1.820868E-03 0.000000E+00 0.000000E+00 0.000000E+00 1.424074E-03 0.000000E+00 1.659872E-03 0.000000E+00 0.000000E+00 0.000000E+00 1.507010E-03 5 0 -1.584370E-03 1.820868E-03 6 0 0.000000E+00 0.000000E+00 0.00000E+00 1.424074E-03 3.792008E-03 1.321103E-02 0.00000E+00 0.000000E+00 0.000000E+00 3.666624E-03 7 0 8 0 0.000000E+00 1.315702E-02 0.000000E+00 0.000000E+00 0.00000E+00 3.348591E-03 9 0 -3.792008E-03 1.321103E-02 0.000000E+00 0.000000E+00 0.000000E+00 3.666624E-03 2.877639E-03 6.417065E-03 2.774258E-03 10 0.000000E+00 0.000000E+00 0.000000E+00 0 11 0 0.000000E+00 6.299692E-03 0.000000E+00 0.000000E+00 0.000000E+00 2.549374E-03 12 0 -2.877639E-03 6.417065E-03 0.000000E+00 0.000000E+00 0.000000E+00 2.774258E-03 4.330951E-03 2.147459E-02 0.000000E+00 2.145137E-02 13 0 0.00000E+00 0.000000E+00 0.00000E+00 4.151929E-03 0.000000E+00 0.000000E+00 3.860329E-03 14 0 0.000000E+00 -4.330951E-03 2.147459E-02 0.000000E+00 0.000000E+00 0.000000E+00 4.151929E-03 15 0 MAXIMUM DISPLACEMENT MAGNITUDE = 3.080358E-02 AT GRID 3 MAXIMUM ROTATION MAGNITUDE = 4.332973E-03 AT GRID 1 EPSTLON = 4.727113E-14 STRAIN ENERGY = 9.139352E-01 SOLUTION TIME FOR 108 DEGREES OF FREEDOM = 0.0 SECONDS INSTALLATION TEST CASE 01/16/15 12:12 ADS NASTRAN VERSION 10.3.0.716 PAGE 2-D CANTILEVER BEAM -OUADR ELEMENTS -2X5 MESH 60 LB EDGE LOAD IN Y-DIRECTION SUBCASE 1 FORCES OF SINGLE-POINT CONSTRAINT GRID COORDINATE т1 Т2 Т3 R1 R3 R2 ID ID -3.000000E+02 -6.983513E+01 0.00000E+00 0.00000E+00 0.00000E+00 2.430190E+01 -1.008971E-12 7.967025E+01 0.000000E+00 0.00000E+00 0.000000E+00 -4.860380E+01 16 0 17 0 3.000000E+02 -6.983513E+01 0.000000E+00 0.000000E+00 0.000000E+00 2.430190E+01 0 18 01/16/15 12:12 ADS NASTRAN VERSION 10.3.0.716 PAGE INSTALLATION TEST CASE 2-D CANTILEVER BEAM -QUADR ELEMENTS -2X5 MESH 60 LB EDGE LOAD IN Y-DIRECTION SUBCASE 1 MAXIMUM SINGLE POINT CONSTRAINT FORCE MAGNITUDE = 3.080210E+02 AT GRID 16 MAXIMUM SINGLE POINT CONSTRAINT MOMENT MAGNITUDE = 4.860379E+01 AT GRID 17 01/16/15 12:12 ADS NASTRAN VERSION 10.3.0.716 PAGE INSTALLATION TEST CASE 2.4 2-D CANTILEVER BEAM -QUADR ELEMENTS -2X5 MESH LOAD VECTOR RESULTANT SUBCASE т1 т2 ΤЗ R1 R2 R3 ID 0.000000E+00 6.000000E+01 0.000000E+00 0.000000E+00 0.000000E+02 1

INSTALLATIO 25 2-D CANTILE	N TEST CASE VER BEAM -QUADE	R ELEMENTS -2X5	MESH		01/16/15	12:12 ADS NASTRAN VERSION 10.3.0.716	PAGE
		SINGLE	POINT (CONSTRAI	NT VECT	TOR RESULTANT	
SUBCASE	Tl	Τ2	Т3	R1	R2	R3	
10	-2.614797E-12	-6.000000E+01	0.00000E+00	0.00000E+00	0.00000E+00	-6.00000E+02	
INSTALLATIO 26	N TEST CASE				01/16/15	12:12 ADS NASTRAN VERSION 10.3.0.716	PAGE
2-D CANTILE	VER BEAM -QUADE	R ELEMENTS -2X5	MESH				
			MAXIM	UM APPL	IED LOA	D S	
SUBCASE	Τ1	Τ2	ΤЗ	Rl	R2	R3	
10	0.00000E+00	3.000000E+01	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	
TNOTATIATO					01/16/15	12.12 ADS MASTRAM MEDSTON 10 2 0 716	DACE
27 2-D CANTILE	VED BEAM _OUADI	DETEMENTS _275	MESU		01/10/13	12.12 ADS NASTRAN VERSION 10.3.0.710	INGE
Z D CANTIDE	VER DEAM QUADI	X EDEMENTS ZX3	MEON				
			махтм	UM DISP	LACEMEN	т S	
SUBCASE	Ψ1	Ͳ2	т.3	R1	B2	R3	
ID 1	4 514572E-03	 3 047095E-02	0 000000E+00	0 00000E+00	0 000000E+00	4 332973E-03	
-	1.0110,22 00	0.0170302 02	0.000002.00	0.0000002.000	0.0000002.000		
INSTALLATIO	N TEST CASE				01/16/15	12:12 ADS NASTRAN VERSION 10.3.0.716	PAGE
20 2-D CANTILE	VER BEAM -QUADE	R ELEMENTS -2X5	MESH				
		MAXIMUM	FORCES	OF SIN	GLE POI	N T C O N S T R A I N T	
SUBCASE	Τ1	Т2	Т3	R1	R2	R3	
ID 1	3.000000E+02	7.967025E+01	0.000000E+00	0.00000E+00	0.000000E+00	4.860380E+01	

INSTALLATION TEST CASE 29 2-D Cantilever beam -ouadr elements -235 mesh						/15 12:12	ADS NASTRAN VI	ERSION 10.3.0.73	l6 page
60 LB EDGE I	LOAD IN Y-	DIRECTION	2.1.0 1.1.0.1		SUBCASE 1				
		STRESS	ES IN QUA	DELEN	4 E N T S C	ON SUR	FACE 1		
SURFACE COOP	RDINATE II) = 0 X-AXIS =	X NORMAL = Z						
ELEMENT ID	GRID ID	FIBER DISTANCE	STRESSES IN SURFA NORMAL-X NOF	CE COORDINA MAL-Y S	ATE SYSTEM SHEAR-XY	PRINCIP ANGLE	AL STRESSES (2 MAJOR	ZERO SHEAR) MINOR	HENCKY VON MISES
1	CENTER	-5.00000E-02 5.00000E-02	4.07969E+03 2.80 4.07969E+03 2.80	702E+02 3. 702E+02 3.	.00000E+02 .00000E+02	4.4875 4.4875	4.10324E+03 4.10324E+03	2.57158E+02 2.57158E+02	3.98089E+03 3.98089E+03
2	CENTER	-5.00000E-02 5.00000E-02	3.12228E+03 5.78 3.12228E+03 5.78	723E+01 3. 723E+01 3.	.00000E+02 .00000E+02	5.5391 5.5391	3.15137E+03 3.15137E+03	2.87790E+01 2.87790E+01	3.13708E+03 3.13708E+03
3	CENTER	-5.00000E-02 5.00000E-02	2.23803E+03 -3.02 2.23803E+03 -3.02	839E+01 3. 839E+01 3.	.00000E+02 .00000E+02	7.4081 7.4081	2.27703E+03 2.27703E+03	-6.92903E+01 -6.92903E+01	2.31246E+03 2.31246E+03
4	CENTER	-5.00000E-02 5.00000E-02	1.35088E+03 -2.49 1.35088E+03 -2.49	630E+01 3. 630E+01 3.	.00000E+02 .00000E+02	11.7809 11.7809	1.41345E+03 1.41345E+03	-8.75320E+01 -8.75320E+01	1.45919E+03 1.45919E+03
5	CENTER	-5.00000E-02 5.00000E-02	4.46982E+02 -9.15 4.46982E+02 -9.15	219E+00 3. 219E+00 3.	.00000E+02 .00000E+02	26.3785 26.3785	5.95763E+02 5.95763E+02	-1.57933E+02 -1.57933E+02	6.88453E+02 6.88453E+02
6	CENTER	-5.00000E-02 5.00000E-02	-4.07969E+03 -2.80 -4.07969E+03 -2.80	702E+02 3. 702E+02 3.	.00000E+02 .00000E+02	85.5125 85.5125	-2.57158E+02 -2.57158E+02	-4.10324E+03 -4.10324E+03	3.98089E+03 3.98089E+03
7	CENTER	-5.00000E-02 5.00000E-02	-3.12228E+03 -5.78 -3.12228E+03 -5.78	723E+01 3. 723E+01 3.	.00000E+02 .00000E+02	84.4609 84.4609	-2.87790E+01 -2.87790E+01	-3.15137E+03 -3.15137E+03	3.13708E+03 3.13708E+03
8	CENTER	-5.00000E-02 5.00000E-02	-2.23803E+03 3.02 -2.23803E+03 3.02	839E+01 3. 839E+01 3.	.00000E+02 .00000E+02	82.5919 82.5919	6.92903E+01 6.92903E+01	-2.27703E+03 -2.27703E+03	2.31246E+03 2.31246E+03
9	CENTER	-5.00000E-02 5.00000E-02	-1.35088E+03 2.49 -1.35088E+03 2.49	630E+01 3. 630E+01 3.	.00000E+02 .00000E+02	78.2191 78.2191	8.75320E+01 8.75320E+01	-1.41345E+03 -1.41345E+03	1.45919E+03 1.45919E+03
10	CENTER	-5.00000E-02 5.00000E-02	-4.46982E+02 9.15 -4.46982E+02 9.15	219E+00 3. 219E+00 3.	.00000E+02 .00000E+02	63.6215 63.6215	1.57933E+02 1.57933E+02	-5.95763E+02 -5.95763E+02	6.88453E+02 6.88453E+02
MAXIMUM QUA MINIMUM QUA MAXIMUM QUA	AD ELEMENI AD ELEMENI AD ELEMENI	PRINCIPAL STRE PRINCIPAL STRE SHEAR STRESS	SS = 4.103236E+03 SS = -4.103236E+03 = 1.923039E+03 = 2.000002E+03	AT ELEMENT AT ELEMENT AT ELEMENT	Г 1 Г 6 Г 6				
MAXIMUM QUA	AD ELEMEN'I	YON MISES STRE	55 = 3.980892E+03	AT ELEMEN'I	1. 0				

INSTALLATION TEST CASE 01/16/15 12:12 ADS NASTRAN VERSION 10.3.0.716 PAGE								
2-D CANTIL	2-D CANTILEVER BEAM -QUADR ELEMENTS -2X5 MESH							
60 LB EDGE	LOAD IN Y-DIREC	TION	SUBCASE 1					
		GRID POINT ST	FRESSES	ON SUR	FACE 1			
SURFACE CC	OORDINATE ID = 0	X-AXIS = X NORMAL = Z						
GRID	FIBER	STRESSES IN SURFACE COORI	DINATE SYSTEM	PRINCIP	AL STRESSES (ZER)	O SHEAR)	HENCKY	
ID	DISTANCE	NORMAL-X NORMAL-Y	SHEAR-XY	ANGLE	MAJOR	MINOR	VON MISES	
1	-5.00000E-02	4.22446E+02 -1.02593E+02	5.82048E+01	6.2506	4.28821E+02 -1	.08968E+02	4.92432E+02	
	5.00000E-02	4.22446E+02 -1.02593E+02	5.82048E+01	6.2506	4.28821E+02 -1	.08968E+02	4.92432E+02	
2	-5.00000E-02	5.95719E-11 -3.41771E-11	5.41795E+02	45.0000	5.41795E+02 -5	.41795E+02	9.38417E+02	
	5.00000E-02	5.95719E-11 -3.41771E-11	5.41795E+02	45.0000	5.41795E+02 -5	.41795E+02	9.38417E+02	
3	-5.00000E-02	-4.22446E+02 1.02593E+02	5.82048E+01	83.7494	1.08968E+02 -4	.28821E+02	4.92432E+02	
	5.00000E-02	-4.22446E+02 1.02593E+02	5.82048E+01	83.7494	1.08968E+02 -4	.28821E+02	4.92432E+02	
4	-5.00000E-02	7.27173E+03 -3.20149E+02	2.83476E+02	2.1354	7.28230E+03 -3	.30719E+02	7.45317E+03	
	5.00000E-02	7.27173E+03 -3.20149E+02	2.83476E+02	2.1354	7.28230E+03 -3	.30719E+02	7.45317E+03	
5	-5.00000E-02	4.29168E-12 3.41771E-12	3.16524E+02	45.0000	3.16524E+02 -3	.16524E+02	5.48235E+02	
	5.00000E-02	4.29168E-12 3.41771E-12	3.16524E+02	45.0000	3.16524E+02 -3	.16524E+02	5.48235E+02	
6	-5.00000E-02	-7.27173E+03 3.20149E+02	2.83476E+02	87.8646	3.30719E+02 -7	.28230E+03	7.45317E+03	
	5.00000E-02	-7.27173E+03 3.20149E+02	2.83476E+02	87.8646	3.30719E+02 -7	.28230E+03	7.45317E+03	
7	-5.00000E-02	3.64043E+03 6.25816E+01	7.28930E+01	1.1667	3.64192E+03 6	.10971E+01	3.61176E+03	
	5.00000E-02	3.64043E+03 6.25816E+01	7.28930E+01	1.1667	3.64192E+03 6	.10971E+01	3.61176E+03	
8	-5.00000E-02	2.02647E-11 2.70752E-11	5.27107E+02	45.0000	5.27107E+02 -5	.27107E+02	9.12976E+02	
	5.00000E-02	2.02647E-11 2.70752E-11	5.27107E+02	45.0000	5.27107E+02 -5	.27107E+02	9.12976E+02	
9	-5.00000E-02	-3.64043E+03 -6.25816E+01	7.28930E+01	88.8333	-6.10971E+01 -3	.64192E+03	3.61176E+03	
	5.00000E-02	-3.64043E+03 -6.25816E+01	7.28930E+01	88.8333	-6.10971E+01 -3	.64192E+03	3.61176E+03	
10	-5.00000E-02	5.59876E+03 1.21774E+01	1.67094E+02	1.7117	5.60375E+03 7	.18410E+00	5.60017E+03	
	5.00000E-02	5.59876E+03 1.21774E+01	1.67094E+02	1.7117	5.60375E+03 7	.18410E+00	5.60017E+03	
11	-5.00000E-02	4.29168E-12 -1.84528E-11	4.32906E+02	45.0000	4.32906E+02 -4	.32906E+02	7.49816E+02	
	5.00000E-02	4.29168E-12 -1.84528E-11	4.32906E+02	45.0000	4.32906E+02 -4	.32906E+02	7.49816E+02	
12	-5.00000E-02	-5.59876E+03 -1.21774E+01	1.67094E+02	88.2883	-7.18410E+00 -5	.60375E+03	5.60017E+03	
	5.00000E-02	-5.59876E+03 -1.21774E+01	1.67094E+02	88.2883	-7.18410E+00 -5	.60375E+03	5.60017E+03	
13	-5.00000E-02	1.80216E+03 3.41200E+01	5.82143E+01	1.8838	1.80407E+03 3	.22053E+01	1.78819E+03	
	5.00000E-02	1.80216E+03 3.41200E+01	5.82143E+01	1.8838	1.80407E+03 3	.22053E+01	1.78819E+03	
14	-5.00000E-02	2.01368E-11 -6.79279E-11	5.41786E+02	45.0000	5.41786E+02 -5	.41786E+02	9.38400E+02	
	5.00000E-02	2.01368E-11 -6.79279E-11	5.41786E+02	45.0000	5.41786E+02 -5	.41786E+02	9.38400E+02	
15	-5.00000E-02	-1.80216E+03 -3.41200E+01	5.82143E+01	88.1162	-3.22053E+01 -1	.80407E+03	1.78819E+03	
	5.00000E-02	-1.80216E+03 -3.41200E+01	5.82143E+01	88.1162	-3.22053E+01 -1	.80407E+03	1.78819E+03	
16	-5.00000E-02	7.99996E+03 1.07349E+03	3.20327E+02	2.6422	8.01474E+03 1	.05870E+03	7.54134E+03	
	5.00000E-02	7.99996E+03 1.07349E+03	3.20327E+02	2.6422	8.01474E+03 1	.05870E+03	7.54134E+03	
17	-5.00000E-02	6.59384E-12 -1.34150E-11	2.79673E+02	45.0000	2.79673E+02 -2	.79673E+02	4.84408E+02	
	5.00000E-02	6.59384E-12 -1.34150E-11	2.79673E+02	45.0000	2.79673E+02 -2	.79673E+02	4.84408E+02	
18	-5.00000E-02	-7.99996E+03 -1.07349E+03	3.20327E+02	87.3578	-1.05870E+03 -8	.01474E+03	7.54134E+03	
	5.00000E-02	-7.99996E+03 -1.07349E+03	3.20327E+02	87.3578	-1.05870E+03 -8	.01474E+03	7.54134E+03	
MAXIMUM S MINIMUM S MAXIMUM S MAXIMUM S	HELL ELEMENT PRI HELL ELEMENT PRI HELL ELEMENT SHE HELL ELEMENT VON	NCIPAL STRESS = 8.014745E+(NCIPAL STRESS = -8.014745E+(2AR STRESS = 3.806512E+(1 MISES STRESS = 7.541336E+(03 AT GRID 16 03 AT GRID 18 03 AT GRID 6 03 AT GRID 18					

INSTALLATION 31 2-D CANTILEY	n test case ver beam -quadr	ELEMENTS -2X5	MESH		01/16/15	12:12	ADS NASTRAN	VERSION 10.3.0.716	PAGE
		INTE	RNAL LC	DAD VECI	OR RES	ULTA	N T		
SUBCASE	T1	Τ2	ТЗ	R1	R2		R3		
1	0.00000E+00	0.000000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.000	000E+00		
					01/16/15	10.10	ADC NACEDAN	VEDGION 10 3 0 716	DACE
32	N IESI CASE		MEGU		01/10/13	12:12	ADS NASIRAN	VERSION 10.5.0.716	PAGE
Z-D CANTILE	VEK BEAM -QUADR	ELEMENTS -2X5	MESH						
MODEL ANAL	AMMIS TIME SIMMA	RY							
MODEL AWALISIS TIME SUMWART									
TOTAL CPU TIME = 0.9 SECONDS WALLCLOCK TIME = 1.0 SECONDS									
EXECUTION	EXECUTION TERMINATED NORMALLY								
TOTAL WARNINGS = 0 TOTAL FATAL ERRORS = 0									

2.2.2 Bulk Data Output File

The Bulk Data Output File is a complete NASTRAN input file generated from the Model Database whenever the Model Initialization directive TRSLBULKDATA is set to ON. This file can also be included in the Model Results Output File by setting the directive, BULKDATAOUT, to ON. Sorting of the Bulk Data Section of this file is controlled with the BULKDATASORT directive. Note that if model translation terminates in a fatal error, the Bulk Data Output File will be a duplicate of the Model Input File with the appropriate error messages. A translated Bulk Data Output File is not generated if a fatal error occurs in the Model Translator Module.

Listina 2-4.	Example	Bulk Data	Output	File.
	Example	Ban Bata	output	

ې \$									
\$									
TITLE = SUBTITL	E = 2 - D CA	FION TEST ANTILEVER	r case R beam -(DUADR ELI	ements -2	2X5 MESH			
SET 1 =	ALL			~					
SURFACE	1. SET 1.	SYSTEM	BASIC, A	AXTS X. 1	NORMAL Z				
DISPLAC	EMENT = A	ALL	,						
SPCFORC	ES = ALL								
ELFORCE	(CORNER) =	= ALL							
ELSTRES	S (CORNER)	= AT.T.							
SUBCASE	1								
LABEL	= 60 LB EI	DGE LOAD	IN Y-DIE	RECTION					
SPC =	1								
LOAD =	2								
BEGIN B	ULK								
s									
\$	12-	3-	4-	5	6-	7-	8-	9	-0
GRID	1	0	10.0000	0.	0.	0			
GRID	2	0	10.0000	1.00000	0.	0			
GRID	3	0	10.0000	2.00000	0.	0			
GRID	4	0	2.00000	0.	0.	0			
GRID	5	0	2.00000	1.00000	0.	0			
GRID	6	0	2.00000	2.00000	0.	0			
GRID	7	0	6.00000	Ο.	Ο.	0			
GRID	8	0	6.00000	1.00000	Ο.	0			
GRID	9	0	6.00000	2.00000	Ο.	0			
GRID	10	0	4.00000	Ο.	Ο.	0			
GRID	11	0	4.00000	1.00000	Ο.	0			
GRID	12	0	4.00000	2.00000	0.	0			
GRID	13	0	8.00000	0.	0.	0			
GRID	14	0	8.00000	1.00000	0.	0			
GRID	15	0	8.00000	2.00000	0.	0			
GRID	16	0	0.	0.	0.	0			
GRID	17	0	Ο.	1.00000	Ο.	0			
GRID	18	0	0.	2.00000	0.	0			
COUADR	1	10	16	4	5	17	Ο.	0.	
CQUADR	2	10	4	10	11	5	0.	0.	
CQUADR	3	10	10	7	8	11	0.	0.	
CQUADR	4	10	7	13	14	8	0.	0.	
CQUADR	5	10	13	1	2	14	0.	0.	
CQUADR	6	10	17	5	6	18	0.	0.	
CQUADR	7	10	5	11	12	6	0.	0.	
CQUADR	8	10	11	8	9	12	0.	0.	
CQUADR	9	10	8	14	15	9	0.	0.	
CQUADR	10	10	14	2	3	15	0.	0.	
PSHELL	10	100	0.10000	100	1.00000	100	0.83333	0.	
	-0.05000	0.05000							
MAT1	1001	L.0000+73	8.8462+6	0.30000	0.10000	0.	0.	0.	
	0.	0.	0.			· ·	÷.		
SPC1	1	123456	16						
SPC1	1	123456	17						
SPC1	1	123456	18						
FORCE	2	1	10	15,0000	Ω	1.00000	0		
FORCE	2	2	0	30.0000	0	1.00000	0		
FORCE	2	3	0	15.0000	0.	1.00000	0.		

ENDDATA

2.2.3 System Log File

The System Log File contains solution status and results summary information generated as the program executes. All program generated error messages are written to this file.

Listing 2-5. Example System Log File.

```
ADS NASTRAN VERSION 10.3.0.716
                                16:27 06/14/14
MODEL DATABASE IDENTIFICATION NUMBER: 017T37
LICENSE STATUS
AVAILABLE ANALYSIS SOLUTIONS = LINEAR STATIC
                              PRESTRESS STATIC
                              NONLINEAR STATIC
                               MODAL
                              MODAL COMPLEX EIGENVALUE
                               LINEAR PRESTRESS MODAL
                               NONLINEAR PRESTRESS MODAL
                               LINEAR PRESTRESS COMPLEX EIGENVALUE
                               NONLINEAR PRESTRESS COMPLEX EIGENVALUE
                               LINEAR BUCKLING
                               NONLINEAR BUCKLING
                              MODAL TRANSIENT RESPONSE
                               DIRECT TRANSIENT RESPONSE
                               NONLINEAR TRANSIENT RESPONSE
                               LINEAR PRESTRESS TRANSIENT RESPONSE
                               NONLINEAR PRESTRESS TRANSIENT RESPONSE
                               MODAL FREQUENCY RESPONSE
                               DIRECT FREQUENCY RESPONSE
                               LINEAR PRESTRESS FREQUENCY RESPONSE
                               NONLINEAR PRESTRESS FREQUENCY RESPONSE
                               LINEAR STEADY STATE HEAT TRANSFER
                               NONLINEAR STEADY STATE HEAT TRANSFER
                               NONLINEAR TRANSIENT HEAT TRANSFER
                              MATRIX REDUCTION
REMAINING SOLUTION LICENSE TIME = 205 DAYS
AVAILABLE RESULTS TRANSLATORS = NORAN BINARY
                               NORAN ASCII
                               PATRAN BINARY
                                PATRAN ASCII
                                FEMAP BINARY
                                FEMAP ASCII
                                NASTRAN BINARY
                               NASTRAN XDB
REMAINING TRANSLATOR LICENSE TIME = 205 DAYS
AVAILABLE ANALYSIS FEATURES = MULTIAXIAL FATIGUE
                              DYNAMIC FATIGUE
                              VIBRATION FATIGUE
                              PROGRESSIVE PLY FAILURE
                             MCT PLY FAILURE
REMAINING FEATURE LICENSE TIME = 205 DAYS
MAXIMUM MODEL SIZE = NO LIMITS
```

Listing 2-5. Example System Log File. (Continued)

OPERATING SYSTEM = WINDOWS XP V5.01 BUILD:2600 SERVICE PACK:2 CPU TYPE = XEON CPU SPEED = 2806 MHZ INSTALLED MEMORY = 2046 MEGABYTES 4096.0 MEGABYTES VIRTUAL MEMORY = 536870911 WORDS REAL MEMORY = 177991168 WORDS 1358.0 MEGABYTES DRIVE M: DISK SPACE = 656016384 WORDS 5005.0 MEGABYTES DRIVE L: DISK SPACE = 1982897152 WORDS 15128.3 MEGABYTES GENERATING DATABASE: TEST.NDB 14 CASE CONTROL COMMANDS WERE RECOGNIZED OF A TOTAL OF 14 READ IN 34 BULK DATA ENTRIES WERE RECOGNIZED OF A TOTAL OF 34 READ IN MODEL DATABASE SIZE SUBCASES = 1 GRID POINTS = 18 ELEMENTS = 10 ELEMENT PROPERTIES MATERIAL PROPERTIES 1 1 = SINGLE POINT CONSTRAINTS = 3 3 GRID POINT FORCES = SETS 1 = SURFACES = 1 MODULE SEQUENCE FOR SOLUTION: LINEAR STATIC MODEL SIZE 108 DEGREES OF FREEDOM = MODEL SIZE=108 DEGREES OF FREEDOMMATRIX SIZE=2071 WORDS0.0 MEGABYTESSEMIBANDWIDTH=47 WORDS AVAILABLE VIRTUAL MEMORY = 536870911 WORDS 4096.0 MEGABYTES AVAILABLE PHYSICAL MEMORY = 175752192 WORDS 1340.9 MEGABYTES DRIVE M: DISK SPACE = 656008192 WORDS 5004.9 MEGABYTES DRIVE L: DISK SPACE = 1980836864 WORDS 15112.6 MEGABYTES ELEMENT GEOMETRY STATISTICS MAXIMUM QUAD ELEMENT WARPING ANGLE = 0.00 DEGREES ON ELEMENT 10 MAXIMUM QUAD ELEMENT SKEW ANGLE=0.00 DEGREES ON ELEMENT 10MAXIMUM QUAD ELEMENT TAPER RATIO=0.00ON ELEMENT 10MAXIMUM QUAD ELEMENT ASPECT RATIO=2.00ON ELEMENT 10 GLOBAL STIFFNESS MATRIX ASSEMBLY STATISTICS SPARSE MATRIX SIZE = 2071 WORDS 0.0 MEGABYTES 3106 WORDS MEMORY ALLOCATED = 0.0 MEGABYTES MAXIMUM GLOBAL STIFFNESS MATRIX TERM ZEROED = 2.3686E-16 MINIMUM GLOBAL STIFFNESS MATRIX TERM ZEROED = 0.0000E+00 REDUCTION IN GLOBAL STIFFNESS MATRIX SIZE = 59.91 PERCENT ASSEMBLY TIME FOR 10 ELEMENTS = 0.0 SECONDS SOLUTION SEQUENCE FOR SUBCASE 1 MAXIMUM STIFFNESS MATRIX DIAGONAL = 3.0598E+06 AT GRID 14 COMPONENT 2 MINIMUM STIFFNESS MATRIX DIAGONAL = 1.5359E+04 AT GRID 1 COMPONENT 5 AVAILABLE VIRTUAL MEMORY = 536870911 WORDS 4096.0 MEGABYTES AVAILABLE PHYSICAL MEMORY = 175667712 WORDS 1340.2 MEGABYTES DRIVE M: DISK SPACE = 656008192 WORDS 5004.9 MEGABYTES DRIVE L: DISK SPACE = 1980829696 WORDS 15112.5 MEGABYTES

Listing 2-5. Example System Log File. (Continued)

```
GLOBAL STIFFNESS MATRIX FACTORIZATION STATISTICS
NUMBER OF NEGATIVE TERMS ON FACTOR DIAGONAL = 0
MAXIMUM MATRIX FACTOR DIAGONAL RATIO = 3.829E+03 AT GRID 15 COMPONENT 3
REORDERING METHOD REQUESTED = AUTO
REORDERING METHOD USED = VRM1
                                  2304 WORDS
FACTORED SPARSE MATRIX SIZE =
                                                   0.0 MEGABYTES
ADDITIONAL MEMORY ALLOCATED = 255999 WORDS
                                                   2.0 MEGABYTES
FACTORIZATION TIME FOR 2304 WORDS = 0.0 SECONDS
MAXIMUM DISPLACEMENT MAGNITUDE = 3.072174E-02 AT GRID 1
MAXIMUM ROTATION MAGNITUDE = 4.607089E-03 AT GRID 1
        = 8.367656E-14
EPSTLON
STRAIN ENERGY = 9.114923E-01
SOLUTION TIME FOR 108 DEGREES OF FREEDOM = 0.0 SECONDS
MAXIMUM SINGLE POINT CONSTRAINT FORCE MAGNITUDE = 3.024285E+02 AT GRID 18
MAXIMUM SINGLE POINT CONSTRAINT MOMENT MAGNITUDE = 5.408843E+01 AT GRID 17
CALCULATING RESULTS FOR SUBCASE 1
CALCULATING QUAD ELEMENT RESULTS ON SURFACE 1 FOR SUBCASE 1
MAXIMUM QUAD ELEMENT PRINCIPAL STRESS = 8.116895E+03 AT ELEMENT 1
MINIMUM QUAD ELEMENT PRINCIPAL STRESS = -8.116895E+03 AT ELEMENT 6
MAXIMUM QUAD ELEMENT SHEAR STRESS = 4.283409E+03 AT ELEMENT 6
MAXIMUM QUAD ELEMENT VON MISES STRESS = 8.350951E+03 AT ELEMENT 6
DATABASE STORAGE STATISTICS
MODEL TRANSLATION DATA
                            = MEMORY
GRID POINT COORDINATE DATA = MEMORY
ELEMENT DIRECTION COSINE DATA = MEMORY
GRID POINT LOAD DATA = MEMORY
ELEMENT LOAD DATA = MEMORY
ELEMENT LOAD DATA
ELEMENT RESULTS DATA
                           = MEMORY
MODAL VECTOR DATA
                            = MEMORY
MODEL ANALYSIS TIME SUMMARY
TOTAL CPU TIME = 0.9 SECONDS
WALLCLOCK TIME = 1.0 SECONDS
EXECUTION TERMINATED NORMALLY
TOTAL WARNINGS
                 = 0
TOTAL FATAL ERRORS = 0
```

2.2.4 Model Status File

The Model Status File is similar to the System Log File except that it contains <u>all</u> solution status and results summary information. The Model Initialization directive, MODLSTATUS, controls this file. All real time displayed status information is written to this file when MODLSTATUS is set to FILE or BOTH.

Listing 2-6. Example Model Status File.

```
ADS NASTRAN VERSION 10.3.0.716 12:27 01/16/15
MODEL DATABASE IDENTIFICATION NUMBER: 017T37
INITIALIZATION PROCESSOR MODULE
LICENSE STATUS
READING IN FILE: NASTRAN.INI
PROCESSING MODEL INITIALIZATION FILE
DELETING FILE: TEST.FNO
VIRTUAL MEMORY = 536870911 WORDS 4096.0 MEGABYTES
REAL MEMORY = 182401536 WORDS 1391.6 MEGABYTES
DRIVE M: DISK SPACE = 656016384 WORDS
                                           5005.0 MEGABYTES
DRIVE L: DISK SPACE = 1981538304 WORDS 15117.9 MEGABYTES
WRITING MODEL RESULTS OUTPUT TO FILE: TEST.OUT
WRITING OUT MODEL INITIALIZATION DIRECTIVES
PAGES WRITTEN: 2
MODEL TRANSLATOR MODULE
GENERATING DATABASE: TEST.NDB
READING IN FILE: TEST.NAS
LINES READ:
                 49
DETERMINING MODEL SIZE
PERCENT COMPLETE: 100
PROCESSING CASE CONTROL COMMANDS
PERCENT COMPLETE: 100
14 CASE CONTROL COMMANDS WERE RECOGNIZED OF A TOTAL OF 14 READ IN
PROCESSING BULK DATA ENTRIES
PERCENT COMPLETE: 100
34 BULK DATA ENTRIES WERE RECOGNIZED OF A TOTAL OF 34 READ IN
GENERATING CASE CONTROL COMMANDS
PERCENT COMPLETE: 100
GENERATING BULK DATA ENTRIES
PERCENT COMPLETE: 100
WRITING CASE CONTROL COMMANDS TO FILE: TEST.BDF
LINES WRITTEN:
                 16
WRITING BULK DATA ENTRIES TO FILE: TEST.BDF
LINES WRITTEN: 42
```

MODEL DATABASE SIZE

Listing 2-6. Example Model Status File. (Continued)

```
SUBCASES
                              =
                                       1
GRID POINTS
                                       18
                              =
ELEMENTS
                              =
                                       10
ELEMENT PROPERTIES
                             =
                                       1
                                       1
3
MATERIAL PROPERTIES
                              =
SINGLE POINT CONSTRAINTS
                              =
GRID POINT FORCES
                                       3
                             =
SETS
                              =
                                       1
SURFACES
                              =
                                        1
MODULE SEQUENCE FOR SOLUTION: LINEAR STATIC
GEOMETRY PROCESSOR MODULE
INITIALIZING SPARSE STORAGE
PERCENT COMPLETE: 100
MODEL SIZE=108 DEGREES OF FREEDOMMATRIX SIZE=2070 WORDS0.0 MEGABYTESSEMIBANDWIDTH=47 WORDS
AVAILABLE VIRTUAL MEMORY =65494528 WORDS499.7 MEGABYTESAVAILABLE PHYSICAL MEMORY =32453632 WORDS247.6 MEGABYTES
DRIVE D: DISK SPACE = 15756288 WORDS
                                             120.2 MEGABYTES
ASSEMBLING GLOBAL STIFFNESS MATRIX
PERCENT COMPLETE: 100
ELEMENT GEOMETRY STATISTICS
MAXIMUM QUAD ELEMENT WARPING ANGLE = 0.00 DEGREES ON ELEMENT 10
MAXIMUM QUAD ELEMENT SKEW ANGLE=0.00 DEGREES ON ELEMENT 10MAXIMUM QUAD ELEMENT TAPER RATIO=0.00ON ELEMENT 10MAXIMUM QUAD ELEMENT ASPECT RATIO=2.00ON ELEMENT 10
GLOBAL STIFFNESS MATRIX ASSEMBLY STATISTICS
SPARSE MATRIX SIZE =
                        1962 WORDS
                                             0.0 MEGABYTES
MEMORY ALLOCATED =
                          3105 WORDS
                                             0.0 MEGABYTES
MAXIMUM GLOBAL STIFFNESS MATRIX TERM ZEROED = 9.9206E-17
MINIMUM GLOBAL STIFFNESS MATRIX TERM ZEROED = 0.0000E+00
REDUCTION IN GLOBAL STIFFNESS MATRIX SIZE = 58.00 PERCENT
ASSEMBLY TIME FOR 10 ELEMENTS = 0.1 SECONDS
LINEAR SOLUTION PROCESSOR MODULE
SOLUTION SEQUENCE FOR SUBCASE 1
MAXIMUM STIFFNESS MATRIX DIAGONAL = 3.0578E+06 AT GRID 14 COMPONENT 2
MINIMUM STIFFNESS MATRIX DIAGONAL = 1.5359E+04 AT GRID 1 COMPONENT 5
AVAILABLE VIRTUAL MEMORY = 66522624 WORDS
                                                   507.5 MEGABYTES
AVAILABLE PHYSICAL MEMORY = 32373248 WORDS 247.0 MEGABYTES
DRIVE D: DISK SPACE = 15748096 WORDS
                                             120.1 MEGABYTES
FACTORIZING GLOBAL STIFFNESS MATRIX FOR SUBCASE 1
PERCENT COMPLETE: 100
```

Listing 2-6. Example Model Status File. (Continued)

```
GLOBAL STIFFNESS MATRIX FACTORIZATION STATISTICS
NUMBER OF NEGATIVE TERMS ON FACTOR DIAGONAL = 0
MAXIMUM MATRIX FACTOR DIAGONAL RATIO = 3.829E+03 AT GRID 15 COMPONENT 3
REORDERING METHOD REQUESTED = AUTO
REORDERING METHOD USED
                           = VRM1
FACTORED SPARSE MATRIX SIZE =
                                    2304 WORDS
                                                      0.0 MEGABYTES
ADDITIONAL MEMORY ALLOCATED = 255999 WORDS
                                                     2.0 MEGABYTES
FACTORIZATION TIME FOR 2304 WORDS = 0.0 SECONDS
ASSEMBLING GLOBAL LOAD VECTOR FOR SUBCASE 1
ASSEMBLING GRID POINT LOADS
PERCENT COMPLETE: 100
SOLVING FOR DISPLACEMENTS FOR SUBCASE 1
PERCENT COMPLETE: 100
MAXIMUM DISPLACEMENT MAGNITUDE = 3.072174E-02 AT GRID 1
MAXIMUM ROTATION MAGNITUDE = 4.607089E-03 AT GRID 1
EPSTLON
           = 8.367656E-14
STRAIN ENERGY = 9.114923E-01
SOLUTION TIME FOR 108 DEGREES OF FREEDOM = 0.0 SECONDS
WRITING OUT GRID POINT DISPLACEMENT VECTOR FOR SUBCASE 1
PAGES WRITTEN:
                  1
MAXIMUM SINGLE POINT CONSTRAINT FORCE MAGNITUDE = 3.024285E+02 AT GRID 18
MAXIMUM SINGLE POINT CONSTRAINT MOMENT MAGNITUDE = 5.408843E+01 AT GRID 17
WRITING OUT FORCES OF SINGLE POINT CONSTRAINT FOR SUBCASE 1
PAGES WRITTEN:
                  1
RESULTS PROCESSOR MODULE
CALCULATING RESULTS FOR SUBCASE 1
WRITING GRID POINT DISPLACEMENTS FOR SUBCASE 1 TO FILE: TEST.DIS
WRITING GRID POINT FORCES FOR SUBCASE 1 TO FILE: TEST.GPF
CALCULATING QUAD ELEMENT RESULTS ON SURFACE 1 FOR SUBCASE 1
PERCENT COMPLETE: 100
WRITING OUT FORCES IN QUAD ELEMENTS ON SURFACE 1 FOR SUBCASE 1
PAGES WRITTEN:
                   1
MAXIMUM QUAD ELEMENT PRINCIPAL STRESS = 8.116895E+03 AT ELEMENT 1
MINIMUM QUAD ELEMENT PRINCIPAL STRESS = -8.116895E+03 AT ELEMENT 6
MAXIMUM QUAD ELEMENT SHEAR STRESS = 4.283409E+03 AT ELEMENT 6
MAXIMUM QUAD ELEMENT VON MISES STRESS = 8.350951E+03 AT ELEMENT 6
WRITING OUT STRESSES IN QUAD ELEMENTS ON SURFACE 1 FOR SUBCASE 1
PAGES WRITTEN:
                 3
WRITING ELEMENT RESULTS FOR SUBCASE 1 TO FILE: TEST.ELS
DELETING FILE: TEST.NDB
GENERATING RESULTS NEUTRAL FILE
PERCENT COMPLETE: 100
DELETING FILE: TEST.GPF
```

Listing 2-6. Example Model Status File. (Continued)

MODEL ANALYSIS TIME SUMMARY TOTAL CPU TIME = 0.9 SECONDS WALLCLOCK TIME = 1.0 SECONDS EXECUTION TERMINATED NORMALLY TOTAL WARNINGS = 0 TOTAL FATAL ERRORS = 0

2.2.5 Results Neutral Files

The result neutral file system is the primary interface for graphical processing of model results data. The file system is also used for:

- Source of expanded model results output.
- Input file for results limits search via the RESULTLIMITS Case Control command.
- Input file for automated SET entry generation via the SETGENERATE Case Control command.

The results neutral file system consists of eight types of files, each generated by the Results Processor. A specific Model Initialization directive as shown below controls output of each type:

File Type	Model Initialization Directive	Default Neutral Filename
Grid Point Displacement Vector	DISPFILE = [d:] [path] filename[.ext]	model output filename.DIS
Grid Point Force Vector	FORCFILE = [d:] [path] filename[.ext]	model output filename.GPF
Element Internal Load Vector	LOADFILE = [d:] [path] filename[.ext]	model output filename.ELF
Element Results	ELEMFILE = [d:] [path] filename[.ext]	model output filename.ELS
Grid Point Results	GRIDFILE = [d:] [path] filename[.ext]	model output filename.GPS
FEMAP Results	Defined by DISPFILE	model output filename.NEU model output filename.FNO
NASTRAN OP2 Results	Defined by DISPFILE	model output filename.OP2
NASTRAN XDB Results	Defined by DISPFILE	model output filename.XDB
NASTRAN ASCII Results	Defined by MODLOUTFILE	model output filename.PCH
MS Excel ASCII Results	Defined by MODLOUTFILE	model output filename.CSV

The DISPFILE, FORCFILE, LOADFILE, ELEMFILE, and GRIDFILE directives control the filenames and whether a file is to be generated. Setting a specific directive equal to the character variable NONE will disable output of that neutral file type.

Another useful Model Initialization directive is RSLTFILETYPE which controls file type and format. When RSLTFILETYPE is set to FEMAPASCII or FEMAPBINARY, a single FEMAP[®] compatible results neutral file of the entire results database is generated. When RSLTFILETYPE is set to PATRANASCII or PATRANBINARY, multiple PATRAN 2.5 compatible results neutral files are generated. PATRAN results neutral files have a two digit subcase number added to the base of the filename to facilitate multiple subcases. When RSLTFILETYPE is set to NASTRANBINARY, a single NASTRAN Output 2 compatible results file of the entire results database is generated. When RSLTFILETYPE is set to NASTRANXDB, a single NASTRAN XDB compatible results file of the entire results database is generated.

When RSLTFILETYPE is set to FEMAPBINARY and the INRCRSLTOUT directive is set to ON, a separate FEMAP binary results neutral file will be generated for each load increment or time step. At the end of the analysis a single neutral file with all steps will be generated.

For a detailed description of each directive see Section 2, Initialization.

2.2.5.1 Grid Point Displacement Vector Neutral File

The grid point displacement vector neutral file contains the calculated displacement vector at each grid point in the basic coordinate system.

Listing 2-7. Example Grid Point Displacement Vector Neutral File.

```
SUBC 1, 60 LB EDGE LOAD IN Y-DIRECTION
     18
           18 0.241367E-02
                                         6
                                 3
2-D CANTILEVER BEAM -QUADR ELEMENTS -2X5 MESH
INSTALLATION TEST CASE
      10.4514573E-020.3047095E-010.0000000E+000.000000E+000.000000E+00
0.4332973E-02
      20.000000E+000.3045806E-010.0000000E+000.000000E+000.000000E+00
0.4018987E-02
       3-.4514573E-020.3047095E-010.0000000E+000.000000E+000.000000E+00
0.4332973E-02
      40.1584370E-020.1820868E-020.0000000E+000.000000E+000.000000E+00
0.1424074E-02
       50.000000E+000.1659872E-020.000000E+000.000000E+000.000000E+00
0.1507010E-02
       6-.1584370E-020.1820868E-020.0000000E+000.000000E+000.000000E+00
0.1424074E-02
       70.3792008E-020.1321103E-010.0000000E+000.000000E+000.000000E+00
0.3666624E-02
       80.000000E+000.1315702E-010.0000000E+000.000000E+000.000000E+00
0.3348591E-02
       9-.3792008E-020.1321103E-010.0000000E+000.000000E+000.000000E+00
0.3666624E-02
     100.2877639E-020.6417065E-020.0000000E+000.000000E+000.000000E+00
0.2774258E-02
     110.0000000E+000.6299692E-020.0000000E+000.0000000E+000.0000000E+00
0.2549374E-02
     12-.2877639E-020.6417065E-020.0000000E+000.000000E+000.000000E+00
0.2774258E-02
     130.4330950E-020.2147459E-010.0000000E+000.000000E+000.000000E+00
0.4151929E-02
     140.0000000E+000.2145137E-010.0000000E+000.000000E+000.000000E+00
0.3860329E-02
     15-.4330950E-020.2147459E-010.0000000E+000.000000E+000.000000E+00
0.4151929E-02
     160.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+00
     170.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+00
     180.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+00
```

2.2.5.2 Grid Point Force Vector Neutral File

The grid point force vector neutral file contains the calculated internal, applied and reacted force vector at each grid point in the basic coordinate system. The internal force vector is the resultant of all internal forces at the grid point. For transient response analysis, acceleration and velocity is also included in this file.

Listing 2-8. Example Grid Point Force Vector Neutral File.

```
SUBC 1, 60 LB EDGE LOAD IN Y-DIRECTION
     18
            0 0.00000E+00
                                       36
                                 0
2-D CANTILEVER BEAM -QUADR ELEMENTS -2X5 MESH
INSTALLATION TEST CASE
      10.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.1500000E+020.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.0000000E+000.000000E+000.000000E+000.000000E+000.1500000E+02
0.0000000E+000.0000000E+000.0000000E+000.0000000E+000.0000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+00
      20.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.3000000E+020.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.0000000E+000.0000000E+000.0000000E+000.0000000E+000.3000000E+02
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+00
      30.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.1500000E+020.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.1500000E+02
0.0000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+00
      40.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+00
      50.0000000E+000.0000000E+000.0000000E+000.0000000E+000.0000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.0000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+00
      60.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.0000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+00
```

Listing 2-8. Example Grid Point Force Vector Neutral File. (Continued)

```
70.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.0000000E+000.0000000E+000.0000000E+000.0000000E+000.0000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+00
      80.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.0000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+00
      90.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+00
     100.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+00
     110.0000000E+000.0000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.0000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+00
     120.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+00
     130.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.0000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+00
      140.0000000E+000.0000000E+000.0000000E+000.0000000E+000.0000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.0000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+00
```

Listing 2-8. Example Grid Point Force Vector Neutral File. (Continued)

```
150.0000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+00
     160.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.0000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+000.000000E+00-.3000000E+03-.6983513E+020.000000E+00
0.000000E+000.000000E+000.2430190E+020.0000000E+000.000000E+00
0.0000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.0000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+00
     170.0000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+00-.1138289E-100.7967025E+020.0000000E+00
0.000000E+000.000000E+00-.4860379E+020.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+00
     180.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.3000000E+03-.6983513E+020.000000E+00
0.0000000E+000.0000000E+000.2430190E+020.0000000E+000.0000000E+00
0.0000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.000000E+000.000000E+000.000000E+000.000000E+000.000000E+00
0.000000E+00
```

2.2.5.3 Element Results Neutral File

The element results neutral file contains various result types calculated at requested points on the element in a user specified coordinate system. The coordinate system for shell element results is specified using the Case Control command SURFACE and solid element results using the Case Control command VOLUME. Shell and solid elements that do not have a coordinate system defined via a SURFACE or VOLUME command will not be included.

Listing 2-9. Example Element Results Neutral File.

```
SUBC 1, 60 LB EDGE LOAD IN Y-DIRECTION

40

2-D CANTILEVER BEAM -QUADR ELEMENTS -2X5 MESH

INSTALLATION TEST CASE

1 5

0.0000000E+000.000000E+000.000000E+000.4079692E+040.2807025E+030.3000000E+03

0.4487487E+010.1923039E+040.4103236E+040.2571579E+030.3980892E+04-.5000000E-01

0.4079692E+040.2807025E+030.300000E+030.4487487E+010.1923039E+040.4103236E+04

0.2571579E+030.3980892E+040.500000E-010.3980892E+040.1923039E+040.4103236E+04

0.2571579E+030.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000

0.000000E+000.000000E+000.4079692E+030.2807025E+020.300000E+020.000000E+00

0.000000E+000.000000E+000.000000E+000.000000E+000
```

Listing 2-9. Example Element Results Neutral File. (Continued)

2 5 0.0000000E+000.000000E+000.0000000E+000.3122276E+040.5787233E+020.3000000E+03 0.5539088E+010.1561295E+040.3151369E+040.2877904E+020.3137079E+04-.5000000E-01 0.3122276E+040.5787233E+020.3000000E+030.5539088E+010.1561295E+040.3151369E+04 0.2877904E+020.3137079E+040.5000000E-010.3137079E+040.1561295E+040.3151369E+04 0.000000E+000.000000E+000.3122276E+030.5787233E+010.3000000E+020.000000E+00 0.000000E+000.000000E+000.000000E+000.000000E+00 5 0.0000000E+000.0000000E+000.0000000E+000.4469817E+03-.9152188E+010.300000E+03 0.2637853E+020.3768481E+030.5957629E+03-.1579334E+030.6884528E+03-.5000000E-01 0.4469817E+03-.9152188E+010.3000000E+030.2637853E+020.3768481E+030.5957629E+03 -.1579334E+030.6884528E+030.5000000E-010.6884528E+030.3768481E+030.5957629E+03 -.1579334E+030.0000000E+000.000000E+000.0000000E+000.0000000E+000.0000000E+000 0.0000000E+000.0000000E+000.4469817E+02-.9152189E+000.3000000E+020.0000000E+00 0.000000E+000.000000E+000.000000E+000.000000E+00 6 5 0.000000E+000.000000E+000.000000E+00-.4079692E+04-.2807025E+030.300000E+03 0.8551251E+020.1923039E+04-.2571579E+03-.4103236E+040.3980892E+04-.5000000E-01 -.4079692E+04-.2807025E+030.3000000E+030.8551251E+020.1923039E+04-.2571579E+03 -.4103236E+040.3980892E+040.5000000E-010.3980892E+040.1923039E+04-.2571579E+03 0.000000E+000.000000E+00-.4079692E+03-.2807025E+020.3000000E+020.000000E+00 0.000000E+000.000000E+000.000000E+000.000000E+00 7 5 0.000000E+000.000000E+000.000000E+00-.3122276E+04-.5787233E+020.3000000E+03 0.8446091E+020.1561295E+04-.2877904E+02-.3151369E+040.3137079E+04-.5000000E-01 -.3122276E+04-.5787233E+020.3000000E+030.8446091E+020.1561295E+04-.2877904E+02 -.3151369E+040.3137079E+040.5000000E-010.3137079E+040.1561295E+04-.2877904E+02 -.3151369E+040.0000000E+000.0000000E+000.000000E+000.000000E+000.000000E+000 0.000000E+000.000000E+00-.3122276E+03-.5787233E+010.3000000E+020.000000E+00 0.000000E+000.000000E+000.000000E+000.000000E+00 8 -5 0.000000E+000.000000E+000.000000E+00-.2238026E+040.3028394E+020.3000000E+03 0.8259190E+020.1173161E+040.6929031E+02-.2277032E+040.2312456E+04-.5000000E-01 -.2238026E+040.3028394E+020.3000000E+030.8259190E+020.1173161E+040.6929031E+02 -.2277032E+040.2312456E+040.5000000E-010.2312456E+040.1173161E+040.6929031E+02 0.000000E+000.000000E+00-.2238026E+030.3028394E+010.3000000E+020.000000E+00 0.000000E+000.000000E+000.000000E+000.000000E+00 9 5 0.000000E+000.000000E+000.000000E+00-.1350881E+040.2496305E+020.3000000E+03 $0.7821909{\tt E}+020.7504910{\tt E}+030.8753200{\tt E}+02{\tt -}.1413450{\tt E}+040.1459187{\tt E}+04{\tt -}.500000{\tt E}-01100{\tt E}+0100{\tt E}+010{\tt E}+0100{\tt E}+0100{\tt E}+0100{\tt E}+0100{\tt E}+0100{\tt E}+010{\tt E}+0100{\tt E}+010{\tt E}+000{\tt E}+010{\tt E}+00{\tt E}+$ -.1350881E+040.2496305E+020.3000000E+030.7821909E+020.7504910E+030.8753200E+02 -.1413450E+040.0000000E+000.000000E+000.000000E+000.000000E+000.000000E+000 0.000000E+000.000000E+00-.1350881E+030.2496305E+010.3000000E+020.000000E+00 0.000000E+000.000000E+000.000000E+000.000000E+00 10 5 0.0000000E+000.0000000E+000.000000E+00-.4469817E+030.9152188E+010.3000000E+03 0.6362147E+020.3768481E+030.1579334E+03-.5957629E+030.6884528E+03-.5000000E-01 -.4469817E+030.9152188E+010.3000000E+030.6362147E+020.3768481E+030.1579334E+03 -.5957629E+030.6884528E+030.5000000E-010.6884528E+030.3768481E+030.1579334E+03 -.5957629E+030.0000000E+000.0000000E+000.0000000E+000.0000000E+000.0000000E+00 0.000000E+000.000000E+00-.4469817E+020.9152189E+000.3000000E+020.000000E+00 0.000000E+000.000000E+000.000000E+000.000000E+00

2.2.5.4 Grid Point Results Neutral File

The grid point results neutral file contains various result types calculated at the grid points in a userspecified coordinate system. The coordinate system for shell element results is specified using the Case Control command SURFACE and solid element results using the Case Control command VOLUME. Shell and solid elements that do not have a coordinate system defined via a SURFACE or VOLUME command will not be included.

Listing 2-10. Example Grid Point Results Neutral File.

SUBC 1, 60 LB EDGE LOAD IN Y-DIRECTION	
18 0 0.00000E+00	0 40
2-D CANTILEVER BEAM -QUADR ELEMENTS -2X5	MESH
INSTALLATION TEST CASE	
1 5	
0.000000E+000.000000E+000.000000E+000.	4224462E+031025932E+030.5820478E+02
0.6250578E+010.2688948E+030.4288212E+03	1089683E+030.4924324E+035000000E-01
0.4224462E+031025932E+030.5820478E+020.	6250578E+010.2688948E+030.4288212E+03
1089683E+030.4924324E+030.5000000E-010.	4924324E+030.2688948E+030.4288212E+03
1089683E+030.000000E+000.000000E+000.	000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.	000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.	000000E+00
2 5	
0.000000E+000.000000E+000.000000E+000.	2131628E-101230731E-090.5417952E+03
0.4500000E+020.5417952E+030.5417952E+03	5417952E+030.9384169E+035000000E-01
0.2131628E-101230731E-090.5417952E+030.	4500000E+020.5417952E+030.5417952E+03
5417952E+030.9384169E+030.5000000E-010.	9384169E+030.5417952E+030.5417952E+03
5417952E+030.000000E+000.000000E+000.	0000000E+000.0000000E+000.0000000E+00
0.000000E+000.3504872E+030.7254437E+020.	2524206E-100.2066430E+030.3504872E+03
0.7254437E+020.2524206E-100.2066430E+030.	2066430E+03
3 5	
0.000000E+000.000000E+000.000000E+00	4224462E+030.1025932E+030.5820478E+02
0.8374942E+020.2688948E+030.1089683E+03	4288212E+030.4924324E+035000000E-01
4224462E+030.1025932E+030.5820478E+020.	8374942E+020.2688948E+030.1089683E+03
4288212E+030.4924324E+030.5000000E-010.	4924324E+030.2688948E+030.1089683E+03
4288212E+030.000000E+000.000000E+000.	000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.	000000E+000.000000E+000.000000E+00
0.000000E+000.000000E+000.000000E+000.	000000E+00
4 5	
0.000000E+000.000000E+000.000000E+000.	7271734E+043201493E+030.2834762E+03
0.2135425E+010.3806512E+040.7282304E+04	3307195E+030.7453169E+045000000E-01
0.7271734E+043201493E+030.2834762E+030.	2135425E+010.3806512E+040.7282304E+04
3307195E+030.7453169E+040.5000000E-010.	7453169E+040.3806512E+040.7282304E+04
3307195E+030.000000E+000.000000E+000.	0000000E+000.0000000E+000.0000000E+00
0.000000E+000.5724287E+030.1357157E+030.	2605754E+020.3399865E+030.5724287E+03
0.1357157E+030.2605754E+020.3399865E+030.	3399865E+03
5 5	
0.000000E+000.000000E+000.000000E+000.	1291554E-091490719E-100.3165238E+03
0.4500000E+020.3165238E+030.3165238E+03	3165238E+030.5482354E+035000000E-01
0.1291554E-091490719E-100.3165238E+030.	4500000E+020.3165238E+030.3165238E+03
3165238E+030.5482354E+030.5000000E-010.	5482354E+030.3165238E+030.3165238E+03
3165238E+030.0000000E+000.0000000E+000.	000000E+000.000000E+000.000000E+00
0.000000E+000.5638306E+020.1866367E+030.	1842547E+020.1130661E+030.5638306E+02
0.1866367E+030.1842547E+020.1130661E+030.	1130661E+03
6 5	
0.000000E+000.000000E+000.000000E+00	7271734E+040.3201493E+030.2834762E+03
0.8786458E+020.3806512E+040.3307195E+03	7282304E+040.7453169E+045000000E-01
7271734E+040.3201493E+030.2834762E+030.	8786458E+020.3806512E+040.3307195E+03
7282304E+040.7453169E+040.5000000E-010.	7453169E+040.3806512E+040.3307195E+03
7282304E+040.0000000E+000.000000E+000.	0000000E+000.0000000E+000.0000000E+00
0.000000E+000.5724287E+030.1357157E+030.	2605754E+020.3399865E+030.5724287E+03
0.1357157E+030.2605754E+020.3399865E+030.	3399865E+03

Listing 2-10. Example Grid Point Results Neutral File. (Continued)

```
7
              5
0.000000E+000.000000E+000.000000E+000.3640432E+040.6258159E+020.7289297E+02
0.1166665E+010.1790409E+040.3641916E+040.6109713E+020.3611755E+04-.5000000E-01
0.3640432E+040.6258159E+020.7289297E+020.1166665E+010.1790409E+040.3641916E+04
0.6109713E+020.3611755E+040.5000000E-010.3611755E+040.1790409E+040.3641916E+04
0.6109713E+020.0000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.0000000E+000.3243085E+030.6820667E+020.1037270E+020.1914295E+030.3243085E+03
0.6820667E+020.1037270E+020.1914295E+030.1914295E+03
      8
              5
0.0000000E+000.000000E+000.000000E+000.1112426E-090.3879563E-110.5271071E+03
0.4500000E+020.5271071E+030.5271071E+03-.5271071E+030.9129761E+03-.5000000E-01
0.1112426E-090.3879563E-110.5271071E+030.4500000E+020.5271071E+030.5271071E+03
-.5271071E+030.9129761E+030.5000000E-010.9129761E+030.5271071E+030.5271071E+030
-.5271071E+030.0000000E+000.000000E+000.0000000E+000.0000000E+000.0000000E+000
0.0000000E+000.2399892E+030.5749077E+020.7334604E+010.1425410E+030.2399892E+03
0.5749077E+020.7334604E+010.1425410E+030.1425410E+03
      9
             5
0.0000000E+000.0000000E+000.0000000E+00-.3640432E+04-.6258159E+020.7289297E+02
-.3640432E+04-.6258159E+020.7289297E+020.8883334E+020.1790409E+04-.6109713E+02
-.3641916E+040.3611755E+040.5000000E-010.3611755E+040.1790409E+04-.6109713E+02
-.3641916E+040.0000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.0000000E+000.3243085E+030.6820667E+020.1037270E+020.1914295E+030.3243085E+03
0.6820667E+020.1037270E+020.1914295E+030.1914295E+03
     10
             5
0.0000000E+000.0000000E+000.0000000E+000.5598761E+040.1217738E+020.1670937E+03
0.1711667E+010.2798285E+040.5603755E+040.7184099E+010.5600166E+04-.5000000E-01
0.5598761E+040.1217738E+020.1670937E+030.1711667E+010.2798285E+040.5603755E+04
0.7184099E+010.5600166E+040.5000000E-010.5600166E+040.2798285E+040.5603755E+04
0.7184099E+010.0000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.0000000E+000.4595750E+030.1638972E+030.5623728E+020.2835690E+030.4595750E+03
0.1638972E+030.5623728E+020.2835690E+030.2835690E+03
     11
              5
0.0000000E+000.0000000E+000.000000E+000.1131468E-09-.8577672E-100.4329063E+03
0.4500000E+020.4329063E+030.4329063E+03-.4329063E+030.7498157E+03-.5000000E-01
0.1131468E-09-.8577672E-100.4329063E+030.4500000E+020.4329063E+030.4329063E+03
-.4329063E+030.7498157E+030.5000000E-010.7498157E+030.4329063E+030.4329063E+03
-.4329063E+030.0000000E+000.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.0000000E+000.1539003E+030.1160527E+030.3976577E+020.1136293E+030.1539003E+03
0.1160527E+030.3976577E+020.1136293E+030.1136293E+03
     12
              5
0.0000000E+000.000000E+000.000000E+00-.5598761E+04-.1217738E+020.1670937E+03
0.8828833E+020.2798285E+04-.7184099E+01-.5603755E+040.5600166E+04-.5000000E-01
-.5598761E+04-.1217738E+020.1670937E+030.8828833E+020.2798285E+04-.7184099E+01
-.5603755E+040.5600166E+040.5000000E-010.5600166E+040.2798285E+04-.7184099E+01
-.5603755E+040.0000000E+000.000000E+000.000000E+000.000000E+000.000000E+000
0.0000000E+000.4595750E+030.1638972E+030.5623728E+020.2835690E+030.4595750E+03
0.1638972E+030.5623728E+020.2835690E+030.2835690E+03
     13
              5
0.000000E+000.000000E+000.000000E+000.1802156E+040.3411998E+020.5821427E+02
0.1883798E+010.8859327E+030.1804071E+040.3220530E+020.1788186E+04-.5000000E-01
0.1802156E+040.3411998E+020.5821427E+020.1883798E+010.8859327E+030.1804071E+04
0.3220530E+020.1788186E+040.5000000E-010.1788186E+040.8859327E+030.1804071E+04
0.0000000E+000.2917021E+030.3547475E+020.6713005E-020.1696551E+030.2917021E+03
0.3547475E+020.6713005E-020.1696551E+030.1696551E+03
     14
              5
0.0000000E+000.000000E+000.000000E+000.9789858E-100.1101910E-090.5417857E+03
0.4500000E+020.5417857E+030.5417857E+03-.5417857E+030.9384004E+03-.5000000E-01
0.9789858E-100.1101910E-090.5417857E+030.4500000E+020.5417857E+030.5417857E+03
-.5417857E+030.9384004E+030.5000000E-010.9384004E+030.5417857E+030.5417857E+03
0.0000000E+000.2378958E+030.3033599E+020.4746811E-020.1384614E+030.2378958E+03
0.3033599E+020.4746811E-020.1384614E+030.1384614E+03
```
Listing 2-10. Example Grid Point Results Neutral File. (Continued)

15 5 0.000000E+000.000000E+000.000000E+00-.1802156E+04-.3411998E+020.5821427E+02 0.8811620E+020.8859327E+03-.3220530E+02-.1804071E+040.1788186E+04-.5000000E-01 -.1802156E+04-.3411998E+020.5821427E+020.8811620E+020.8859327E+03-.3220530E+02 -.1804071E+040.0000000E+000.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000 0.0000000E+000.2917021E+030.3547475E+020.6713005E-020.1696551E+030.2917021E+03 0.3547475E+020.6713005E-020.1696551E+030.1696551E+03 16 5 0.0000000E+000.000000E+000.000000E+000.7999962E+040.1073485E+040.3203271E+03 0.2642226E+010.3478021E+040.8014745E+040.1058703E+040.7541336E+04-.5000000E-01 0.7999962E+040.1073485E+040.3203271E+030.2642226E+010.3478021E+040.8014745E+04 0.1058703E+040.7541336E+040.5000000E-010.7541336E+040.3478021E+040.8014745E+04 0.1058703E+040.0000000E+000.0000000E+000.000000E+000.000000E+000.000000E+000 0.000000E+000.000000E+000.000000E+000.000000E+00 17 5 0.0000000E+000.000000E+000.0000000E+000.1239471E-090.3637979E-100.2796729E+03 0.4500000E+020.2796729E+030.2796729E+03-.2796729E+030.4844077E+03-.5000000E-01 0.1239471E-090.3637979E-100.2796729E+030.4500000E+020.2796729E+030.2796729E+03 -.2796729E+030.4844077E+030.5000000E-010.4844077E+030.2796729E+030.2796729E+03 -.2796729E+030.0000000E+000.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000 0.0000000E+000.5523426E+020.7590687E+030.4662546E-110.4394072E+030.5523426E+02 0.7590687E+030.4662546E-110.4394072E+030.4394072E+03 18 5 0.0000000E+000.000000E+000.0000000E+00-.7999962E+04-.1073485E+040.3203271E+03 0.8735777E+020.3478021E+04-.1058703E+04-.8014745E+040.7541336E+04-.5000000E-01 -.7999962E+04-.1073485E+040.3203271E+030.8735777E+020.3478021E+04-.1058703E+04 -.8014745E+040.7541336E+040.5000000E-010.7541336E+040.3478021E+04-.1058703E+04 -.8014745E+040.0000000E+000.000000E+000.000000E+000.000000E+000.000000E+000.000000E+000 0.000000E+000.000000E+000.000000E+000.000000E+00

3. LINEAR BUCKLING ANALYSIS

3.1 Introduction

Of principal interest in buckling analysis of structures is the critical static load or combination of loads that results in instability. Buckling occurs when a member or structure under an applied loading converts membrane strain energy into strain energy of bending. At this critical load, the structure will continue to deflect without an increase in the magnitude of the loading. The magnitude of the critical load generally depends on the geometric dimensions of the structure, the method in which the structure is stiffened and supported, and the bending and extensional stiffnesses of the various components.

Autodesk Nastran determines this critical load by solving the eigenvalue problem:

$$\left| \begin{bmatrix} \mathbf{K}_i \end{bmatrix} + \lambda \begin{bmatrix} \mathbf{K}_s \end{bmatrix} \right| \begin{bmatrix} \phi \end{bmatrix} = 0$$

where,

- $[K_l]$ is the global linear stiffness matrix
- $[K_s]$ is the global differential or initial stress stiffness matrix
- λ_i is the eigenvalue for each mode that when multiplied by the applied loading gives the critical loading P_{cr}
- ϕ_i is the eigenvector for each mode that represent the buckled mode shape

In solving the above eigenvalue problem there are as many eigenvalues and corresponding eigenvectors as there are unconstrained degrees of freedom. Often, however, only the lowest buckling mode is of practical interest. This will *always* be the first mode extracted.

3.2 How to Setup a Model Input File for Linear Buckling Analysis

In Autodesk Nastran you can solve a linear buckling problem by setting SOLUTION = BUCKLING in the Model Initialization File or by specifying SOL 105 or SOL BUCKLING above the Case Control Section in the Model Input File, and following the procedure listed below:

- 1. Apply static loads to the first subcase. This subcase will be treated as a static run. The applied loading will generate internal loads that are used to formulate the differential stiffness or differential stiffness matrix.
- 2. The second to n subcases must also reference an EIGRL Bulk Data entry via the METHOD Case Control command. Here, n is equal to the number of buckling analyses that you want to run. Each buckling subcase may call out a unique eigenvalue solution.
- 3. The differential stiffness matrix is automatically generated for each element that supports differential stiffness. Elements that support differential stiffness are: CPIPE, CCABLE, CROD, CBAR, CBEAM, CQUAD4, CQUADR, CTRIA3, CTRIAR, CHEXA, CPENTA, CPYRA, and CTETRA.
- 4. You must then multiply the eigenvalues obtained in Step 2 by the appropriate applied loads to obtain the buckling loads for each buckling analysis.
- 5. Each subcase may have a different boundary condition; however, the global differential stiffness matrix will be based on the boundary conditions specified in the first subcase.

3.3 Interpreting Results

As an example we will use the classical Euler beam buckling problem shown in Figure 3-1. It is desired to find the lowest load at which instability occurs. Listing 3-1 contains the Model Input File and Listings 3-2 and 3-3 show the extracted eigenvalues and eigenvectors from the Model Results Output File. The mode shapes are plotted in Figure 3-2.

Figure 3-1. Euler Beam Example Problem -Pinned at Both Ends.

Listing 3-1. Model Input File for the Classic Euler Buckling Problem.

```
$ BUCKLING SOLUTION.
Ś
SOL BUCKLING
Ś
TITLE = INSTALLATION TEST CASE
SUBTITLE = EULER BEAM BUCKLING -BAR ELEMENTS -1X5 MESH
DISPLACEMENT = ALL
Ś
SPC = 1
SUBCASE 1
LABEL = STATIC, COMPRESSIVE LOAD IN X-DIR
 LOAD = 1
 STRESS = ALL
SUBCASE 2
LABEL = BUCKLING, COMPRESSIVE LOAD IN X-DIR
 STRESS = NONE
METHOD = 1
BEGIN BULK
Ś
$ DEFINE EIGENVALUE EXTRACTION PARAMETERS.
Ś
EIGRL, 1, , , 5, , ,
$ GEOMETRY DEFINITION (10" BEAM DIVIDED INTO 5 ELEMENTS).
Ś
GRID, 1, 0, 0., 0., 0, 0
GRID, 2, 0, 1., 0., 0, 0
GRID, 3, 0, 2., 0., 0., 0
                     3., 0., 0., 0
GRID, 4, 0,
                    4., 0., 0., 0
5., 0., 0., 0
6., 0., 0., 0
GRID, 5, 0,
GRID, 6, 0,
GRID, 7, 0,

      7.,
      0.,
      0.,
      0

      8.,
      0.,
      0.,
      0

      9.,
      0.,
      0.,
      0

GRID, 8, 0,
GRID, 9, 0,
GRID, 10, 0,
GRID, 11, 0, 10., 0., 0.,
                                            0
Ś
$ BEAM MODELED WITH BAR ELEMENTS.
Ś

      CBAR,
      1,
      10,
      1,
      2,
      0.,
      0.,
      1.

      CBAR,
      2,
      10,
      2,
      3,
      0.,
      0.,
      1.

      CBAR,
      3,
      10,
      3,
      4,
      0.,
      0.,
      1.

                                                   1.
CBAR, 4, 10, 4,
                               5, 0., 0., 1.

      CBAR, 5, 10, 5, 6, 0., 0., 1.

      CBAR, 6, 10, 6, 7, 0., 0., 1.

      CBAR, 7, 10, 7, 8, 0., 0., 1.

CBAR, 8, 10, 8, 9, 0., 0., 1.
CBAR, 9, 10, 9, 10, 0., 0., 1.
CBAR, 9, 10, 9,
CBAR, 10, 10, 10,
                                                   1.
                             11,
                                    0.,
                                            0.,
$
$ ELEMENT MATERIAL AND SECTION PROPERTIES.
Ś
PBAR, 10, 100, 0.2, 6.667E-4, 1.667E-2, 2.328E-3,
, -0.1, 0.5, 0.1, 0.5, -0.1, -0.5, 0.1, -0.5
Ś
$ ELEMENT MATERIAL PROPERTIES.
Ś
MAT1, 100, 1.E+7, , 0.33, 0.1
Ś
$ PINNED AT BOTH ENDS -ONE END FREE TO TRANSLATE IN X-DIR.
Ś
SPC1, 1, 123,
                         1
SPC1, 1, 23, 11
SPC1, 1, 4, 1, THRU, 11
$ COMPRESSIVE LOAD (X-DIRECTION).
FORCE, 1, 11, 0, 1000., -1., 0., 0.
ENDDATA
```

The EIGRL entry controls the range and number of modes extracted. Here, we have requested 5 modes as shown in Listing 3-1 through 3-3, and Figure 3-2. The eigenvalues are always sorted in increasing order. Thus, the first mode is always the lowest. The eigenvalue for the first mode is equal to 0.6850, while the applied load in subcase 1 is equal to -1000 pounds. The lowest buckling load is then equal to:

 $P_{cr_1} = \lambda_1 P_a = (0.6580)(-1000) = -658.0$ pounds

Listing 3-2. Extracted Eigenvalues for an Euler Beam.

BUCKLING, COMPRESSIVE LOAD IN X-DIR, PINNED-PINNED SUBCASE 2								
			REAL EI	GENVALUE	S			
MODE NUMBER	EIGENVALUE	RADIANS	CYCLES	GENERALIZED MASS	GENERALIZED STIFFNESS	ORTHOGONALITY LOSS	ERROR MEASURE	
1	6.580154E-01	8.111815E-01	1.291035E-01	4.934669E+02	3.247088E+02	0.00000E+00	2.402446E-14	
2	2.632584E+00	1.622524E+00	2.582327E-01	2.181383E+03	5.742674E+03	1.265741E-14	2.403939E-11	
3	5.928265E+00	2.434803E+00	3.875109E-01	4.431893E+03	2.627344E+04	1.039099E-15	4.084352E-09	
4	1.056186E+01	3.249901E+00	5.172378E-01	4.971708E+03	5.251047E+04	1.026956E-15	2.123925E-07	
5	1.645285E+01	4.056212E+00	6.455661E-01	4.934675E+02	8.118948E+03	6.931880E-18	8.382289E-06	

Note that buckling will occur first in the xz-plane. The reason is that the bending stiffness (*El*) in this plane is lower than in the xy-plane. The lowest buckling load for the xy-plane is then equal to:

 $P_{cr_5} = \lambda_5 P_a = (16.4529)(-1000) = -16452.9$ pounds

Table 3-1 shows a comparison between Autodesk Nastran and the theoretical result for the critical buckling load. The theoretical result is based on the Euler buckling formula for a pinned bar under axial compression. The formula is:

$$P_{cr} = \frac{\pi^2 EI}{\ell^2}$$

where,

E is Young's Modulus

- *I* is the moment of inertia about the applicable plane
- ℓ is the length of the beam

Mode Number Theoretical (pounds)		Autodesk Nastran (pounds)	Difference (%)
1 (xz-plane)	658.0	658.0	0.0
5 (xy-plane)	16452.6	16452.9	0.0

 Table 3-1. Comparison of Theoretical Versus Predicted Critical Buckling Loads.

г

Listing 3-3. Extracted Eigenvectors for an Euler Beam.

EIGENVALUE =	= 0.65802E+00	CYCLES = 0.1291	0E+00		SUBCASE 2			
		1	REAL EI	GENVECTO	OR NUMBI	ER 1		
GRID	COORDINATE	Tl	Т2	ΤЗ	Rl	R2	R3	
ID 1 2 3 4 5 6 7 8 9 10 11	ID 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.000000E+00 0.000000E+00	0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	0.000000E+00 0.309017E+00 0.587785E+00 0.951057E+00 0.100000E+01 0.809017E+00 0.809017E+00 0.309017E+00 0.309017E+00 0.00000E+00	0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	-0.314159E+00 -0.298783E+00 -0.254160E+00 -0.970805E-01 -0.226605E-01 -0.226605E-01 0.184658E+00 0.254160E+00 0.298783E+00 0.314159E+00	0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	
EIGENVALUE =	= 0.26326E+01	CYCLES = 0.2582	3E+00		SUBCASE 2			
		1	REAL EI	GENVECTO	OR NUMBI	ER 2		
GRID	COORDINATE	Τ1	Т2	Т3	Rl	R2	R3	
ID 1 2 3 4 5 6 7 8 9 10 11	ID 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	0.000000E+00 0.618034E+00 0.10000E+01 0.618034E+00 0.273656E-12 -0.618034E+00 -0.100000E+01 -0.100000E+01 -0.618034E+00 0.000000E+00	0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	-0.660649E+00 -0.534476E+00 0.204152E+00 0.534476E+00 0.660649E+00 0.534476E+00 0.204152E+00 -0.204152E+00 -0.534476E+00 -0.534476E+00 -0.660649E+00	0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	
EIGENVALUE =	= 0.59283E+01	CYCLES = 0.3875	1E+00		SUBCASE 2			
		1	REAL EI	GENVECTO	OR NUMBI	er 3		
GRID TD	COORDINATE ID	Τ1	Τ2	ΤЗ	R1	R2	R3	
1 2 3 4 5 6 7 8 9 10 11		0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.000000E+00 0.000000E+00	0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	0.00000E+00 -0.951057E+00 -0.951057E+00 0.587785E+00 0.10000E+01 0.587785E+00 -0.309017E+00 -0.951057E+00 -0.809017E+00 0.000000E+00	0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	0.942404E+00 0.553931E+00 -0.291219E+00 -0.896279E+00 -0.762421E+00 0.762421E+00 0.896279E+00 0.896279E+00 0.291219E+00 -0.553931E+00 -0.942404E+00	0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.000000E+00	
EIGENVALUE =	= 0.10562E+02	CYCLES = 0.5172	4E+00		SUBCASE 2			
		1	REAL EI	GENVECTO	OR NUMBI	ER 4		
GRID	COORDINATE	Τ1	Τ2	ТЗ	R1	R2	R3	
1 2 3 4 5 6 7 8 9 10 11		0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00	0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	0.000000E+00 -0.757180E+00 0.467963E+00 0.757180E+00 0.757180E+00 -0.702493E-08 -0.757180E+00 0.467963E+00 0.467963E+00 0.757180E+00 0.757180E+00	0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	0.100000E+01 0.309017E+00 -0.809017E+00 0.309017E+00 0.100000E+01 0.309017E+00 -0.809017E+00 -0.809017E+00 0.309017E+00 0.309017E+00 0.100000E+01	0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	
EIGENVALUE =	= U.16453E+02	UICLES = 0.6455	/또+UU 유표 집 한 편 편 편	GENVECT	SUBCASE 2	R R S		
GRID	COORDINATE	T1	т2	сь мувст (ТЗ	R1	R2	R3	
ID 1 2 3 4 5 6 7 8 9 10 11	ID 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000000E+00 0.00000E+00 0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	1.2 0.00000E+00 0.39018E+00 0.809018E+00 0.951057E+00 0.951057E+00 0.809018E+00 0.809018E+00 0.309018E+00 0.000000E+00	0.000000E+00 -0.264147E-08 -0.502559E-08 -0.813855E-08 -0.813855E-08 -0.856191E-08 -0.856191E-08 -0.89370E-08 -0.503954E-08 -0.265008E-08 0.000000E+00	0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	0.779608E-08 0.76531E-08 0.728555E-08 0.594580E-08 0.511549E-08 0.323128E-08 0.293336E-08 0.254900E-08 0.241647E-08	0.314160E+00 0.298784E+00 0.254160E+00 0.184658E+00 0.970802E-01 -0.382391E-14 -0.970802E-01 -0.184658E+00 -0.254160E+00 -0.298784E+00 -0.314160E+00	

User's Manual

In most applications only one static and one buckling analysis is performed per run. If we wanted, however, to analyze the two other boundary conditions shown in Figures 3-3a and 3-3b, the Model Input File would look as shown in Listing 3-4. Listing 3-5 shows the extracted eigenvalues from the Model Results Output File.

Figure 3-3a. Euler Beam Example Problem -Fixed at One End, Pinned at Other End.

Figure 3-3b. Euler Beam Example Problem -Fixed at One End, Free at Other End.

Listing 3-4. Model Input File for an Euler Beam with Multiple Boundary Conditions.

```
$ BUCKLING SOLUTION.
Ś
SOL BUCKLING
Ś
TITLE = INSTALLATION TEST CASE
SUBTITLE = EULER BEAM BUCKLING WITH MULTIPLE BOUNDARY CONDITIONS
DISPLACEMENT = ALL
Ś
SUBCASE 1
 LABEL = STATIC, COMPRESSIVE LOAD IN X-DIR
 LOAD = 1
 STRESS = ALL
 SPC = 2
SUBCASE 2
 LABEL = BUCKLING, COMPRESSIVE LOAD IN X-DIR, FIXED-PINNED
 STRESS = NONE
 METHOD = 1
 SPC = 2
SUBCASE 3
 LABEL = BUCKLING, COMPRESSIVE LOAD IN X-DIR, FIXED-FREE
 STRESS = NONE
 METHOD = 1
 SPC = 3
Ś
BEGIN BULK
Ś
$ DEFINE EIGENVALUE EXTRACTION PARAMETERS.
Ś
EIGRL, 1, , , 5
Ś
$ GEOMETRY DEFINITION (10" BEAM DIVIDED INTO 10 ELEMENTS).

      GRID,
      1,
      0,
      0.,
      0.,
      0.
      0

      GRID,
      2,
      0,
      1.,
      0.,
      0
      0

      GRID,
      3,
      0,
      2.,
      0.,
      0
      0

      GRID,
      3,
      0,
      2.,
      0.,
      0.,
      0

      GRID,
      4,
      0,
      3.,
      0.,
      0.,
      0

GRID, 1, 1,
GRID, 5, 0,
GRID, 6, 0,
GRID, 7, 0,

      4.,
      0.,
      0.,
      0

      5.,
      0.,
      0.,
      0

      6.,
      0.,
      0.,
      0

      7.,
      0.,
      0.,
      0

      8.,
      0.,
      0.,
      0

      9.,
      0.,
      0.,
      0

GRID, 8, 0,
GRID, 9, 0,
GRID, 10, 0,
GRID, 11, 0, 10., 0., 0.,
                                                 0
Ś
$ BEAM MODELED WITH BAR ELEMENTS.
Ś
CBAR, 1, 10, 1, 2, 0., 0., 1.
CBAR, 2, 10, 2, 3, 0., 0.,
CBAR, 3, 10, 3, 4, 0., 0.,
                                                        1.
                                                         1.
CBAR, 4, 10, 4, 5, 0., 0., 1.
CBAR, 5, 10, 5, 6, 0., 0., 1.
CBAR, 6, 10, 6, 7, 0., 0., 1.
CBAR, 7, 10,
                           7, 8, 0., 0.,
                                                         1.
CBAR, 8, 10, 8, 9, 0., 0., 1.
CBAR, 9, 10, 9, 10, 0., 0., 1.
CBAR, 10, 10, 10, 11, 0., 0., 1.
Ś
$ ELEMENT MATERIAL AND SECTION PROPERTIES (1.0" X 0.2" CROSS-SECTION).
PBAR, 10, 100, 0.2, 6.667E-4, 1.667E-2, 2.328E-3,
     -0.1, 0.5, 0.1, 0.5, -0.1, -0.5, 0.1, -0.5
Ś
$ ELEMENT MATERIAL PROPERTIES (ALUMINUM).
$
MAT1, 100, 1.E+7, , 0.33, 0.1
```

Listing 3-4. Model Input File for an Euler Beam with Multiple Boundary Conditions. (Continued)

Ś \$ FIXED AT ONE END, PINNED AT OTHER -ONE END FREE TO TRANSLATE IN X-DIR. Ś SPC1, 2, 123456, 1
 SPC1, 2, 23, 11

 SPC1, 2, 4, 1, THRU, 11
 Ś \$ FIXED AT ONE END, FREE AT OTHER. \$ SPC1, 3, 123456, 1 SPC1, 3, 4, 1, THRU, 11 Ś \$ COMPRESSIVE LOAD (X-DIRECTION). Ś FORCE, 1, 11, 0, 1000., -1., 0., 0. ENDDATA

Listing 3-5. Extracted Eigenvectors for an Euler Beam with Multiple Boundary Conditions.

BUCKLING, COMPR	RESSIVE LOAD IN X-	DIR, FIXED-PINNE	D	SUBCASE 3				
REAL EIGENVALUES								
MODE NUMBER 1 2	EIGENVALUE 1.346191E+00 3.980739E+00	RADIANS 1.160255E+00 1.995179E+00	CYCLES 1.846603E-01 3.175426E-01	GENERALIZED MASS 5.162777E+02 1.156760E+03	GENERALIZED STIFFNESS 6.950085E+02 4.604759E+03	ORTHOGONALITY LOSS 0.000000E+00 9.797718E-15	ERROR MEASURE 1.114939E-14 6.452137E-12	
3 4 5	7.941700E+00 1.325625E+01 1.998106E+01	2.818102E+00 3.640914E+00 4.470018E+00	4.485149E-01 5.794694E-01 7.114255E-01	2.099060E+03 3.127143E+03 4.380083E+03	1.667011E+04 4.145419E+04 8.751872E+04	7.355228E-16 3.018422E-16 6.455984E-16	6.042417E-10 6.956877E-08 2.385576E-06	
BUCKLING, COMPF	RESSIVE LOAD IN X-	DIR, FIXED-FREE		SUBCASE 4				
			REAL EI	GENVALUE	S			
MODE NUMBER	EIGENVALUE	RADIANS	CYCLES	GENERALIZED MASS	GENERALIZED STIFFNESS	ORTHOGONALITY LOSS	ERROR MEASURE	
1	1.645018E-01	4.055882E-01	6.455136E-02	1.233698E+02	2.029456E+01	0.00000E+00	1.445645E-13	
2	1.480615E+00	1.216805E+00	1.936606E-01	2.809938E+02	4.160436E+02	1.742391E-13	1.796533E-08	
3	4.113161E+00	2.028093E+00	3.227810E-01	1.233698E+02	5.074401E+02	3.731604E-17	1.521355E-06	
4	4.114647E+00	2.028459E+00	3.228393E-01	7.702665E+02	3.169375E+03	9.055332E-16	2.029742E-06	
5	8.075991E+00	2.841829E+00	4.522911E-01	1.524099E+03	1.230861E+04	1.290036E-15	1.207591E-05	

Figure 3-4. Buckled Mode Shapes of an Euler Beam with Multiple Boundary Conditions.

3.4 Assumptions and Limitations of Linear Buckling

The following assumptions and limitations apply to linear buckling analysis:

- 1. The deflections are small.
- 2. The element stresses are elastic.
- 3. A minimum of five grid points per half sine wave (buckled mode shape) is recommended.
- 4. The distribution of the internal element forces due to the applied loads remains constant.
- 5. The follower force effect is not included in the generation of differential stiffness (i.e., the directions and magnitudes of the applied forces are assumed to remain constant). Follower force effects can be included by using a NONLINEAR STATIC solution (see Section 9, *Nonlinear Static Analysis*).
- 6. The tangent stiffness term due to follower force effect is not included.
- 7. Offsets should not be used in bar, beam, and shell elements.
- 8. For curved shell structures modeled with shell elements it is recommended that you use CQUADR and CTRIAR elements. These elements include vertex rotation stiffness and give significantly better results.

4. NORMAL MODES ANALYSIS

4.1 Introduction

Problems in structural dynamics can be divided into two broad areas. In one, the objective is to determine natural frequencies of vibration and the corresponding mode shapes. In the other, the objective is to determine how the structure moves with time under an applied set of loads. In this section we examine the former, natural frequencies of vibration, with damping and applied loading both set to zero. Vibration of structures under initial stress is discussed in Section 11, *Linear Prestress Modal Analysis*.

Autodesk Nastran determines natural frequency by solving the eigenvalue problem:

 $\left| \begin{bmatrix} \mathcal{K} \end{bmatrix} - \lambda \begin{bmatrix} M \end{bmatrix} \right| \begin{bmatrix} \phi \end{bmatrix} = 0$ $\lambda_i = \omega_i^2$ $f_i = \frac{\omega_i}{2\pi}$

- [K] is the global linear stiffness matrix
- [M] is the global mass matrix
- λ_i is the eigenvalue for each mode that yields the natural frequency
- ϕ_i is the eigenvector for each mode that represents the natural mode shape
- ω_i is the circular frequency (radians per second)
- f_i is the cyclic frequency (hertz)

In solving the above eigenvalue problem there are as many eigenvalues and corresponding eigenvectors as there are unconstrained degrees of freedom. Often, however, only the lowest natural frequency is of practical interest. This frequency will *always* be the first mode extracted.

4.2 How to Setup a Model Input File for Normal Modes Analysis

In Autodesk Nastran you can perform normal modes analysis by setting SOLUTION = MODAL in the Model Initialization File or by specifying SOL 103 or SOL MODAL above the Case Control Section in the Model Input File. Multiple subcases can be specified, each requesting a different constraint or output set. Each subcase must also reference an EIGRL Bulk Data entry via the METHOD Case Control command.

4.3 Interpreting Results

As an example we will use the cantilever beam shown in Figure 4-1. It is desired to find the lowest natural frequency and the corresponding mode shape. Listing 4-1 contains the Model Input File and Listings 4-2 and 4-3 show the extracted frequencies and eigenvectors from the Model Results Output File. The mode shapes are plotted in Figure 4-2.

Figure 4-1. 2-D Cantilever Beam Example Problem.

Listing 4-1. Model Input File for the 2-D Cantilever Beam Problem.

```
$ MODAL SOLUTION.
Ś
SOL MODAL
Ś
TITLE = INSTALLATION TEST CASE
SUBTITLE = VIBRATION OF A 2-D CANTILEVER BEAM
DISPLACEMENT = ALL
Ś
SUBCASE 1
 LABEL = NORMAL MODES
 SPC = 1
METHOD = 1
Ś
BEGIN BULK
$ CONVERSION FACTOR FOR WEIGHT DENSITY TO MASS DENSITY
$ MASS = (1/g)*WEIGHT, G=32.2FT/SEC2, WTMASS = 1/(32.2*12) = 0.002588
Ś
PARAM, WTMASS, 0.002588
$ REQUEST COUPLED MASS MATRIX FORMULATION.
PARAM, COUPMASS, ON
Ś
$ DEFINE EIGENVALUE EXTRACTION PARAMETERS.
Ś
EIGRL, 1, , , 5
Ś
$ GEOMETRY DEFINITION (10" BEAM DIVIDED INTO 10 ELEMENTS).
Ś

      GRID,
      1,
      0,
      0.,
      0.,
      0.

      GRID,
      2,
      0,
      1.,
      0.,
      0.,
      0

      GRID,
      3,
      0,
      2.,
      0.,
      0.,
      0

      GRID,
      3,
      0,
      2.,
      0.,
      0.,
      0

      GRID,
      4,
      0,
      3.,
      0.,
      0.,
      0

      GRID,
      5,
      0,
      4.,
      0.,
      0.,
      0

GRID, 6, 0, 5., 0., 0., 0

      GRID, 7, 0, 6., 0., 0., 0

      GRID, 8, 0, 7., 0., 0., 0

      GRID, 9, 0, 8., 0., 0., 0

GRID, 10, 0, 9., 0., 0.,
GRID, 11, 0, 10., 0., 0.,
                                             0
                                             0
Ś
$ BEAM MODELED WITH BAR ELEMENTS.
Ś
CBAR, 1, 10, 1, 2, 0., 1., 0.
CBAR, 2, 10, 2, 3, 0., 1., 0.
CBAR, 3, 10, 3, 4, 0., 1., 0.
CBAR, 4, 10, 4, 5, 0., 1., 0.
CBAR, 5, 10, 5, 6, 0., 1., 0.
CBAR, 6, 10, 6,
                               7, 0., 1., 0.
CBAR, 7, 10, 7, 8, 0., 1., 0.
CBAR, 8, 10, 8, 9, 0., 1., 0.
                       8, 9, 0., 1.,
9, 10, 0., 1.,
CBAR, 9, 10,
                                                    0.
CBAR, 10, 10, 10, 11, 0., 1.,
                                                    0.
$ ELEMENT MATERIAL AND SECTION PROPERTIES (1.0" X 0.2" CROSS-SECTION).
Ś
PBAR, 10, 100, 0.2, 6.667E-4, 1.667E-2, 2.328E-3,
, -0.1, 0.5, 0.1, 0.5, -0.1, -0.5, 0.1, -0.5
Ś
$ ELEMENT MATERIAL PROPERTIES (ALUMINUM).
Ś
MAT1, 100, 1.E+7, , 0.33, 0.1
$
$ FIXED AT ONE END, MOVEMENT CONSTRAINED TO X-Y PLANE ONLY.
SPC1, 1, 123456, 1
SPC1, 1,
                345, 1, THRU, 11
ENDDATA
```

The EIGRL entry controls the range and number of modes extracted. Here, we have requested 5 modes as shown in Listings 4-2 and 4-3. The eigenvalues and frequencies are always sorted in increasing order. Thus, the first mode is always the lowest. The cyclic frequency for the first mode is equal to 63.50 Hz.

Listing 4-2.	Extracted Eigenval	ues for a 2-D Ca	ntilever Beam.
--------------	--------------------	------------------	----------------

MODAL ANALYSIS,	COUPLED MASS MA	TRIX FORMULATION		SUBCASE 1			
			REAL EI	GENVALUE	S		
MODE NUMBER	EIGENVALUE	RADIANS	CYCLES	GENERALIZED MASS	GENERALIZED STIFFNESS	ORTHOGONALITY LOSS	ERROR MEASURE
1	1.592103E+05	3.990117E+02	6.350468E+01	1.000000E+00	1.592103E+05	0.00000E+00	1.815924E-13
2	6.247437E+06	2.499487E+03	3.978058E+02	1.000000E+00	6.247437E+06	4.182852E-15	1.957341E-12
3	4.892945E+07	6.994959E+03	1.113282E+03	1.000000E+00	4.892945E+07	1.099815E-15	1.281154E-10
4	1.877429E+08	1.370193E+04	2.180730E+03	1.000000E+00	1.877429E+08	1.200429E-15	1.115000E-08
5	5.131852E+08	2.265359E+04	3.605431E+03	1.000000E+00	5.131852E+08	7.494005E-16	1.739917E-06

The theoretical result is based on the following formula from Reference 11 for the natural frequency of a uniform cantilever beam:

$$f_i = \frac{K_i}{2\pi} \sqrt{\frac{Elg}{\rho A \ell^4}}$$

Mode	Ki
1	3.52
2	22.0
3	61.7
4	121
5	200

where,

 f_i are the natural frequencies (hertz) corresponding to the i-th mode shape

- K_i are constants corresponding to the i-th mode shape
- E is Young's Modulus
- *I* is the moment of inertia about the applicable plane
- A is the cross-sectional area
- ρ_{-} is the material density
- g is the gravitational acceleration (units consistent with length dimensions)
- ℓ is the length of the beam

Listing 4-3. Extracted Eigenvectors for a 2-D Cantilever Beam.

	-							
MODE = 1	EIGENVALUE = 1.5	92103E+05 CYCI	JES = 6.350468E	1+01 S	UBCASE 1			
		P		ENVECTO	DNIMDE	ד ח		
		K	EAL EIG	ENVECIO	K NUMBE	K I		
GRI TD	D COORDINATE	Τ1	Т2	Т3	Rl	R2	R3	
	2 0 3 0 4 0	-1.224745E-13 -2.182180E-13 -2.663481E-13	1.474379E+00 5.614241E+00 1.199688E+01	0.000000E+00 0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00 0.000000E+00	2.877884E+00 5.331303E+00 7.364628E+00	
	5 0	-2.563841E-13	2.020699E+01	0.000000E+00	0.00000E+00	0.00000E+00	8.988734E+00	
	6 0	-1.905220E-13	2.984445E+01	0.000000E+00	0.000000E+00	0.000000E+00	1.022352E+01	
	8 0	4.232528E-14	5.193915E+01	0.000000E+00	0.000000E+00	0.000000E+00	1.166139E+01	
	9 0	1.585461E-13	6.377113E+01	0.00000E+00	0.00000E+00	0.00000E+00	1.196513E+01	
1	0 0 1 0	2.402153E-13 2.695660E-13	7.580715E+01 8.790287E+01	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	1.208262E+01 1.210013E+01	
MODE = 2	EIGENVALUE = 6.2	247437E+06 CYCI	ES = 3.978058E	2+02 S	UBCASE 1			
		R	EAL EIG	ENVECTO	R NUMBE	R 2		
GRI ID	D COORDINATE	Τ1	Т2	Т3	Rl	R2	R3	
	2 0	1.521171E-12	-8.137403E+00	0.000000E+00	0.00000E+00	0.000000E+00	-1.473772E+01	
	3 0	2.710335E-12	-2.644908E+01	U.000000E+00	U.000000E+00	U.000000E+00	-2.041953E+01	
	4 U 5 0	3.308125E-12 3.184369E-12	-4.622633E+01	0.000000E+00	0.000000E+00	0.000000E+00	-1.788336E+U1 -8.892313E+00	
	6 0	2.366339E-12	-6.271438E+01	0.000000E+00	0.000000E+00	0.000000E+00	3.974372E+00	
	7 0	1.032680E-12	-5.180948E+01	0.000000E+00	0.000000E+00	0.000000E+00	1.773693E+01	
	8 0	-5.256994E-13	-2.787804E+01	0.000000E+00	0.00000E+00	0.000000E+00	2.961544E+01	
	9 0	-1.969199E-12	6.132611E+00	0.000000E+00	0.000000E+00	0.000000E+00	3.767520E+01	
1	1 0	-2.983557E-12 -3.348103E-12	4.600300E+01 8 785747E+01	0.000000E+00	0.000000E+00	0.000000E+00	4.138/4/E+U1 4 201618E+01	
1	v							
MODE = 3	EIGENVALUE = 4.8	892945E+07 CYCI B	EAL EIG	SHO3 S	SUBCASE 1	в 3		
CPT	D COOPDINATE	 1	 то	т. т.			23	
ID	ID ID	11	12	15	IVI	112	1(5	
	2 0	1.642381E-10	-2.002652E+01	0.000000E+00	0.000000E+00	0.000000E+00	-3.307044E+01	
	3 0	2.926299E-10 2.571710E-10	-5.309/0/E+01	0.000000E+00	0.000000E+00	0.000000E+00	-2.740570E+01	
	5 0	3.438096E-10	-4.625482E+01	0.000000E+00	0.000000E+00	0.000000E+00	3.563308E+01	
	6 0	2.554876E-10	-1.802980E+00	0.000000E+00	0.000000E+00	0.000000E+00	4.876882E+01	
	7 0	1.114939E-10	4.156061E+01	0.00000E+00	0.00000E+00	0.00000E+00	3.333828E+01	
	8 0	-5.676249E-11	5.774125E+01	0.000000E+00	0.000000E+00	0.000000E+00	-3.079682E+00	
1	9 0	-2.126154E-10	3.4/2//IE+01	0.000000E+00	0.000000E+00	0.000000E+00	-4.155832E+01	
1	1 0	-3.614939E-10	-8.780607E+01	0.000000E+00	0.000000E+00	0.000000E+00	-6.897868E+01	
MODE = 4	EIGENVALUE = 1.8	377429E+08 CYCI	ES = 2.180730E	1+03 S	UBCASE 1			
		R	EAL EIG	ENVECTO	R NUMBE	R 4		
GRI	D COORDINATE	Т1	Т2	тЗ	Rl	R2	R3	
ID	ID		2 201 11 5 -	0.000000	0.000000	0.000000		
	2 0	-2.533925E-08	-3.381413E+01	U.UUUUUUUE+00	U.UUUUUUUE+00	U.UUUUUUUE+00	-4.888631E+01	
	4 0	-4.514/93E-08 -5.510550E-08	-3.822775E+01	0.000000E+00	0.000000E+00	0.00000E+00	-J.390/95E+00 5.702071E+01	
	5 0	-5.304356E-08	2.762323E+01	0.000000E+00	0.000000E+00	0.000000E+00	6.159572E+01	
	6 0	-3.941644E-08	6.214470E+01	0.00000E+00	0.00000E+00	0.00000E+00	5.441405E-01	
	7 0	-1.719998E-08	2.882745E+01	0.000000E+00	0.000000E+00	0.000000E+00	-6.013256E+01	
	х 0 9 0	8.759806E-09	-3.4/8329E+01	U.UUUUUUUE+00	U.UUUUUUUE+00	U.UUUUUU0E+00	-5.355421E+01	
1	0 0	4.970318E-08	-4.698040E+00	0.000000±+00	0.000000E+00	0.00000E+00	1.300390E+U1 8.102303E+01	
1	1 0	5.577583E-08	8.778828E+01	0.000000E+00	0.000000E+00	0.000000E+00	9.672126E+01	
MODE = 5	EIGENVALUE = 5.1	.31852E+08 CYCI	LES = 3.605431E	2+03 S	UBCASE 1			
		R	EAL EIG	ENVECTO	R NUMBE	R 5		
GRI	D COORDINATE	Tl	Т2	ТЗ	Rl	R2	R3	
10	2 0	6.609671E-06	4.726964E+01	0.00000E+00	0.00000E+00	0.00000E+00	5.609961E+01	
	3 0	1.177662E-05	5.817921E+01	0.00000E+00	0.00000E+00	0.00000E+00	-4.345606E+01	
1	4 0	1.437377E-05	-1.841751E+01	0.00000E+00	0.00000E+00	0.000000E+00	-8.465672E+01	
	5 0	1.383547E-05	-6.135489E+01	U.000000E+00	U.000000E+00	U.000000E+00	1.326372E+01	
	0 U 7 0	1.UZ8UZ6E-05 4.484/3/F-04	-1.303481E-01 6 161580E101	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0./9//94E+U1 1 433282F±01	
	8 0	-2.287838E-06	2.015540E+01	0.000000E+00	0.000000E+00	0.000000E+00	-8.264287E+01	
	9 0	-8.560816E-06	-5.269228E+01	0.000000E+00	0.00000E+00	0.000000E+00	-3.661835E+01	
1	0 0	-1.296886E-05	-2.608125E+01	0.00000E+00	0.00000E+00	0.000000E+00	8.608213E+01	
1	1 0	-1.455305E-05	8.786180E+01	U.UU0000E+00	U.UU0000E+00	U.UU0000E+00	⊥.246716E+02	

Note that Listings 4-1 and 4-2 are for a model run with PARAM, COUPMASS, ON, which requests coupled mass matrix formulation. Listing 4-4 shows the output for the same model in Listing 4-1, but with PARAM, COUPMASS, OFF, which requests diagonal mass matrix formulation. While the diagonal mass formulation is slightly faster, the coupled mass formulation is usually more accurate. Table 4-1 shows a comparison between Autodesk Nastran and the theoretical natural frequency.

Listing 4-4. Extracted Eigenvalues for a Cantilever Beam Using the Diagonal Mass Formulation.

MODAL ANALYSIS,	DIAGONAL MASS M	ATRIX FORMULTAION	I	SUBCASE 1			
			REAL EI	GENVALUE	S		
MODE NUMBER	EIGENVALUE	RADIANS	CYCLES	GENERALIZED MASS	GENERALIZED STIFFNESS	ORTHOGONALITY LOSS	ERROR MEASURE
1	1.576987E+05	3.971130E+02	6.320250E+01	1.000000E+00	1.576987E+05	0.00000E+00	6.465823E-14
2	6.037523E+06	2.457137E+03	3.910655E+02	1.000000E+00	6.037523E+06	6.585986E-16	9.583959E-13
3	4.616942E+07	6.794808E+03	1.081427E+03	1.000000E+00	4.616942E+07	1.477117E-15	1.168944E-10
4	1.724843E+08	1.313333E+04	2.090234E+03	1.000000E+00	1.724843E+08	4.310788E-16	9.207484E-09
5	4.574813E+08	2.138881E+04	3.404135E+03	1.000000E+00	4.574813E+08	7.797582E-16	1.559786E-06

Listings 4-2, 4-4 and Table 4-1 also show that as the mode number increases the accuracy decreases. The accuracy achieved is determined by a number of factors and can be controlled using settings on the EIRGL entry.

The accuracy of the eigensolution is measured using both orthogonality loss and error measure. The stiffness orthogonality loss for each mode is defined using:

$$\delta_i = \{\phi\}_{i=1}^T [K] \{\phi\}_i$$

And mass orthogonality loss is defined using:

$$\delta_i = \{\phi\}_{i=1}^T [M] \{\phi\}_i$$

The value shown in Listing 4-4 is the maximum of the stiffness and mass orthogonality loss. Error measure in Listing 4-4 is determined using:

$$\boldsymbol{\varepsilon}_{i} = \frac{\left| [\boldsymbol{\kappa}] \{\boldsymbol{\phi}\}_{i} - \lambda_{i} [\boldsymbol{M}] \{\boldsymbol{\phi}\}_{i} \right|}{\left| [\boldsymbol{\kappa}] \{\boldsymbol{\phi}\}_{i} \right|}$$

	Theoretical	Autodesk Nas Mass For	stran Diagonal rmulation	Autodesk Nastran Coupled Mass Formulation		
Mode Number	Natural Frequency (Hz)	Natural Frequency (Hz)	Difference (%)	Natural Frequency (Hz)	Difference (%)	
1	63.6	63.2	0.6	63.5	0.1	
2	397.4	391.8	1.4	397.8	0.1	
3	1114.5	1086.0	2.6	1113.3	0.1	
4	2185.6	2106.0	3.6	2180.7	0.2	
5	3612.6	3442.6	4.7	3605.4	0.2	

 Table 4-1. Comparison of Theoretical Versus Predicted Natural Frequency for a Cantilever Beam.

4.4 Rigid-Body Modes

In the example problem of Figure 4.1 the beam is completely constrained at one end. If the beam was unconstrained it would displace without developing any internal loads or stresses. These stress-free displacements are referred to as rigid-body modes or mechanism modes.

Rigid-body modes occur in a completely unconstrained structure such as a rocket or aircraft in flight. For 3-dimensional problems that are completely unconstrained, there are six rigid body modes. These modes are referred to as T1, T2, T3, R1, R2, and R3 and will be extracted as modes one through six. Mode seven is then referred to as the first flexible mode and will not be a zero energy mode. For 2-dimensional problems there will be three rigid body modes T1, T2, and R3 and the first flexible mode will be mode four.

Mechanism modes occur in an insufficiently constrained structure where a portion of the structure displaces as a rigid body. An example would be a flat plate on a hinge or a ball joint. A mechanism mode can also occur when two parts of a structure are not connected properly. A common example of this is a bar connected to a solid element.

Rigid-body and mechanism modes are indicated by zero or near zero frequency eigenvalues. For most structures near zero should be on the order of 1.0E-3 Hz or less and may be negative.

As an example we will use the beam shown in Figure 4-1 with only 2-dimensional constraints specified (end constraint removed). Listing 4-5 contains the Model Input File and Listing 4-6 shows the extracted frequencies and eigenvectors from the Model Results Output File. The mode shapes are plotted in Figure 4-3.

Listing 4-5. Model Input File for the 2-D Unconstrained Beam Problem.

```
$ MODAL SOLUTION.
Ś
SOL MODAL
Ś
TITLE = INSTALLATION TEST CASE
SUBTITLE = RIGID BODY MODES OF A 2-D UNCONSTRAINED BEAM
DISPLACEMENT = ALL
Ś
SUBCASE 1
 LABEL = NORMAL MODES
SPC = 1
METHOD = 1
Ś
BEGIN BULK
$ CONVERSION FACTOR FOR WEIGHT DENSITY TO MASS DENSITY
$ MASS = (1/g)*WEIGHT, G=32.2FT/SEC2, WTMASS = 1/(32.2*12) = 0.002588
Ś
PARAM, WTMASS, 0.002588
$ REQUEST COUPLED MASS MATRIX FORMULATION.
PARAM, COUPMASS, ON
Ś
$ DEFINE EIGENVALUE EXTRACTION PARAMETERS.
Ś
EIGRL, 1, , , 5
Ś
$ GEOMETRY DEFINITION (10" BEAM DIVIDED INTO 10 ELEMENTS).
Ś
                0., 0., 0., 0

1., 0., 0., 0

2., 0., 0., 0

3., 0., 0., 0

4., 0., 0., 0
GRID, 1, 0,
GRID, 2, 0,
GRID, 3, 0,
GRID, 4, 0,
GRID, 5, 0,
GRID, 6, 0, 5., 0., 0., 0

      GRID, 7, 0, 6., 0., 0., 0

      GRID, 8, 0, 7., 0., 0., 0

      GRID, 9, 0, 8., 0., 0., 0

GRID, 10, 0, 9., 0., 0.,
GRID, 11, 0, 10., 0., 0.,
                                     0
                                     0
Ś
$ BEAM MODELED WITH BAR ELEMENTS.
Ś
CBAR, 1, 10, 1, 2, 0., 1., 0.
CBAR, 2, 10, 2, 3, 0., 1., 0.
CBAR, 3, 10, 3, 4, 0., 1., 0.
CBAR, 4, 10,
CBAR, 5, 10,
                  4, 5, 0., 1., 0.
5, 6, 0., 1., 0.
CBAR, 6, 10, 6,
                         7, 0., 1., 0.
CBAR, 7, 10, 7, 8, 0., 1., 0.
CBAR, 8, 10, 8, 9, 0., 1., 0.
                   8, 9, 0., 1.,
9, 10, 0., 1.,
CBAR, 9, 10,
                                          0.
CBAR, 10, 10, 10, 11, 0., 1.,
                                          0.
$ ELEMENT MATERIAL AND SECTION PROPERTIES (1.0" X 0.2" CROSS-SECTION).
Ś
PBAR, 10, 100, 0.2, 6.667E-4, 1.667E-2, 2.328E-3,
, -0.1, 0.5, 0.1, 0.5, -0.1, -0.5, 0.1, -0.5
Ś
$ ELEMENT MATERIAL PROPERTIES (ALUMINUM).
Ś
MAT1, 100, 1.E+7, , 0.33, 0.1
$
$ MOVEMENT CONSTRAINED TO X-Y PLANE ONLY.
SPC1, 1, 345, 1, THRU, 11
ENDDATA
```

As expected, the first 3 frequencies are near zero and the fourth non-zero. Figure 4-3 depicts classical rigid body modes whereby each mode contains motion in only one degree of freedom. It is important to note however that any linear combination of these displacement shapes also comprises a valid set of rigid body modes.

l isting 4-6	Extracted	Figenvalues	for a 2-D	Unconstrained	Ream
LISUNG 4-0.		LIYEIIValues	5 IUI a 2 -D	Unconstrained	Deam.

MODAL ANALYSIS,	COUPLED MASS MA	TRIX FORMULATION		SUBCASE 1			
			REAL EI	GENVALUE	S		
MODE NUMBER	EIGENVALUE	RADIANS	CYCLES	GENERALIZED MASS	GENERALIZED STIFFNESS	ORTHOGONALITY LOSS	ERROR MEASURE
1	5.587935E-08	2.363881E-04	3.762234E-05	1.000000E+00	5.587935E-08	0.00000E+00	9.465381E-14
2	1.229346E-07	3.506203E-04	5.580295E-05	1.000000E+00	1.229346E-07	2.649432E-15	1.976175E-13
3	-4.060566E-07	6.372257E-04	1.014176E-04	1.000000E+00	-4.060566E-07	4.128210E-18	6.873596E-13
4	6.437379E+06	2.537199E+03	4.038078E+02	1.000000E+00	6.437379E+06	7.482689E-18	4.289748E-11
5	4.883871E+07	6.988470E+03	1.112250E+03	1.000000E+00	4.883871E+07	1.268083E-15	3.360955E-09

4.5 Direct Matrix Export and Import

The direct matrix support in Autodesk Nastran provides a common interface for importing and exporting global stiffness, mass, and damping matrixes using the DMIG Bulk Data entry. Autodesk Nastran provides program control directives for exporting global matrixes at various stages of execution. Case Control commands and Bulk Data entries are provided for importing matrixes for use in all available solutions.

The following examples demonstrate how to setup a model for export to DMIG and how to import DMIG into a separate model. This interface is particularly useful for sharing confidential and sensitive information where the details of a design are not to be disclosed. For example, an engine contractor may need stiffness and mass data of an aircraft to perform an overall dynamic analysis. The aircraft contractor may not want the details of their design disclosed so a stiffness and mass matrix are provided which yield equivalent results.

As an example of DMIG we will use the beam shown in Figure 4-1. First, we will treat the last two elements (9, 10) as the portion of the model that is desired to be exported. Listing 4-7 contains the Model Input File. Note that a MODAL solution is selected to enable the generation of a full mass matrix.

Ş
\$ MODAL SOLUTION.
\$
SOL MODAL
CEND
s
TITLE = INSTALLATION TEST CASE
SUBTITLE = EXPORT STIFFNESS AND MASS MATRIX OF A CANTILEVER BEAM
S
BEGIN BULK
s
\$ REQUEST A CHECKOUT RUN WHICH TERMINATES AFTER STIFFNESS AND MASS MATRIX ASSEMBLY. $$$
PARAM, CHECKOUT, ON
s
Y S CONVERSION FACTOR FOR WEICHT DENSITY TO MASS DENSITY
\leq MASS = $(1/\alpha)$ *WEIGHT, G=32 2FT/SEC2, WTMASS = $1/(32, 2*12) = 0.002588$
Y DEREM WTMESS 0 002588
s
T C DEGLES T COLLEGE MARS STATE OF THE COLLEGE STATE ST
s
contrast, contrast, on
Y \$ CROMETRY DEFINITION (2" BEAM SECMENT DIVIDED INTO 2 FIEMENTS)
CEOMETRI DEFINITION (2 DEAM SEGMENT DIVIDED INTO 2 EDEMENTS).
GRID, 10, 0, 9., 0., 0., 0
GRID, 11, 0, 10., 0., 0
S BEAM MODELED WITH BAR ELEMENTS.
\$
CBAR, 9, 10, 9, 10, 0., 1., 0.
CBAR, 10, 10, 11, 0., 1., 0.
\$
S ELEMENT MATERIAL AND SECTION PROPERTIES (1.0" X 0.2" CROSS-SECTION).
\$
PBAR, 10, 100, 0.2, 6.667E-4, 1.667E-2, 2.328E-3
Ş
S ELEMENT MATERIAL PROPERTIES (ALUMINUM).
Ş
MAT1, 100, 1.E+7, , 0.33, 0.1
ENDDATA

Listing 4-7. Model Input File for the Direct Matrix Export of a 2-D Cantilever Beam Segment.

Before the model is run, the TRSLDMIDATA Model Initialization directive must be set to ON (defaulted to OFF). Note that PARAM, CHECKOUT, ON has been added to terminate execution after the stiffness and mass matrixes are generated. Listing 4-8 shows the generated DMIG Bulk Data entries that are written to the Bulk Data Output File. The DMIG name format is

AXXXXXX

where,

A is the matrix type using one of the following symbols:

- K stiffness or conductivity matrix output
- M mass or capacitance matrix output
- B damping matrix output
- R follows the matrix type and indicates the matrix is reduced

and,

XXXXXXX is the subcase number.

\$						
\$ OUI	PUT PROD	UCED BY	ADS NASTRAN VERSION	10.3.0.716	12:28 01/16/15	
\$						
DMIG	K1		0 6 2			
DMIG	K1		9 1	9	1 2.0000000D+006+C	1A
+C	1A	10	1-2.00000000D+006			
DMIG	K1		9 2	9	2 8.0004000D+004+C	2A
+C	2A	9	6 4.0002000D+004	10	2-8.00040000D+004+C	ЗA
+C	ЗA	10	6 4.00020000D+004			
DMIG	K1		9 3	9	3 2.0004000D+006+C	4A
+C	4A	9	5-1.00020000D+006	10	3-2.00040000D+006+C	5A
+C	5A	10	5-1.00020000D+006			
DMIG	К1		9 4	9	4 8.75187970D+003+C	6A
+C	6A	10	4-8.75187970D+003			
DMIG	К1		9 5	9	5 6.6680000D+005+C	7A
+C	7A	10	3 1.00020000D+006	10	5 3.33400000D+005	
DMIG	K1		9 6	9	6 2.66680000D+004+C	8A
+C	8A	10	2-4.00020000D+004	10	6 1.33340000D+004	
DMIG	K1		10 1	10	1 4.0000000D+006+C	9A
+C	9A	11	1-2.0000000D+006			
DMIG	K1		10 2	10	2 1.60008000D+005+C	10A
+C	10A	11	2-8.00040000D+004	11	6 4.0002000D+004	
DMIG	K1		10 3	10	3 4.00080000D+006+C	11A
+C	11A	11	3-2.00040000D+006	11	5-1.0002000D+006	
DMIG	K1		10 4	10	4 1.75037594D+004+C	12A
+C	12A	11	4-8.75187970D+003			
DMIG	К1		10 5	10	5 1.33360000D+006+C	13A
+C	13A	11	3 1.00020000D+006	11	5 3.33400000D+005	
DMIG	K1		10 6	10	6 5.33360000D+004+C	14A
+C	14A	11	2-4.00020000D+004	11	6 1.33340000D+004	
DMIG	К1		11 1	11	1 2.0000000D+006	
DMIG	К1		11 2	11	2 8.0004000D+004+C	15A
+C	15A	11	6-4.00020000D+004			
DMIG	К1		11 3	11	3 2.0004000D+006+C	16A
+C	16A	11	5 1.0002000D+006			
DMIG	K1		11 4	11	4 8.75187970D+003	
DMIG	K1		11 5	11	5 6.6680000D+005	
DMIG	K1		11 6	11	6 2.66680000D+004	

Listing 4-8. Model Input File for the Direct Matrix Export of a 2-D Cantilever Beam Segment.

Listing 4-8. Model Input File for the Direct Matrix Export of a 2-D Cantilever Beam Segment. (Continued)

DMIG M1 9 1 9 1 1.72533333D-005+C 17A C 17A 10 18.6266667D-006 1 1.72533333D-005+C 18A PMIG M1 9 2 9 2.1.7253333D-005+C 18A +C 18A 9 6.2.72849229D-006 10 2.8.6266667D-006+C 19A C 10 6-1.58484104D-006 10 3.8.6266667D-006+C 21A C 20A 9 5.3.1426577DD-006 10 3.8.6266667D-006+C 21A C 22A 10 5.1.17067564D-006 10 5.5.1352D10-007+C 24A C 22A 10 3.1.7067564D-006 10 5.5.13557976D-007+C 24A C 22A 10 2.1.58484104D-006 10 6-3.75456584D-007 10 DMIG M1 10 1 1.3.4506667D-005+C 25A C 25A 11 1.8.62666667D-006 11 5.1.5957976D-007+C 26A <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th></td<>						
DMIG M1 9 1 9 1 1.72533333D-005+C 17A +C 17A 10 1 8.62666667D-006 10 2 8.62666667D-006+C 19A +C 19A 10 6-1.58484104D-006 10 2 8.62666667D-006+C 19A +C 19A 10 6-1.58484104D-006 10 3 8.6266667D-006+C 20A +C 20A 9 5-3.14265770D-006 10 3 8.6266667D-006+C 20A +C 21A 10 5 1.17067564D-006 10 3 8.6266667D-007+C 22A PMIG M1 9 6 9 5 1.06817851D-006+C 23A +C 23A 10 3-1.17067564D-006 10 5-5.13520819D-007 24A DMIG M1 9 6 9 6 5.515957976D-005+C 25A PMIG M1 10 1 13.45066667D-005+C 25A 11 18.6266667D-006 11 6-1.658484104D-006 DMIG M1 10 4	DMIG M1		0 6 2			
+C 17A 10 1 8.6266667D-006 DMIG MI 9 2 9 2 1.72533333D-005+C 18A +C 18A 9 6 2.72849229D-006 10 2 8.62666667D-006+C 19A C 19A 10 6-1.58484104D-006 0 3 8.6266667D-006+C 20A C 20A 9 5-3.14265770D-006 10 3 8.6266667D-006+C 21A C 22A 10 4 1.00414400D-007 2 22A 22A 22A 22A 10 4 1.00414400D-007 DMIG MI 9 5 9 5 1.06817851D-006+C 23A +C 22A 10 3-1.17067564D-006 10 6-3.7545684D-007 DMIG MI 10 1 13.45066667D-005+C 25A +C 24A 10 2 1.58484104D-006 10 6-3.75455684D-007 DMIG MI 10 2 3.45066667D-005+C 25A +C 25A 11 1 8.62666667D-006 11 5 1.17067564D-006 11 DMIG	DMIG M1		9 1	9	1 1.72533333D-005+C	17A
DMIG M1 9 2 9 2 1.72533333D-005+C 18A +C 18A 9 6 2.72849229D-006 10 2 8.62666667D-006+C 19A DMIG M1 9 3 9 3 1.72533333D-005+C 20A +C 20A 9 5-3.14265770D-006 10 3 8.62666667D-006+C 21A C 21A 10 5 1.17067564D-006 0 3 8.6266667D-007+C 22A C 23A 10 3-1.17067564D-006 10 5-5.13520819D-007 24A PMIG M1 9 6 9 6 5.1557976D-007+C 24A +C 24A 10 2 1.58484104D-006 10 6-3.7545684D-007 24A DMIG M1 10 1 10 1.45066667D-005+C 25A DMIG M1 10 2 3.45066667D-005+C 26A C 26A 11 <	+C 17A	10	1 8.62666667D-006			
+C 18A 9 6 2.72849229D-006 10 2 8.62666667D-006+C 19A +C 19A 10 6-1.58484104D-006 10 3 8.62666667D-006+C 21A +C 20A 9 5-3.14265770D-006 10 3 8.62666667D-006+C 21A +C 21A 10 5 1.17067564D-006 10 3 8.62666667D-006+C 22A +C 22A 10 4 1.00414400D-007 22A 24A 24A 23A <	DMIG M1		9 2	9	2 1.72533333D-005+C	18A
+C 19A 10 6-1.58484104D-006 DMIG M1 9 3 9 3 1.72533333D-005+C 20A +C 20A 9 5-3.14265770D-006 10 3 8.62666667D-006+C 21A +C 21A 10 5 1.17067564D-006 - - 22A DMIG M1 9 4 9 5 1.06817851D-006+C 23A +C 22A 10 3 1.71067564D-006 10 5-5.13520819D-007+C 24A +C 24A 10 2 1.58484104D-006 10 6-3.75465684D-007 2MIG DMIG M1 10 1 10 13.45066667D-005+C 25A +C 25A 11 1 8.6266667D-006 11 6-1.58484104D-006 DMIG DMIG M1 10 2 10 2 3.45066667D-005+C 26A +C 26A 11 2 8.62666667D-006 11 6-1.58484104D-006 DMIG DMIG M1 10 3 1.0 3.4506667D-005+C 27A +C 27A 11	+C 18A	9	6 2.72849229D-006	10	2 8.62666667D-006+C	19A
DMIG M1 9 3 9 3 1.72533333D-005+C 20A +C 21A 10 5 1.17067564D-006 10 3 8.62666667D-006+C 21A DMIG M1 9 4 9 4 2.00828800D-007+C 22A +C 22A 10 4 1.00414400D-007 24A 23A +C 23A 10 3-1.17067564D-006 10 5-5.13520819D-007 24A +C 23A 10 3-1.17067564D-006 10 6-3.7545684D-007 24A C 24A 10 2 1.58484104D-006 10 6-3.7546584D-007 DMIG M1 10 1 10 1.345066667D-005+C 25A +C 25A 11 1 8.62666667D-006 11 6-1.58484104D-006 DMIG M1 10 3 8.62666667D-005+C 26A +C 26A 11 2 8.62666667D-006 11 5 <t< td=""><td>+C 19A</td><td>10</td><td>6-1.58484104D-006</td><td></td><td></td><td></td></t<>	+C 19A	10	6-1.58484104D-006			
+C 20A 9 5-3.14265770D-006 10 3 8.62666667D-006+C 21A +C 21A 10 5 1.17067564D-006 9 4 2.00828800D-007+C 22A PMIG M1 9 5 9 5 1.06817851D-006+C 23A +C 23A 10 3-1.17067564D-006 10 5-5.13520819D-007 24A +C 24A 10 2 1.58484104D-006 10 6-3.75455684D-007 25A PMIG M1 10 1 10 1 3.45066667D-005+C 25A +C 25A 11 18.62666667D-006 11 6-1.58484104D-006 24A DMIG M1 10 2 1.0 2.3.45066667D-005+C 25A +C 26A 11 2.8.62666667D-006 11 5 1.17067564D-006 DMIG M1 10 4 10 4.0165760D-007+C 28A +C 27A 11 3 8.62666667D-006 11 5 1.17067564D-006 DMIG M1 <td>DMIG M1</td> <td></td> <td>9 3</td> <td>9</td> <td>3 1.72533333D-005+C</td> <td>20A</td>	DMIG M1		9 3	9	3 1.72533333D-005+C	20A
+C 21A 10 5 1.17067564D-006 DMIG M1 9 4 9 4 2.00828800D-007+C 22A C 22A 10 4 1.00414400D-007 23A DMIG M1 9 5 9 5 1.06817851D-006+C 23A +C 23A 10 3-1.17067564D-006 10 5-5.13520819D-007+C 24A +C 24A 10 2 1.58484104D-006 10 6-3.75465684D-007 DMIG MI 10 1 3.45066667D-005+C 25A +C 25A 11 1 8.62666667D-006 11 6-1.58484104D-006 DMIG MI 10 2 3.45066667D-005+C 26A +C 25A 11 2 8.62666667D-006 11 6-1.58484104D-006 DMIG MI 10 4 10 4 4.01657600D-007+C 28A +C 27A 11 3 8.6266667D-006 11 5-1.13520819D-007 DMIG MI 10 5 2.13635703D-006+C 29A 29A	+C 20A	9	5-3.14265770D-006	10	3 8.62666667D-006+C	21A
DMIG MI 9 4 9 4 2.00828800D-007+C 22A +C 22A 10 4 1.00414400D-007 -	+C 21A	10	5 1.17067564D-006			
+C 22A 10 4 1.00414400D-007 DMIG M1 9 5 9 5 1.06817851D-006+C 23A +C 23A 10 3-1.17067564D-006 10 5-5.13520819D-007 24A +C 24A 10 2 1.58484104D-006 10 6-3.75465684D-007 24A +C 24A 10 2 1.58484104D-006 10 6-3.75465684D-007 25A +C 25A 11 1 8.6266667D-006 10 6-1.58484104D-006 26A +C 26A 11 2 8.6266667D-006 11 6-1.58484104D-006 27A PMIG M1 10 3 10 3 3.45066667D-005+C 27A +C 26A 11 2 8.6266667D-006 11 5 1.17067564D-006 11 DMIG M1 10 4 10 4 4.0165760D-007+C 28A +C 28A 11 4 1.00414400D-007 2 213635703D-006+C 29A PMIG M1 10 5 1163520819D-007 00A 1 2 DMIG	DMIG M1		9 4	9	4 2.00828800D-007+C	22A
DMIG M1 9 5 9 5 1.06817851D-006+C 23A +C 23A 10 3-1.17067564D-006 10 5-5.13520819D-007 24A +C 24A 10 2 1.58484104D-006 10 6-3.75465684D-007 24A +C 24A 10 2 1.58484104D-006 10 6-3.75465684D-007 25A DMIG M1 10 1 10 1 3.45066667D-005+C 25A +C 26A 11 2 8.62666667D-006 11 6-1.58484104D-006 11 DMIG M1 10 3 10 3.45066667D-005+C 27A +C 26A 11 2 8.6266667D-006 11 5.1.17067564D-006 11 DMIG M1 10 4 1.00414400D-007 28A 29A +C 28A 11 4 1.00414400D-006 11 5-5.13520819D-007 29A +C 29A 11	+C 22A	10	4 1.00414400D-007			
+C 23A 10 3-1.17067564D-006 10 5-5.13520819D-007 DMIG M1 9 6 9 65.15957976D-007+C 24A +C 24A 10 2 1.58484104D-006 10 1-3.45066667D-005+C 25A +C 25A 11 1 8.62666667D-006 11 6-1.58484104D-006 26A DMIG M1 10 2 10 2 3.45066667D-005+C 26A +C 26A 11 2 8.62666667D-006 11 6-1.58484104D-006 27A +C 27A 11 3 8.62666667D-006 11 5 1.17067564D-006 DMIG M1 10 4 10 4 4.0165760D-007+C 28A +C 27A 11 3 8.62666667D-006 11 5-5.13520819D-007 20A DMIG M1 10 4 4.0165760D-007+C 28A 28A +C 29A 11 3-1.17067564D-006 11 5-5.13520819D-007 30A DMIG M1 11 </td <td>DMIG M1</td> <td></td> <td>9 5</td> <td>9</td> <td>5 1.06817851D-006+C</td> <td>23A</td>	DMIG M1		9 5	9	5 1.06817851D-006+C	23A
DMIG M1 9 6 9 6 5.15957976D-007+C 24A +C 24A 10 2 1.58484104D-006 10 6-3.75465684D-007 25A DMIG M1 10 1 10 1 3.45066667D-005+C 25A DMIG M1 10 2 10 2 3.45066667D-005+C 26A +C 26A 11 2 8.62666667D-006 11 6-1.58484104D-006 27A DMIG M1 10 3 10 3.45066667D-005+C 27A +C 26A 11 2 8.62666667D-006 11 5-1.7067564D-006 27A +C 27A 11 3 8.6266667D-006 11 5-1.17067564D-006 29A +C 28A 11 4 1.00414400D-007 29A 200 20A 20A 29A +C 29A 11 3-1.17067564D-006 11 5-5.13520819D-007 20A <td>+C 23A</td> <td>10</td> <td>3-1.17067564D-006</td> <td>10</td> <td>5-5.13520819D-007</td> <td></td>	+C 23A	10	3-1.17067564D-006	10	5-5.13520819D-007	
+C 24A 10 2 1.58484104D-006 10 6-3.75465684D-007 DMIG M1 10 1 3.4506667D-005+C 25A +C 25A 11 1 8.62666667D-006 11 6-1.58484104D-006 DMIG M1 10 2 10 2 3.45066667D-005+C 26A +C 26A 11 2 8.62666667D-006 11 6-1.58484104D-006 27A DMIG M1 10 3 10 3 3.45066667D-005+C 27A +C 27A 11 3 8.6266667D-006 11 5 1.17067564D-006 28A DMIG M1 10 4 1.00414400D-007 28A 29A 29A 11 3-1.17067564D-006 11 5-5.13520819D-007 29A DMIG M1 10 6 10 6 1.03191595D-006+C 29A +C 29A 11 3-1.17067564D-006 11 6-3.75465684D-007 30A PMIG M1 10 6 10 6 1.03191595D-006+C 29A +C 30A 11 2 1.58484104D-	DMIG M1		9 6	9	6 5.15957976D-007+C	24A
DMIG M1 10 1 10 1 3.45066667D-005+C 25A +C 25A 11 1 8.6266667D-006 10 2 3.45066667D-005+C 26A +C 26A 11 2 8.62666667D-006 11 6-1.58484104D-006 27A +C 27A 11 3 8.62666667D-006 11 5 1.17067564D-006 DMIG M1 10 4 10 4 4.01657600D-007+C 28A +C 27A 11 3 8.62666667D-006 11 5 1.17067564D-006 DMIG M1 10 4 10 4 4.01657600D-007+C 28A +C 28A 11 4 1.00414400D-007 U 2 2.13635703D-006+C 29A +C 29A 11 3-1.17067564D-006 11 5-5.13520819D-007 30A DMIG M1 10 6 10 6 10.01919595D-006+C 30A +C 30A 11 2 1.58484104D-006 11 6-3.75465684D-00	+C 24A	10	2 1.58484104D-006	10	6-3.75465684D-007	
+C 25A 11 1 8.62666667D-006 DMIG M1 10 2 10 2 3.45066667D-005+C 26A +C 26A 11 2 8.62666667D-006 11 6-1.58484104D-006 27A DMIG M1 10 3 10 3 3.45066667D-005+C 27A +C 27A 11 3 8.62666667D-006 11 5 1.17067564D-006 28A DMIG M1 10 4 10 4 4.0165760D-007+C 28A +C 28A 11 4 1.00414400D-007 0 4.0165760D-006+C 29A PMIG M1 10 5 10 5 2.13635703D-006+C 29A PMIG M1 10 6 10 6 1.03191595D-006+C 30A PMIG M1 11 1 1.72533333D-005+C 31A PMIG M1 11 2 1.1 2 1.72533333D-005+C 32A PMIG M1 11 3 11 3 1.72533333D-005+C 32A PMIG M1 11 3 11	DMIG M1		10 1	10	1 3.45066667D-005+C	25A
DMIG M1 10 2 10 2 3.45066667D-005+C 26A +C 26A 11 2 8.62666667D-006 11 6-1.58484104D-006 27A DMIG M1 10 3 10 3 3.45066667D-005+C 27A +C 27A 11 3 8.6266667D-006 11 5 1.17067564D-006 28A DMIG M1 10 4 10 4 4.0165760D-007+C 28A +C 28A 11 4 1.00414400D-007 0 4 4.0165760D-006+C 29A DMIG M1 10 5 10 5 2.13635703D-006+C 29A +C 29A 11 3-1.17067564D-006 11 5-5.13520819D-007 30A DMIG M1 10 6 10 6 1.03191595D-006+C 30A PMIG M1 11 11 11.72533333D-005 31A PMIG M1 11 2 1.72533333D-005+C 31A +C 31A 11 6-2.72849229D-006 31A 3 DMIG M1 11 3<	+C 25A	11	1 8.62666667D-006			
+C 26A 11 28.62666667D-006 11 6-1.58484104D-006 DMIG M1 10 3 10 3.45066667D-005+C 27A +C 27A 11 38.62666667D-006 11 51.17067564D-006 27A DMIG M1 10 4 10 44.0165760D-007+C 28A DMIG M1 10 5 10 52.13635703D-006+C 29A +C 29A 11 3-1.17067564D-006 11 5-5.13520819D-007 30A +C 29A 11 3-1.17067564D-006 11 5-5.13520819D-007 30A +C 29A 11 3-1.17067564D-006 11 6-3.75465684D-007 30A +C 30A 11 21.58484104D-006 11 6-3.75465684D-007 30A PMIG M1 11 1 11 11.72533333D-005+C 31A +C 31A 11 6-2.72849229D-006 11 31.72533333D-005+C 32A PMIG M1 11 3 1.72533333D-005+C 32A +C </td <td>DMIG M1</td> <td></td> <td>10 2</td> <td>10</td> <td>2 3.45066667D-005+C</td> <td>26A</td>	DMIG M1		10 2	10	2 3.45066667D-005+C	26A
DMIG M1 10 3 10 3 3.45066667D-005+C 27A +C 27A 11 3 8.62666667D-006 11 5 1.17067564D-006 28A DMIG M1 10 4 10 4 4.0165760D-007+C 28A +C 28A 11 4 1.00414400D-007 0 5 2.13635703D-006+C 29A DMIG M1 10 5 10 5 2.13635703D-006+C 29A +C 29A 11 3-1.17067564D-006 11 5-5.13520819D-007 30A DMIG M1 10 6 10 6 1.03191595D-006+C 30A +C 30A 11 2 1.58484104D-006 11 6-3.75465684D-007 30A DMIG M1 11 1 1.72533333D-005 31A +C 31A 11 6-2.72849229D-006 32A DMIG M1 11 3 3 1.72533333D-005+C 32A +C 32A 11 5 3.14265770D-006 32A 3 3 DMIG M1 11	+C 26A	11	2 8.62666667D-006	11	6-1.58484104D-006	
+C 27A 11 3 8.62666667D-006 11 5 1.17067564D-006 DMIG M1 10 4 10 4 4.01657600D-007+C 28A +C 28A 11 4 1.00414400D-007 - - - DMIG M1 10 5 10 5 2.13635703D-006+C 29A +C 29A 11 3-1.17067564D-006 11 5-5.13520819D-007 - DMIG M1 10 6 10 6 1.03191595D-006+C 30A +C 30A 11 2 1.58484104D-006 11 6-3.75465684D-007 - DMIG M1 11 1 11 1.72533333D-005+C 31A +C 31A 11 6-2.72849229D-006 - - - DMIG M1 11 3 1.1 3 1.72533333D-005+C 32A +C 32A 11 5 3.14265770D-006 - - - DMIG M1 11 4 2.00828800D-007 - 32A +C 32A 11	DMIG M1		10 3	10	3 3.45066667D-005+C	27A
DMIG M1 10 4 10 4 4 0.0657600D-007+C 28A +C 28A 11 4 1.00414400D-007 5 2.13635703D-006+C 29A DMIG M1 10 5 10 5 2.13635703D-006+C 29A +C 29A 11 3-1.17067564D-006 11 5-5.13520819D-007 30A PMIG M1 10 6 10 6 1.03191595D-006+C 30A +C 30A 11 2 1.58484104D-006 11 6-3.75465684D-007 30A +C 30A 11 1 1 1.72533333D-005 31A PMIG M1 11 2 1.1 2 1.72533333D-005+C 31A +C 31A 11 6-2.72849229D-006 006 000 0	+C 27A	11	3 8.62666667D-006	11	5 1.17067564D-006	
+C 28A 11 4 1.00414400D-007 DMIG M1 10 5 10 5 2.13635703D-006+C 29A +C 29A 11 3-1.17067564D-006 11 5-5.13520819D-007 20A DMIG M1 10 6 10 6 1.03191595D-006+C 30A +C 30A 11 2 1.58484104D-006 11 6-3.75465684D-007 30A +C 30A 11 1 1 1.72533333D-005+C 31A PMIG M1 11 2 1.72533333D-005+C 31A +C 31A 11 6-2.72849229D-006	DMIG M1		10 4	10	4 4.01657600D-007+C	28A
DMIG M1 10 5 10 5 2.13635703D-006+C 29A +C 29A 11 3-1.17067564D-006 11 5-5.13520819D-007 30A DMIG M1 10 6 10 6 1.03191595D-006+C 30A +C 30A 11 2 1.58484104D-006 11 6-3.75465684D-007 30A DMIG M1 11 1 11.72533333D-005 31A DMIG M1 11 2 1.72533333D-005+C 31A +C 31A 11 6-2.72849229D-006 31A 3 DMIG M1 11 3 11 3 1.72533333D-005+C 32A +C 32A 11 5 3.14265770D-006 3 DMIG M1 11 4 2.00828800D-007 32A DMIG M1 11 5 1.06817851D-006 DMIG M1 11 5 1.06817851D-006 DMIG M1 11 6 5.15957976D-007	+C 28A	11	4 1.00414400D-007			
+C 29A 11 3-1.17067564D-006 11 5-5.13520819D-007 DMIG M1 10 6 10 61.03191595D-006+C 30A +C 30A 11 21.58484104D-006 11 6-3.75465684D-007 30A DMIG M1 11 1 11.72533333D-005 31A DMIG M1 11 2 11 21.72533333D-005+C 31A +C 31A 11 6-2.72849229D-006 31A 31.72533333D-005+C 32A +C 31A 11 3 11 31.72533333D-005+C 32A +C 32A 11 5 3.14265770D-006 DMIG M1 11 4 2.00828800D-007 DMIG M1 11 5 11 5 1.06817851D-006 DMIG M1 11 6 11 6 5.15957976D-007	DMIG M1		10 5	10	5 2.13635703D-006+C	29A
DMIG M1 10 6 10 6 1.03191595D-006+C 30A +C 30A 11 2 1.58484104D-006 11 6-3.75465684D-007 30A DMIG M1 11 1 1 1.72533333D-005 31A DMIG M1 11 2 11 2 1.7253333D-005+C 31A +C 31A 11 6-2.72849229D-006 06 0 05+C 32A +C 32A 11 5 3.14265770D-006 0 0 0 DMIG M1 11 4 2.00828800D-007 007 0 DMIG M1 11 5 11 5 1.06817851D-006 0 DMIG M1 11 6 11 6 5.15957976D-007	+C 29A	11	3-1.17067564D-006	11	5-5.13520819D-007	
+C 30A 11 2 1.58484104D-006 11 6-3.75465684D-007 DMIG M1 11 1 11 1.72533333D-005 DMIG M1 11 2 11 2 1.72533333D-005+C 31A +C 31A 11 6-2.72849229D-006 11 3 1.72533333D-005+C 32A DMIG M1 11 3 11 3 1.72533333D-005+C 32A +C 32A 11 5 3.14265770D-006	DMIG M1		10 6	10	6 1.03191595D-006+C	30A
DMIG M1 11 1 11 1 1.72533333D-005 DMIG M1 11 2 11 2 1.72533333D-005+C 31A +C 31A 11 6-2.72849229D-006 11 2 1.72533333D-005+C 32A +C 32A 11 3 1.72533333D-005+C 32A +C 32A 11 5 3.14265770D-006 32A DMIG M1 11 4 2.00828800D-007 32A DMIG M1 11 5 1.1 5 1.06817851D-006 DMIG M1 11 6 11 6 5.15957976D-007	+C 30A	11	2 1.58484104D-006	11	6-3.75465684D-007	
DMIG M1 11 2 11 2 1.72533333D-005+C 31A +C 31A 11 6-2.72849229D-006 11 3 1.72533333D-005+C 32A PMIG M1 11 3 11 3 1.72533333D-005+C 32A +C 32A 11 5 3.14265770D-006 11 4 2.00828800D-007 DMIG M1 11 4 11 4 2.00828800D-007 DMIG M1 11 5 11 5 1.06817851D-006 DMIG M1 11 6 11 6 5.15957976D-007	DMIG M1		11 1	11	1 1.72533333D-005	
+C 31A 11 6-2.72849229D-006 DMIG M1 11 3 11 3 1.72533333D-005+C 32A +C 32A 11 5 3.14265770D-006 11 4 2.00828800D-007 32A DMIG M1 11 4 11 4 2.00828800D-007 DMIG M1 11 5 11 5 1.06817851D-006 DMIG M1 11 6 11 6 5.15957976D-007	DMIG M1		11 2	11	2 1.72533333D-005+C	31A
DMIG M1 11 3 11 3 1.72533333D-005+C 32A +C 32A 11 5 3.14265770D-006 11 4 2.00828800D-007 DMIG M1 11 4 11 4 2.00828800D-007 DMIG M1 11 5 11 5 1.06817851D-006 DMIG M1 11 6 11 6 5.15957976D-007	+C 31A	11	6-2.72849229D-006			
+C 32A 11 5 3.14265770D-006 DMIG M1 11 4 11 4 2.00828800D-007 DMIG M1 11 5 11 5 1.06817851D-006 DMIG M1 11 6 11 6 5.15957976D-007	DMIG M1		11 3	11	3 1.72533333D-005+C	32A
DMIG M1 11 4 11 4 2.00828800D-007 DMIG M1 11 5 11 5 1.06817851D-006 DMIG M1 11 6 11 6 5.15957976D-007	+C 32A	11	5 3.14265770D-006			
DMIG M1 11 5 11 5 1.06817851D-006 DMIG M1 11 6 11 6 5.15957976D-007	DMIG M1		11 4	11	4 2.00828800D-007	
DMIG M1 11 6 11 6 5.15957976D-007	DMIG M1		11 5	11	5 1.06817851D-006	
	DMIG M1		11 6	11	6 5.15957976D-007	

User's Manual

\$

Next, we will discuss direct matrix import for the model shown in Figure 4-4 using the DMIG Bulk Data file generated in the previous example. Listing 4-9 contains the Model Input File.

The stiffness and mass matrixes are imported using the Case Control commands K2GG and M2GG respectively. Note that the stiffness and mass terms imported are in addition to any existing terms at the specified degree of freedom and are not replacements. Also, the mass matrix terms are not scaled by PARAM, WTMASS and must be in mass and not weight units.

\$ MODAL SOLUTION.
\$
SOL MODAL
CEND
\$
TITLE = INSTALLATION TEST CASE
SUBTITLE = VIBRATION OF A 2-D CANTILEVER BEAM
\$
\$ SPECIFY PREVIOUSLY GENERATED STIFFNESS AND MASS MATRIXES.
\$
K2GG = K1
M2GG = M1
\$
DISPLACEMENT = ALL
\$
SUBCASE 1
LABEL = NORMAL MODES ANALYSIS WITH DIRECT MATRIX INPUT
SPC = 1
METHOD = 1

Listing 4-9. Model Input File a 2-D Cantilever Beam with Direct Matrix Input.

Listing 4-9. Model Input File a 2-D Cantilever Beam with Direct Matrix Input. (Continued)

```
BEGIN BULK
Ś
$ INSERT DIRECT INPUT MATRIX DATA.
Ś
INCLUDE 'DMIGBGEN.BDF'
$ CONVERSION FACTOR FOR WEIGHT DENSITY TO MASS DENSITY
$ MASS = (1/g) *WEIGHT, G=32.2FT/SEC2, WTMASS = 1/(32.2*12) = 0.002588
Ś
PARAM, WTMASS, 0.002588
Ś
$ REQUEST COUPLED MASS MATRIX FORMULATION.
PARAM, COUPMASS, ON
Ś
$ DEFINE EIGENVALUE EXTRACTION PARAMETERS.
EIGRL, 1, , , 5
$ GEOMETRY DEFINITION (10" BEAM DIVIDED INTO 10 ELEMENTS).
Ś
GRID, 1, 0, 0., 0., 0., 0
GRID, 2, 0, 1., 0., 0., 0
GRID, 3, 0, 2., 0., 0., 0
GRID, 4, 0, 3., 0., 0., 0
GRID, 5, 0, 4., 0., 0., 0
                 5., 0., 0., 0
6., 0., 0., 0
7., 0., 0., 0
GRID, 6, 0,
GRID, 7, 0,
GRID, 8, 0,
GRID, 9, 0, 8., 0., 0., 0
GRID, 10, 0, 9., 0., 0, 0
GRID, 11, 0, 10., 0., 0
$ BEAM MODELED WITH BAR ELEMENTS.
Ś
CBAR, 1, 10,
                   1, 2, 0., 1., 0.

      CBAR, 2, 10, 2, 3, 0., 1., 0.

      CBAR, 3, 10, 3, 4, 0., 1., 0.

      CBAR, 4, 10, 4, 5, 0., 1., 0.

CBAR, 5, 10, 5,
                          6, 0., 1., 0.
CBAR, 6, 10, 6, 7, 0., 1.,
CBAR, 7, 10, 7, 8, 0., 1.,
CBAR, 8, 10, 8, 9, 0., 1.,
                                          0.
                                           Ο.
                                           0.
Ś
$ ELEMENT MATERIAL AND SECTION PROPERTIES (1.0" X 0.2" CROSS-SECTION).
Ś
PBAR, 10, 100, 0.2, 6.667E-4, 1.667E-2, 2.328E-3
Ś
$ ELEMENT MATERIAL PROPERTIES (ALUMINUM).
Ś
MAT1, 100, 1.E+7, , 0.33, 0.1
Ś
$ FIXED AT ONE END, MOVEMENT CONSTRAINED TO X-Y PLANE ONLY.
$
SPC1, 1, 123456, 1
SPC1, 1, 345, 1, THRU, 11
ENDDATA
```

As expected this example yields results equivalent to the model shown in Figure 4-1. The models are equivalent with the only difference being elements 9 and 10 are represented directly using DMIG input data. The extracted frequencies are given in Listing 4-10.

Г

Listing 4-10. Extracted Eigenvalues for a 2-D Cantilever Beam with Direct Matrix Input.

NORMAL MODES	ANALYSIS WIT	H DIRECT MATRIX	INPUT

			REAL EI	GENVALUE	S		
MODE NUMBER	EIGENVALUE	RADIANS	CYCLES	GENERALIZED MASS	GENERALIZED STIFFNESS	ORTHOGONALITY LOSS	ERROR MEASURE
1	1.592103E+05	3.990117E+02	6.350468E+01	1.000000E+00	1.592103E+05	0.00000E+00	4.652420E-1
2	6.247437E+06	2.499487E+03	3.978058E+02	1.000000E+00	6.247437E+06	1.005879E-14	1.069259E-1
3	4.892945E+07	6.994959E+03	1.113282E+03	1.000000E+00	4.892945E+07	1.072059E-15	5.093375E-1
4	1.877429E+08	1.370193E+04	2.180730E+03	1.000000E+00	1.877429E+08	4.822531E-16	1.670033E-0
5	5.131852E+08	2.265359E+04	3.605431E+03	1.000000E+00	5.131852E+08	9.471590E-16	2.304874E-0

SUBCASE 1

4.6 Model Reduction Using ASET

Model reduction provides a means for reducing model size by employing static condensation and the Guyan reduction methods. These can be especially useful when performing eigenvalue extraction especially when a large number of modes is required. The methods are approximate but can yield accurate results if used properly.

The basic dynamic equation before reduction and after DMIG import and single and multipoint constraints are applied is given by

$$\begin{bmatrix} M_{aa} & M_{ao} \\ M_{oa} & M_{oo} \end{bmatrix} \begin{bmatrix} \ddot{u}_{a} \\ \ddot{u}_{o} \end{bmatrix} + \begin{bmatrix} B_{aa} & B_{ao} \\ B_{oa} & B_{oo} \end{bmatrix} \begin{bmatrix} \dot{u}_{a} \\ \dot{u}_{o} \end{bmatrix} + \begin{bmatrix} K_{aa} & K_{ao} \\ K_{oa} & K_{oo} \end{bmatrix} \begin{bmatrix} u_{a} \\ u_{o} \end{bmatrix} = \begin{cases} P_{a} \\ P_{o} \end{cases}$$

where,

- $\ddot{u}_a, \dot{u}_a, u_a$ are the displacements, velocities, and accelerations of the analysis set (a-set) to be retained.
- $\ddot{u}_o, \dot{u}_o, u_o$ are the displacements, velocities, and accelerations of the omit set (o-set) to be eliminated.
- *M*, *B*, *K* are the mass, damping, and stiffness matrixes.
- P_a, P_o are the applied loads.

Note that all free-body motions must be included in the u_a partition otherwise K_{oo} will be singular.

The Guyan matrix G_o is given by:

$$[G_o] = -[K_{oo}]^{-1}[K_{oa}]$$

Using this we then can write the reduced global matrixes as:

$$\begin{bmatrix} \overline{K}_{aa} \end{bmatrix} = \begin{bmatrix} K_{aa} \end{bmatrix} + \begin{bmatrix} K_{ao} \end{bmatrix} \begin{bmatrix} G_o \end{bmatrix}$$
$$\begin{bmatrix} \overline{M}_{aa} \end{bmatrix} = \begin{bmatrix} M_{aa} \end{bmatrix} + \begin{bmatrix} M_{ao} \end{bmatrix} \begin{bmatrix} G_o \end{bmatrix} + \begin{bmatrix} G_o \end{bmatrix}^T \begin{bmatrix} M_{oa} \end{bmatrix} + \begin{bmatrix} G_o \end{bmatrix}^T \begin{bmatrix} M_{oo} \end{bmatrix} \begin{bmatrix} G_o \end{bmatrix}$$

Note that the reduced stiffness matrix is exact. The reduced mass matrix is approximated however. The omitted displacements are recovered using:

$$[u_o] = [G_o] \{u_a\}$$

As an example of ASET reduction we will use the beam shown in Figure 4-1 with the end constraint removed. We will retain only the degrees of freedom for the center and end grid points. Listing 4-11 contains the Model Input File. The ASET Bulk Data entry is used to specify which degrees of freedom are to be retained. Alternatively the OMIT entry may be used to specify which degrees of freedom are to be omitted.

Listing 4-11. Model Input File for the 2-D Cantilever Beam Problem with ASET Reduction.

```
$ MODAL SOLUTION.
Ś
SOL MODAL
TITLE = INSTALLATION TEST CASE
SUBTITLE = RIGID BODY MODES OF AN ASET REDUCED 2-D UNCONSTRAINED BEAM
Ś
DISPLACEMENT = ALL
Ś
SUBCASE 1
 LABEL = NORMAL MODES
 SPC = 1
 METHOD = 1
Ś
BEGIN BULK
Ś
$ CONVERSION FACTOR FOR WEIGHT DENSITY TO MASS DENSITY
$ MASS = (1/g) *WEIGHT, G=32.2FT/SEC2, WTMASS = 1/(32.2*12) = 0.002588
Ś
PARAM, WTMASS, 0.002588
Ś
$ REQUEST COUPLED MASS MATRIX FORMULATION.
Ś
PARAM, COUPMASS, ON
$ DEFINE EIGENVALUE EXTRACTION PARAMETERS.
Ś
EIGRL, 1, , , 5
$ ASET DEFINITION. INCLUDE ALL DEGREES OF FREEDOM AT GRID POINTS 1, 6,
$ AND 11.
Ś
ASET, 1, 123456, 6, 123456, 11, 123456
Ś
$ GEOMETRY DEFINITION (10" BEAM DIVIDED INTO 10 ELEMENTS).
Ś
GRID, 1, 0, 0., 0., 0., 0

      GRID,
      2,
      0,
      1.,
      0.,
      0.,
      0

      GRID,
      2,
      0,
      1.,
      0.,
      0.,
      0

      GRID,
      3,
      0,
      2.,
      0.,
      0.,
      0

      GRID,
      3,
      0,
      2.,
      0.,
      0.,
      0

      GRID,
      5,
      0,
      4.,
      0.,
      0.,
      0

GRID, 6, 0,
GRID, 7, 0,
GRID, 8, 0,
                     5., 0., 0., 0
6., 0., 0., 0
7., 0., 0., 0
GRID, 9, 0, 8., 0., 0., 0
GRID, 10, 0, 9., 0., 0.,
GRID, 11, 0, 10., 0., 0.,
                                            0
                                     0.,
                                              0
Ś
$ BEAM MODELED WITH BAR ELEMENTS.
Ś
CBAR, 1, 10,
                                2, 0., 1.,
                                                     0
                       1,

      CBAR, 2, 10, 2, 3, 0., 1., 0.

      CBAR, 3, 10, 3, 4, 0., 1., 0.

      CBAR, 4, 10, 4, 5, 0., 1., 0.

      CBAR, 5, 10, 5, 6, 0., 1., 0.

CBAR, 6, 10, 6, 7, 0., 1., 0.
CBAR, 7, 10,
CBAR, 8, 10,
                               8, 0., 1.,
9, 0., 1.,
                        7,
                                                    Ο.
                        8,
                                                    0.
CBAR, 9, 10,
                        9, 10, 0., 1.,
                                                    Ο.
CBAR, 10, 10, 10, 11, 0., 1., 0.
Ś
$ ELEMENT MATERIAL AND SECTION PROPERTIES (1.0" X 0.2" CROSS-SECTION).
Ś
PBAR, 10, 100, 0.2, 6.667E-4, 1.667E-2, 2.328E-3,
, -0.1, 0.5, 0.1, 0.5, -0.1, -0.5, 0.1, -0.5
```

Ś

Listing 4-11. Model Input File for the 2-D Cantilever Beam Problem with ASET Reduction. (Continued)

\$ ELEMENT MATERIAL PROPERTIES (ALUMINUM).
\$
MAT1, 100, 1.E+7, , 0.33, 0.1
\$
MOVEMENT CONSTRAINED TO X-Y PLANE ONLY.
\$
SPC1, 1, 345, 1, THRU, 11
ENDDATA

Listing 4-12 shows the extracted frequencies from the Model Results Output File. The mode shapes are plotted in Figure 4-5. As expected the results compare well to those of Section 4.4 for the unreduced model. The first 3 modes are rigid body and near zero in frequency. The forth mode is within 0.2 % of the full model and the fifth mode is within 13%. The same comparison using the diagonal mass formulation (PARAM, COUPMASS, OFF) yields similar differences.

Listing 4-12. Extracted Eigenvalues for a 2-D Unconstrained Beam with ASET Reduction.

NORMAL MODES				SUBCASE 1			
	REAL EIGENVALUES						
MODE NUMBER	EIGENVALUE	RADIANS	CYCLES	GENERALIZED MASS	GENERALIZED STIFFNESS	ORTHOGONALITY LOSS	ERROR MEASURE
1	8.032657E-08	2.834194E-04	4.510760E-05	1.000000E+00	8.032657E-08	0.00000E+00	1.462279E-15
2	1.108274E-07	3.329075E-04	5.298387E-05	1.000000E+00	1.108274E-07	4.407430E-16	2.325812E-15
3	2.777204E-06	1.666494E-03	2.652308E-04	1.000000E+00	2.777204E-06	6.553321E-18	5.254527E-14
4	6.465693E+06	2.542773E+03	4.046949E+02	1.000000E+00	6.465693E+06	1.250137E-17	1.886853E-17
5	6.318934E+07	7.949172E+03	1.265150E+03	1.000000E+00	6.318934E+07	2.220446E-16	4.428712E-17

4.7 Model Reduction Using Component Mode Synthesis (Craig-Bampton Reduction)

In Component Mode Synthesis (CMS) a structure is subdivided into components or substructures. Each component can be reduced independently and then combined in a separate analysis. Component modes synthesis can be regarded as an alternative to Guyan reduction, but unlike Guyan reduction accounts for both mass and stiffness making it more accurate.

The component is fixed at an interface and a normal modes analysis is performed where the constrained eigenvectors are given by

$$\left[\boldsymbol{\Phi}\right] = \left[\boldsymbol{\Phi}_{1}, \boldsymbol{\Phi}_{2}, \boldsymbol{\Phi}_{3} \dots \boldsymbol{\Phi}_{S}\right]$$

CMS assumes that the dynamic behavior of the internal degrees of freedom can be correctly represented by a linear combination of the component modes.

$$\{u_{00}\} = \sum_{i=1}^{s} \{\Phi_i\} q_i$$

where,

$$q = [q_1, q_2, q_3, \dots q_s]^T$$

are the generalized degrees of freedom. The component displacements can then be represented by

$$u = \begin{cases} u_a \\ u_o \end{cases} = \begin{bmatrix} I & 0 \\ G_o & \Phi \end{bmatrix} \begin{cases} u_a \\ q \end{cases} = \begin{bmatrix} H \end{bmatrix} \begin{cases} u_a \\ q \end{cases}$$

where [H] is the Craig-Bampton transfer matrix. Substituting into the equation of motion we have

$$\begin{bmatrix} M_{aa} & M_{aq} \\ M_{qa} & M_{qq} \end{bmatrix} \begin{bmatrix} \ddot{u}_a \\ \ddot{q} \end{bmatrix} + \begin{bmatrix} B_{aa} & B_{aq} \\ B_{qa} & B_{qq} \end{bmatrix} \begin{bmatrix} \dot{u}_a \\ \dot{q} \end{bmatrix} + \begin{bmatrix} K_{aa} & K_{aq} \\ K_{qa} & K_{qq} \end{bmatrix} \begin{bmatrix} u_a \\ q \end{bmatrix} = \begin{bmatrix} P_a \\ P_q \end{bmatrix}$$

where,

- $\ddot{u}_a, \dot{u}_a, u_a$ are the displacements, velocities, and accelerations of the analysis set (a-set) to be retained.
- \ddot{q}, \dot{q}, q are the generalized displacements, velocities, and accelerations of the modal degrees of freedom.
- *M*, *B*, *K* are the mass, damping, and stiffness matrixes.
- P_a , P_q are the applied loads.

The stiffness reduction is the same procedure as with the Guyan reduction shown in Section 4.6 with the addition of the modal degree of freedom terms which are simply the generalized stiffnesses for each component mode.

$$\begin{bmatrix} \overline{\kappa}_{aa} \end{bmatrix} = \begin{bmatrix} \kappa_{aa} \end{bmatrix} + \begin{bmatrix} \kappa_{ao} \end{bmatrix} \begin{bmatrix} G_o \end{bmatrix}$$
$$\begin{bmatrix} \overline{\kappa}_{aq} \end{bmatrix} = \begin{bmatrix} \overline{\kappa}_{qa} \end{bmatrix} = 0$$
$$\begin{bmatrix} \overline{\kappa}_{qq} \end{bmatrix} = \begin{bmatrix} \ddots & & \\ & \ddots & \\ & & \ddots \end{bmatrix}$$

The mass and damping reduction procedure includes the off-diagonal modal degree of freedom terms

$$\begin{bmatrix} \overline{M}_{aa} \end{bmatrix} = \begin{bmatrix} M_{aa} \end{bmatrix} + \begin{bmatrix} M_{ao} \end{bmatrix} \begin{bmatrix} G_o \end{bmatrix} + \begin{bmatrix} G_o \end{bmatrix}^T \begin{bmatrix} M_{oa} \end{bmatrix} + \begin{bmatrix} G_o \end{bmatrix}^T \begin{bmatrix} M_{oo} \end{bmatrix} \begin{bmatrix} G_o \end{bmatrix}$$
$$\begin{bmatrix} \overline{M}_{aq} \end{bmatrix} = \begin{bmatrix} \overline{M}_{qa} \end{bmatrix} = \begin{bmatrix} M_{ao} \end{bmatrix} \begin{bmatrix} \Phi \end{bmatrix}^T \begin{bmatrix} M_{oo} \end{bmatrix} \begin{bmatrix} \Phi \end{bmatrix}$$
$$\begin{bmatrix} \overline{M}_{qq} \end{bmatrix} = \begin{bmatrix} \Phi \end{bmatrix}^T \begin{bmatrix} M_{oo} \end{bmatrix} \begin{bmatrix} \Phi \end{bmatrix}$$
$$\begin{bmatrix} \overline{B}_{aa} \end{bmatrix} = \begin{bmatrix} B_{aa} \end{bmatrix} + \begin{bmatrix} B_{ao} \end{bmatrix} \begin{bmatrix} G_o \end{bmatrix} + \begin{bmatrix} G_o \end{bmatrix}^T \begin{bmatrix} B_{oa} \end{bmatrix} + \begin{bmatrix} G_o \end{bmatrix}^T \begin{bmatrix} B_{oo} \end{bmatrix} \begin{bmatrix} G_o \end{bmatrix}$$
$$\begin{bmatrix} \overline{B}_{aq} \end{bmatrix} = \begin{bmatrix} \overline{B}_{qa} \end{bmatrix} = \begin{bmatrix} B_{ao} \end{bmatrix} \begin{bmatrix} \Phi \end{bmatrix}^T \begin{bmatrix} B_{oo} \end{bmatrix} \begin{bmatrix} \Phi \end{bmatrix}$$
$$\begin{bmatrix} \overline{B}_{qq} \end{bmatrix} = \begin{bmatrix} \overline{B}_{qa} \end{bmatrix} = \begin{bmatrix} B_{ao} \end{bmatrix} \begin{bmatrix} \Phi \end{bmatrix}^T \begin{bmatrix} B_{oo} \end{bmatrix} \begin{bmatrix} \Phi \end{bmatrix}$$

As an example of Craig-Bampton reduction we will use the beam shown in Figure 4-1 with only 2dimensional constraints specified (end constraint removed). We will generate Craig-Bampton mass and stiffness matrixes in DMIG form for half the beam. We will then use these matrixes in a modal analysis which contains the other beam half and compare the results to full model and one using ASET reduction.

Listing 4-13 contains the Model Input File. The ASET Bulk Data entry is used to specify which degrees of freedom are on the component boundary. These degrees of freedom are fixed for the modal analysis phase of the reduction process. The QSET and SPOINT Bulk Data entries are used to define the number of component modes desired. Generally the more modes specified the better the accuracy at the cost of increased computation time. It is the presence of the QSET entry in the model that initiates the Craig-Bampton reduction sequence.

Listing 4-13. Model Input File for a 2-D Cantilever Beam with Craig-Bampton Reduction.

```
$ MODAL SOLUTION.
Ś
SOL MODAL
Ś
TITLE = INSTALLATION TEST CASE
SUBTITLE = CRAIG-BAMPTON REDUCTION OF AN UNCONSTRAINED BEAM
DISPLACEMENT = ALL
$ EXPORT MASS AND STIFFNESS MATRIXES TO DMIG BULK DATA ENTRIES.
Ś
EXTSEOUT (DMIGBDF)
Ś
SUBCASE 1
LABEL = CONSTRAINED COMPONENT NORMAL MODES
METHOD = 1
Ś
BEGIN BULK
Ś
$ CONVERSION FACTOR FOR WEIGHT DENSITY TO MASS DENSITY
$ MASS = (1/g) *WEIGHT, G=32.2FT/SEC2, WTMASS = 1/(32.2*12) = 0.002588
Ś
PARAM, WTMASS, 0.002588
$ REQUEST COUPLED MASS MATRIX FORMULATION.
Ś
PARAM, COUPMASS, ON
$ DEFINE EIGENVALUE EXTRACTION PARAMETERS.
Ś
EIGRL, 1, , , 5
$ ASET DEFINITION. INCLUDE ALL DEGREES OF FREEDOM AT GRID POINT 6.
Ś
ASET, 6, 123456
Ś
$ QSET DEFINITION. 5 MODES REQUIRES 5 SCALAR POINTS.
Ś
SPOINT, 101, THRU, 105
QSET1, 1, 101, THRU, 105
Ś
$ GEOMETRY DEFINITION (10" BEAM DIVIDED INTO 10 ELEMENTS, 5" SECTION
$ AND 5 ELEMENTS SPECIFIED FOR MATRIX REDUCTION).
Ś
$ BEAM MODELED WITH BAR ELEMENTS.
Ś
                 6, 7, 0., 1., 0.
CBAR, 6, 10,

      CBAR, 7, 10, 7, 8, 0., 1., 0.

      CBAR, 8, 10, 8, 9, 0., 1., 0.

      CBAR, 9, 10, 9, 10, 0., 1., 0.

CBAR, 10, 10, 10, 11, 0., 1.,
                                     0.
Ś
$ ELEMENT MATERIAL AND SECTION PROPERTIES (1.0" X 0.2" CROSS-SECTION).
Ś
PBAR, 10, 100, 0.2, 6.667E-4, 1.667E-2, 2.328E-3
$ ELEMENT MATERIAL PROPERTIES (ALUMINUM).
$
MAT1, 100, 1.E+7, , 0.33, 0.1
ENDDATA
```

Listing 4-14 shows the extracted constrained frequencies from the Model Results Output File. The EXTSEOUT (DMIGBDF) Case Control command exports the generated reduced stiffness and mass matrixes in DMIG format to the Bulk Data Output File. These matrixes are shown in Listing 4-15.

Listing 4-14. Extracted Constrained Eigenvalues for a 2-D Cantilever Beam with Craig-Bampton Reduction.

NORMAL MODES				SUBCASE 1			
			REAL EI	GENVALUE	S		
MODE NUMBER	EIGENVALUE	RADIANS	CYCLES	GENERALIZED MASS	GENERALIZED STIFFNESS	ORTHOGONALITY LOSS	ERROR MEASURE
1	2.546246E+06	1.595696E+03	2.539629E+02	1.000000E+00	2.546246E+06	0.00000E+00	5.291234E-14
2	6.273196E+07	7.920351E+03	1.260563E+03	1.000000E+00	6.273196E+07	6.335606E-15	9.966381E-14
3	9.972882E+07	9.986432E+03	1.589390E+03	1.000000E+00	9.972882E+07	1.521717E-17	2.728045E-15
4	7.820284E+08	2.796477E+04	4.450731E+03	1.000000E+00	7.820284E+08	8.743006E-16	1.165661E-15
5	1.445515E+09	3.801993E+04	6.051060E+03	1.00000E+00	1.445515E+09	1.659244E-23	2.314001E-15
1							

Listing 4-15. Reduced Stiffness and Mass Matrix Export of a 2-D Cantilever Beam Segment.

\$							
\$ OUTP	UT PRO	DUCED	BY ADS	NASTRAN	VERSION	10.3.0.7	16 12:35 01/16/15
\$							
DMIG	KR1		0	6	2		
DMIG	KR1		6	1		6	1-9.31322575D-010
DMIG	KR1		6	2		6	2-2.91038305D-011
		6	6-	-8.731149	014D-011		
DMIG	KR1		6	3		6	3-2.32830644D-010
		6	5	5.820766	509D-010		
DMIG	KR1		6	4		6	4-1.81898940D-012
DMIG	KR1		6	5		6	5-1.86264515D-009
DMIG	KR1		6	6		6	6-2.40106601D-010
DMIG	KR1		101	1		101	1 2.54624579D+006
DMIG	KR1		102	1		102	1 6.27319636D+007
DMIG	KR1		103	1		103	1 9.97288152D+007
DMIG	KR1		104	1		104	1 7.82028398D+008
DMIG	KR1		105	1		105	1 1.44551530D+009
DMIG	MR1		0	6	2		
DMIG	MR1		6	1		6	1 2.5880000D-004
		105	1	7.763651	58D-019		
DMIG	MR1		6	2		6	2 2.5880000D-004
		6	6	6.470000	00D-004	101	1 1.25921130D-002
		102	1-	-6.301896	547D-018	103	1-6.97650473D-003
		104	1	4.081268	816D-003	105	1-4.62283039D-019
DMIG	MR1		6	3		6	3 2.5880000D-004
		6	5-	-6.470000	00D-004	101	1-5.19640254D-018
		102	1-	-1.249523	315D-002	103	1 3.05776715D-019
		104	1-	-6.245516	530D-018		
DMIG	MR1		6	4		6	4 3.01243200D-006
		105	1-	-1.562546	58D-003		
DMIG	MR1		6	5		6	5 2.17823765D-003
		101	1	1.906746	525D-017	102	1 4.59311417D-002
		104	1	2.222529	87D-017		
DMIG	MR1		6	6		6	6 2.15752938D-003
		101	1	4.576132	271D-002	102	1-2.13630605D-017
		103	1-	-7.308698	302D-003	104	1 2.61355407D-003
DMIG	MR1		101	1		101	1 1.0000000D+000
DMIG	MR1		102	1		102	1 1.0000000D+000
DMIG	MR1		103	1		103	1 1.0000000D+000
DMTG	MR1		104	1		104	1 1.0000000D+000
DMIG	MR1		105	1		105	1 1.0000000D+000
21110			100	1		100	1 1.00000000000000000000000000000000000

User's Manual

\$

Next, we will use direct matrix import for the model shown in Figure 4-6 using the DMIG Bulk Data file generated in the previous example. Listing 4-16 contains the Model Input File.

Figure 4-6. 2-D Cantilever Beam Example Problem with Craig-Bampton Direct Matrix Input.

The reduced stiffness and mass matrixes are imported using the Case Control commands K2GG and M2GG respectively.

Listing 4-16. Model Input File a 2-D Cantilever Beam with Craig-Bampton Direct Matrix Input.

```
$ MODAL SOLUTION.
Ś
SOL MODAL
CEND
Ś
TITLE = INSTALLATION TEST CASE
SUBTITLE = RIGID BODY MODES OF A 2-D UNCONSTRAINED BEAM
Ś
$ SPECIFY PREVIOUSLY GENERATED STIFFNESS AND MASS MATRIXES.
Ś
K2GG = KR1
M2GG = MR1
Ś
DISPLACEMENT = ALL
Ś
SUBCASE 1
LABEL = NORMAL MODES ANALYSIS WITH CRAIG-BAMPTON DIRECT MATRIX INPUT
SPC = 1
METHOD = 1
```

Listing 4-16. Model Input File a 2-D Cantilever Beam with Craig-Bampton Direct Matrix Input. (Continued)

```
BEGIN BULK
Ś
$ INSERT DIRECT INPUT MATRIX DATA.
INCLUDE 'CBDMIGGN.BDF'
$ CONVERSION FACTOR FOR WEIGHT DENSITY TO MASS DENSITY
$ MASS = (1/g)*WEIGHT, G=32.2FT/SEC2, WTMASS = 1/(32.2*12) = 0.002588
Ś
PARAM, WTMASS, 0.002588
$ REQUEST COUPLED MASS MATRIX FORMULATION.
PARAM, COUPMASS, ON
$ DEFINE EIGENVALUE EXTRACTION PARAMETERS.
Ś
EIGRL, 1, , , 5
Ś
$ GEOMETRY DEFINITION (10" BEAM DIVIDED INTO 5 ELEMENTS AND A CRAIG-BAMPTON
$ MASS AND STIFFNESS MATRIX).
GRID, 1, 0, 0., 0., 0., 0

      GRID,
      2,
      0,
      1.,
      0.,
      0.,
      0

      GRID,
      2,
      0,
      1.,
      0.,
      0.,
      0

      GRID,
      3,
      0,
      2.,
      0.,
      0.,
      0

      GRID,
      4,
      0,
      3.,
      0.,
      0.,
      0

      GRID,
      5,
      0,
      4.,
      0.,
      0.,
      0

GRID, 6, 0,
                       5., 0.,
                                       0., 0
SPOINT, 101, THRU, 105
Ś
$ BEAM MODELED WITH BAR ELEMENTS.
Ś

      S

      CBAR, 1, 10, 1, 2, 0., 1., 0.

      CBAR, 2, 10, 2, 3, 0., 1., 0.

      CBAR, 3, 10, 3, 4, 0., 1., 0.

      CBAR, 4, 10, 4, 5, 0., 1., 0.

      CBAR, 5, 10, 5, 6, 0., 1., 0.

Ś
$ ELEMENT MATERIAL AND SECTION PROPERTIES (1.0" X 0.2" CROSS-SECTION).
Ś
PBAR, 10, 100, 0.2, 6.667E-4, 1.667E-2, 2.328E-3
Ś
$ ELEMENT MATERIAL PROPERTIES (ALUMINUM).
Ś
MAT1, 100, 1.E+7, , 0.33, 0.1
Ś
$ MOVEMENT CONSTRAINED TO X-Y PLANE ONLY.
Ś
SPC1, 1, 345, 1, THRU, 6
ENDDATA
```

Listing 4-17 shows the extracted frequencies from the Model Results Output File. The results using 5 component modes are essentially identical to the full model with the only difference being elements 6 through 10 are represented directly using DMIG input data. The same comparison using the diagonal mass formulation (PARAM, COUPMASS, OFF) yields similar results.

Table 4-2 shows the effect on accuracy of the number of component modes specified. For this problem 3 modes would have provided acceptable accuracy.

Listing 4-17. Extracted Eigenvalues for a 2-D Cantilever Beam with Craig-Bampton Direct Matrix Input.

NORMAL MODES A	ANALYSIS WITH CRAI	G-BAMPTON DIRECT	MATRIX INPUT	SUBCASE 1								
REAL EIGENVALUES												
MODE NUMBER	EIGENVALUE	RADIANS	CYCLES	GENERALIZED MASS	GENERALIZED STIFFNESS	ORTHOGONALITY LOSS	ERROR MEASURE					
1	6.571645E-08	2.563522E-04	4.079972E-05	1.000000E+00	6.571645E-08	0.00000E+00	2.679496E-13					
2	2.839952E-07	5.329120E-04	8.481558E-05	1.000000E+00	2.839952E-07	7.397487E-15	1.419973E-13					
3	2.127956E-06	1.458751E-03	2.321675E-04	1.000000E+00	2.127956E-06	3.362438E-13	2.899843E-13					
4	6.437793E+06	2.537281E+03	4.038207E+02	1.000000E+00	6.437793E+06	4.250672E-14	3.341944E-14					
5	4.884240E+07	6.988734E+03	1.112291E+03	1.000000E+00	4.884240E+07	7.011752E-15	1.204301E-14					

 Table 4-2. Effect of Number of Component Modes on Craig-Bampton Matrix Accuracy for a Cantilever Beam.

	Moo (Full Model	de 4 = 403.8Hz)	Moo (Full Model	le 5 = 1112.2Hz)		
Number of Component Modes	Natural Frequency (Hz)	Difference (%)	Natural Frequency (Hz)	Difference (%)		
1	405.9	0.5	1234.3	11.0		
2	405.9	0.5	1234.3	11.0		
3	403.9	0.0	1112.9	0.1		
4	403.8	0.0	1112.3	0.0		
5	403.8	0.0	1112.3	0.0		

4.8 Model Reduction Using Superelements

The process defined in Section 4.7 can be completely automated using superelement analysis. This includes the generation of Craig-Bampton DMIG matrixes, their assembly, solution, and expansion of results data. The basic flow of a typical superelement analysis is shown in Figure 4-7.

The Initialization phase is carried out in the Model Translator module and consists of converting user defined superelement groups into ASET and QSET lists assigned to each superelement. In Autodesk Nastran superelements are defined either by specifying elements or their associated grid points. The following Case Control commands and Bulk Data entries can be used for this purpose.

SELEMGENERATE	Case Control command to generate a superelement using either a grid point or element ${\tt SET}$ command
SESET	Bulk Data entry to define superelement interior grid points (field 9, SEID, of the GRID Bulk Data entry may be used for this same purpose)
SEELT	Bulk Data entry to define superelement interior elements
SELABEL	Bulk Data entry to define a label or name to be displayed in superelement output headings
PARAM, NCBMODE, n	Model parameter to specify the number of component (Craig-Bampton) modes for component reduction

See Nastran Solver Reference Guide, Section 3, Case Control and Section 4, Bulk Data, for more information.

The Element Matrix Assembly phase is carried out in the Geometry Processor module which generates the individual element stiffness and mass matrixes for all elements and stores them on disk. The Component Assembly phase is carried out in the Component Assembly Processor module which indexes the individual stiffness and mass matrixes into full component size. Component mass property output from the Grid Point Weight Generator is handled in this phase. The Component Reduction phase is carried out in the Matrix Reduction Processor module which reduces the full component using the methods described in Section 4-7 into a superelement. The Component Assembly and Component Reduction phases are repeated in succession for each superelement defined. Any DMIG matrixes specified are assigned to the last superelement and are not reduced. Each superelement reduced stiffness and mass matrix can be exported via the EXTSEOUT (DMIGBDF) Case Control command as they are generated. The Superelement Assembly phase is carried out in the Superelement Assembly Processor module which indexes the residual element stiffness and mass matrixes (elements not a member of any superelement) and the previously generated superelement stiffness and mass matrixes into full model size. The Solution Sequence phase is based on the SOLUTION specified. The solution sequences currently available for superelement analysis are:

Solution Character Variable	Solution Number
LINEAR STATIC	101
MODAL	103
MODAL FREQUENCY RESPONSE	111
MODAL TRANSIENT RESPONSE	112

Figure 4-7. Flow Diagram for a Typical Superelement Solution Sequence.

In the LINEAR STATIC solution sequence all superelement load vectors are assembled and reduced during the Component Reduction phase. The Component Expansion phase occurs in either the Solution Processor module (linear static solutions) or the Eigenvalue Processor module (modal solutions). In this phase internal superelement displacements are recovered to full model size enabling complete recovery of all vector and element results. The Results Processing phase is carried out in the Results Processor module in the same manner as non-superelement solution sequences using the expanded results data.

As an example of a superelement modal solution we will use the beam shown in Figure 4-1 with only 2dimensional constraints specified (end constraint removed). We will generate two superelements by putting elements 1 through 3 in superelement 1 and elements 4 through 6 in superelement 2. The residual set will contain elements 7 through 10. We will then run a superelement modal analysis and compare the results to the full model and one using Craig-Bampton reduction.

Listing 4-18 contains the Model Input File. The SELEMGENERATE Case Control command is used to generate each superelements. Alternatively, we could have used the SEELT Bulk Data entry.

Listing 4-18. Model Input Model Input File for a 2-D Cantilever Beam with Superelement Reduction.

```
$ MODAL SOLUTION.
Ś
SOL MODAL
Ś
TITLE = INSTALLATION TEST CASE
SUBTITLE = SUPERELEMENT REDUCTION OF AN UNCONSTRAINED BEAM
Ś
$ SUPERELEMENT DEFINITION.
Ś
SET 1 = 1, 2, 3
SELEMGENERATE, 1, ELEM, 1
SET 2 = 4, 5, 6
SELEMGENERATE, 2, ELEM, 2
Ś
DISPLACEMENT = ALL
$ EXPORT MASS AND STIFFNESS MATRIXES TO DMIG BULK DATA ENTRIES.
EXTSEOUT (DMIGBDF)
Ś
SUBCASE 1
LABEL = SUPERELEMENT NORMAL MODES ANALYSIS
SPC = 1
METHOD = 1
BEGIN BULK
$ CONVERSION FACTOR FOR WEIGHT DENSITY TO MASS DENSITY
$ MASS = (1/g) *WEIGHT, G=32.2FT/SEC2, WTMASS = 1/(32.2*12) = 0.002588
PARAM, WTMASS, 0.002588
$ REQUEST COUPLED MASS MATRIX FORMULATION.
Ś
PARAM, COUPMASS, ON
Ś
$ NUMBER OF CRAIG-BAMPTON MODES.
Ś
PARAM, NCBMODE, 3
```

Listing 4-18. Model Input Model Input File for a 2-D Cantilever Beam with Superelement Reduction. (Continued)

```
$ DEFINE EIGENVALUE EXTRACTION PARAMETERS.
Ś
EIGRL, 1, , , 8
$ GEOMETRY DEFINITION (10" BEAM DIVIDED INTO 10 ELEMENTS, 3" SECTION
$ AND 3 ELEMENTS IN EACH SUPERELEMENT).
Ś
GRID, 1, 0, 0., 0., 0.,
GRID, 2, 0, 1., 0., 0.,
GRID, 3, 0, 2., 0., 0.,
                                                  0
                                                  0
                                                   0
GRID, 4, 0, 3., 0., 0., 0
GRID, 5, 0, 4., 0., 0., 0
GRID, 6, 0, 5., 0., 0., 0

      GRID,
      7,
      0,
      6.,
      0.,
      0.,
      0

      GRID,
      8,
      0,
      7.,
      0.,
      0.,
      0

      GRID,
      9,
      0,
      8.,
      0.,
      0.,
      0

      GRID,
      9,
      0,
      8.,
      0.,
      0.,
      0

      GRID, 8, 0, 7., 0., 0., 0

      GRID, 9, 0, 8., 0., 0., 0

      GRID, 10, 0, 9., 0., 0., 0

                                         0.,
GRID, 11, 0, 10., 0.,
                                                  0
$ BEAM MODELED WITH BAR ELEMENTS.
Ś
CBAR, 1, 10,
CBAR, 2, 10,
                          1, 2, 0., 1.,
2, 3, 0., 1.,
                                                            0.
                                                            0.
CBAR, 3, 10, 3, 4, 0., 1., 0.

      CBAR, 4, 10, 4, 5, 0., 1., 0.

      CBAR, 5, 10, 5, 6, 0., 1., 0.

      CBAR, 6, 10, 6, 7, 0., 1., 0.

CBAR, 7, 10,
                          7, 8, 0., 1.,
                                                            0.
CBAR, 8, 10, 8, 9, 0., 1., 0.
CBAR, 9, 10, 9, 10, 0., 1., 0.
CBAR, 10, 10, 10, 11, 0., 1.,
                                                            0.
Ś
$ ELEMENT MATERIAL AND SECTION PROPERTIES (1.0" X 0.2" CROSS-SECTION).
Ś
PBAR, 10, 100, 0.2, 6.667E-4, 1.667E-2, 2.328E-3
$ ELEMENT MATERIAL PROPERTIES (ALUMINUM).
Ś
MAT1, 100, 1.E+7, , 0.33, 0.1
$ MOVEMENT CONSTRAINED TO X-Y PLANE ONLY.
SPC1, 1, 345, 1, THRU, 11
ENDDATA
```

Listing 4-19 shows the automatic ASET and QSET generation. The boundary for superelement 1 is grid point 4 and the boundary for superelement 2 is grid point 4 and 7. Each generates an ASET for all 6 degrees of freedom as shown. Grid points 1 through 3 in superelement 1 and 5 through 6 in superelement 2 are moved into the OMIT set. A QSET component is generated for each Craig-Bampton mode requested (PARAM, NCBMODE, 3) for each superelement. Note that multipoint constraint equations, rigid elements, and interpolation elements must not cross a superelement boundary (i.e., reference grid points in different superelements).

Listing 4-20 shows the extracted constrained frequencies for each superelement from the Model Results Output File. The EXTSEOUT (DMIGBDF) Case Control command exports the generated reduced stiffness and mass matrixes in DMIG format to the Bulk Data Output File. These matrixes are shown in Listing 4-21.

	Al	NALYSIS I	DEGREE	O F	FR	ΕED	ОМ	SE	Т	DEF	ΙN	I	ΤI	0 1	N		
GRID	COMPONENT	SUPERELEMENT															
ID	NUMBER	ID															
4	1	1															
4	1	2															
4	2	1															
4	2	2															
4	3	1															
4	3	2															
4	4	1															
4	4	2															
4	5	1															
4	5	2															
4	6	1															
4	6	2															
7	1	2															
7	2	2															
7	3	2															
7	4	2															
7	5	2															
7	6	2															
	GEN	ERALIZED	DEGRE	E O	F :	FRE	EDO	M	SET	D	ΕF	ΙN	I	ГΙ	ON	1	
GRID	COMPONENT	SUPERELEMENT															
ID	NUMBER	ID															
12	1	1															
13	1	1															
14	1	1															
15	1	2															
16	1	2															
17	1	2															

Listing 4-19. ASET and QSET Generation for a 2-D Cantilever Beam with Superelement Reduction.

Listing 4-20a. Extracted Constrained Eigenvalues for a 2-D Cantilever Beam with Superelement Reduction –Superelement 1.

SUPERELEMENT 1	L						
			REAL EI	GENVALUE	S		
MODE NUMBER	EIGENVALUE	RADIANS	CYCLES	GENERALIZED MASS	GENERALIZED STIFFNESS	ORTHOGONALITY LOSS	ERROR MEASURE
1	1.962878E+07	4.430438E+03	7.051260E+02	1.000000E+00	1.962878E+07	0.00000E+00	9.786391E-14
2	4.712834E+08	2.170906E+04	3.455105E+03	1.000000E+00	4.712834E+08	2.744160E-29	5.509215E-15
3	7.678557E+08	2.771021E+04	4.410217E+03	1.000000E+00	7.678557E+08	8.343960E-29	1.700471E-14

Listing 4-20b. Extracted Constrained Eigenvalues for a 2-D Cantilever Beam with Superelement Reduction –Superelement 2.

SUPERELEMENT 2	2						
			REAL EI	GENVALUE	S		
MODE NUMBER	EIGENVALUE	RADIANS	CYCLES	GENERALIZED MASS	GENERALIZED STIFFNESS	ORTHOGONALITY LOSS	ERROR MEASURE
1	7.988699E+08	2.826429E+04	4.498401E+03	1.000000E+00	7.988699E+08	0.00000E+00	9.886231E-16
2	6.182106E+09	7.862637E+04	1.251378E+04	1.000000E+00	6.182106E+09	2.220446E-16	2.322149E-16
3	1.743152E+10	1.320285E+05	2.101299E+04	1.000000E+00	1.743152E+10	7.642692E-16	1.752250E-16

Listing 4-21a. Reduced Stiffness and Mass Matrix Export of a 2-D Cantilever Beam Segment –Superelement 1.

\$ \$ OUTP \$ SUPE \$	UT PROI RELEMEN	DUCED BY NT 1	ADS NA	STARAN VE	RSION 1	0.3.0.716	02:02 01/16/15
\$	2	3	4	5	6	7	890
DMIG	KR1		0	6	2		
DMIG	KR1		4	2		4	2 1.45519152D-011
		4	6-2.	91038305D	-011		
DMIG	KR1		4	4		4	4 1.81898940D-012
DMIG	KR1		4	6		4	6 4.36557457D-011
DMIG	KR1		12	1		12	1 1.96287773D+007
\$ \$ OUTP \$ SUPE \$	UT PROI	DUCED BY	ADS NA	STARAN VE	RSION 1	.0.3.0.716	02:02 01/16/15
\$	2	3	4	5	6	7	890
DMIG	MR1		0	6	2		
DMIG	MR1		4	1		4	1 1.55280000D-004
DMIG	MR1		4	2		4	2 1.55280000D-004
		4	6-2.	32920000D	-004	12	1 9.74812934D-003
		14	1-5.	39328367D	-003	_	
DMIG	MR1		4	3		4	3 1.55280000D-004
		4	52.	32920000D	-004	13	1-9.54336595D-003
DMIG	MR1		4	4		4	4 1.80745920D-006
		12	16.	97418578D	-020	13	1-9.08091199D-020
		14	1 1.	36976183D	-020		
DMIG	MR1		4	5		4	5 4.78782588D-004
		13	1-2.	14921797D	-002		
DMIG	MR1		4	6		4	6 4.66357626D-004
		12	1-2.	12737503D	-002	14	1 3.40205848D-003
DMIG	MR1		12	1		12	1 1.0000000D+000
DMIG	MR1		13	1		13	1 1.0000000D+000
DMIG	MR1		14	1		14	1 1.0000000D+000

Listing 4-21b. Reduced Stiffness and Mass Matrix Export of a 2-D Cantilever Beam Segment –Superelement 2.

\$ \$ OUTP \$ SUPE	UT PROD RELEMEN	UCED BY T 2	ADS NASTARAN	N VERSION 1	0.3.0.716	02:02 01/16/15
\$ \$	2	3	4	56	7	890
DMIG	KR2	0	0 6	2		
DMIG	KR2		4 1		4	1 6.66666667D+005
		7	1-6.666666	567D+005		
DMIG	KR2		4 2		4	2 2.96311111D+003
		4	6 4.444666	567D+003	7	2-2.96311111D+003
		7	6 4.444666	567D+003		
DMIG	KR2		4 3		4	3 7.40888889D+004
		4	5-1.111333	333D+005	7	3-7.40888889D+004
		7	5-1.111333	333D+005		
DMIG	KR2		4 4		4	4 2.91729323D+003
		7	4-2.917293	323D+003		
DMIG	KR2		4 5		4	5 2.22266667D+005
		7	3 1.111333	333D+005	7	5 1.11133333D+005
DMIG	KR2		4 6		4	6 8.88933333D+003
		7	2-4.444666	567D+003	7	6 4.44466667D+003
DMIG	KR2		7 1		7	1 6.66666667D+005
DMIG	KR2		7 2		7	2 2.96311111D+003
		7	6-4.444666	567D+003		

Listing 4-21b. Reduced Stiffness and Mass Matrix Export of a 2-D Cantilever Beam Segment –Superelement 2. (Continued)

DMIG	KR2		7 3		7	3 7.40888889D+004	
		7	5 1.111333	33D+005			
DMIG	KR2		7 4		7	4 2.91729323D+003	
DMIG	KR2		7 5		7	5 2.22266667D+005	
DMIG	KR2		7 6		7	6 8.88933333D+003	
DMTG	KR2		15 1		15	1 7 98869913D+008	
DMIG	KB2		16 1		16	1 6 182106070+009	
DMIC	KD2		17 1		17	$1 \ 1 \ 7/3152320+010$	
è DHI G	1/1/2		1/ 1		1	1 1.7451525201010	
2 6 01000				VEDGTON	10 2 0 710	00.00 01/10/15	
\$ OUIPU	JI PROL	л осво ві т о	ADS NASIARAN	VERSION	10.3.0./10	02:02 01/10/13	
\$ SUPER	KELEMEN	VT Z					
\$		-		<i>.</i>	-		
Ş	2	3		6-	//	890	
DMIG	MR2		0 6	2			
DMIG	MR2		4 1		4	1 5.1760000D-005	
		7	1 2.588000	00D-005	16	1 6.94322301D-020	
		17	1-3.913053	77D-019			
DMIG	MR2		4 2		4	2 5.77444454D-005	
		4	6 2.441839	71D-005	7	2 1.98955546D-005	
		7	6-1.440160	29D-005	15	1-5.16246465D-003	
		16	1 3.067795	97D-003	17	1-1.79208025D-018	
DMTG	MR2		4 3		4	3 5 940110700-005	
DIIIG	111.02	1	5-2 483256	250-005	7	3 1 823889300-005	
		7	5 1 3007/3	25D 005	1	5 1.025005500 005	
DMTC	MD 0	/	J 1.390/43	/30-003	Λ	4 6 004064000 007	
DMIG	MRZ	-	4 4	000 007	4	4 0.02480400D-007	
		1	4 3.012432	00D-007	15	1 1.40537237D-019	
		16	1-3.912661	94D-019	17	1-6.01241915D-004	
DMIG	MR2		4 5		4	5 1.50353927D-005	
		7	3-1.398743	75D-005	7	5-1.04137053D-005	
DMIG	MR2		4 6		4	6 1.33787311D-005	
		7	2 1.440160	29D-005	7	6-9.99953991D-006	
		15	1-3.345448	04D-003	16	1 1.19752480D-003	
		17	1-6.950299	84D-019			
DMIG	MR2		7 1		7	1 5.1760000D-005	
		16	1 7.152969	11D-020	17	1-3.91306754D-019	
DMTG	MR2		7 2		7	2 5.77444454D-005	
		7	6-2 441839	71D-005	15	1-5 16246465D-003	
		16	1-3 067795	970-003	17	1 1 543635650-018	
DMTC	MD 2	τo	7 3	570 005	7	3 5 940110700-005	
DMIG	MRZ	7	7 J	26D 006	/	5 5.940110700-005	
51/7.0	100	/	5 2.485256	25D-005	7		
DMIG	MRZ	1 -	/ 4	105 010	1	4 6.02486400D-007	
		15	1 1.411418	10D-019	16	1-4.03045286D-019	
		17	1-6.012419	15D-004			
DMIG	MR2		7 5		7	5 1.50353927D-005	
DMIG	MR2		7 6		7	6 1.33787311D-005	
		15	1 3.345448	04D-003	16	1 1.19752480D-003	
		17	1-6.070776	04D-019			
DMIG	MR2		15 1		15	1 1.0000000D+000	
DMIG	MR2		16 1		16	1 1.0000000D+000	
DMIG	MR2		17 1		17	1 1.0000000D+000	
			· -		= :		

Listing 4-22 shows the extracted frequencies for the reduced model from the Model Results Output File. The results using 3 component modes and 2 superelements are essentially identical to the full model. The same comparison using the diagonal mass formulation (PARAM, COUPMASS, OFF) yields similar results.

Table 4-3 shows the effect on accuracy of the number of component modes specified (PARAM, NCBMODE, n). For this problem 3 modes provide acceptable accuracy.

Г

Listing 4-22. Extracted Eigenvalues for a 2-D Cantilever Beam with Superelement Reduction.

SUPERELEMENT N	NORMAL MODES ANALY	SIS		SUBCASE 1			
			REAL EI	GENVALUE	S		
MODE NUMBER	EIGENVALUE	RADIANS	CYCLES	GENERALIZED MASS	GENERALIZED STIFFNESS	ORTHOGONALITY LOSS	ERROR MEASURE
1	7.357448E-08	2.712462E-04	4.317017E-05	1.000000E+00	7.357448E-08	0.00000E+00	3.463960E-14
2	9.816140E-07	9.907643E-04	1.576850E-04	1.000000E+00	9.816140E-07	1.318187E-15	6.609803E-14
3	3.338791E-06	1.827236E-03	2.908136E-04	1.000000E+00	3.338791E-06	9.216069E-15	6.681541E-14
4	6.437427E+06	2.537208E+03	4.038093E+02	1.000000E+00	6.437427E+06	2.997602E-15	1.624684E-14
5	4.885240E+07	6.989449E+03	1.112405E+03	1.000000E+00	4.885240E+07	9.436896E-16	2.177672E-14

Table 4-3. Effect of Number of Component Modes on Accuracy for a Cantilever Beam with Superelement Reduction.

	Mode 4 (Full Model = 403.8Hz)		Mode 5 (Full Model = 1112.2Hz)	
Number of Component Modes	Natural Frequency (Hz)	Difference (%)	Natural Frequency (Hz)	Difference (%)
1	403.8	0.0	1116.2	0.3
2	403.8	0.0	1115.9	0.3
3	403.8	0.0	1112.4	0.0
4	403.8	0.0	1112.4	0.0
5	403.8	0.0	1112.4	0.0

4.9 Modal Database Storage and Retrieval

When any modal analysis is performed the modal database (i.e., eigenvalues, eigenvectors, modal participation factors, etc.) can be saved and used for subsequent modal response solutions thus saving a substantial amount of time. The modal database is deleted by default but can be stored by setting PARAM, MODALDATABASE to STORE. A file with the same base name and location as the Model Input File will be generated with an .MDB extension. When PARAM, MODALDATABASE is set to FETCH, Autodesk Nastran will skip the eigenvalue extraction phase and load the modal database with the same Model Input File base name and an .MDB extension. The procedure is as follows:

- 1. Set PARAM, MODALDATABASE, STORE in the Model Input File for the modal analysis (normal modes or modal response) that is to be stored.
- 2. Run the modal analysis.
- 3. Set PARAM, MODALDATABASE, FETCH in the Model Input File for the modal response analysis that will use the modal database generated in Step 1.
- 4. Rename the modal database base name if different from the Model Input File for the modal response analysis.
- 5. Run the modal response analysis.

See the Nastran Solver Reference Guide, Section 5, Parameters, for more information on MODALDATABASE.

4.10 Modal Correlation

Modal correlation is often used to compare analytical and test results. Analyzing experimentally obtained mode shapes and comparing them with analysis results is critical in assessing the value of an analytical model and its interpretation. Other applications include comparing results from different analytical models or the same model with different analysis settings. Autodesk Nastran contains two built in tools for assessing modal correlation: Modal Assurance Criteria (MAC) and Modal Cross-Orthogonality (MXO). MAC gives quantitatively the global closeness between experimental and analysis mode shapes ignoring the effects of the system mass. The formula for MAC is given by

$$\left[\mathsf{MAC}\right] = \frac{\left[\left\{\phi\right\}_{i}^{T}\left\{\phi\right\}_{j}\right]^{2}}{\left[\left\{\phi\right\}_{i}^{T}\left\{\phi\right\}_{i}\right] \left[\left\{\phi\right\}_{j}^{T}\left\{\phi\right\}_{j}\right]}$$

where *i* and *j* corresponds to the indices of two mode shapes that can be from the same origin (experimental or analytical) in order to check linear dependency, or mixed in order to check correlation between the two model modal bases. MAC values oscillate between 0 and 1. A unitary value means perfect correlation. In general this situation does not appear, and a value greater than 0.8 is judged acceptable. Two corresponding modes will have a high degree of correlation.

MXO is similar to MAC except that the calculation is weighted by the global mass matrix. The formula for MXO is given by

$$[\mathsf{MXO}] = \{\phi\}_i^T [M] \{\phi\}_i$$

A generally accepted requirement for the MXO is to have all diagonal terms larger than 0.9 and all the off-diagonal terms less than 0.1.

As an example we will use the beam shown in Figure 4-1. The experimental data is given in MS Excel Comma Separate Variable (.CSV) format and shown in Listing 4-23. The format is

grid1, component1, eigenvector1

gridn, componentn, eigenvectorn -1, mode, eigenvalue

where,

Option	Definition	Туре
grid	Grid point identification number.	Integer > 0
component	Component number of global coordinate.	$1 \leq Integer \leq 6$
eigenvector	Eigenvector value for the specified grid point and component direction.	Real
mode	Associated mode number.	Integer > 0
eigenvalue	Associated eigenvalue.	Real
-1	Last record symbol for the mode specified.	

Ş		
\$ MC	DE 1	EIGENDATA.
\$		
, J	2	-5 578773E+0
5,	2	-2 0000300-0
, s	2 '	·2.000930E+U
/ ,	4,	-4.U3ZZ31E+U
9,	2,	-6.348129E+0
11,	2,	-8.756870E+0
з,	6,	-5.298854E+0
5,	6,	-8.941852E+0
7,	6,	-1.105478E+0
9.	6.	-1.193366E+0
11	6	-1 208716F+0
1	1 U	1 57703/0-0
_⊥, ¢	±,	1.J//834E+U
⇒ ¢	<	
Ş MC	DE 2	EIGENDATA.
Ş		
з,	2,	-2.593419E+0
5,	2,	-5.927000E+0
7,	2,	-5.200510E+0
9.	2.	4.389160F+0
11	2	8 550123540
· · · /	4 ,	0.0001235+0
<u>ئ</u>	ь,	-2.UU/332E+0
5,	6,	-9.052572E+0
7,	6,	1.697939E+0
9,	6,	3.701651E+0
11.	6	4.206841E+0
_1	2	6 050631010
<u>,</u>	∠,	0.0090345+0
Ş	<	
Ş MC	DE 3	EIGENDATA.
Ş		
З,	2,	5.179274E+0
5,	2,	4.744148E+0
7.	2	-3.837883E+0
à	2	-3 7/065/0000
<i>ع</i> ر ا	4 1	0 10/01/m-0
±⊥,	۷,	8.184914E+0
З,	6,	2.718869E+0
5,	6,	-3.340254E+0
7,	6,	-3.434102E+0
9.	6.	3.778687E+0
11	6	6 996753F±0
1 ¹	о , С	0.990/J3E+U
_⊥, ¢	з,	4.0301835+0
Ş		
Ş MC	DE 4	EIGENDATA.
\$		
З,	2,	-6.494734E+0
5,	2,	2.305299E+0
7.	2.	3.424033F+0
à	2	-5 633661F±0
11	~ '	7 E000100-0
±±,	4,	1.J00210E+U
з,	6,	-7.294765E+0
5,	6,	6.109471E+0
7,	6,	-5.391942E+0
9,	6,	5.490157E+0
11	6.	9.886335E+0
_1	4	1 7509255+0
`` د	-1 /	1.,JUJZJE+U
9 6 140		
Ş MC	DE 5	EIGENDATA.
ş		
з,	2,	-5.848987E+0
5,	2,	6.071392E+0
7.	2.	-5.770473E+0
q	2	4 372249F+0
11	2	
±±,	4,	-0./3/3U8E+U
З,	6,	3.6/60//E+0
5,	6,	-3.013181E+0
7,	6,	-2.726321E+0
9.	6.	5.026109E+0
11	6	-1 256550F±0
1 ± 1	U, F	1 6700557540
<i>−</i> ⊥,	э,	4.0/0000E+U

Listing 4-23. Experimental Data Input File for a 2-D Cantilever Beam with Modal Correlation.

Listing 4-24 contains the Model Input File. A MODAL solution is required for modal correlation. The XYPLOTCSVOUT directive requests MAC and MXO plot file generation in MS Excel .CSV format. The DATINFILE1 and DATINFILE2 directives are used to specify the external input data associated with the two eigendata sets to be compared. The default for the DATINFILE1 directive is the modal database for analysis being run. The DATINFILE2 directive is used to specify the external or experimental data input file (Listing 4-23). You can also specify a standard Autodesk Nastran modal database file by simply using an .MDB extension. DMIG format is also supported where the DMIG Bulk Data entries are specified in the Model Input File and the DMIG name is specified using the DATINFILE2 directive. The CORRELATE Case Control command requests the modal correlation. The ESET defines the degrees of freedom used in the comparison. External data may only exist at a few selected points as is often the case with experimental data. In our example only the y-displacement and z-rotation at grid points 3, 5, 7, 9, and 11 and selected.

While not shown in this example, the XSETGENERATE command can be used to generate the ESET from an external set of locations not common to existing nodes in the model. The input is typically an MS Excel .CSV file similar to the one in Listing 4-23. The actual experimental data locations are referenced in the model as grid points. The XSETGENERATE command can then be used to interpolate from the XSET to the ESET, where the XSET is the set of user defined experimental data points and the ESET is the corresponding closest model locations. See *Nastran Solver Reference Guide*, Section 3, *Case Control*, for more information on XSETGENERATE.

```
$ REQUEST GENERATION OF MS EXCEL COMMA SEPERATED VARIABLE FILE.
Ś
NASTRAN XYPLOTCSVOUT=ON
Ś
$ SPECIFY INPUT DATA FILE.
Ś
NASTRAN DATINFILE2=MACBARIN.CSV
Ś
$ MODAL SOLUTION.
SOL 103
CEND
TITLE = INSTALLATION TEST CASE
SUBTITLE = VIBRATION OF A 2-D CANTILEVER BEAM
Ś
DISPLACEMENT = ALL
Ś
$ REQUEST MODAL ASSURANCE CRITERIA (MAC) ANALYSIS.
Ś
CORRELATE = ALL
Ś
SUBCASE 1
LABEL = NORMAL MODES
SPC = 1
METHOD = 1
Ś
BEGIN BULK
Ś
$ CONVERSION FACTOR FOR WEIGHT DENSITY TO MASS DENSITY
$ MASS = (1/g) *WEIGHT, G=32.2FT/SEC2, WTMASS = 1/(32.2*12) = 0.002588
Ś
PARAM, WTMASS, 0.002588
Ś
$ REQUEST COUPLED MASS MATRIX FORMULATION.
Ś
PARAM, COUPMASS, ON
```

Listing 4-24. Model Input File for a 2-D Cantilever Beam with Modal Correlation.

Listing 4-24. Model Input File for a 2-D Cantilever Beam with Modal Correlation. (Continued)

```
Ś
$ DEFINE EXPERIMENT DATA DEGREES OF FREEDOM FOR MAC ANALYSIS.
Ś
ESET1, 26, 3, 5, 7, 9, 11
Ś
$ DEFINE EIGENVALUE EXTRACTION PARAMETERS.
Ś
EIGRL, 1, , , 5
Ś
$ GEOMETRY DEFINITION (10" BEAM DIVIDED INTO 10 ELEMENTS).
Ś

      GRID,
      1,
      0,
      0.,
      0.,
      0.,
      0

      GRID,
      2,
      0,
      1.,
      0.,
      0
      0

      GRID,
      3,
      0,
      2.,
      0.,
      0.,
      0

      GRID,
      3,
      0,
      2.,
      0.,
      0.,
      0

      GRID,
      4,
      0,
      3.,
      0.,
      0.,
      0

      GRID,
      5,
      0,
      4.,
      0.,
      0.,
      0

      GRID,
      6,
      0,
      5.,
      0.,
      0.,
      0

      GRID,
      8,
      0,
      7,
      0,
      6.,
      0.,
      0.,

GRID, 8, 0, 7., 0., 0., 0
GRID, 9, 0, 8., 0., 0., 0
GRID, 10, 0, 9., 0., 0., 0
GRID, 11, 0, 10., 0., 0.,
                                                             0
$ BEAM MODELED WITH BAR ELEMENTS.
Ś

      CBAR, 1, 10, 1, 2, 0., 1., 0.

      CBAR, 2, 10, 2, 3, 0., 1., 0.

      CBAR, 3, 10, 3, 4, 0., 1., 0.

CBAR, 4, 10, 4, 5, 0., 1.,
                                                                       0.

      CBAR, 5, 10, 5, 6, 0., 1., 0.

      CBAR, 6, 10, 6, 7, 0., 1., 0.

      CBAR, 7, 10, 7, 8, 0., 1., 0.

CBAR, 8, 10, 8, 9, 0., 1., 0.
CBAR, 9, 10, 9, 10, 0., 1.,
CBAR, 10, 10, 10, 11, 0., 1.,
                                                                      Ο.
                                                                      0.
Ś
$ ELEMENT MATERIAL AND SECTION PROPERTIES (1.0" X 0.2" CROSS-SECTION).
Ś
PBAR, 10, 100, 0.2, 6.667E-4, 1.667E-2, 2.328E-3
Ś
$ ELEMENT MATERIAL PROPERTIES (ALUMINUM).
Ś
MAT1, 100, 1.E+7, , 0.33, 0.1
Ś
$ FIXED AT ONE END, MOVEMENT CONSTRAINED TO X-Y PLANE ONLY.
Ś
SPC1, 1, 123456, 1
SPC1, 1, 345, 1, THRU, 11
ENDDATA
```

Listing 4-25 shows a comparison of the ESET analysis data (INPUT DATA-1) and external data (INPUT DATA-2). These should be checked for every analysis to confirm the input data format and the results of XSETEGENERATE if used to generate ESET external data.

Listing 4-25. MAC and MXO Output for a 2-D Cantilever Beam with Modal Correlation.

MODE = 1	EIGENVALUE = 1.59	92103E+05 CYCI	LES = 6.350468E	+01			
		REAI	L ESET E (IN	IGENVEC PUT DATA-1/INP	TOR NUM PUT DATA-2)	IBER 1	
GRID ID	COORDINATE ID	Τ1	Τ2	ТЗ	Rl	R2	R3
	0 0 0	0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	9.062164E+00 -9.004914E+00 3.261689E+01 -3.242705E+01 6.542818E+01 -6.508613E+01 1.029355E+02 -1.024676E+02	0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	8.605464E+00 -8.553086E+00 1.450906E+01 -1.443339E+01 1.791679E+01 -1.784395E+01 1.931338E+01 -1.926258E+01
11	0	0.000000E+00 0.000000E+00	1.418874E+02 -1.413480E+02	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	1.953129E+01 -1.951035E+01
MODE = 2	EIGENVALUE = 6.2	247437E+06 CYC	CLES = 3.978058	E+02			
		REAI	L ESET E (IN	IGENVEC PUT DATA-1/INP	TOR NUM PUT DATA-2)	IBER 2	
GRID	COORDINATE	Т1	Τ2	ТЗ	R1	R2	R3
1D 3	10	0.000000E+00	-4.149925E+01	0.000000E+00	0.000000E+00	0.000000E+00	-3.203873E+01
5	0	0.000000E+00 0.000000E+00 0.000000E+00	-9.422725E+01 -9.299605E+01	0.000000E+00 0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00 0.000000E+00	-1.395225E+01 -1.420370E+01
7	0	0.000000E+00 0.000000E+00	-8.129033E+01 -8.159725E+01	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	2.782967E+01 2.664107E+01
9	0	0.000000E+00 0.000000E+00	9.622213E+00 6.886697E+00	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	5.911329E+01 5.807979E+01
11	0	U.UUUU000E+00 0.000000E+00	1.378505E+02 1.341535E+02	U.000000E+00 0.000000E+00	U.000000E+00 0.000000E+00	U.000000E+00 0.000000E+00	6.592440E+01 6.600634E+01
MODE = 3	EIGENVALUE = 4.8	892945E+07 CYC	CLES = 1.113282	E+03			
		REAI	L ESET E (IN	IGENVEC PUT DATA-1/INP	TOR NUM PUT DATA-2)	IBER 3	
GRID ID	COORDINATE ID	Τ1	Τ2	ТЗ	R1	R2	R3
3 5	0	0.000000E+00 0.000000E+00 0.000000E+00	-8.088203E+01 7.889517E+01 -7.045934E+01	0.000000E+00 0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00 0.000000E+00	-4.174673E+01 4.141616E+01 5.427938E+01
7	0	0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	7.226695E+01 6.330870E+01 -5.846194E+01 5.290025E+01	0.000000E+00 0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	-5.088163E+01 5.078375E+01 -5.231120E+01 -6.330521E+01
11	0	0.00000E+00 0.000000E+00 0.000000E+00	-5.711796E+01 -1.337538E+02 1.246797E+02	0.000000E+00 0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00 0.000000E+00	5.756022E+01 -1.050743E+02 1.065806E+02
MODE = 4	EIGENVALUE = 1.8	877429E+08 CYC	CLES = 2.180730	E+03			
		REAI	L ESET E (IN	IGENVEC PUT DATA-1/INP	TOR NUM PUT DATA-2)	IBER 4	
GRID ID	COORDINATE ID	Τ1	Τ2	ТЗ	R1	R2	R3
3 5 7	0	0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	9.635623E+01 -9.444559E+01 -4.016934E+01 3.352336E+01	0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	7.850859E+00 -1.060795E+01 -8.957171E+01 8.884314E+01 9.744400E+01
9	0	0.000000E+00 0.000000E+00 0.000000E+00	4.979185E+01 8.217738E+01	0.000000E+00 0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00 0.000000E+00	-7.840893E+01 -2.310117E+01
11	0	0.000000E+00 0.000000E+00 0.000000E+00	-8.192398E+01 -1.276606E+02 1.103469E+02	0.000000E+00 0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00 0.000000E+00	7.983716E+00 -1.406508E+02 1.437658E+02
MODE = 5	EIGENVALUE = 5.1	131852E+08 CYC	CLES = 3.605431	E+03	5.00000E+00	5.00000E+00	1.10/0306702
		REAI	L ESET E (IN	IGENVEC PUT DATA-1/INF	TOR NUM PUT DATA-2)	IBER 5	
GRID	COORDINATE	Τ1	Τ2	ТЗ	R1	R2	R3
3	0	0.000000E+00 0.000000E+00	7.299322E+01 -7.338302E+01	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	-5.452114E+01 4.612109E+01
5	0	0.000000E+00 0.000000E+00	-7.697759E+01 7.617338E+01	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	1.664104E+01 -3.780421E+00
7	0	0.000000E+00 0.000000E+00	7.730498E+01 -7.239796E+01	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	1.798233E+01 -3.420518E+01
9	0	0.000000E+00 0.000000E+00	-6.610923E+01 5.485545E+01	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	-4.594246E+01 6.305896E+01
11	0	0.000000E+00 0.000000E+00	1.102338E+02 -8.452814E+01	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	1.564163E+02 -1.576514E+02

Listing 4-26 shows the modal correlation MXO and MAC output matrixes. The MXO diagonal terms are all above 0.9 and the off-diagonal terms above 0.1 indicating good MXO correlation. The MAC diagonal terms are all above 0.8 indicating good MAC correlation. Figure 4-8 shows a graphical representation of these results.

		MASS CROSS-ORTHOGONALITY MATRIX	
MODE - I	MODE		
INPUT DATA-1	INPUT DATA-2	LOSS	
1	1	9 955433 8 -01	
1	2	2.505435E_01	
	2	2.00520E-02	
	3	5 200406-02	
		5.220000 02 6.206251E_02	
	5	0.200511 02	
2	2	9.847571E-01	
	3	4.791300E-02	
	4	6.548172E-02	
	5	6.725372E-02	
3	3	9.734993E-01	
	4	5.053034E-02	
	5	9.509978E-02	
4	4	0.5000000.01	
4	4	2.933552F=-02	
5	5	9.110971E-01	
MAXIMUM ORTHOGON MINIMUM ORTHOGON	ALITY LOSS (DIAGON ALITY LOSS (DIAGON	IAL) = 9.955433E-01 FOR MODE 1 IAL) = 9.110971E-01 FOR MODE 5	
MAXIMUM ORTHOGON	ALITY LOSS (OFF-DI	(AGONAL) = 9.509978E - 02 FOR MODE 3	
MINIMUM ORTHOGON	ALITY LOSS (OFF-DI	IAGONAL) = 2.685236E-02 FOR MODE 1	
		MODAL ASSURANCE CRITERIA MATRIX	
10000 T	MODE -		
MODE-1 TNDUT DATA-1	MODE-J TNDUT DATA-2	MAC	
INFOT DATA I	INFOT DATA 2		
1	1	9.999995E-01	
	2	1.074446E-01	
	3	8.049219E-02	
	4	7.299949E-02	
	5	5.895291E-02	
2	2	9.996946E-01	
2	2	1 512839E-01	
	5	1.0506/15-01	
	5	1.05041E-01	
	J	1.231330E-01	
3	3	9.975953E-01	
	4	1.609962E-01	
	5	1.039244E-01	
Λ	4	9 909904E-01	
7	5	1 62245E-01	
	5		
5	5	9.757175E-01	
MAXIMUM MODAL AS			
	SURANCE CRITERION	(DIAGONAL) = 9.999995E-01 FOR MODE 1	
MINIMUM MODAL AS	SURANCE CRITERION SURANCE CRITERION	(DIAGONAL) = 9.999995E-01 FOR MODE 1 (DIAGONAL) = 9.757175E-01 FOR MODE 5	
MINIMUM MODAL AS	SURANCE CRITERION SURANCE CRITERION	(DIAGONAL) = 9.999995E-01 FOR MODE 1 (DIAGONAL) = 9.757175E-01 FOR MODE 5	
MINIMUM MODAL AS MAXIMUM MODAL AS MINIMUM MODAL AS	SURANCE CRITERION SURANCE CRITERION SURANCE CRITERION SURANCE CRITERION	(DIAGONAL) = 9.999995E-01 FOR MODE 1 (DIAGONAL) = 9.757175E-01 FOR MODE 5 (OFF-DIAGONAL) = 1.682945E-01 FOR MODE 4 (OFF-DIAGONAL) = 5.895291E-02 FOR MODE 1	

Listing 4-26. MAC and MXO Output for a 2-D Cantilever Beam with Modal Correlation.

Figure 4-8. MAC and MXO 3-D Plots for a 2-D Cantilever Beam with Modal Correlation.

5. LINEAR TRANSIENT RESPONSE ANALYSIS

5.1 Introduction

Problems in structural dynamics can be divided into two broad areas. In one, the objective is to determine natural frequencies of vibration and the corresponding mode shapes. In the other, the objective is to determine how the structure behaves with time under an applied set of loads. In this section we examine the latter, which is termed transient response analysis. Unlike normal modes analysis, in transient response the applied loading and damping are not necessarily zero and loading can vary with time. Loading can be in the form of applied forces and/or enforced motions. Available grid point output includes: displacements, velocities, accelerations, and loading at each output time step. Available element output includes: energy, forces, and stresses at each output time step.

There are two methods available for performing linear transient response analysis: direct and modal. The direct method performs a numerical integration on the complete coupled equations of motion. The modal method uses the mode shapes of the structure to reduce and uncouple the equations of motion. The solution is then obtained through the summation of the individual modal responses. Generally the modal method is more efficient especially for larger models where a large number of time steps are specified. The direct method may be more efficient for models where high-frequency excitation require the extraction of a large number of modes. The direct method may also be more accurate because there are no mode truncation effects. If structural damping is used the direct method should be used.

Autodesk Nastran will also handle transient response of structures under initial stress, for example the forced vibration of a cable in tension. For more information see Section 8, *Linear Prestress Transient Response Analysis*.

5.1.1 Direct Transient Response Analysis

In direct transient response structural response is computed by solving a set of coupled equations using direct numerical integration. The method used is the same as for nonlinear transient response and allows for an adaptive time stepping algorithm. We begin with the dynamic equation of motion in matrix form:

$$[M]\{\ddot{u}(t)\}+[B]\{\dot{u}(t)\}+[K]\{u(t)\}=\{P(t)\}$$

The fundamental structural response (displacement) is solved at discrete times, typically with a fixed integration time step Δt . The damping matrix [B] is used to represent energy dissipation characteristics of the structure. The damping matrix consists of several matrixes:

$$[B] = [B_1] + [B_2] + \alpha[K] + \beta[M]$$

$$[B_1] = [B_{DAMP}] + \frac{G}{W_3}[K] + \frac{1}{W_4}\sum G_{ELEM}K_{ELEM}$$

where,

[*B*,]

damping from damping elements (CVISC, CDAMPi) and B2GG DMIG

[B₂] damping from B2PP DMIG

- [K] global stiffness matrix
- [*M*] global mass matrix

$[\kappa_{ELEM}]$	element stiffness matrix
G	overall structural damping coefficient (PARAM, G)
G _{ELEM}	element structural damping coefficient (GE on the MATi entry)
W_3	frequency of interest in radians per unit time (PARAM, W3) for the conversion of overall structural damping into equivalent viscous damping
W ₄	frequency of interest in radians per unit time (PARAM, W4) for the conversion of element structural damping into equivalent viscous damping
α	Rayleigh damping stiffness matrix scale factor
β	Rayleigh damping mass matrix scale factor

Transient response does not permit the use of complex coefficients. Therefore, structural damping is included by means of equivalent viscous damping.

The viscous damping force is a damping force that is a function of a damping coefficient b and the velocity. It is an induced force that is represented in the equation of motion using the [B] matrix and velocity vector.

 $[M]\{\ddot{u}(t)\} + [B]\{\dot{u}(t)\} + [K]\{u(t)\} = \{P(t)\}$

The structural damping force is a displacement-dependent damping. The structural damping force is a function of a damping coefficient G and a complex component of the structural stiffness matrix.

$$[M]{\ddot{u}(t)} + (1+iG)[K]{u(t)} = {P(t)}$$

Assuming constant amplitude oscillatory response for a single degree of freedom system, the two damping forces are identical if

$$Gk = b\omega$$

or

$$b = \frac{Gk}{\omega}$$

Therefore, if structural damping G is to be modeled using equivalent viscous damping b, then the equality holds at only one frequency (see Figure 5-1).

Two parameters are used to convert structural damping to equivalent viscous damping. An overall structural damping coefficient can be applied to the entire system stiffness matrix using PARAM, W3, r where r is the circular frequency at which damping is made equivalent. This parameter is used along with PARAM, G. The default for W3 is zero, which results in damping from this source to be ignored in transient analysis.

PARAM, W4 is an alternate parameter used to convert element structural damping to equivalent viscous damping. PARAM, W4, r is used where r is the circular frequency at which damping is to be made equivalent. PARAM, W4 is used along with the GE field on the MATi entry. The default for W4 is zero, which results in damping from this source to be ignored in transient analysis.

Units for PARAM, W3 and PARAM, W4 are in radians per unit time. The choice of W3 or W4 is typically the dominant frequency at which damping is active. Often, the first natural frequency is selected, but isolated individual element damping can occur at different frequencies and can be handled by the appropriate data entries.

Figure 5-1. Structural Damping Versus Viscous Damping.

5.1.2 Modal Transient Response Analysis

Modal transient response analysis uses the mode shapes of the structure to reduce the size, uncouple the equations of motion, and make numerical integration more efficient. Since the mode shapes are typically computed as part of the characterization of the structure, modal transient response is a natural extension of normal modes analysis.

To outline the procedure we first look at the general equation of equilibrium for a finite element system in motion:

$$[M]{\ddot{u}(t)}+[B]{\dot{u}(t)}+[K]{u(t)}={P(t)}$$

where,

- [K] is the global stiffness matrix
- [*M*] is the global mass matrix
- [B] is the global damping matrix
- $\{P\}$ is the global load vector
- $\{\ddot{u}\}$ is the global acceleration vector
- $\{\dot{u}\}$ is the global velocity vector

Autodesk Inventor Nastran Solver 2021

 $\{u\}$ is the global displacement vector

The transformation from physical coordinates $\{u\}$ to modal coordinates $\{\xi\}$ is given by:

$$\{u(t)\} = [\phi] \{\xi(t)\}$$

The mode shapes $[\phi]$ are used to transform the problem in terms of the behavior of the modes as opposed to the behavior of the grid points.

If we assume modal damping is used, we can rewrite the general equation of equilibrium as:

$$[M][\phi]\{\dot{\xi}(t)\}+[B][\phi]\{\dot{\xi}(t)\}+[K][\phi]\{\xi(t)\}=P(t)$$

which is now the equation of motion in terms of modal coordinates. To uncouple the equations, premultiply by $[\phi]^T$ to obtain:

 $[\phi]^{T}[M][\phi]\{\dot{\xi}(t)\} + [\phi]^{T}[B][\phi]\{\dot{\xi}(t)\} + [\phi]^{T}[K][\phi]\{\xi(t)\} = [\phi]^{T}P(t)$

where

 $\left[\phi\right]^{\gamma} \left[M\right] \left[\phi\right]$ [is the modal or generalized mass matrix

 $[\phi]^{T}[K][\phi]$ is the modal or generalized stiffness matrix

 $[\phi]^{T}[B][\phi]$ is the modal damping matrix

 $[\phi]^T[P]$ is the modal force vector

Using the orthogonality property of the mode shapes we can formulate the equations of motion in terms of the diagonal generalized mass, stiffness, and damping (modal damping). Since these matrices do not have off-diagonal terms that couple the equations of motion, the modal equations of motion are uncoupled. The equations of motion can then be written as:

$$m_i \ddot{\xi}_i + b_i \dot{\xi}_i(t) + k_i \xi_i(t) = p_i(t)$$

where,

 m_i = i-th modal mass

 b_i = i-th modal damping

 k_i = i-th modal stiffness

 p_i = i-th modal force

 ξ_i = i-th modal degree of freedom

The above equation can also be written as

$$\ddot{\xi}_i + 2\zeta_i \omega_i \dot{\xi}_i(t) + \omega_i^2 \xi_i(t) = \frac{1}{m_i} p_i(t)$$

where,

 $\zeta_i = b_i / (2m_i\omega_i) \equiv \text{modal damping ratio}$ $\omega_i^2 = k_i / m_i \equiv \text{modal frequency}$ The physical responses are then recovered from the summation of the individual modal responses using

 $\{u(t)\} = [\phi]\{\xi(t)\}$

5.2 How to Setup a Model Input File for Transient Response Analysis

5.2.1 Direct Transient Response

In Autodesk Nastran you can perform direct transient response analysis by setting SOLUTION = DIRECT TRANSIENT RESPONSE in the Model Initialization File or by specifying SOL 109 or SOL DIRECT TRANSIENT RESPONSE above the Case Control Section in the Model Input File. Multiple subcases can be specified, each requesting a different constraint, load, or output set. Time stepping is continuous from one subcase to the next. Adaptive time stepping is available in direct transient response solutions in Autodesk Nastran. See the TSTEP entry in the *Nastran Solver Reference Guide*, Section 4, *Bulk Data*, for more information.

5.2.2 Modal Transient Response

In Autodesk Nastran you can perform modal transient response analysis by setting SOLUTION = MODAL TRANSIENT RESPONSE in the Model Initialization File or by specifying SOL 112 or SOL MODAL TRANSIENT RESPONSE above the Case Control Section in the Model Input File. Multiple subcases can be specified, each requesting a different load or output set. Time stepping is continuous from one subcase to the next. Only one reference to an EIGRL Bulk Data entry (METHOD Case Control command) is permitted. This request should be placed above the first subcase.

5.2.3 Transient Load Definition

Setting up a transient response analysis can be challenging due to flexibility permitted in defining the transient loading. The following Bulk Data entries are used to define the dynamic loading:

TLOAD1	Tabular input
TLOAD2	Analytical function
DAREA	Spatial distribution of dynamic load
TABLEDi	Tabular values versus time
LSEQ	Generates the spatial distribution of dynamic loads from static load entries
DLOAD	Combines dynamic load sets
DELAY	Time delay

See Nastran Solver Reference Guide, Section 4, Bulk Data, for more information on each entry.

Dynamic load definition can be divided into two parts, one being the location and the other being the time variation of the loading. Spatial distribution is the characteristic which defines the location of the loading. Temporal distribution is the characteristic which defines the time variation. The complete dynamic load definition consists of the product of spatial and temporal distributions. This method of defining dynamic loading allows you to combine simple loadings to create complicated loading distributions that vary in position as well as time. Figure 5-2 describes pictorially the relationships between static and dynamic load Case Control commands and Bulk Data entries.

5.2.4 Integration Time Step

The TSTEP Bulk Data entry controls the integration time step, the duration of the solution, and which time steps are output. The TSTEP entry is selected by the TSTEP Case Control command. The integration time step must be small enough to accurately represent the variation in the loading. Additionally, it must be small enough to represent the maximum frequency of interest. A good rule-of-thumb is to use at least 10 solution time steps per period of response for the maximum frequency of interest (cutoff frequency).

5.2.5 Dynamic Data Recovery

A transient response analysis can produce very large amounts of output data since there are usually a large number of time steps involved for a given solution. There are several options available for recovering and storing this data. For data recovery, results can be calculated using one of two methods: mode displacement method and matrix method.

The mode displacement method calculates element results from the global displacement vector in physical coordinates for every time step. The number of operations is proportional to the number of time steps.

The matrix method calculates element results from the global displacement vector produced for each mode shape during eigenvalue extraction. Then the results for each time step are computed as the sum of the modal responses. The number of operations is proportional to the number of modes used.

Since the number of modes is typically much less than the number of time steps, the matrix method is usually more efficient. The DYNRSLTMETHOD Model Initialization directive controls these operations. The default for this directive is AUTO, which allows the program to choose which method is most efficient based on the number of modes versus time steps. See the *Nastran Solver Reference Guide*, Section 2, *Initialization*, for more information.

For storing and importing results into a post-processor, for example FEMAP[®], it is recommended that the Model Initialization directive RSLTFILETYPE be set to FEMAPBINARY. This will produce a single, binary results neutral file which will contain all results data for each time step.

5.3 Interpreting Results

In this section we will present several examples demonstrating the features and capabilities of transient response analysis. For all examples we will use the cantilever beam shown in Figure 5-3 with a MODAL TRANSIENT RESPONSE solution. For the first problem, it is desired to find the response of the beam to an impulse load applied at the beam free end. Three different levels of damping are used: no damping, 5% critical damping, and 100% critical damping. Listing 5-1 contains the Model Input Files for each case.

Figure 5-3. 2-D Cantilever Beam Example Problem.

Listing 5-1a. Model Input File for the 2-D Cantilever Beam Problem with a Time-Dependent Point Load at the Free End and No Damping.

```
$ MODAL TRANSIENT RESPONSE SOLUTION - NO DAMPING.
Ś
SOL MODAL TRANSIENT RESPONSE
Ś
TITLE = INSTALLATION TEST CASE
SUBTITLE = FORCED DYNAMIC RESPONSE - NO DAMPING
Ś
DISPLACEMENT = ALL
Ś
TSTEP = 25
LOADSET = 10
METHOD = 1
SPC = 1
SUBCASE 1
LABEL = 10 LB EDGE LOAD IN Z-DIRECTION DLOAD = 1
Ś
BEGIN BULK
$ CONVERSION FACTOR FOR WEIGHT DENSITY TO MASS DENSITY
$ MASS = (1/g) *WEIGHT, G=32.2FT/SEC2, WTMASS = 1/(32.2*12) = 0.002588
Ś
PARAM, WTMASS, 0.002588
Ś
$ DEFINE EIGENVALUE EXTRACTION PARAMETERS.
Ś
EIGRL, 1, , , 25
Ś
$ DEFINE 0.06 SECONDS OF RESPONSE.
Ś
TSTEP, 25, 600, 0.0001, 1
Ś
$ DEFINE LOADING.
Ś
DLOAD, 1, 1., 1., 11
Ś
$ DEFINE TIME-DEPENDENT LOADING.
$
TLOAD1, 11, 100, , , 10
TABLED1, 10,
, 0., 0., 0.001, 1., 100., 1., ENDT
Ś
$ 10 LB POINT LOAD IN Z-DIRECTION AT FREE END.
Ś
FORCE, 1, 11, 0, 10., 0., 0., 1.
LSEQ, 10, 100, 1
Ś
$ GEOMETRY DEFINITION (10" BEAM DIVIDED INTO 10 ELEMENTS).
Ś
                0., 0., 0., 0
1., 0., 0., 0
2., 0., 0., 0
GRID, 1, 0,
GRID, 2, 0,
GRID, 3, 0,
GRID, 4, 0,
GRID, 5, 0,
GRID, 6, 0,
                3., 0., 0.,
4., 0., 0.,
5., 0., 0.,
                                  0
                                  0
                                  0
                6., 0., 0., 0
GRID, 7, 0,
GRID, 8, 0, 7., 0., 0., 0
GRID, 9, 0, 8., 0., 0., 0
GRID, 10, 0, 9., 0., 0., 0
GRID, 11, 0, 10., 0., 0., 0
```

Listing 5-1a. Model Input File for the 2-D Cantilever Beam Problem with a Time-Dependent Point Load at the Free End and No Damping. (Continued)

```
$ BEAM MODELED WITH BAR ELEMENTS.
Ś
CBAR, 1, 10, 1, 2, 0., 1., 0.

      CBAR, 2, 10, 2, 3, 0., 1., 0.

      CBAR, 3, 10, 3, 4, 0., 1., 0.

      CBAR, 4, 10, 4, 5, 0., 1., 0.

      CBAR,
      5,
      10,
      5,
      6,
      0.,
      1.,
      0.

      CBAR,
      6,
      10,
      6,
      7,
      0.,
      1.,
      0.

      CBAR,
      7,
      10,
      6,
      7,
      0.,
      1.,
      0.

      CBAR,
      7,
      10,
      7,
      8,
      0.,
      1.,
      0.

CBAR, 8, 10, 8, 9, 0., 1., 0.
CBAR, 9, 10, 9, 10, 0., 1., 0.
CBAR, 10, 10, 10, 11, 0., 1., 0.
Ś
\ element material and section properties (1.0" x 0.2" cross-section).
$
PBAR, 10, 100, 0.2, 6.667E-4, 1.667E-2, 2.328E-3,
, -0.1, 0.5, 0.1, 0.5, -0.1, -0.5, 0.1, -0.5
Ś
$ ELEMENT MATERIAL PROPERTIES (ALUMINUM).
Ś
MAT1, 100, 1.E+7, , 0.33, 0.1
Ś
\ FIXED AT ONE END, MOVEMENT CONSTRAINED TO X-Z PLANE ONLY.
Ś
SPC1, 1, 123456, 1
SPC1, 1, 246, 1, THRU, 11
ENDDATA
```

Listing 5-1b. Model Input File for the 2-D Cantilever Beam Problem with a Time-Dependent Point Load at the Free End and 5% Critical Damping.

```
$ TRANSIENT RESPONSE SOLUTION - 5% CRITICAL DAMPING.
Ś
SOL MODAL TRANSIENT RESPONSE
Ś
DISPLACEMENT = ALL
Ś
TITLE = INSTALLATION TEST CASE
SUBTITLE = FORCED DYNAMIC RESPONSE - 5% CRITICAL DAMPING
Ś
SPC = 1
SDAMP = 20
TSTEP = 25
LOADSET = 10
METHOD = 1
Ś
SUBCASE 1
LABEL = 10 LB EDGE LOAD IN Z-DIRECTION
DLOAD = 1
Ś
BEGIN BULK
Ś
$ CONVERSION FACTOR FOR WEIGHT DENSITY TO MASS DENSITY
$ MASS = (1/g)*WEIGHT, G=32.2FT/SEC2, WTMASS = 1/(32.2*12) = 0.002588
PARAM, WTMASS, 0.002588
$ REQUEST COUPLED MASS MATRIX FORMULATION.
Ś
PARAM, COUPMASS, ON
Ś
$ DEFINE EIGENVALUE EXTRACTION PARAMETERS.
Ś
EIGRL, 1, , , 25
Ś
$ DEFINE 0.06 SECONDS OF RESPONSE.
TSTEP, 25, 600, 0.0001, 1
Ś
$ DEFINE LOADING.
Ś
DLOAD, 1, 1., 1., 11
Ś
$ DEFINE TIME-DEPENDENT LOADING.
Ś
TLOAD1, 11, 100, , , 10
TABLED1, 10,
, 0., 0., 0.001, 1., 100., 1., ENDT
Ś
$ 10 LB POINT LOAD IN Z-DIRECTION AT FREE END.
Ś
FORCE, 1, 11, 0, 10., 0., 0., 1.
LSEQ, 10, 100, 1
Ś
$ 5% CRITICAL DAMPING.
Ś
TABDMP1, 20, CRIT,
, 1., 0.05, 10000., 0.05, ENDT
Ś
$ INSERT BASIC MODEL (SEE LISTING 5-1a).
Ś
ENDDATA
```
Listing 5-1c. Model Input File for the 2-D Cantilever Beam Problem with a Time-Dependent Point Load at the Free End and 100% Critical Damping.

```
$ TRANSIENT RESPONSE SOLUTION - 100% CRITICAL DAMPING.
Ś
SOL MODAL TRANSIENT RESPONSE
Ś
DISPLACEMENT = ALL
Ś
TITLE = INSTALLATION TEST CASE
SUBTITLE = FORCED DYNAMIC RESPONSE - 100% CRITICAL DAMPING
Ś
SPC = 1
SDAMP = 20
TSTEP = 25
LOADSET = 10
METHOD = 1
Ś
SUBCASE 1
LABEL = 10 LB EDGE LOAD IN Z-DIRECTION
DLOAD = 1
Ś
BEGIN BULK
Ś
$ CONVERSION FACTOR FOR WEIGHT DENSITY TO MASS DENSITY
$ MASS = (1/g)*WEIGHT, G=32.2FT/SEC2, WTMASS = 1/(32.2*12) = 0.002588
PARAM, WTMASS, 0.002588
$ REQUEST COUPLED MASS MATRIX FORMULATION.
Ś
PARAM, COUPMASS, ON
Ś
$ DEFINE EIGENVALUE EXTRACTION PARAMETERS.
Ś
EIGRL, 1, , , 25
Ś
$ DEFINE 0.06 SECONDS OF RESPONSE.
Ś
TSTEP, 25, 600, 0.0001, 1
Ś
$ DEFINE LOADING.
Ś
DLOAD, 1, 1., 1., 11
Ś
$ DEFINE TIME-DEPENDENT LOADING.
Ś
TLOAD1, 11, 100, , , 10
TABLED1, 10,
, 0., 0., 0.001, 1., 100., 1., ENDT
Ś
$ 10 LB POINT LOAD IN Z-DIRECTION AT FREE END.
Ś
FORCE, 1, 11, 0, 10., 0., 0., 1.
LSEQ, 10, 100, 1
Ś
$ 100% CRITICAL DAMPING.
Ś
TABDMP1, 20, CRIT,
, 1., 1., 10000., 1., ENDT
Ś
$ INSERT BASIC MODEL (SEE LISTING 5-1a).
Ś
ENDDATA
```

In each example, the spatial definition of the dynamic load vector is defined using a static point load (FORCE) applied in the z-direction at the free end of the beam. This load is then referenced by a load sequence entry (LSEQ), which references an area factor (DAREA) that serves as the reference link between static and dynamic load definitions. The time-dependent dynamic load (TLOAD1) then references the area factor defined by the LSEQ entry for spatial definition (area) and a TABLED1 for temporal definition (time). The DLOAD Bulk Data entry is used to combine and scale dynamic loads defined using the TLOAD1 Bulk Data entries. The DLOAD and LSEQ Bulk Data entries are called out in the Case Control Section using the DLOAD and LOADSET Case Control commands, respectively. The resulting load time history is shown graphically in Figure 5-4. Note that a DLOAD Case Control command can directly call out a TLOAD1 Bulk Data entry, which is not shown in these examples.

Figure 5-4. Time History from the TABLED1 Entry (top) and Resulting Applied Load (bottom).

The TSTEP Bulk Data entry is used to control the duration of the solution and which time steps are output. It is called out in the Case Control Section using the TSTEP Bulk Data entry. In these examples we have requested 600 time steps with a time increment of 0.0001 seconds and output every time step.

Figure 5-5 shows the response at the beam free end (grid point 11) for each case. As expected for the undamped case, the beam vibrates with a constant amplitude at its resonant frequency about the deflected shape produced by the 10 pound end load. For the partially damped case, oscillation occurs with decreasing magnitude until the motion has dampened out at 0.060 seconds. Again, the beam is deflected 0.020 inches at the free end, exactly the same as predicted by beam theory. For the critically damped case, no oscillation occurs and the beam again assumes a deflected shape.

Figure 5-5b. Tip Displacement of a 2-D Cantilever Beam with 5% Critical Damping.

Figure 5-5c. Tip Displacement of a 2-D Cantilever Beam with 100% Critical Damping.

The examples shown in Listing 5-1 use the TLOAD1 Bulk Data entry which defines the time-dependent loading using a table (TABLEDi). We can also define dynamic loads using an analytical function of the form:

 $P(t) = A t^{B} e^{Ct} \cos(2\pi F t + P)$

using the TLOAD2 Bulk Data entry. Again, we will use the cantilever beam shown in Figure 5-3. For this example, the beam will be loaded at its free end with a harmonic forcing function at its resonant frequency. Listing 5-2 contains the Model Input File and Figure 5-6 the response of the beam free end.

Listing 5-2. Model Input File for the 2-D Cantilever Beam Loaded at Resonant Frequency.

```
$ MODAL TRANSIENT RESPONSE SOLUTION - FORCED RESPONSE AT BEAM RESONANT
$ FREQUENCY.
Ś
SOL MODAL TRANSIENT RESPONSE
Ś
TITLE = INSTALLATION TEST CASE
SUBTITLE = FORCED DYNAMIC RESPONSE AT BEAM RESONANT FREQUENCY
DISPLACEMENT = ALL
Ś
TSTEP = 25
LOADSET = 10
METHOD = 1
SPC = 1
SUBCASE 1
LABEL = 10 LB EDGE LOAD IN Z-DIRECTION
DLOAD = 1
Ś
BEGIN BULK
Ś
$ CONVERSION FACTOR FOR WEIGHT DENSITY TO MASS DENSITY
$ MASS = (1/q)*WEIGHT, G=32.2FT/SEC2, WTMASS = 1/(32.2*12) = 0.002588
Ś
PARAM, WTMASS, 0.002588
Ś
$ REQUEST COUPLED MASS MATRIX FORMULATION.
Ś
PARAM, COUPMASS, ON
Ś
$ DEFINE EIGENVALUE EXTRACTION PARAMETERS.
$
EIGRL, 1, , , 25
$ DEFINE 0.25 SECONDS OF RESPONSE.
TSTEP, 25, 600, 0.0001, 1
Ś
$ DEFINE LOADING.
Ś
DLOAD, 1, 1., 1., 11
Ś
$ DEFINE TIME-DEPENDENT HARMONIC LOADING AT BEAM RESONANT FREQUENCY.
Ś
TLOAD2, 11, 100, , , 0., 0.1, 317.974, 0.
Ś
$ 10 LB POINT LOAD IN Z-DIRECTION AT FREE END.
FORCE, 1, 11, 0, 10., 0., 0., 1.
LSEQ, 10, 100, 1
Ś
$ INSERT BASIC MODEL (SEE LISTING 5-1a).
Ś
ENDDATA
```


Figure 5-6. Tip Displacement of a 2-D Cantilever Beam Loaded at Resonant Frequency.

Dynamic loads on a structure can be complex, acting at different points and at different times. A time delay can be specified when it is desired to define loads acting at different points in time. For example, Listing 5-3 defines two separate loads acting at two different locations and instances in time. Again, we will use the cantilever beam shown in Figure 5-3 except for the addition of another point load at the beam mid-span. Figure 5-7 shows the response of the beam free end and mid-span.

Listing 5-3. Model Input File for the 2-D Cantilever Beam Problem with Multiple Point Loads and a Delay.

```
$ MODAL TRANSIENT RESPONSE SOLUTION - MULTPLE POINT LOADS WITH A DELAY.
Ś
SOL MODAL TRANSIENT RESPONSE
Ś
TITLE = INSTALLATION TEST CASE
SUBTITLE = FORCED DYNAMIC RESPONSE - MULTIPLE POINT LOADS WITH A DELAY
Ś
DISPLACEMENT = ALL
Ś
SDAMPING = 20
TSTEP = 25
LOADSET = 10
METHOD = 1
SPC = 1
SUBCASE 1
 LABEL = 10 LB EDGE LOAD IN Z-DIRECTION
DLOAD = 1$
BEGIN BULK
$ CONVERSION FACTOR FOR WEIGHT DENSITY TO MASS DENSITY
$ MASS = (1/g) *WEIGHT, G=32.2FT/SEC2, WTMASS = 1/(32.2*12) = 0.002588
PARAM, WTMASS, 0.002588
Ś
$ REQUEST COUPLED MASS MATRIX FORMULATION.
Ś
PARAM, COUPMASS, ON
Ś
$ DEFINE EIGENVALUE EXTRACTION PARAMETERS.
Ś
EIGRL, 1, , , 25
Ś
$ DEFINE 0.06 SECONDS OF RESPONSE.
Ś
TSTEP, 25, 600, 0.0001, 1
Ś
$ DEFINE LOADING.
Ś
DLOAD, 1, 1., 1., 11, 1., 12
Ś
$ DEFINE TIME-DEPENDENT LOADING.
Ś
TLOAD1, 11, 100, , , 10
TLOAD1, 12, 200, 30, , 10
TABLED1, 10,
, -1., 0., 0., 0., 0.001, 1., 100., 1.,
  ENDT
Ś
$ DEFINE A 0.03 SECOND DELAY FOR THE LOAD AT THE BEAM MID-SPAN.
Ś
DELAY, 30, 5, 3, 0.03
Ś
$ 10 LB POINT LOAD IN Z-DIRECTION AT FREE END.
Ś
FORCE, 1, 11, 0, 10., 0., 0., 1.
FORCE, 2, 5, 0, 10., 0., 0., 1.
LSEQ, 10, 100, 1
LSEQ, 10, 200, 2
Ś
$ 5% CRITICAL DAMPING.
Ś
TABDMP1, 20, CRIT,
, 1., 0.05, 10000., 0.05, ENDT
Ś
$ INSERT BASIC MODEL (SEE LISTING 5-1a).
$
ENDDATA
```


Figure 5-7. Tip and Midpoint Displacements of a 2-D Cantilever Beam with Multiple Point Loads and a Delay.

5.4 Enforced Motion

Enforced motion specifies the displacement, velocity, and/or acceleration at a set of grid points in transient response analysis. Enforced motion is used when base excitation is desired and can be combined with externally applied dynamic loading. A good example would be a building subjected to base motion due to an earthquake. In this case, instead of applied loads, the base is subjected to an enforced displacement or acceleration time history.

Autodesk Inventor Nastran uses the large mass method to convert applied forces to enforced motion. The idea is that if a very large mass m_0 is connected to a degree of freedom and a dynamic load p is applied to that same degree of freedom, then the acceleration of the degree of freedom is closely approximated by:

$$\ddot{u}=\frac{1}{M_0}p$$

Which can be re-written in terms of the load that produces the desired acceleration as:

The accuracy of this approximation improves as m_0 becomes larger in comparison to the mass of the structure. A good rule-of-thumb value for m_0 is approximately 10^6 times the mass of the entire structure for an enforced translational degree of freedom and 10^6 times the mass moment of inertia for a rotational degree of freedom.

Provisions are made on the TLOADi Bulk Data entries for specifying whether an enforced displacement, velocity, or acceleration is supplied (TYPE = 1, 2, 3). Autodesk Inventor Nastran will automatically differentiate a specified velocity once or a specified displacement twice to obtain acceleration. The DYNLMDIRECTDIF parameter controls whether this differentiation is carried out directly or empirically. See the Nastran Solver Reference Guide, Section 5, Parameters, for more information.

The following are the basic steps involved in the large mass method:

- 1. Remove any constraints from the enforced degrees of freedom.
- 2. Apply large masses m_0 with the CMASSi or CONMi Bulk Data entries to the degrees of freedom where the motion is enforced. The magnitude for m_0 should be approximately 10^6 times the mass of the entire structure for an enforced translational degree of freedom and 10^6 times the mass moment of inertia for a rotational degree of freedom.
- 3. Indicate in field 5 of the TLOADi Bulk Data entry whether the enforced motion is a displacement, velocity, or acceleration.

The following examples demonstrate the large mass method for enforced motion. Again, we will use the cantilever beam shown in Figure 5-3 except for the removal of the z-direction constraint at the fixed end. Listing 5-4 contains the Model Input File and Figure 5-8 the response of the beam free end.

Listing 5-4a. Model Input File for the 2-D Cantilever Beam Problem with Enforced Motion.

```
$ MODAL TRANSIENT RESPONSE SOLUTION - ENFORCED MOTION.
Ś
SOL MODAL TRANSIENT RESPONSE
TITLE = INSTALLATION TEST CASE
SUBTITLE = FORCED DYNAMIC RESPONSE - ENFORCED DISPLACEMENT
DISPLACEMENT = ALL
VELOCITY = ALL
ACCELERATION = ALL
FORCE = ALL
SDAMPING = 20
TSTEP = 25
METHOD = 1
SPC = 1
SUBCASE 1
LABEL = ENFORCED DISPLACEMENT AT CONSTRAINED END
DLOAD = 1
Ś
BEGIN BULK
Ś
$ CONVERSION FACTOR FOR WEIGHT DENSITY TO MASS DENSITY
$ MASS = (1/g) *WEIGHT, G=32.2FT/SEC2, WTMASS = 1/(32.2*12) = 0.002588
Ś
PARAM, WTMASS, 0.002588
Ś
$ REQUEST COUPLED MASS MATRIX FORMULATION.
Ś
PARAM, COUPMASS, ON
Ś
$ DEFINE EIGENVALUE EXTRACTION PARAMETERS.
Ś
EIGRL, 1, , , 25
$ DEFINE 0.06 SECONDS OF RESPONSE.
TSTEP, 25, 600, 0.0001, 1
$ DEFINE LOADING.
Ś
DLOAD, 1, 2.E+5, 0.002588, 11
Ś
$ DEFINE TIME-DEPENDENT LOADING.
Ś
TLOAD1, 11, 100, , 1, 10
TABLED1, 10,
, 0., 0., 0.001, 1., 100., 1., ENDT
DAREA, 100, 1, 3, 1.
Ś
$ LARGE MASS OF (1xE6)*BAR MASS = (1xE6)*2.0
Ś
CONM2, 20, 1, , 2.E+5
Ś
$ 5% CRITICAL DAMPING.
Ś
TABDMP1, 20, CRIT,
, 1., 0.05, 10000., 0.05, ENDT
Ś
$ FIXED AT ONE END EXCEPT IN Z-DIRECTION, MOVEMENT CONSTRAINED TO
$ X-Z PLANE ONLY.
Ś
SPC1, 1, 12456, 1
SPC1, 1, 246, 1,
            246, 1, THRU, 11
$ INSERT BASIC MODEL (SEE LISTING 5-1a).
ENDDATA
```

Listing 5-4b. Model Input File for the 2-D Cantilever Beam Problem with Enforced Motion at Resonant Frequency.

```
$ MODAL TRANSIENT RESPONSE SOLUTION - ENFORCED MOTION AT RESONANT FREQUENCY.
Ś
SOL MODAL TRANSIENT RESPONSE
Ś
TITLE = INSTALLATION TEST CASE
SUBTITLE = FORCED DYNAMIC RESPONSE - ENFORCED DISPLACEMENT AT RESONANT FREO
Ś
DISPLACEMENT = ALL
VELOCITY = ALL
ACCELERATION = ALL
FORCE = ALL
SDAMPING = 20
TSTEP = 25
METHOD = 1
SPC = 1
SUBCASE 1
LABEL = ENFORCED DISPLACEMENT AT CONSTRAINED END
DLOAD = 1
Ś
BEGIN BULK
$ CONVERSION FACTOR FOR WEIGHT DENSITY TO MASS DENSITY
$ MASS = (1/g) *WEIGHT, G=32.2FT/SEC2, WTMASS = 1/(32.2*12) = 0.002588
Ś
PARAM, WTMASS, 0.002588
Ś
$ REQUEST COUPLED MASS MATRIX FORMULATION.
Ś
PARAM, COUPMASS, ON
Ś
$ DEFINE EIGENVALUE EXTRACTION PARAMETERS.
EIGRL, 1, , , 25
$ DEFINE 0.06 SECONDS OF RESPONSE.
Ś
TSTEP, 25, 600, 0.0001, 1
Ś
$ DEFINE LOADING.
Ś
DLOAD, 1, 2.E+5, 0.002588, 11
$
$ DEFINE TIME-DEPENDENT HARMONIC LOADING AT BEAM RESONANT FREQUENCY.
Ś
TLOAD2, 11, 100, , 1, 0., 0.1, 317.974, 0. DAREA, 100, 1, 3, 1.
Ś
$ LARGE MASS OF (1xE6)*BAR MASS = (1xE6)*2.0
Ś
CONM2, 20, 1, , 2.E+5
$
$ 5% CRITICAL DAMPING.
Ś
TABDMP1, 20, CRIT,
, 1., 0.05, 10000., 0.05, ENDT
Ś
$ FIXED AT ONE END EXCEPT IN Z-DIRECTION, MOVEMENT CONSTRAINED TO
$ X-Z PLANE ONLY.
Ś
SPC1, 1, 12456, 1
SPC1, 1, 246, 1, THRU, 11
$ INSERT BASIC MODEL (SEE LISTING 5-1a).
Ś
ENDDATA
```


Figure 5-8a. Tip Displacement of a 2-D Cantilever Beam Subjected to a 1.0 Inch Enforced Displacement at the Constrained End.

6. SHOCK AND RESPONSE SPECTRUM ANALYSIS

6.1 Introduction

Shock spectrum analysis, also known as response spectrum analysis, solves for the maximum (peak) expected response (displacements, velocities, accelerations, forces, stresses, and strains) of structures subjected to complicated time dependent loads or accelerations. These loads or accelerations typically excite the base of a structure such as earthquake ground motion on a building. Other examples include an explosive shock on a small component in a ship or an impulse load due to stage separation in a spacecraft. Note that the only difference between shock and response spectra is the displacement output reference frame.

While this method is widely accepted, it is still an approximation and is often used only as a design tool. The primary advantage of this method over a conventional transient response analysis is efficiency as the only significant calculation is obtaining a sufficient number of modes to represent the entire frequency range of input excitation and resulting response. The primary disadvantage of this method is the accuracy may be questionable.

The solution is accomplished in through two separate analyses. The first analysis converts applied loads or base excitations through a modal transient response solution into a spectrum table containing the peak response magnitudes for a set of single degree of freedom oscillators (spectrum generation). The second analysis consists of a normal modes solution of the structure, data recovery, and the response calculation that combines the modal properties of the analysis model with the spectrum data of the applied loads (spectrum application).

6.2 Generating Response Spectra Data

The generation of response spectra involves converting applied loads or base excitations through a modal transient response solution into a spectrum table containing the peak response magnitudes for a set of single degree of freedom oscillators. Each oscillator consists of a scalar spring/mass/damper with a different natural frequency and damping ratio (Figure 6-1).

Figure 6-1. Oscillator Definition.

The equation of motion for each oscillator becomes

where,

$$m_i = 1$$

$$\kappa_i = \omega_i^-$$

$$b_i = 2\zeta_i \sqrt{k_i}$$

 u_b = enforced acceleration

 ε = peak modal response

The series of single degree of freedom (SDOF) oscillators all act at the same physical location at the connection to the base structure. These oscillators each have a different resonant frequency with the same specified damping ratio. The modal transient response solution is used to excite the oscillators. The peak oscillator response to the base structure excitation is stored versus oscillator frequency and is the generated response spectra table for the specified damping ratio.

 $m_i \ddot{\varepsilon} + b_i \dot{\varepsilon} + k_i \varepsilon = u_b$

6.3 How to Setup a Model Input File for Response Spectrum Analysis –Spectrum Generation

In Autodesk Inventor Nastran, the spectrum generation part of response spectrum analysis is performed as a post processing step in a transient response solution (SOL MODAL TRANSIENT RESPONSE, SOL DIRECT TRANSIENT RESPONSE, SOL LINEAR PRESTRESS TRANSIENT RESPONSE, and SOL NONLINEAR PRESTRESS TRANSIENT RESPONSE). Therefore, the first step in setting up the spectrum generation part of a response spectrum analysis is the same as for a transient response analysis. The Response Spectrum Generation module is activated by setting PARAM, RSPECTRA to ON.

6.3.1 Response Spectrum Definition

Response spectra are generated in the transient response solution sequence. Transient response input is required to apply the transient excitation to the base structure. Additional input required to generate response spectra are described below:

XYPRINT SPECTRAL	Case Control command to compute response spectra
DTI, SPSEL	Bulk Data entry to select oscillator frequencies, oscillator damping values, and grid points at which spectra will be computed
FREQİ	Bulk Data entry to specify oscillator frequencies and damping values
PARAM, RESPECTRA, ON	Model parameter to invoke the Response Spectrum Generation module

See Nastran Solver Reference Guide, Section 4, Bulk Data, for more information on each entry. The FREQi entries are used to specify both oscillator frequencies (i.e., the frequencies for which the spectra will be computed) and oscillator damping. Note that damping for the base structure is specified using the TABDMP1 Bulk Data entry the same as for a standard transient response solution.

The XYPRINT command has the following form:

Command	Response	Туре	Spectrum Id	Grid Point Id	Component Symbol	Motion Type
XYPRINT	ACCELERATION VELOCITY DISPLACEMENT	SPECTRAL	Integer > 0	Integer > 0	T1, T2, T3, R1, R2, R3	IP (relative) RM (absolute)

For example, to generate the relative acceleration spectra for grid point 11, component T3 XYPRINT ACCELERATION SPECTRAL 1 /11(T3IP)

Alternatively, to generate the absolute displacement spectra for grid point 6, component T2 XYPRINT DISPLACEMENT SPECTRAL 1 /6(T2RM)

Note that XYPLOT and XYPUNCH may be interchanged with XYPRINT, but will have the same effect. Also, the response options ACCELERATION, VELOCITY, and DISPLACEMENT, may be shortened to ACCE, VELO, and DISP respectively.

6.3.2 Response Spectrum Output

The generated spectra are written to the FEMAP Results Neutral File as data functions and to the Bulk Data Output File (*filename*.BDF) as TABLED1 Bulk Data entries. This data may then be referenced as the spectra input to the subsequent normal modes analysis discussed later in this section. Bulk Data Output File operation is controlled by the TRSLMODLDATA Model Initialization directive (see *Nastran Solver Reference Guide*, Section 2, *Initialization*, for directive format). If TRSLMODLDATA is set to ON, this file will also contain the analysis model Case Control commands and Bulk Data entries.

6.4 Interpreting Results

As an example we will use the cantilever beam shown in Figure 6-2. The beam is subjected to an enforced 1 inch impulse displacement in the z-direction at the constrained end. It is desired to generate the response spectrum at the beam free end for 2% critical damping. Modal damping is used with 2% critical damping across all modes for the beam. Listing 6-1 contains the Model Input File and Figure 6-3 the response of the beam free end. The generated response spectrum is plotted in Figure 6-4. The input response spectrum TABLED1 Bulk Data entries are shown in Listing 6-2.

Figure 6-2. 2-D Cantilever Beam Example Problem.

Listing 6-1. Model Input File for the 2-D Cantilever Beam Problem with Enforced Motion and Response Spectrum Generation.

```
$ LINEAR TRANSIENT RESPONSE SOLUTION - RESPONSE SPECTRUM GENERATION.
Ś
SOL MODAL TRANSIENT RESPONSE
Ś
TITLE = INSTALLATION TEST CASE
SUBTITLE = FORCED DYNAMIC RESPONSE - ENFORCED DISPLACEMENT
Ś
DISPLACEMENT = ALL
VELOCITY = ALL
ACCELERATION = ALL
SDAMPING = 20
TSTEP = 25
METHOD = 1
SPC = 1
SUBCASE 1
LABEL = ENFORCED DISPLACEMENT AT CONSTRAINED END
DLOAD = 1
$ XYPRINT COMMAND THAT GENERATES SPECTRA FOR SET ID 1, GRID POINT 11, COMPONENT 3,
$ ABSOLUTE ACCELERATION.
XYPRINT ACCELERATION SPECTRAL 1 / 11(T3RM)
Ś
BEGIN BULK
$ REQUEST RESPONSE SPECTRUM GENERATION.
Ś
PARAM, RSPECTRA, ON
Ś
$ DEFINE RESPONSE SPECTRUM GENERATION.
Ś
DTI, SPSEL, 1, 10, 20, 11
Ś
$ GENERATE SPECTRA IN 5 Hz INCREMENTS.
Ś
FREQ1, 20, 1., 5., 100
$
\ 2% CRITICAL DAMPING VALUE FOR SPECTRUM GENERATION.
Ś
FREQ, 10, 0.02
$ CONVERSION FACTOR FOR WEIGHT DENSITY TO MASS DENSITY
$ MASS = (1/g) *WEIGHT, G=32.2FT/SEC2, WTMASS = 1/(32.2*12) = 0.002588
PARAM, WTMASS, 0.002588
$ REQUEST COUPLED MASS MATRIX FORMULATION.
Ś
PARAM, COUPMASS, ON
Ś
$ DEFINE EIGENVALUE EXTRACTION PARAMETERS.
Ś
EIGRL, 1, , , 25
```

Listing 6-1. Model Input File for the 2-D Cantilever Beam Problem with Enforced Motion and Response Spectrum Generation. (Continued)

```
$ DEFINE 0.06 SECONDS OF RESPONSE.
Ś
TSTEP, 25, 600, 0.0001, 1
Ś
$ DEFINE LOADING.
Ś
DLOAD, 1, 2.E+5, 0.002588, 11
Ś
$ DEFINE TIME-DEPENDENT LOADING.
Ś
TLOAD1, 11, 100, , 1, 10
TABLED1, 10,
 , 0., 0., 0.001, 1., 100., 1., ENDT
DAREA, 100, 1, 3, 1.
Ś
$ LARGE MASS OF (1xE6)*BAR MASS = (1xE6)*2.0
Ś
CONM2, 20, 1, , 2.E+5
$ 2% CRITICAL DAMPING.
Ś
TABDMP1, 20, CRIT,
, 1., 0.02, 10000., 0.02, ENDT
$ GEOMETRY DEFINITION (10" BEAM DIVIDED INTO 10 ELEMENTS).
Ś
GRID, 1, 0, 0., 0., 0., 0

      GRID,
      2,
      0,
      1.,
      0.,
      0.,
      0

      GRID,
      3,
      0,
      2.,
      0.,
      0.,
      0

      GRID,
      4,
      0,
      3.,
      0.,
      0.,
      0

      GRID,
      5,
      0,
      4.,
      0.,
      0.,
      0

      GRID,
      6,
      0,
      5.,
      0.,
      0.

      GRID,
      7,
      0,
      6.,
      0.,
      0.
      0

      GRID,
      8,
      0,
      7.,
      0.,
      0.,
      0

      GRID,
      9,
      0,
      8.,
      0.,
      0.,
      0

      GRID,
      9,
      0,
      8.,
      0.,
      0.,
      0

GRID, 10, 0, 9., 0., 0., 0
GRID, 11, 0, 10., 0., 0., 0
Ś
$ BEAM MODELED WITH BAR ELEMENTS.
Ś
CBAR, 1, 10, 1, 2, 0., 1., 0.

      CBAR, 2, 10, 2, 3, 0., 1., 0.

      CBAR, 2, 10, 2, 3, 0., 1., 0.

      CBAR, 3, 10, 3, 4, 0., 1., 0.

      CBAR, 4, 10, 4, 5, 0., 1., 0.

      CBAR, 5, 10, 5, 6, 0., 1., 0.

CBAR, 6, 10, 6, 7, 0., 1., 0.
CBAR, 7, 10,
CBAR, 8, 10,
                          7, 8, 0., 1., 0.
8, 9, 0., 1., 0.
CBAR, 9, 10,
                          9, 10, 0., 1.,
                                                            Ο.
CBAR, 10, 10, 10, 11, 0., 1., 0.
$ ELEMENT MATERIAL AND SECTION PROPERTIES (1.0" X 0.2" CROSS-SECTION).
Ś
PBAR, 10, 100, 0.2, 6.667E-4, 1.667E-2, 2.328E-3,
    -0.1, 0.5, 0.1, 0.5, -0.1, -0.5, 0.1, -0.5
$ ELEMENT MATERIAL PROPERTIES (ALUMINUM).
Ś
MAT1, 100, 1.E+7, , 0.33, 0.1
Ś
$ FIXED AT ONE END EXCEPT IN Z-DIRECTION, MOVEMENT CONSTRAINED TO
$ X-Z PLANE ONLY.
$
SPC1, 1, 12456, 1
SPC1, 1, 246, 1, THRU, 11
ENDDATA
```


Figure 6-3. Tip Displacement of a 2-D Cantilever Beam Subjected to a 1.0 Inch Enforced Displacement at the Constrained End.

Figure 6-4. Absolute Acceleration Response Spectrum of a 2-D Cantilever Beam Tip.

Listing 6-2.	Generated	Response	Spectrum	Table.
--------------	-----------	----------	----------	--------

\$						
\$ OU	TPUT	PRODUCED BY ADS	NASTARAN VERSION	J 10.3.0.716 02	2:02 01/16/15	
\$						
BEGI	N BUI	LK				
\$						
\$	2	23	456	58	80	
\$						
\$ AC	CE	11 T3 0.020				
\$						
TABI	ED1	21			+C	1A
+C	1A	1.00000 87.4087	6.00000 3143.27	11.0000 10548.8	16.0000 22274.8+C	2A
+C	2A	21.0000 38280.8	26.0000 58515.2	31.0000 82915.6	36.0000 111408.+C	ЗA
+C	ЗA	41.0000 143908.	46.0000 180321.	51.0000 220539.	56.0000 264445.+C	4A
+C	4A	61.0000 311910.	66.0000 362795.	71.0000 416950.	76.0000 477095.+C	5A
+C	5A	81.0000 546781.	86.0000 610951.	91.0000 668883.	96.0000 732492.+C	6A
+C	6A	101.000 804690.	106.000 879314.	111.000 986341.	116.0001.1377+6+C	7A
+C	7A	121.0001.3016+6	126.0001.4776+6	131.0001.6653+6	136.0001.8639+6+C	8A
+C	8A	141.0002.0723+6	146.0002.2896+6	151.0002.5142+6	156.0002.7565+6+C	9A
+C	9A	161.0003.0061+6	166.0003.2613+6	171.0003.5201+6	176.0003.7807+6+C	10A
+C	10A	181.0004.0422+6	186.0004.3252+6	191.0004.6078+6	196.0004.9413+6+C	11A
+C	11A	201.0005.4817+6	206.0006.0250+6	211.0006.6111+6	216.0007.1866+6+C	12A
+C	12A	221.0007.7654+6	226.0008.3763+6	231.0008.9595+6	236.0009.8555+6+C	13A
+C	13A	241.0001.0820+7	246.0001.1868+7	251.0001.2825+7	256.0001.4070+7+C	14A
+C	14A	261.0001.5549+7	266.0001.7011+7	271.0001.8872+7	276.0002.0809+7+C	15A
+C	15A	281.0002.3221+7	286.0002.5996+7	291.0002.9089+7	296.0003.2719+7+C	16A
+C	16A	301.0003.6770+7	306.0004.0860+7	311.0004.4888+7	316.0004.7332+7+C	17A
+C	17A	321.0004.7545+7	326.0004.5762+7	331.0004.3081+7	336.0004.0252+7+C	18A
+C	18A	341.0003.7679+7	346.0003.5367+7	351.0003.3320+7	356.0003.1325+7+C	19A
+C	19A	361.0002.9882+7	366.0002.8407+7	371.0002.7341+7	376.0002.6072+7+C	20A
+C	20A	381.0002.5247+7	386.0002.4534+7	391.0002.3567+7	396.0002.2740+7+C	21A
+C	21A	401.0002.2201+7	406.0002.1760+7	411.0002.1352+7	416.0002.0761+7+C	22A
+C	22A	421.0002.0335+7	426.0001.9805+7	431.0001.9110+7	436.0001.8914+7+C	23A
+C	23A	441.0001.8789+7	446.0001.8584+7	451.0001.8299+7	456.0001.8073+7+C	24A
+C	24A	461.0001.7903+7	466.0001.7659+7	4/1.0001./342+7	476.0001.7095+7+C	25A
+C	25A	481.0001.6900+7	486.0001.6637+7	491.0001.6306+7	496.0001.6067+7+C	26A
+C	26A	501.0001.5866+7	SNDT			
ENDE	ATA					

6.5 Application of Response Spectra Data

The application of the generated response spectra consists of a normal modes solution of the structure, data recovery, and the response calculation that combines the modal properties of the analysis model with the spectrum data of the applied loads.

The general approximation for the response quantity, u_k , is

$$u_k(t) = \sum_i \phi_{ik} \xi_i(t)$$

where ϕ and ξ are the modal outputs and generalized displacements with the actual modal equations given by

$$\ddot{\xi}_i + 2\zeta_i \omega_i \dot{\xi}_i(t) + \omega_i^2 \xi_i(t) = \frac{1}{m_i} [\phi]^T P(t)$$

where,

 $\zeta_i = b_i / (2m_i\omega_i) \equiv \text{modal damping ratio}$ $\omega_i^2 = k_i / m_i \equiv \text{modal frequency}$ P = load vector

For loading due to base accelerations we have

$$P(t) = -[M_{aa}][D_{ar}]\{\ddot{u}_r(t)\}$$

where the columns of $[D_{ar}]$ are vectors of rigid body motion and the accelerations correspond to the base motions.

Then, the actual transient response at a physical point is

$$u_k(t) = \sum_i \sum_r \phi_{ik} \psi_{ir} x_r(\omega_i, \zeta_i, t)$$

In the above equation, the peak magnitudes of u_k are usually dominated by the peak values of x(t) occuring at the natural frequencies. In response spectrum analysis the peak values of u_k are approximated by combining functions of the peak values using

$$\overline{u}_{k} \cong \sum_{i} \sum_{r} \left| \phi_{ik} \right\| \psi_{ir} \overline{x}_{ri}(\omega_{i}, \zeta_{i}) \right|$$

The last two equations define the ABS (Absolute Value) option. This method is conservative in that it assumes all of the modal peak values for every point on the structure occur at the same time and in the same phase.

Another approach is to assume that the modal magnitudes and phases will combine in a probabilistic fashion. If the input loads occur randomly, the probable (RMS) peak values are

$$\overline{u}_k \cong \sqrt{\sum_i (\phi_{ik} \overline{\xi}_i)^2}$$

where the average peak modal magnitude, ξ_i is

$$\xi_i \cong \sqrt{\sum_r (\psi_{ir} \overline{x}_r(\omega_i, \zeta_i))^2}$$

This approach is known as the SRSS (square root of sum-squared) method. The method assume that the modal responses are uncorrelated and the peak value for each mode will occur at a different time. These results can be unconservative and represent a lower bound on the dynamic peak values.

The NRL (Naval Research Laboratories) method was developed as a compromise between the two other methods. The peak response is determined using the equation

$$\overline{u}_{k} \cong \left| \phi_{jk} \overline{\xi}_{j} \right| + \sqrt{\sum_{i \neq j} (\phi_{ik} \overline{\xi}_{i})^{2}}$$

where the j-th mode is the mode that has the largest magnitude of the product $\phi_{jk}\overline{\xi}_{j}$.

Modes that are close in frequency may have their peak response occur at approximately the same time and phase. Because of this, the SRSS and NRL methods contain a provision to sum modal response using the ABS method for modes that have closely spaced natural frequencies. Close natural frequencies are defined using the criteria

$$f_{i+1} < \text{CLOSE} * f_i$$

The value for CLOSE is specified using PARAM, CLOSE with a default value if 1.0. See the Nastran Solver Reference Guide, Section 5, Parameters, for more information on CLOSE.

6.6 How to Setup a Model Input File for Response Spectrum Analysis – Modal Combination

In Autodesk Inventor Nastran, the spectrum application part of response spectrum analysis is performed as a post processing step in a normal modes solution (SOL MODAL, SOL LINEAR PRESTRESS MODAL, and SOL NONLINEAR PRESTRESS MODAL). The application of response spectra to a normal modes analysis is activated by setting PARAM, SCRSPEC to ON.

6.6.1 Response Spectrum Application

Response spectra are applied to a modal solution sequence. The additional input required is described below:

SDAMPING	Selects the TABDMP1 Bulk Data entry
DLOAD	Selects the DLOAD Bulk Data entry
DTI, SPECSEL	Specifies the type of input spectrum and its corresponding damping ratio
	 A = absolute acceleration spectrum V = relative velocity spectrum D = relative displacement spectrum
TABLED1	Specifies input response spectra
SUPORT	Specifies input spectrum grid points and component directions
PARAM, SCRSPEC, ON	Model parameter to invoke the Response Spectrum Application module
PARAM, OPTION, <i>method</i>	Model parameter to specify the modal combination method
	ABS = Absolute Value SRSS = Square Root of the Sum of the Squares NRL = Naval Research Laboratory CQC = Complete Quadratic Combination (default is ABS)
PARAM, CLOSE, <i>tol</i>	Model parameter to specify the closeness tolerance used in determining the modal combination method (default is 1.0)
PARAM, MODALDATABASE, option	Model parameter to control storage and retrieval of modal data DELETE = Modal database is deleted STORE = Modal database is stored FETCH = Modal database is retrieved (default is DELETE)

See Nastran Solver Reference Guide, Section 4, Bulk Data, for more information on each entry.

6.6.2 Response Spectrum Input

If the response spectra was generated from a transient response solution, it will be written to the FEMAP Results Neutral File as data functions and to the Bulk Data Output File (*filename*.BDF) as TABLED1 Bulk Data entries. This data may then be referenced as the spectra input to the normal modes analysis.

6.7 Interpreting Results

As an example we will use the flat plate shown in Figure 6-5. The plate is completely constrained at one end except for the z-direction. The plate supports a nonstructural mass per unit area of 0.01 pound/inch². A large mass is connected at grid point 17 to the left edge of the plate with a rigid element. The response spectrum generated in the previous transient response solution is input at that same point. Listing 6-3 contains the Model Input File.

Figure 6-5. 3-D Cantilever Beam Example Problem.

Listing 6-3. Model Input File for the 3-D Cantilever Beam Problem with Response Spectrum Input.

```
$ MODAL SOLUTION - RESPONSE SPECTRUM APPLICATION.
Ś
SOL MODAL
Ś
TITLE = INSTALLATION TEST CASE
SUBTITLE = MODAL COMBINATION
Ś
DISPLACEMENT = ALL
VELOCITY = ALL
ACCELERATION = ALL
STRESS = ALL
SPC = 1
SDAMPING = 20
METHOD = 1
SUBCASE 1
LABEL = RESPONSE SPECTRUM APPLICATION
DLOAD = 1
Ś
BEGIN BULK
$ REQUEST RESPONSE SPECTRUM APPLICATION.
PARAM, SCRSPEC, ON
$ DEFINE RESPONSE SPECTRUM INPUT.
Ś
DLOAD, 1, 1., 1., 10
Ś
$ RELATE SPECTRA LINES TO DAMPING VALUES.
Ś
DTI, SPECSEL, 10, , A, 21, 0.02
$ RESPONSE SPECTRUM GENERATED FROM TRANSIENT RESPONSE SOLUTION
 (ABSOLUTE ACCELERATION WITH 2% CRITICAL DAMPING).
Ś
Ś
$ ACCE
          11 T3 0.020
Ś
TABLED1
              21
                                                                         +C
                                                                               1 A
      1A 1.00000 87.4087 6.00000 3143.27 11.0000 10548.8 16.0000 22274.8+C
+C
                                                                               2 A
      2A 21.0000 38280.8 26.0000 58515.2 31.0000 82915.6 36.0000 111408.+C
+C
                                                                               3A
      3A 41.0000 143908. 46.0000 180321. 51.0000 220539. 56.0000 264445.+C
+C
                                                                               4A
      4A 61.0000 311910. 66.0000 362795. 71.0000 416950. 76.0000 477095.+C
+C
                                                                               5A
      5A 81.0000 546781. 86.0000 610951. 91.0000 668883. 96.0000 732492.+C
+C
                                                                               6A
+C
      6A 101.000 804690. 106.000 879314. 111.000 986341. 116.0001.1377+6+C
                                                                               7A
+C
      7A 121.0001.3016+6 126.0001.4776+6 131.0001.6653+6 136.0001.8639+6+C
                                                                               8A
      8A 141.0002.0723+6 146.0002.2896+6 151.0002.5142+6 156.0002.7565+6+C
+C
                                                                               9A
      9A 161.0003.0061+6 166.0003.2613+6 171.0003.5201+6 176.0003.7807+6+C
+C
                                                                              10A
+C
     10A 181.0004.0422+6 186.0004.3252+6 191.0004.6078+6 196.0004.9413+6+C
                                                                              11A
+C
     11A 201.0005.4817+6 206.0006.0250+6 211.0006.6111+6 216.0007.1866+6+C
                                                                              12A
+C
     12A 221.0007.7654+6 226.0008.3763+6 231.0008.9595+6 236.0009.8555+6+C
                                                                              13A
+C
     13A 241.0001.0820+7 246.0001.1868+7 251.0001.2825+7 256.0001.4070+7+C
                                                                              14A
+C
     14A 261.0001.5549+7 266.0001.7011+7 271.0001.8872+7 276.0002.0809+7+C
                                                                              1.5A
     15A 281.0002.3221+7 286.0002.5996+7 291.0002.9089+7 296.0003.2719+7+C
+C
                                                                              16A
     16A 301.0003.6770+7 306.0004.0860+7 311.0004.4888+7 316.0004.7332+7+C
+C
                                                                              17A
+C
     17A 321.0004.7545+7 326.0004.5762+7 331.0004.3081+7 336.0004.0252+7+C
                                                                              18A
+C
     18A 341.0003.7679+7 346.0003.5367+7 351.0003.3320+7 356.0003.1325+7+C
                                                                              19A
     19A 361.0002.9882+7 366.0002.8407+7 371.0002.7341+7 376.0002.6072+7+C
+C
                                                                              20A
+C
     20A 381.0002.5247+7 386.0002.4534+7 391.0002.3567+7 396.0002.2740+7+C
                                                                              21A
+C
     21A 401.0002.2201+7 406.0002.1760+7 411.0002.1352+7 416.0002.0761+7+C
                                                                              22A
     22A 421.0002.0335+7 426.0001.9805+7 431.0001.9110+7 436.0001.8914+7+C
+C
                                                                              23A
     23A 441.0001.8789+7 446.0001.8584+7 451.0001.8299+7 456.0001.8073+7+C
+C
                                                                              24A
     24A 461.0001.7903+7 466.0001.7659+7 471.0001.7342+7 476.0001.7095+7+C
+C
                                                                              25A
     25A 481.0001.6900+7 486.0001.6637+7 491.0001.6306+7 496.0001.6067+7+C
+C
                                                                              26A
     26A 501.0001.5866+7ENDT
+C
```

Listing 6-3. Model Input File for the 3-D Cantilever Beam Problem with Response Spectrum Input. (Continued)

```
$ LOCATION OF RESPONSE SPECTRUM INPUT.
Ś
SUPORT, 17, 3
Ś
$ LARGE MASS OF (1xE6)*PLATE MASS = (1xE6)*(0.002588)*(0.0036) = 9.3 (MIN)
Ś
CONM2, 20, 17, , 1.+3
Ś
$ RIGID BODY ELEMENT CONNECTION OF MASS/INPUT POINT TO PLATE EDGE.
RBE2, 7, 17, 123456, 16, 18
$ 2% CRITICAL DAMPING.
Ś
TABDMP1, 20, CRIT,
, 0., 0.02, 1000., 0.02, ENDT
$ CONVERSION FACTOR FOR WEIGHT DENSITY TO MASS DENSITY
$ MASS = (1/g)*WEIGHT, G=32.2FT/SEC2, WTMASS = 1/(32.2*12) = 0.002588
Ś
PARAM, WTMASS, 0.002588
$ REQUEST COUPLED MASS MATRIX FORMULATION.
PARAM, COUPMASS, ON
$ REMOVE RIGID BODY MODE FROM ANALYSIS.
Ś
PARAM, LFREQ, 1.
Ś
$ DEFINE EIGENVALUE EXTRACTION PARAMETERS.
Ś
EIGRL, 1, , , 4
Ś
$ GEOMETRY DEFINITION (6" X 2" RECTANGULAR FLAT PLATE WITH A 3 X 2 MESH).
Ś
GRID,
                2., 0., 0.
         4,
            ,
            , 2., 1.,
                          0.
GRID,
        5,
GRID,
       6, , 2., 2., 0.
        7, , 6.,
8, , 6.,
GRID,
                     0.,
                          Ο.
GRID,
                     1.,
                           0.
            ,
GRID,
        9,
            , 6., 2.,
                           0.
GRID, 10, , 4., 0., 0.
GRID,
       11,
            , 4.,
                     1.,
                           0.
            , 4., 2., 0.
GRID, 12,
GRID, 16, , 0., 0., 0.
GRID, 17, , 0., 1., 0.
GRID, 18, , 0., 2., 0.
Ś
$ FLAT PLATE MODELED WITH SHELL ELEMENTS.
CQUADR, 1, 10, 16,
                         4,
                               5, 17

      CQUADR, 2, 10, 4, 10, 11, 5

      CQUADR, 3, 10, 10, 7, 8, 11

      CQUADR, 4, 10, 17, 5, 6, 18

      CQUADR, 5, 10, 5, 11, 12, 6

CQUADR, 6, 10, 11,
                              9, 12
                         8,
$ ELEMENT MATERIAL AND THICKNESS (0.03") WITH 0.01 LB/IN. NONSTRUCTURAL
$ MASS PER UNIT AREA.
PSHELL, 10, 100, 0.03, 100, , 100, , 0.01
$ ELEMENT MATERIAL PROPERTIES (ALUMINUM).
MAT1, 100, 1.E+7, , 0.33, 0.1
$ FIXED AT ONE END EXCEPT IN Z-DIRECTION.
SPC1, 1, 12456, 17
ENDDATA
```

The response spectrum application is requested by setting PARAM, SCRSPEC to ON. The DLOAD Case Control command references the DLOAD Bulk Data entry. The DLOAD entry references the DTI, SPECSEL entry which specifies the input spectrum type, spectrum tables, and corresponding critical damping values. The TABLED1 entry defines a specific line of the input spectrum for a specific damping ratio. The TABLED1 entry shown was generated in the previous transient response solution for 2% critical damping. The TABDMP1 entry defines the modal damping (in this case all modes have 2% critical damping).

Listing 6-4a gives the modal results summary information. The eigenvalue summary shows the computed natural frequencies. Note the absence of the rigid body mode due to the specification of PARAM, LFREQ, 1. This parameter excludes all modes below 1 Hz. The modal participation factors, modal effective mass, and peak modal responses are also listed. Listing 6-4b and 6-4c gives the combined modal results using the ABS (default) method.

Listing 6-4a. Modal Results Output from the Application of Response Spectra to the 3-D Cantilever Beam.

RESPONSE SPI	RESPONSE SPECTRUM APPLICATION							
			REA	L EIGEN	VALUES			
MODE NUMBER	EIGENVALU	E RADIAN	S CYC	CLES GENI	ERALIZED MASS	GENERALIZED STIFFNESS	ORTHOGONALITY LOSS	ERROR MEASURE
1	6.950168E+	03 8.336767	E+01 1.3268	338E+01 1.0	00000E+00	6.950168E+03	3.278535E-10	1.874723E-09
2	3.637892E+	05 6.031494	E+02 9.5994	421E+01 1.0	00000E+00	3.637892E+05	4.134745E-13	7.414896E-11
3	3.746071E+	05 6.120516	E+02 9.741	L03E+01 1.0	00000E+00	3.746071E+05	9.182545E-13	5.826327E-11
RESPONSE SPI	ECTRUM APPLICAT	ION			SUBCASE 1			
		M O	DAL PAR	TICIPAT	ION FA	CTORS		
MODE NUMBER	Τ1	Τ2	ΤЗ	R1	R2	R3		
1	3.244768E-15	3.389699E-15	-1.595750E-02	-3.588142E-13	6.868300E-0	2 1.086650E-14		
2	1.622374E-14	1.619478E-14	-2.710059E-13	9.735860E-03	3.286705E-1	3 5.097880E-14		
3	-4.704441E-15	-6.709818E-15	9.083581E-03	3.435392E-13	-1.078962E-0	2 -2.374460E-14		
RESPONSE SPI	ECTRUM APPLICAT	ION			SUBCASE 1			
			MODAL	EFFECT	IVE MAS	S		
MODE	Ψ1	Ψ2	тЗ	R1	R2	R3		
NUMBER	11	12	10	1(1	112	1(0		
1	0.000000E+00	0.000000E+00	2.546418E-04	0.000000E+00	4.717354E-0	3 0.000000E+00		
2	0.000000E+00	0.00000E+00	0.000000E+00	9.478698E-05	0.00000E+0	0 0.00000E+00		
3	0.000000E+00	0.000000E+00	8.251145E-05	0.000000E+00	1.164159E-0	4 0.00000E+00		
TOTAL	0.00000E+00	0.000000E+00	3.371532E-04	9.478698E-05	4.833770E-C	3 0.00000E+00		
DECDONCE OD	CUDIM ADDITCAM	TON			CUDCACE 1			
RESPONSE SPI	SCINOM AFFLICAI	101			SUBCASE I			
			PERCI	ENT MODA	AL MASS	5		
DIRECTION	TOTAL	MODAL	PERCENT					
1	2 588404E+00	0 0000000000000000000000000000000000000	0 00					
2	2.588404E+00	0.000000E+00	0.00					
3	2 588404E+00	3 371532E-04	0.01					
4	0.000000E+00	9.478698E-05	0.00					
5	0.000000E+00	4.833770E-03	0.00					
6	0.000000E+00	0.000000E+00	0.00					
RESPONSE SPI	ECTRUM APPLICAT	ION			SUBCASE 1			
				NODIT				
			PEAK	MUDAL R	ESPONS	<u>F</u>		
MODE NUMBER	DISPLACEMENT	VELOCIT	Y ACCEI	LERATION				
1	-3.643410E-02	-3.037426E	+00 -2.532	2231E+02				
2	-5.456173E-13	-3.290888E	-10 -1.984	4897E-07				
3	-1.825573E-02	-1.117345E	+01 -6.838	3726E+03				

Listing 6-4b. Vector Results Output from the Application of Response Spectra to the 3-D Cantilever Beam.

RESPONSE	RESPONSE SPECTRUM APPLICATION SUBCASE 1							
			ספדת	IACEMEN		D		
			DISF	LACEMEN	I VECIO	R		
GRID	COORDINATE	Τ1	Т2	Т3	Rl	R2	R3	
ID	ID	7 6966//F-13	5 0067028-13	1 6936288+00	1 823/008-01	1 3531308+00	8 22/2188-13	
5	0	6.112543E-13	4.994562E-13	1.638807E+00	4.134821E-11	1.298488E+00	8.108710E-13	
6	õ	4.320838E-13	4.998164E-13	1.693628E+00	1.823400E-01	1.353139E+00	8.249431E-13	
7	0	7.886313E-13	1.211846E-12	5.508413E+00	9.346200E-02	2.828237E+00	8.268599E-13	
8	0	6.146136E-13	1.223904E-12	5.547796E+00	1.648646E-10	2.736246E+00	8.198638E-13	
9	0	4.364489E-13	1.223711E-12	5.508413E+00	9.346200E-02	2.828237E+00	8.239522E-13	
10	0	7.766624E-13	8.577293E-13	3.057897E+00	3.149866E-UI	1.709608E+00	8.235605E-13	
12	0	4 342409E-13	8 501656E-13	2.943434E+00 3.057897E+00	3 149866E-01	1.000203E+00 1.709608E+00	8 339933E-13	
16	Ő	0.000000E+00	0.000000E+00	2.887229E-04	0.000000E+00	0.000000E+00	0.000000E+00	
17	0	0.00000E+00	0.00000E+00	2.887229E-04	0.000000E+00	0.00000E+00	0.000000E+00	
18	0	0.000000E+00	0.00000E+00	2.887229E-04	0.000000E+00	0.00000E+00	0.00000E+00	
MAXIMUM DI	ISPLACEMENT MAGNI	ITUDE = 5.5477	96E+00 AT GRI	D 8				
MAXIMUM RC	JTATION MAGNITUDE	= 2.829/	SIE+UU AT GRI					
RESPONSE	SPECTRUM APPLICA	ATION			SUBCASE 1			
			VE	ГОСІТҮ	VECTOR			
GRID	COORDINATE	т1	Т2	т3	R1	R2	R3	
ID	ID							
4	0	2.438172E-10	1.645561E-10	7.452888E+02	9.275189E+01	5.450662E+02	2.587390E-10	
5	0	1.865214E-10	1.629984E-10	7.024558E+02	2.509592E-08	5.026665E+02	2.552615E-10	
67	0	1.229596E-10 2.552200E-10	1.640161E-10 4.227515E-10	1.452888E+U2	9.2/5189E+U1 5 //0201E+01	5.450662E+02	2.59951/E-10 2.652451E-10	
8	0	2.333269E=10 1 883316E=10	4.32/313E=10 4.364746E=10	1.441168E+03	9 986235E-08	1.201342E+03	2.652451E-10 2.607160E-10	
9	õ	1.200821E-10	4.362571E-10	1.441168E+03	5.449291E+01	1.261542E+03	2.641682E-10	
10	0	2.507568E-10	2.971623E-10	8.536373E+02	1.708707E+02	6.122323E+02	2.640471E-10	
11	0	1.840528E-10	2.960730E-10	7.727822E+02	6.795725E-08	6.052361E+02	2.635962E-10	
12	0	1.199273E-10	2.946968E-10	8.536373E+02	1.708707E+02	6.122323E+02	2.674478E-10	
10	0	0.000000E+00	0.000000E+00	5.794540E-02	0.000000E+00	0.000000E+00	0.000000E+00	
18	0	0.000000E+00	0.000000E+00	5.794540E-02	0.000000E+00	0.000000E+00	0.000000E+00	
MAXIMUM VE	SLOCITY MAGNITUDE	ACNITUDE - 1	466762E+03 AT 262718E+03 AT	GRID 8				
MAXIMUM AI	NGOLAK VELOCIII P	INGNITODE - I.	202/101/05 A1	GRID J				
RESPONSE	SPECTRUM APPLICA	ATION			SUBCASE 1			
			ACCE	LERATIO	Ν ΥΕСΤΟ	R		
GRID	COORDINATE	ጥ1	Ψ2	ጥን	R1	R2	R3	
ID	ID	11	14	1.7	111	112	1/2	
4	0	1.302828E-07	8.888861E-08	4.318702E+05	5.519750E+04	3.100052E+05	1.379678E-07	
5	0	9.852113E-08	8.786729E-08	4.048806E+05	1.524535E-05	2.833082E+05	1.361388E-07	
6	0	6.346126E-08	8.855668E-08	4.318702E+05	5.519750E+04	3.100052E+05	1.386824E-07	
7	0	1.373205E-07	2.391088E-07	7.211474E+05	3.312649E+04	7.329888E+05	1.42265/E-07	
8 Q	0	5.900004E-08 6.123748E-08	2.410028E=07	7.211474E+05	3.312649E+04	7.329888E+05	1.416653E-07	
10	õ	1.347516E-07	1.628865E-07	4.376057E+05	1.027545E+05	3.385248E+05	1.416010E-07	
11	0	9.731934E-08	1.622402E-07	3.872169E+05	4.125944E-05	3.348497E+05	1.409878E-07	
12	0	6.124249E-08	1.615579E-07	4.376057E+05	1.027545E+05	3.385248E+05	1.434336E-07	
16	0	0.000000E+00	0.000000E+00	2.556417E+01	0.000000E+00	0.000000E+00	0.000000E+00	
10	U	0.000000E+00	U.UUUUUUE+00	2.556417E+01	U.UUUUUUE+00	U.UUUUUUUE+00	U.UUUUUUUE+00	
ΤQ	U	5.00000E+00	5.00000E+00	2.0041/6+01	0.00000E+00	5.00000E+00	0.0000000000000000000000000000000000000	
MAXIMUM AG	CCELERATION MAGNI	TUDE =	7.369368E+05	AT GRID 8				
MAXIMUM AN	NGULAR ACCELERATI	ION MAGNITUDE =	7.337370E+05	AT GRID 9				

Listing 6-4c. Element Results Output from the Application of Response Spectra to the 3-D Cantilever Beam.

RESPONSE SPECTRUM APPLICATION								
	STRESSE	S IN QU	AD ELE	MENTS O	N SURFA	. C E 0		
SURFACE COORDINATE ID) = ELEMENT X-A	XIS = X NORMA	L = Z					
ELEMENT GRID	FIBER	STRESSES IN	SURFACE COORD	INATE SYSTEM	PRINCIPAL	STRESSES (ZE	RO SHEAR)	HENCKY
ID ID	DISTANCE	NORMAL-X	NORMAL-Y	SHEAR-XY	ANGLE	MAJOR	MINOR	VON MISES
1 CENTER	-1.50000E-02	1.14672E+05	4.61691E+04	5.06617E+03	-88.2843	8.24159E+04	7.84250E+04	1.01105E+05
	1.50000E-02	1.14672E+05	4.61691E+04	5.06617E+03	1.7157	7.84250E+04	8.24159E+04	1.01105E+05
2 CENTER	-1.50000E-02	1.49113E+05	1.19077E+04	3.70796E+03	-89.5002	1.17999E+04	1.49220E+05	1.43693E+05
	1.50000E-02	1.49113E+05	1.19077E+04	3.70796E+03	0.4998	1.49220E+05	1.17999E+04	1.43693E+05
3 CENTER	-1.50000E-02	8.02007E+04	3.39832E+03	6.51894E+03	78.0803	4.02287E+03	8.08253E+04	8.29987E+04
	1.50000E-02	8.02007E+04	3.39832E+03	6.51894E+03	-11.9197	8.08253E+04	4.02287E+03	8.29987E+04
4 CENTER	-1.50000E-02	1.14672E+05	4.61691E+04	5.06617E+03	88.2843	8.24159E+04	7.84250E+04	1.01105E+05
	1.50000E-02	1.14672E+05	4.61691E+04	5.06617E+03	-1.7157	7.84250E+04	8.24159E+04	1.01105E+05
5 CENTER	-1.50000E-02	1.49113E+05	1.19077E+04	3.70796E+03	89.5002	1.17999E+04	1.49220E+05	1.43693E+05
	1.50000E-02	1.49113E+05	1.19077E+04	3.70796E+03	-0.4998	1.49220E+05	1.17999E+04	1.43693E+05
6 CENTER	-1.50000E-02	8.02007E+04	3.39832E+03	6.51894E+03	-78.0803	4.02287E+03	8.08253E+04	8.29987E+04
	1.50000E-02	8.02007E+04	3.39832E+03	6.51894E+03	11.9197	8.08253E+04	4.02287E+03	8.29987E+04
MAXIMUM QUAD ELEMENT P MINIMUM QUAD ELEMENT P MAXIMUM QUAD ELEMENT S MAXIMUM QUAD ELEMENT V	PRINCIPAL STRESS PRINCIPAL STRESS HEAR STRESS ON MISES STRESS	= 1.492204E+ = 8.082528E+ = 6.871025E+ = 1.436931E+	05 AT ELEMEN 04 AT ELEMEN 04 AT ELEMEN 05 AT ELEMEN	T 5 T 6 T 5 T 5				

6.8 Dynamic Design Analysis Method (DDAM).

DDAM is a form of shock spectrum analysis where user supplied shock coefficients are used to perform shock excitation calculations and generate shock spectrum data. Additionally, a modal cutoff percentage may be supplied to terminate calculations when a specific modal mass is reached. Shock spectrum data is then applied using the modal summation conventions outlined in Sections 6.5 - 6.7.

DDAM analysis is performed using a standard normal modes solution (see Section 4, *Normal Modes Analysis*, for more information) and the following additional Case Control commands and Bulk Data entries.

DDAM	Selects the DDAMDATA Bulk Data entry
DDAMDATA	Defines data needed to perform DDAM analysis
PARAM, MODALDATABASE, <i>option</i>	Model parameter to control storage and retrieval of modal data DELETE = Modal database is deleted STORE = Modal database is stored FETCH = Modal database is retrieved (default is DELETE)
PARAM, SORTMODALMASS, option	Model parameter to control order modes are summed in DDAM analysis ON = In order of increasing modal mass OFF = In order of increasing eigenvalue (default is ON)

See Nastran Solver Reference Guide, Section 4, Bulk Data and Section 5, Parameters, for more information on each entry.
6.9 Interpreting Results

As an example we will use the cantilever beam shown in Figure 6-6. It is desired to find the response of the beam when subjected to the specified DDAM shock environment. Listing 6-5 contains the Model Input File and Listing 6-6 the results.

Figure 6-6. 2-D Cantilever Beam Example Problem.

Listing 6-5a. Model Input File for the DDAM Analysis of a 3-D Cantilever Beam.

```
$ MODAL SOLUTION.
Ś
SOL MODAL
CEND
Ś
TITLE = INSTALLATION TEST CASE
SUBTITLE = DDAM ANALYSIS OF A 3-D CANTILEVER BEAM
Ś
DISPLACEMENT = ALL
VELOCITY = ALL
ACCELERATION = ALL
STRESS = ALL
Ś
SUBCASE 1
SPC = 1
 METHOD = 1
 DDAM = 1
Ś
BEGIN BULK
Ś
$ INSERT DDAM DATA.
Ś
INCLUDE 'DDAM.NAS'
$ CONVERSION FACTOR FOR WEIGHT DENSITY TO MASS DENSITY
$ MASS = (1/g)*WEIGHT, G=32.2FT/SEC2, WTMASS = 1/(32.2*12) = 0.002588
Ś
PARAM, WTMASS, 0.002588
Ś
$ DEFINE EIGENVALUE EXTRACTION PARAMETERS.
Ś
EIGRL, 1, , , 20
$ GEOMETRY DEFINITION (10" BEAM DIVIDED INTO 10 ELEMENTS).
Ś
GRID, 1, 0, 0., 0., 0., 0

      GRID,
      1,
      0,
      0.,
      0.,
      0.,
      0

      GRID,
      2,
      0,
      1.,
      0.,
      0.,
      0

      GRID,
      3,
      0,
      2.,
      0.,
      0.,
      0

      GRID,
      4,
      0,
      3.,
      0.,
      0.,
      0

      GRID,
      5,
      0,
      4.,
      0.,
      0.,
      0

                   5., 0., 0., 0
6., 0., 0., 0
7., 0., 0., 0
GRID, 6, 0,
GRID, 7, 0,
GRID, 8, 0,
GRID, 9, 0, 8., 0., 0., 0
GRID, 10, 0,
                   9., 0., 0.,
                                        0
GRID, 11, 0, 10., 0.,
                                  0.,
                                         0
Ś
$ BEAM MODELED WITH BAR ELEMENTS.
Ś
                                                0.
CBAR, 1, 10,
                      1,
                             2, 0., 1.,
CBAR, 2, 10, 2, 3, 0., 1., 0.
CBAR, 3, 10, 3, 4, 0., 1., 0.
CBAR, 4, 10, 4, 5, 0., 1., 0.
                                        1.,
                            6, 0., 1.,
CBAR, 5, 10,
                      5,
                                              0.
CBAR, 6, 10, 6, 7, 0., 1., 0.
                    7, 8, 0., 1.,
8, 9, 0., 1.,
CBAR, 7, 10,
CBAR, 8, 10,
                                              0.
                                               0.
CBAR, 9, 10,
                    9, 10, 0., 1.,
                                               Ο.
CBAR, 10, 10, 10, 11, 0., 1., 0.
$ ELEMENT MATERIAL AND SECTION PROPERTIES (1.0" X 0.2" CROSS-SECTION).
Ś
PBAR, 10, 100, 0.2, 6.667E-4, 1.667E-2, 2.328E-3,
, -0.1, 0.5, 0.1, 0.5, -0.1, -0.5, 0.1, -0.5
$
$ ELEMENT MATERIAL PROPERTIES (ALUMINUM).
Ś
MAT1, 100, 1.E+7, , 0.33, 0.1
```

Listing 6-5a. Model Input File for the DDAM Analysis of a 3-D Cantilever Beam. (Continued)

```
$ FIXED AT ONE END, FREE AT OTHER.
$
SPC1, 1, 123456, 1
SPC1, 1, 4, 1, THRU, 11
ENDDATA
```

Listing 6-5b. DDAM Data File Containing Shock Coefficients and Analysis Parameters.

```
$ DDAM COEFFICIENTS AND ANALYSIS PARAMETERS.
$
DDAMDAT, 1, 0.25, 0.5, 1., 0.25, 0.5, 1., 10.,
, 20., 50., 10., 37.5, 6., , SURFACE, DECK,
, 123, 1, 3, 386.4, 6., 80.
```

Listing 6-5a is set up like a typical normal modes analysis with the exception of the DDAM Case Control command and DDAMDAT Bulk Data entry. The DDAM command initiates a shock spectrum solution sequence and references the DDAMDAT entry. The DDAMDAT entry shown in Listing 6-5b contains the shock environment in coefficient form and the analysis control settings. The analysis control settings specify shock directions and their labels and the modal mass cutoff percentage at which shock excitation calculations cease.

In our example analysis all three shock directions are requested though only the results of the third (vertical direction) will be presented. A subcase is created automatically for each direction requested on the DDAMDAT entry.

Listing 6-6a shows a summary of the user specified analysis control settings. Listing 6-6b shows the verification output, which gives the individual and cumulative modal weights through the calculated frequencies. The cumulative modal weight should be checked in each shock direction to verify the required percentage is achieved. Failure to meet the required modal weight requires either increasing the number of desired modes or the frequency range on the EIGRL Bulk Data entry and rerunning the model. Listing 6-6c and 6-6d gives the combined modal results using the NRL method (default for DDAM analysis).

DDAM ANALYSIS DATA DEFINITION

Listing 6-6a. Model Results Output DDAM Analysis Data Definition.

```
DDAM DATA SET = 1

SHIP TYPE = SURFACE

MOUNTING LOCATION = DECK

MATERIAL TYPE = ELASTIC

SUMMATION METHOD = NRL

TOTAL MASS = 5.176000E-04

TOTAL WEIGHT = 2.00006E-01

CONVERSION FACTOR = 3.864000E+02
```

Γ

Listing 6-6b. Model Results Output for the DDAM Analysis of a 3-D Cantilever Beam.

VERTICAL (Z)	DIRECTED SHOC	K			SUBCASE	3		
		M	ODAL EFF	ECTIV	S W E	IGHT		
MODE	OVOLED		MODAT			CUMULT N DI LUE		
NUMPED	CICLES	FACTOR	METCUT		M E T	CUMULAIIVE CUMULAIIVE		
NUMBER 1	6 320250E+01	0 000000E+00	0 000000E+00	0 0000	0 0000)00E+00 0 0000		
2	3 160362E+02	1 777455E-02	1 220771E-01	61 0383	1 220"	771E-01 61 0383		
3	3 910655E+02	0 000000E+00	0 000000E+00	0 0000	1 220"	71E-01 61 0383		
4	1.081427E+03	0.000000E+00	0.000000E+00	0.0000	1.2207	71E-01 61.0383		
5	1.955474E+03	-9.873827E-03	3.767108E-02	18.8355	1.5974	182E-01 79.8738		
6	2.090234E+03	0.00000E+00	0.000000E+00	0.0000	1.5974	182E-01 79.8738		
7	3.404135E+03	0.00000E+00	0.000000E+00	0.0000	1.5974	182E-01 79.8738		
8	4.909206E+03	0.00000E+00	0.000000E+00	0.0000	1.5974	182E-01 79.8738		
9	4.998670E+03	0.00000E+00	0.00000E+00	0.0000	1.5974	182E-01 79.8738		
10	5.407542E+03	-5.776554E-03	1.289362E-02	6.4468	1.7264	18E-01 86.3206		
MASS AVAILABL	- 92.8/3/ P	ERCENT						
MASS USED	- 00.3200 P	ERCENI						
VERTICAL (7) D	IRECTED SHOCK			.511	BCASE 3			
(2) D	0.00010			50				
			MODAI	L REAC	TION	1		
MODE	CYCLES	PARTICIPATION	RES	SPONSE		INPUT	Г	
NUMBER		FACTOR	ACCELERATION	REACT	ION	ACCELERATION	SOURCE	
1	6.320250E+01	0.00000E+00	0.000000E+00	0.00000)E+00	6.00000E+00	MINIMUM-G	
2	3.160362E+02	1.777455E-02	1.411812E+02	2.50943	1E+00	2.055612E+01	VELOCITY	
3	3.910655E+02	0.000000E+00	0.000000E+00	0.00000)E+00	2.543620E+01	VELOCITY	
4	1.081427E+03	0.000000E+00	0.000000E+00	0.00000)E+00	6.250000E+01	ACCELERATION	
5	1.955474E+03	-9.873827E-03	2.384517E+02	-2.35443	JE+00	6.249967E+01	ACCELERATION	
6	2.090234E+03	0.000000E+00	0.000000E+00	0.00000	JE+00	6.250000E+01	ACCELERATION	
0	3.404135E+03	0.000000E+00	0.000000E+00	0.00000	0E+00	6.250000E+01	ACCELERATION	
0	4.909206E+03	0.000000E+00	0.000000E+00	0.00000	05+00	6.250000E+01	ACCELERATION	
10	4.998670E+03 5 407542E+03	-5 776554E-03	1 395035E+02	-8 05849	7E-01	6.230000E+01	ACCELERATION	
10	J.40/J42E10J	5.//0554E 05	1.3330331102	0.00040	/15 01	0.2400000101	ACCEDENATION	
VERTICAL (Z) D	IRECTED SHOCK			SU	BCASE 3			
			TOTAL B	ASE R	Е А С Т	I O N		
COMPONENT	MAXIMUM	REACTION	SRSS	NRL SUM				
	MODE							
1	8	0.000000E+00	0.000000E+00	0.000000E	+00			
2	1	0.000000E+00	0.000000E+00	0.000000E	+00			
3	2	2.509431E+00	2.488521E+00	4.99/952E	+00			
4	0	1 921502E+01	0.000000E+00 5.077261E+00	0.000000E	+00			
6	2	0.0000000000000000000000000000000000000	0.000000E+00	2.339230E	+00			
0	1	0.00000100	0.00000100	0.000000	100			
VERTICAL (Z)	DIRECTED SHOC	K			SUBCASE	3		
			PEAK MO	DAL R	ESPO	NSE		
MODE	DISPLACEMENT	VELOCITY	ACCELERAT	FION				
NUMBER								
1	0.00000E+00	0.00000E+0	0.00000E	E+00				
2	3.580498E-05	7.109844E-0	2 1.411812E	E+02				
3	U.000000E+00	U.U00000E+0	U U.000000E	2+00				
4	U.UUUUUUUE+00	U.UU00000E+0	U U.000000E	5+00 - 00				
5	1.5/9561E-06	1.94U/45E-0	2 2.384517E	5+02				
6	0.0000000000000000000000000000000000000	0.000000E+0	0.000000E	5+00				
/ Q	0.0000008+00	0.0000008+0		5+00 2+00				
9	0 0000002+00	0.000000E+0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2+00				
10	1 208442E-07	4 105872E-0	3 1 3950351	2+02				
± V		1.1000125-0						

Listing 6-6c. Vector Results Output for the DDAM Analysis of a 3-D Cantilever Beam.

VERTICAL (Z)	DIRECTED SHO	OCK		SUBCASE 3				
DISPLACEMENT VECTOR								
GRID	COORDINATE	Tl	T2	ΤЗ	Rl	R2	R3	
ID	ID							
2	0	0.00000E+00	0.000000E+00	6.518836E-05	0.000000E+00	1.254091E-04	0.00000E+00	
3	0	0.000000E+00	0.000000E+00	2.410175E-04	0.000000E+00	2.214736E-04	0.00000E+00	
4	0	0 0000000000000000000000000000000000000	0 0000000000000	4 988605E=04	0 000000000000	2 9005968-04	0 000000E+00	
-	0	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0 106076E 04	0.0000000000000000000000000000000000000	2.2402170 04	0.0000000000000000000000000000000000000	
5	0	0.0000000000000000000000000000000000000	0.000000E+00	0.1200/0E-04	0.000000E+00	3.349217E-04	0.000000E+00	
0	0	0.00000E+00	0.00000E+00	1.160542E-03	0.00000E+00	3./21221E-04	0.000000E+00	
7	0	0.000000E+00	0.000000E+00	1.525512E-03	0.000000E+00	4.227767E-04	0.000000E+00	
8	0	0.000000E+00	0.000000E+00	1.896187E-03	0.000000E+00	4.614182E-04	0.000000E+00	
9	0	0.000000E+00	0.000000E+00	2.280511E-03	0.000000E+00	4.857448E-04	0.000000E+00	
10	0	0.000000E+00	0.000000E+00	2.771175E-03	0.000000E+00	4.969525E-04	0.000000E+00	
11	0	0.00000E+00	0.00000E+00	3.269731E-03	0.00000E+00	4.996089E-04	0.00000E+00	
MAXIMUM DISPLACEMENT MAGNITUDE = 3.269731E-03 AT GRID 11 MAXIMUM ROTATION MAGNITUDE = 4.996089E-04 AT GRID 11								
VERIICAL (2)	DIRECIED SHO	UCK .			SUBCASE S			
			VE	LOCITY	VECTOR			
GRID ID	COORDINATE ID	Τ1	Τ2	ΤЗ	R1	R2	R3	
2	0	0 000000E+00	3 196421E-15	2 774292E-01	0 000000E+00	5 118434E-01	5 223227E-15	
3	0	0.0000000000000000000000000000000000000	8 550874E=15	9 414644F=01	0 0000000000000000000000000000000000000	7 810605E=01	5 92902/E 15	
3	0	0.0000000000000000000000000000000000000	0.JJU074E-IJ	1 7(7075R-01	0.000000E+00	7.01000JE-01	J.929024E-1J	
4	0	0.0000000000000000000000000000000000000	1.2040/08-14	1.7070736+00	0.0000000000000000000000000000000000000	0.039333E-01	7.107284E=15	
5	0	0.000000E+00	1.801354E-14	2.592429E+00	0.000000E+00	8.579103E-01	4.465469E-15	
6	0	0.00000E+00	1.985898E-14	3.316326E+00	0.00000E+00	9.284067E-01	0.00000E+00	
7	0	0.000000E+00	1.675528E-14	3.886363E+00	0.000000E+00	1.143220E+00	5.340543E-15	
8	0	0.00000E+00	1.175145E-14	4.280451E+00	0.000000E+00	1.383732E+00	8.401322E-15	
9	0	0.00000E+00	4.195788E-15	4.687265E+00	0.000000E+00	1.581798E+00	1.004263E-14	
10	0	0.000000E+00	8.213237E-15	6.214531E+00	0.000000E+00	1.693281E+00	1.409348E-14	
11	0	0.000000E+00	2.308426E-14	7.913390E+00	0.000000E+00	1.723525E+00	1.560215E-14	
AXIMUM VELOC AXIMUM ANGUL VERTICAL (Z)	ITY MAGNITUDE AR VELOCITY M DIRECTED SHO	= 7. MAGNITUDE = 1.	913390E+00 AT 723525E+00 AT	GRID 11 GRID 11	SUBCASE 3			
			ACCE	LERATIO	Ν ΥΕСΤΟ	R		
GRID TD	COORDINATE	Τ1	Τ2	ТЗ	R1	R2	R3	
2		0 00000000+00	1 9886828-11	3 4973118+03	0 00000000+00	6 0249828+03	2 646874E-11	
2	0	0 0000000000000000000000000000000000000	3 3812708-11	1 026/200+04	0 0000000000000000000000000000000000000	6 842800ETU2	1 0563/60-11	
C A	U	0.0000000000000000000000000000000000000	3.3012/UE=11	1 50451777.04	0.000000ETUU	0.042009ETU3	1.5JUJ40E=11	
4	U	0.000000E+00	3.301914E-11	1.58451/E+04	0.0000000000000000000000000000000000000	5.25884/E+03	4.442UU6E-11	
5	U	0.000000E+00	5.428613E-11	1.84165/E+04	0.000000E+00	6.369994E+03	3.994589E-11	
6	0	U.000000E+00	6.318238E-11	1.903135E+04	U.000000E+00	8.077564E+03	1.683356E-11	
7	0	0.00000E+00	4.259609E-11	1.916863E+04	0.00000E+00	7.821655E+03	3.021701E-11	
8	0	0.00000E+00	3.412415E-11	1.776743E+04	0.00000E+00	8.491689E+03	3.380699E-11	
9	0	0.000000E+00	2.659331E-11	1.428505E+04	0.000000E+00	1.193285E+04	2.585953E-11	
10	0	0.000000E+00	1.886599E-11	2.124213E+04	0.000000E+00	1.478642E+04	5.805221E-11	
11	0	0.000000E+00	8.121098E-11	3.565282E+04	0.000000E+00	1.567313E+04	7.688031E-11	
MAXIMUM ACCELERATION MAGNITUDE = 3.565282E+04 AT GRID 11 MAXIMUM ANGULAR ACCELERATION MAGNITUDE = 1.567313E+04 AT GRID 11								

Listing 6-6d. Element Results Output for the DDAM Analysis of a 3-D Cantilever Beam.

DDAM ANALYSIS OF A 3-D CANTILEVER BEAM									
VERTICAL (Z) DIRECTED SHOCK					SUBCASE 3				
			STRESSE	S I N BA	R E L E M E	NTS			
ELEMENT ID	DISTANCE	SX-C	SX-D	SX-E	SX-F	AXIAL	SX-MAX	SX-MIN	
1	0.0000	7.016311E+02	7.016311E+02	7.016311E+02	7.016311E+02	0.000000E+00	7.016311E+02	7.016311E+02	
	0.0000	5.528090E+02	5.528090E+02	5.528090E+02	5.528090E+02	0.000000E+00	5.528090E+02	5.528090E+02	
2	0.0000	5.527326E+02	5.527326E+02	5.527326E+02	5.527326E+02	0.000000E+00	5.527326E+02	5.527326E+02	
	0.0000	4.158424E+02	4.158424E+02	4.158424E+02	4.158424E+02	0.000000E+00	4.158424E+02	4.158424E+02	
3	0.0000	4.158269E+02	4.158269E+02	4.158269E+02	4.158269E+02	0.000000E+00	4.158269E+02	4.158269E+02	
	0.0000	3.776503E+02	3.776503E+02	3.776503E+02	3.776503E+02	0.000000E+00	3.776503E+02	3.776503E+02	
4	0.0000	3.776992E+02	3.776992E+02	3.776992E+02	3.776992E+02	0.000000E+00	3.776992E+02	3.776992E+02	
	0.0000	3.446546E+02	3.446546E+02	3.446546E+02	3.446546E+02	0.000000E+00	3.446546E+02	3.446546E+02	
5	0.0000	3.446550E+02	3.446550E+02	3.446550E+02	3.446550E+02	0.000000E+00	3.446550E+02	3.446550E+02	
	0.0000	2.958716E+02	2.958716E+02	2.958716E+02	2.958716E+02	0.000000E+00	2.958716E+02	2.958716E+02	
6	0.0000	2.958301E+02	2.958301E+02	2.958301E+02	2.958301E+02	0.000000E+00	2.958301E+02	2.958301E+02	
	0.0000	2.332558E+02	2.332558E+02	2.332558E+02	2.332558E+02	0.000000E+00	2.332558E+02	2.332558E+02	
7	0.0000	2.331687E+02	2.331687E+02	2.331687E+02	2.331687E+02	0.000000E+00	2.331687E+02	2.331687E+02	
	0.0000	1.616366E+02	1.616366E+02	1.616366E+02	1.616366E+02	0.000000E+00	1.616366E+02	1.616366E+02	
8	0.0000	1.614848E+02	1.614848E+02	1.614848E+02	1.614848E+02	0.000000E+00	1.614848E+02	1.614848E+02	
	0.0000	8.967301E+01	8.967301E+01	8.967301E+01	8.967301E+01	0.000000E+00	8.967301E+01	8.967301E+01	
9	0.0000	8.943972E+01	8.943972E+01	8.943972E+01	8.943972E+01	0.000000E+00	8.943972E+01	8.943972E+01	
	0.0000	2.928275E+01	2.928275E+01	2.928275E+01	2.928275E+01	0.000000E+00	2.928275E+01	2.928275E+01	
10	0.0000	2.897641E+01	2.897641E+01	2.897641E+01	2.897641E+01	0.000000E+00	2.897641E+01	2.897641E+01	
	0.0000	1.797935E-01	1.797935E-01	1.797935E-01	1.797935E-01	0.000000E+00	1.797935E-01	1.797935E-01	
MAXIMUM BAR ELEMENT TOTAL STRESS = 7.016311E+02 AT ELEMENT 1 MINIMUM BAR ELEMENT TOTAL STRESS = 2.897641E+01 AT ELEMENT 10									

7. FREQUENCY RESPONSE ANALYSIS

7.1 Introduction

Frequency response analysis solves for the steady state response (amplitudes and phase angles of displacements, velocities, accelerations, forces, stresses, and strains) of structures subjected to sinusoidal (harmonic) loading. Examples of oscillatory excitation include rotating machinery, unbalanced tires, and propeller blades. Unlike transient response where the excitation is explicitly defined in the time domain, in frequency response it is defined in the frequency domain. Applied loads are specified as a function of frequency.

Oscillatory loading is inherently sinusoidal. At a rudimentary level, this loading is defined as having amplitude at a specific frequency. The steady-state oscillatory response occurs at the same frequency as the loading. Damping results in a shift in time of the response. This shift in response is called a phase shift because the peak loading and response no longer occur at the same time. Figure 7-1 depicts this graphically.

Figure 7-1. Loading Versus Response in a Damped System.

There are two methods available for performing frequency response analysis: direct and modal. In the direct method, the structural response is computed at discrete excitation frequencies by solving a set of coupled matrix equations using complex algebra. The modal method uses the mode shapes of the structure to reduce and uncouple the equations of motion. The solution is then obtained through the summation of the individual modal responses. Generally the modal method is more efficient especially for larger models where a large number of solution frequencies are specified. The direct method may be more efficient for models where high-frequency excitation require the extraction of a large number of modes. The direct method may also be more accurate because there are no mode truncation effects.

Autodesk Inventor Nastran will also handle frequency response of structures under initial stress, for example the forced vibration of a cable in tension. For more information see Section 13, *Linear Prestress Frequency Response Analysis*.

7.1.1 Direct Frequency Response Analysis

In direct frequency response structural response is computed at discrete excitation frequencies by solving a set of coupled matrix equations using complex algebra. We begin with the damped forced vibration equation of motion with harmonic excitation

$$[M]\{\ddot{\mathbf{x}}(t)\} + [B]\{\dot{\mathbf{x}}(t)\} + [K]\{\mathbf{x}(t)\} = \{P(\omega)\}e^{i\omega t}$$

The load is introduced as a complex vector and can be real or imaginary or both. The same interpretation can be used for response quantities.

For harmonic motion (which is the basis of a frequency response analysis), assume a solution of the form:

$$\{x\} = \{u(\omega)\}e^{i\omega t}$$

where $\{u(\omega)\}$ is the complex displacement vector. Taking the first and second derivatives gives:

$$\{\dot{x}\} = i\omega\{u(\omega)\}e^{i\omega t}$$
$$\{\ddot{x}\} = -\omega^2\{u(\omega)\}e^{i\omega t}$$

Substituting into the equation of motion and dividing by $e^{i\omega t}$ we have:

$$-\left(\omega^{2}[M]+i\omega[B]+[K]\right)\left\{u(\omega)\right\}=\left\{P(\omega)\right\}$$

The equation is then solved for a given forcing frequency ω . This expression represents a system of equations with complex coefficients if damping is included or the applied loads have phase angles. The equations of motion at each solution frequency are then solved in a manner similar to a statics problem using complex arithmetic.

The damping matrix [B] is used to represent energy dissipation characteristics of the structure. Damping in direct frequency response is represented by the damping matrix [B] and additions to the stiffness matrix [K]. The damping matrix is given by:

$$[B] = [B_1] + [B_2] + \alpha[K] + \beta[M]$$

where,

- [B₁] damping from damping elements (CVISC, CDAMPi) and B2GG DMIG
- [B₂] damping from B2PP DMIG
- [K] global stiffness matrix
- [M] global mass matrix
- α Rayleigh damping stiffness matrix scale factor
- β Rayleigh damping mass matrix scale factor

In frequency response, PARAM, G and GE on the MATi entry do not form a damping matrix. Instead they form the complex stiffness matrix:

$$[\mathbf{K}] = (1 + i\mathbf{G})[\mathbf{K}] + i\sum \mathbf{G}_{ELEM}\mathbf{K}_{ELEM}$$

where,

[K] global stiffness matrix
 [K_{ELEM}] element stiffness matrix
 G overall structural damping coefficient (PARAM, G)
 G_{FI FM} element structural damping coefficient (GE on the MATi entry)

When the above parameters and/or coefficients are specified, they are automatically incorporated into the stiffness matrix and therefore into the equation of motion for the solution. In frequency response analysis it is not necessary to assume an equivalent viscous form for structural damping since the solution is complex.

7.1.2 Modal Frequency Response Analysis

Modal frequency response is an alternative method for computing the frequency response of a structure. The modal method uses the mode shapes of the structure to reduce and uncouple the equations of motion. The solution is then obtained through the summation of the individual modal responses.

The general equation of equilibrium for a finite element system in motion is:

$$[M]{\ddot{\mathbf{x}}(t)}+[B]{\dot{\mathbf{x}}(t)}+[K]{\mathbf{x}(t)}={P(\omega)}e^{i\omega t}$$

where,

- [K] is the global stiffness matrix
- [M] is the global mass matrix
- [*B*] is the global damping matrix
- $\{P\}$ is the global load vector
- $\{\ddot{x}\}$ is the global acceleration vector
- $\{\dot{x}\}$ is the global velocity vector
- $\{x\}$ is the global displacement vector

For harmonic motion assume a solution of the form:

$$\{x\} = \{u(\omega)\}e^{i\omega t}$$

Next, the variables are transformed from physical coordinates $\{u\}$ to modal coordinates $\{\xi\}$ by assuming

$$\{x\} = [\phi] \{\xi(\omega)\} e^{i\omega t}$$

The mode shapes $\{\phi\}$ are used to transform the problem in terms of the behavior of the modes as opposed to the behavior of the grid points.

$$-\omega^{2}[\phi]^{T}[M][\phi]\{\xi(\omega)\}+i\omega[\phi]^{T}[B][\phi]\{\xi(\omega)\}+[\phi]^{T}[K][\phi]\{\xi(\omega)\}=[\phi]^{T}\{P(\omega)\}$$

where,

 $[\phi]^T[M][\phi]$ is the modal or generalized mass matrix $[\phi]^T[B][\phi]$ is the modal or generalized stiffness matrix $[\phi]^T[K][\phi]$ is the modal damping matrix $[\phi]^T[P]$ is the modal force vector

Using the orthogonality property of the mode shapes we can formulate the equations of motion in terms of the diagonal generalized mass, stiffness, and damping (modal damping). Since these matrices do not have off-diagonal terms that couple the equations of motion, the modal equations of motion are uncoupled. The equations of motion can then be written as:

$$-\omega^2 m_i \xi_i(\omega) + i\omega b_i \xi_i(\omega) + k_i \xi_i(\omega) = p_i(\omega)$$

where,

- m_i = i-th modal mass
- b_i = i-th modal damping
- k_i = i-th modal stiffness

 p_i = i-th modal force

 ξ_i = i-th modal degree of freedom

Then, each of the modal responses can be calculated using:

$$\xi_i(\omega) = \frac{p_i(\omega)}{-m_i\omega^2 + ib_i\omega + k_i}$$

The physical responses are then recovered from the summation of the individual modal responses using

$$\{x\} = [\phi] \{\xi(\omega)\} e^{i\omega t}$$

These responses are in complex form (magnitude/phase or real/imaginary) and are used to recover additional results quantities as requested in the Case Control Section.

7.2 How to Setup a Model Input File for Frequency Response Analysis

7.2.1 Direct Frequency Response

In Autodesk Inventor Nastran you can perform direct frequency response analysis by setting SOLUTION = DIRECT FREQUENCY RESPONSE in the Model Initialization File or by specifying SOL 108 or SOL DIRECT FREQUENCY RESPONSE above the Case Control Section in the Model Input File. Multiple subcases can be specified, each requesting a different constraint, load, or output set.

7.2.2 Modal Frequency Response

In Autodesk Inventor Nastran you can perform modal frequency response analysis by setting SOLUTION = MODAL FREQUENCY RESPONSE in the Model Initialization File or by specifying SOL 111 or SOL MODAL FREQUENCY RESPONSE above the Case Control Section in the Model Input File. Multiple subcases can be specified, each requesting a different load or output set. Only one reference to an EIGRL Bulk Data entry (METHOD Case Control command) is permitted. This request should be placed above the first subcase.

7.2.3 Frequency-Dependent Load Definition

Setting up a frequency response analysis can be challenging due to flexibility permitted in defining the excitation loading. The following Bulk Data entries are used to define the dynamic loading:

RLOAD1	Tabular input – real and imaginary
RLOAD2	Tabular input – magnitude and phase
DAREA	Spatial distribution of dynamic load
TABLEDi	Tabular values versus time
LSEQ	Generates the spatial distribution of dynamic loads from static load entries
DLOAD	Combines dynamic load sets
DELAY	Time delay
DPHASE	Phase lead

See Nastran Solver Reference Guide, Section 4, Bulk Data, for more information on each entry.

Dynamic load definition can be divided into two parts, one being the location and the other being the frequency variation of the loading. Spatial distribution is the characteristic which defines the location of the loading. Temporal distribution is the characteristic which defines the frequency variation. The complete dynamic load definition consists of the product of spatial and temporal distributions. This method of defining dynamic loading allows you to combine simple loadings to create complicated loading distributions that vary in position as well as frequency. Figure 7-2 describes pictorially the relationships between static and dynamic load Case Control commands and Bulk Data entries.

Figure 7-2a. Relationship of Dynamic and Static Loads –with LOADSET and LSEQ Reference.

7.2.4 Solution Frequencies

Just as the selection of the integration time step is important in transient response analysis, the selection of solution frequencies in frequency response analysis is a major consideration. Unlike the integration time step however, an independent solution is performed at each specified excitation frequency. Still, it is important that the solution frequency step size (Δt) is fine enough to adequately predict peak response. Use at least five points across the half-power bandwidth as shown in Figure 7-3. Note that the half-power bandwidth is approximately $2\zeta f_i$ for a single degree of freedom system.

Figure 7-3. Half-Power Point and Bandwidth.

The FREQ, FREQ1, FREQ2, FREQ3, and FREQ4 Bulk Data entries are used to specify the solution frequencies. The FREQ1 entries are selected by the FREQUENCY Case Control command. The FREQ, FREQ1, and FREQ2 Bulk Data entries define solution frequencies by either specifying them in a discrete list or generating them using parameters. The FREQ3 and FREQ4 Bulk Data entries define frequencies around the modal frequencies where the largest response usually occurs. Any combination of FREQ, FREQ1, FREQ2, FREQ3, and FREQ4 Bulk Data entries with the same set identification number are used to generate the solution frequencies. The DFREQ parameter specifies the threshold for the elimination of duplicate frequencies.

For maximum efficiency an uneven frequency step is recommended with a more narrow frequency step near resonant frequencies and a wider step away from resonant frequencies.

7.2.5 Dynamic Data Recovery

A frequency response analysis can produce very large amounts of output data since there are usually a large number of solution frequencies involved for a given solution. There are several options available for recovering and storing this data. For data recovery, results can be calculated using one of two methods: mode displacement method and matrix method.

The mode displacement method calculates element results from the global displacement vector in physical coordinates for every solution frequency. The number of operations is proportional to the number of frequencies requested.

The matrix method calculates element results from the global displacement vector produced for each mode shape during eigenvalue extraction. Then the results for each solution frequency are computed as the sum of the modal responses. The number of operations is proportional to the number of modes used.

Since the number of modes is typically much less than the number of time steps, the matrix method is usually more efficient. The DYNRSLTMETHOD Model Initialization directive controls these operations. The default for this directive is AUTO, which allows the program to choose which method is most efficient based on the number of modes versus time steps. See the *Nastran Solver Reference Guide*, Section 2, *Initialization,* for more information.

For storing and importing results into a post-processor, for example FEMAP[®], it is recommended that the Model Initialization directive RSLTFILETYPE be set to FEMAPBINARY. This will produce a single, binary results neutral file which will contain all results data for each solution frequency.

7.3 Interpreting Results

In this section we will present two examples demonstrating the features and capabilities of frequency response analysis. For both examples we will use the cantilever beam shown in Figure 7-4 with a MODAL FREQUENCY RESPONSE solution. For the first problem, it is desired to find the response of the beam to a frequency dependent point load applied at the beam mid-span and free end in the y-direction. The mid-span load has a 45-degree phase lead and end load is scaled to be twice that of the mid-span magnitude. The loads vary with frequency as shown in Figure 7-5. The response is computed over a frequency range from 0 to 100 Hz. Modal damping is used with 5% critical damping across all modes. The eigenvalue extraction is run over a range from 0 to 1000 Hz. The beam supports a nonstructural mass per unit length of 2 pounds per inch. Listing 7-1 contains the Model Input File.

Figure 7-4. 2-D Cantilever Beam Example Problem.

Listing 7-1. Model Input File for the 2-D Cantilever Beam Problem with a Frequency-Dependent Point Load at the Free End and Mid-Span.

```
$ FREQUENCY RESPONSE SOLUTION - FORCED RESPONSE.
Ś
SOL MODAL FREQUENCY RESPONSE
Ś
SET 1 = 6, 11
DISPLACEMENTS (PHASE) = 1
Ś
TITLE = INSTALLATION TEST CASE
SUBTITLE = FORCED DYNAMIC RESPONSE
Ś
SPC = 1
SDAMPING = 20
FREQUENCY = 25
LOADSET = 10
METHOD = 1
Ś
SUBCASE 1
LABEL = MID-SPAN AND END LOADS IN Y-DIRECTION
DLOAD = 1
Ś
BEGIN BULK
Ś
$ CONVERSION FACTOR FOR WEIGHT DENSITY TO MASS DENSITY
$ MASS = (1/g) *WEIGHT, G=32.2FT/SEC2, WTMASS = 1/(32.2*12) = 0.002588
Ś
PARAM, WTMASS, 0.002588
Ś
$ REQUEST COUPLED MASS MATRIX FORMULATION.
$
PARAM, COUPMASS, ON
Ś
$ DEFINE EIGENVALUE EXTRACTION PARAMETERS (0 TO 1000 Hz).
EIGRL, 1, 0., 1000.
Ś
$ DEFINE SOLUTION FREQUENCIES (O TO 100 Hz).
Ś
FREQ1, 25, 0., 1., 100
FREQ3, 25, 1., 100., , 20, 1.0
$ DEFINE LOADING.
$
DLOAD, 1, 1., 1., 6, 2., 11
Ś
$ DEFINE FREQUENCY-DEPENDENT HARMONIC LOADING.
Ś

      TABLED1, 20,

      , 0., 0., 100., 1., ENDT

      RLOAD2, 6, 100, , 45, 20

      RLOAD2, 11, 200, , , 20

Ś
$ 45 DEGREE PHASE LEAD.
Ś
DPHASE, 45, 6, 2, 45.
```

Listing 7-1. Model Input File for the 2-D Cantilever Beam Problem with a Frequency-Dependent Point Load at the Free End and Mid-Span. (Continued)

```
$ 10 LB POINT LOAD IN Y-DIRECTION AT MID-SPAN.
Ś
FORCE, 1, 6, 0, 10., 0., 1., 0.
LSEQ, 10, 100, 1
$ 10 LB POINT LOAD IN Y-DIRECTION AT FREE END.
Ś
FORCE, 2, 11, 0, 10., 0., 1., 0.
LSEQ, 10, 200, 2
Ś
$ 5% CRITICAL DAMPING.
Ś
TABDMP1, 20, CRIT,
, 0., 0.05, 1000., 0.05, ENDT
Ś
$ GEOMETRY DEFINITION (10" BEAM DIVIDED INTO 10 ELEMENTS).
Ś

      GRID,
      1,
      0,
      0.,
      0.,
      0

      GRID,
      2,
      0,
      1.,
      0.,
      0

      GRID,
      3,
      0,
      2.,
      0.,
      0

      GRID,
      3,
      0,
      2.,
      0.,
      0

GRID, 4, 0,
                               3., 0., 0., 0

      GRID, 5, 0, 4., 0., 0., 0

      GRID, 6, 0, 5., 0., 0., 0

      GRID, 7, 0, 6., 0., 0., 0

      GRID, 8, 0

        GRID,
        8,
        0,
        7.,
        0.,
        0.
        0

        GRID,
        9,
        0,
        8.,
        0.,
        0.,
        0

        GRID,
        10,
        0,
        9.,
        0.,
        0.,
        0

GRID, 11, 0, 10., 0., 0.,
                                                                 0
Ś
$ BEAM MODELED WITH BAR ELEMENTS.
Ś

      CBAR,
      1,
      10,
      1,
      2,
      0.,
      1.,
      0.

      CBAR,
      2,
      10,
      2,
      3,
      0.,
      1.,
      0.

      CBAR,
      3,
      10,
      3,
      4,
      0.,
      1.,
      0.

      CBAR,
      3,
      10,
      3,
      4,
      0.,
      1.,
      0.

      CBAR,
      4,
      10,
      4,
      5,
      0.,
      1.,
      0.

      CBAR,
      5,
      10,
      5,
      6,
      0.1
      1.,
      0.

CBAR, 5, 10, 5, 6, 0., 1., 0.
CBAR, 6, 10, 6, 7, 0., 1., 0.
CBAR, 7, 10, 7, 8, 0., 1., 0.

      CBAR, 8, 10, 8, 9, 0., 1., 0.

      CBAR, 9, 10, 9, 10, 0., 1., 0.

      CBAR, 10, 10, 10, 11, 0., 1., 0.

Ś
$ ELEMENT MATERIAL AND SECTION PROPERTIES (1.0" X 0.2" CROSS-SECTION)
$ WITH 2 LB/IN. NONSTRUCTURAL MASS PER UNIT LENGTH.
Ś
PBAR, 10, 100, 0.2, 6.667E-4, 1.667E-2, 2.328E-3, 2.,
, -0.1, 0.5, 0.1, 0.5, -0.1, -0.5, 0.1, -0.5
Ś
$ ELEMENT MATERIAL PROPERTIES (ALUMINUM).
Ś
MAT1, 100, 1.E+7, , 0.33, 0.1
Ś
$ FIXED AT ONE END, MOVEMENT CONSTRAINED TO X-Y PLANE ONLY.
Ś
SPC1, 1, 123456, 1
SPC1, 1,
                       345, 1, THRU, 11
ENDDATA
```

The spatial definition of the dynamic load vector is defined using a static point load (FORCE) applied in the y-direction at the free end and mid-span of the beam. This load is then referenced by a load sequence entry (LSEQ), which references an area factor (DAREA) that serves as the reference link between static and dynamic load definitions. The frequency-dependent dynamic load (RLOAD2) then references the area factor defined by the LSEQ entry for spatial definition (area) and a TABLED1 for temporal definition (frequency). The DLOAD Bulk Data entry is used to combine and scale dynamic loads defined using the RLOAD1 Bulk Data entries. The DLOAD and LSEQ Bulk Data entries are called out in the Case Control Section using the DLOAD and LOADSET Case Control commands, respectively. The resulting frequency dependent loads are shown graphically in Figure 7-5. Note that a DLOAD Case Control command can directly call out an RLOAD1 Bulk Data entry, which is not shown in this example.

Figure 7-5. Frequency Dependent Loads from the TABLED1 Entry (top) and Resulting Applied Loads at Beam End (middle) and Mid-Span (bottom).

The RLOAD2 entry describes a sinusoidal load in the form:

$$P(f) = AB(f)e^{i[\phi(f) + \theta - 2\pi f\tau]}$$

For the example shown in Listing 7-1,

A = 10.0 and comes from the DAREA reference link

B = the function defined on the TABLED1 entry

 ϕ = 0.0 (field 7 on the RLOAD2 entry is blank)

 θ = phase lead of 45 degrees for the point load at grid 6 (entered on the DPHASE entry).

 $\tau = 0.0$ (field 4 on the RLOAD2 entry is blank)

The FREQ1 and FREQ3 Bulk Data entries are used to generate the solution frequencies. They are called out in the Case Control Section using the FREQUENCY command. In this example the FREQ1 entry generates frequencies from 0 to 100 Hz with 1 Hz increments. The FREQ3 entry generates 20 frequencies around each mode between 1 Hz and 100 Hz.

Listing 7-2 gives the extracted resonant frequencies for the beam (0 - 1000 Hz). Figure 7-6 shows the response at the beam free end (grid point 11) and mid-span (grid point 6) plotted logarithmically. As expected, there is a sharp increase in response near the resonant frequencies (6.3 Hz and 40.0 Hz).

Listing 7-2. Extracted Eigenvalues for the 2-D Cantilever Beam.

D-SPAN AND	END LOADS IN Y-DI	RECTION		SUBCASE 1			
			REAL EI	GENVALUE	S		
MODE NUMBER	EIGENVALUE	RADIANS	CYCLES	GENERALIZED MASS	GENERALIZED STIFFNESS	ORTHOGONALITY LOSS	ERROR MEASURE
1	1.574308E+03	3.967755E+01	6.314878E+00	1.000000E+00	1.574308E+03	0.00000E+00	4.257921E-16
2	6.325622E+04	2.515079E+02	4.002872E+01	1.000000E+00	6.325622E+04	5.506859E-15	3.757854E-16
3	5.220050E+05	7.224991E+02	1.149893E+02	1.000000E+00	5.220050E+05	3.107161E-15	2.388164E-16
4	2.172016E+06	1.473776E+03	2.345588E+02	1.000000E+00	2.172016E+06	8.681207E-16	2.093397E-16
5	6.580798E+06	2.565307E+03	4.082812E+02	1.000000E+00	6.580798E+06	7.743372E-16	2.790956E-15
6	9.459037E+06	3.075555E+03	4.894897E+02	1.000000E+00	9.459037E+06	1.935053E-21	9.627963E-09
7	1.651153E+07	4.063438E+03	6.467162E+02	1.000000E+00	1.651153E+07	1.461980E-19	7.108161E-14
8	3.612442E+07	6.010359E+03	9.565784E+02	1.000000E+00	3.612442E+07	4.060473E-16	1 285729E-12

Figure 7-6. Tip and Mid-Span Displacement of the 2-D Cantilever Beam with a Frequency-Dependent Point Load at the Free End and Mid-Span.

7.4 Enforced Motion

Enforced motion specifies the displacement, velocity, and/or acceleration at a set of grid points in frequency response analysis. Enforced motion is used when base excitation is desired and can be combined with externally applied dynamic loading. A good example would be a building subjected to base motion due to an earthquake. In this case, instead of applied loads, the base is subjected to an enforced displacement or acceleration time history.

Autodesk Inventor Nastran uses the large mass method to convert applied forces to enforced motion. The idea is that if a very large mass m_0 is connected to a degree of freedom and a dynamic load p is applied to that same degree of freedom, then the acceleration of the degree of freedom is closely approximated by:

$$\ddot{u}=\frac{1}{M_0}p$$

Which can be re-written in terms of the load that produces the desired acceleration as:

The accuracy of this approximation improves as m_0 becomes larger in comparison to the mass of the structure. A good rule-of-thumb value for m_0 is approximately 10^6 times the mass of the entire structure for an enforced translational degree of freedom and 10^6 times the mass moment of inertia for a rotational degree of freedom.

The following are the basic steps involved in the large mass method:

- 1. Remove any constraints from the enforced degrees of freedom.
- 2. Apply large masses m_0 with the CMASSi or CONMi Bulk Data entries to the degrees of freedom where the motion is enforced. The magnitude for m_0 should be approximately 10^6 times the mass of the entire structure for an enforced translational degree of freedom and 10^6 times the mass moment of inertia for a rotational degree of freedom.
- 3. Use the TABLED4 Bulk Data entry to apply scale factors for enforced velocity and displacement.

The TABLED4 entry uses the algorithm

$$y = \sum_{i=0}^{N} \operatorname{Ai} \left(\frac{x - X1}{X2} \right)^{i}$$

where x is input to the table, y is returned. Whenever x < X3, then X3 is used for x and whenever x > X4, X4 is used for x. There are N + 1 entries in the table.

For constant acceleration, the force is proportional to the mass for all frequencies. The power series becomes

$$A0 + A1\left(\frac{x - X1}{X2}\right)$$

User's Manual

where,

A0 = 1.0X1 = 0.0X2 = 1.0

The above terms define a constant (1.0) in this case.

Constant velocity involves a scale factor that is directly proportional to the circular frequency $(2\pi f)$. The power series becomes

$$A0 + A1 \left(\frac{x - X1}{X2}\right)$$

where,

A0 = 0.0 $A1 = 2\pi = 6.283185$ X1 = 0.0X2 = 1.0

Note that a phase change of 90 degrees is also required. This change is input using the TD field (field 7) on the RLOAD1 entry.

Constant displacement involves a scale factor that is directly proportional to the circular frequency squared $(2\pi f)^2$ with a sign change. The power series becomes

$$A0 + A1\left(\frac{x - X1}{X2}\right) + A2\left(\frac{x - X1}{X2}\right)^2$$

where,

A0 = 0.0 A1 = 0.0 A2 = $-(2\pi)^2 = -39.4784$ X1 = 0.0 X2 = 1.0

The following example demonstrates the large mass method for enforced motion. Again, we will use the cantilever beam shown in Figure 7-4 except for the removal of the y-direction constraint at the fixed end. Listing 7-3 contains the Model Input File and Figure 7-7 the response of the beam free end.

Listing 7-3. Model Input File for the 2-D Cantilever Beam Problem with Enforced Displacement.

```
$ FREQUENCY RESPONSE SOLUTION - ENFORCED DISPLACEMENT
Ś
SOL MODAL FREQUENCY RESPONSE
Ś
DISPLACEMENTS (PHASE) = ALL
Ś
TITLE = INSTALLATION TEST CASE
SUBTITLE = FORCED DYNAMIC RESPONSE - ENFORCED DISPLACEMENT
Ś
SPC = 1
SDAMPING = 20
FREQUENCY = 25
METHOD = 1
Ś
SUBCASE 1
 LABEL = ENFORCED DISPLACEMENT AT CONSTRAINED END
 DLOAD = 1
Ś
BEGIN BULK
Ś
$ CONVERSION FACTOR FOR WEIGHT DENSITY TO MASS DENSITY
$ MASS = (1/g) *WEIGHT, G=32.2FT/SEC2, WTMASS = 1/(32.2*12) = 0.002588
Ś
PARAM, WTMASS, 0.002588
Ś
$ REQUEST COUPLED MASS MATRIX FORMULATION.
Ś
PARAM, COUPMASS, ON
$
$ DEFINE EIGENVALUE EXTRACTION PARAMETERS (0 TO 1000 Hz).
Ś
EIGRL, 1, 0., 1000.
Ś
\ Define solution frequencies (o to 100 Hz).
Ś
FREQ1, 25, 0., 1., 100
FREQ3, 25, 1., 100., , 20, 1.0
Ś
$ DEFINE LOADING.
Ś
DLOAD, 1, 2.+5, 0.002588, 11
$
$ DEFINE FREQUENCY-DEPENDENT LOADING.
Ś
RLOAD1, 11, 100, , , 10
TABLED4, 10, 0., 1., 0., 100.,
, 0., 0., -39.4784, ENDT
DAREA, 100, 1, 2, 1.0
Ś
$ LARGE MASS OF (1xE6)*BAR MASS = (1xE6)*2.0
$
CONM2, 20, 1, , 2.+5
```

Listing 7-3. Model Input File for the 2-D Cantilever Beam Problem with Enforced Displacement. (Continued)

```
$ 5% CRITICAL DAMPING.
Ś
TABDMP1, 20, CRIT,
, 0., 0.05, 1000., 0.05, ENDT
Ś
$ GEOMETRY DEFINITION (10" BEAM DIVIDED INTO 10 ELEMENTS).
Ś

      GRID,
      1,
      0,
      0.,
      0.,
      0.,
      0

      GRID,
      2,
      0,
      1.,
      0.,
      0.,
      0

      GRID,
      3,
      0,
      2.,
      0.,
      0.,
      0

      GRID,
      3,
      0,
      2.,
      0.,
      0.,
      0

GRID, 4, 0,
GRID, 5, 0,
GRID, 6, 0,
                                  3., 0., 0., 0
4., 0., 0., 0
5., 0., 0., 0

      GRID,
      7,
      0,
      6.,
      0.,
      0.,
      0

      GRID,
      7,
      0,
      6.,
      0.,
      0.,
      0

      GRID,
      8,
      0,
      7.,
      0.,
      0.,
      0

      GRID,
      9,
      0,
      8.,
      0.,
      0.,
      0

      GRID,
      10,
      0,
      9.,
      0.,
      0.,
      0

GRID, 11, 0, 10., 0., 0.,
                                                                        0
$ BEAM MODELED WITH BAR ELEMENTS.
Ś

      T

      CBAR,
      1,
      10,
      1,
      2,
      0.,
      1.,
      0.

      CBAR,
      2,
      10,
      2,
      3,
      0.,
      1.,
      0.

      CBAR,
      3,
      10,
      3,
      4,
      0.,
      1.,
      0.

      CBAR,
      3,
      10,
      3,
      4,
      0.,
      1.,
      0.

      CBAR, 4, 10, 4, 5, 0., 1., 0.

      CBAR, 5, 10, 5, 6, 0., 1., 0.

      CBAR, 6, 10, 6, 7, 0., 1., 0.

                                      7, 8, 0., 1., 0.
CBAR, 7, 10,
CBAR, 8, 10, 8, 9, 0., 1., 0.
CBAR, 9, 10, 9, 10, 0., 1., 0.
CBAR, 10, 10, 10, 11, 0., 1., 0.
Ś
$ ELEMENT MATERIAL AND SECTION PROPERTIES (1.0" X 0.2" CROSS-SECTION)
$ WITH 2 LB/IN. NONSTRUCTURAL MASS PER UNIT LENGTH.
Ś
PBAR, 10, 100, 0.2, 6.667E-4, 1.667E-2, 2.328E-3, 2.,
, -0.1, 0.5, 0.1, 0.5, -0.1, -0.5, 0.1, -0.5
Ś
$ ELEMENT MATERIAL PROPERTIES (ALUMINUM).
Ś
MAT1, 100, 1.E+7, , 0.33, 0.1
Ś
$ FIXED AT ONE END EXCEPT IN Y-DIRECTION, MOVEMENT CONSTRAINED TO
$ X-Y PLANE ONLY.
Ś
SPC1, 1, 12456, 1
SPC1, 1, 345, 1, THRU, 11
ENDDATA
```


Figure 7-7. Tip Displacement of a 2-D Cantilever Beam Subjected to a 1.0 Inch Enforced Displacement at the Constrained End.

8. RANDOM RESPONSE ANALYSIS

8.1 Introduction

In Autodesk Inventor Nastran, random response analysis is performed as a data reduction procedure to the results of a frequency response analysis. The first step is a frequency response analysis with sinusoidal loading input, $\{P_a\}$, as a function of frequency ω_i . Multiple subcases may be defined for various input sources, but all must reference the same sequence of solution frequencies. Data reduction procedures are then applied to the frequency response results producing output quantities $u_{ja}(\omega_i)$, which correspond to an output *j* and subcase *a*. Random response results quantities include power spectral densities, root mean square, and autocorrelation functions.

Each loading condition subcase represents a unique random input source and may be applied to multiple grid points or elements. Usually, these loads are chosen to be unit loads with the probabilistic magnitude of each load source defined by spectral density functions on RANDPS Bulk Data entries. Correlated load subcases require additional RANDPS entries to define the coupling spectral density.

Figure 8-1 is a simplified flow diagram for the Random Response module. The inputs to the module are the frequency responses, $H_{ja}(\omega_i)$, of quantities u_i to loading conditions $\{P_a\}$ at frequencies, ω_i , and the

auto- and cross-spectral densities of the loading conditions S_a and S_{ab} . The response quantities, u_j , may be displacements, velocities, accelerations, internal forces, stresses, or strains. The power spectral densities (PSD) of the response quantities are calculated using different methods depending on whether the loading conditions are correlated or uncorrelated. The spectral densities due to all sources considered independent will be combined into one set of outputs.

The application of frequency response techniques to the analysis of random processes requires that the system be linear and that the excitation be stationary with respect to time. The theory includes a few important theorems that will be reviewed.

An important quantity in random analysis theory is the autocorrelation function $R_j(\tau)$, of a physical variable, u_i , which is defined by:

$$R_{j}(\tau) = \frac{\lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} u_{j}(t) u_{j}(t-\tau) dt$$

Note that $R_j(0)$ is the time average value of u_j^2 , which is an important quantity in the analysis of structural failure. The power spectral density, $S_j(\omega)$ of u_j is defined by:

$$S_{j}(\tau) = \frac{\lim_{T \to \infty} \frac{2}{T} \left| \int_{0}^{T} e^{-i\omega t} u_{j}(t) dt \right|^{2}$$

It may be shown (using the theory of Fourier integrals) that the autocorrelation function and the power spectral density are Fourier transforms of each other. Thus

$$R_j(\tau) = \frac{1}{2\pi} \int_0^\infty S_j(\omega) \cos(\omega t) \, d\omega$$

from which follows the mean-square theorem,

Autodesk Inventor Nastran Solver 2021

$$\overline{u}_j^2 = R_j(0) = \frac{1}{2\pi} \int_0^\infty S_j(\omega) d\omega$$

The transfer theorem states that if $H_{ja}(\omega)$ is the frequency response of any physical variable, u_j , due to an excitation source, $Q_a(\omega)$, which may be a point force, a loading condition, or some other form of excitation, i.e., if

$$u_i(\omega) = H_{ia}(\omega) Q_a(\omega)$$

where $u_j(\omega)$ and $Q_a(\omega)$ are the Fourier transforms of u_j and Q_a , then the power spectral density of the response $S_j(\omega)$, is related to the power spectral density of the source, $S_a(\omega)$, by:

$$S_j(\omega) = |H_{ja}(\omega)|^2 S_a(\omega)$$

The above equation is an important result because it allows the statistical properties (e.g., the autocorrelation function) of the response of the system to random excitation to be evaluated via the techniques of frequency response. Another useful result is that, if sources Q_1 , Q_2 , Q_3 , etc., are statistically independent, i.e., if the cross-correlation function between any pair of sources

$$R_{ab}(\tau) = \frac{\lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} Q_{a}(t) Q_{b}(t-\tau) d\tau}{1 + \frac{1}{T} \int_{0}^{T} Q_{a}(t) Q_{b}(t-\tau) d\tau}$$

is null, then the power spectral density of the total response is equal to the sum of the power spectral densities of the responses due to individual sources. Thus

$$S_{j}(\omega) = \sum_{a} S_{ja}(\omega) = \sum_{a} |H_{ja}(\omega)|^{2} S_{a}(\omega)$$

If the sources are statistically correlated, the degree of correlation can be expressed by cross-spectral density, S_{ab} , and the spectral density of the response may be evaluated from

$$S_j = \sum_{a} \sum_{b} H_{ja} H_{jb}^* S_{ab}$$

where H_{jb}^{*} is the complex conjugate of H_{jb} .

In applying the theory it is not necessary to consider the sources to be forces at individual points. An ensemble of applied forces that are completely correlated (i.e., a loading condition) may also be treated as a source. For example, a plane pressure wave in a specified direction may be treated as a source. Furthermore, the response may be any physical variable including internal forces and stresses as well as displacements, velocities, and accelerations.

8.2 How to Setup a Model Input File for Random Response Analysis

In Autodesk Inventor Nastran, random response analysis is performed as a data reduction procedure to the results of a frequency response solution (SOL MODAL FREQUENCY RESPONSE, SOL DIRECT FREQUENCY RESPONSE, SOL PRESTRESS FREQUENCY RESPONSE, and SOL NONLINEAR PRESTRESS FREQUENCY RESPONSE). Therefore, the first step in setting up a random response analysis is the same as for a frequency response analysis. The Random Response module is activated by the specification of the RANDOM Case Control command, which references one or more RANDPS Bulk Data entries that control the data reduction process depicted in Figure 8-1. Multiple loading condition subcases may be specified, but only one solution or excitation frequency sequence is allowed.

8.3 Interpreting Results

In this section we will present two examples demonstrating the features and capabilities of random response analysis. For both examples we will use the cantilever beam shown in Figure 8-2. For the first problem, it is desired to find the response of the beam to noise excitation displacement at the constrained end in the y-direction. The input PSD is in inch²/Hz and is plotted in Figure 8-3. The response is computed over a frequency range from 0 to 100 Hz. Modal damping is used with 10% critical damping across all modes. The eigenvalue extraction is run over a range from 0 to 1000 Hz. Listing 8-1 contains the Model Input File.

Figure 8-2. 2-D Cantilever Beam Example Problem.

Figure 8-3. Input Power Spectral Density.

Listing 8-1. Model Input File for the 2-D Cantilever Beam Problem with Enforced Motion and PSD Input.

```
$ RANDOM RESPONSE SOLUTION - UNCORRELATED SINGLE SOURCE
Ś
SOL MODAL FREQUENCY RESPONSE
Ś
DISPLACEMENT (PHASE, PSDF) = ALL
VELOCITY(PHASE, PSDF) = ALL
ACCELERATION (PHASE, PSDF) = ALL
FORCE(PHASE, PSDF) = ALL
Ś
TITLE = INSTALLATION TEST CASE
SUBTITLE = FORCED DYNAMIC RESPONSE
Ś
SPC = 1
SDAMPING = 20
FREOUENCY = 25
METHOD = 1
RANDOM = 200
Ś
SUBCASE 1
LABEL = ENFORCED DISPLACEMENT AT CONSTRAINED END
DLOAD = 1
Ś
BEGIN BULK
Ś
$ CONVERSION FACTOR FOR WEIGHT DENSITY TO MASS DENSITY
$ MASS = (1/g) *WEIGHT, G=32.2FT/SEC2, WTMASS = 1/(32.2*12) = 0.002588
Ś
PARAM, WTMASS, 0.002588
Ś
$ REQUEST COUPLED MASS MATRIX FORMULATION.
Ś
PARAM, COUPMASS, ON
Ś
$ DEFINE EIGENVALUE EXTRACTION PARAMETERS (0 TO 1000 Hz).
Ś
EIGRL, 1, 0., 1000.
Ś
$ DEFINE SOLUTION FREQUENCIES (O TO 100 Hz).
Ś
FREQ1, 25, 0., 1., 100
FREQ3, 25, 1., 100., , 20, 1.0
Ś
$ DEFINE LOADING.
Ś
DLOAD, 1, 2.+5, 0.002588, 11
Ś
$ DEFINE FREQUENCY-DEPENDENT LOADING.
Ś

      RLOAD1, 11, 100, , , 10

      TABLED4, 10, 0., 1., 0.,

      , 0., 0., -39.4784, ENDT

      DAREA, 100, 1, 2, 1.0

                                 100.,
$
$ LARGE MASS OF (1xE6)*BAR MASS = (1xE6)*2.0
Ś
CONM2, 20, 1, , 2.+5
Ś
$ DEFINE RANDOM ANALYSIS DATA.
Ś
RANDPS, 200, 1, 1, 1.-4, 0., 40
TABRND1, 40,
, 0., 0., 9.99, 0., 10., 1., 90., 1.,
, 90.01, 0., 100., 0., ENDT
```

Listing 8-1. Model Input File for the 2-D Cantilever Beam Problem with Enforced Motion and PSD Input. (Continued)

```
Ś
$ 10% CRITICAL DAMPING.
Ś
TABDMP1, 20, CRIT,
   0., 0.10, 1000., 0.10, ENDT
Ś
$ GEOMETRY DEFINITION (10" BEAM DIVIDED INTO 10 ELEMENTS).
Ś
GRID, 1, 0, 0., 0., 0.,
GRID, 2, 0, 1., 0., 0.,
GRID, 3, 0, 2., 0., 0.,
                                       0
                                      0
                                       0
                  3., 0., 0.,
4., 0., 0.,
5., 0., 0.,
GRID, 4, 0,
GRID, 5, 0,
GRID, 6, 0,
                                      0
                                       0
                                      0
GRID, 7, 0, 6., 0., 0., 0

      7.,
      0.,
      0.,
      0

      8.,
      0.,
      0.,
      0

      9.,
      0.,
      0.,
      0

GRID, 8, 0,
GRID, 9, 0,
GRID, 10, 0,
                                0.,
GRID, 11, 0, 10., 0.,
                                       0
$ BEAM MODELED WITH BAR ELEMENTS.
Ś
CBAR, 1, 10,
CBAR, 2, 10,
                    1, 2, 0., 1.,
2, 3, 0., 1.,
                                             0.
              10,
                                       1.,
                                              0.
CBAR, 3, 10, 3, 4, 0., 1.,
                                            0.
CBAR, 4, 10, 4, 5, 0., 1., 0.
CBAR, 5, 10, 5, 6, 0., 1., 0.
CBAR, 6, 10, 6, 7, 0., 1., 0.
CBAR, 7, 10,
                    7, 8, 0., 1.,
                                              0.
CBAR, 8, 10, 8,
CBAR, 9, 10, 9,
                           9, 0., 1.,
10, 0., 1.,
                                             0.
                     8, 9,
9, 10,
                                              0.
CBAR, 10, 10, 10, 11, 0., 1.,
                                              0.
Ś
$ ELEMENT MATERIAL AND SECTION PROPERTIES (1.0" X 0.2" CROSS-SECTION)
Ś
PBAR, 10, 100, 0.2, 6.667E-4, 1.667E-2, 2.328E-3,
   -0.1, 0.5, 0.1, 0.5, -0.1, -0.5, 0.1, -0.5
Ś
$ ELEMENT MATERIAL PROPERTIES (ALUMINUM).
Ś
MAT1, 100, 1.E+7, , 0.33, 0.1
$ FIXED AT ONE END EXCEPT IN Y-DIRECTION, MOVEMENT CONSTRAINED TO
$ X-Y PLANE ONLY.
Ś
SPC1, 1, 12456, 1
SPC1, 1, 345, 1, THRU, 11
ENDDATA
```

In Autodesk Inventor Nastran random response analysis is performed as a data reduction procedure that expands the results of a frequency response analysis. The input to the Random Response module are the output quantities from the frequency response analysis and the specified spectral data for the loading condition (Figure 8-3). Random response results include the results power spectral density functions, the autocorrelation functions, the number of positive crossings (NPX) of the line y(t) = 0, and the root mean square (RMS) value of the response. This output is requested using PSDF, ATOC, and RALL options on the result output request Case Control commands.

Figure 8-4 shows the PSD displacement of the beam free end (grid point 11). Table 8-1 gives the RMS values and Table 8-2 compares the number of positive crossings to the first mode frequency of the beam. The RMS value of the response is a measure of the dynamic magnitudes. The RMS value is calculated by taking the square root of the integral of the PSD from the lower frequency to the upper frequency. The number of positive crossings is a measure of the apparent frequency of the response. It is calculated by taking the square root of the second moment of the PSD divided by the RMS value.

Figure 8-4. PSD Tip Displacement of a 2-D Cantilever Beam.

Table 8-1. Response RMS Values of Beam Tip.

Displacement (inches)	Velocity (inches/sec)	Acceleration (inches/sec ²)		
0.33457	133.48	56,292		

Table 8-2. Number of Positive Zero Crossings.

1 st Mode Frequency	Tip Displacement
(Hz)	(Hz)
63.50	63.49

For the second problem, it is desired to find the response of the beam to both a noise excitation displacement at the constrained end and a noise excitation force at the mid-span. The input PSD for the mid-span load is in pound²/Hz and is plotted in Figure 8-5. The two loadings are correlated through a cross-spectral density, which is plotted in Figure 8-6. Listing 8-2 contains the Model Input File. Figure 8-7 shows the response at the beam free end. Table 8-3 gives the RMS values and Table 8-4 compares the number of positive crossings to the first mode frequency of the beam.

Figure 8-5. Secondary Loading Input Power Spectral Density.

Figure 8-6. Cross-Spectral Density.

Listing 8-2. Model Input File for the Random Response 2-D Cantilever Beam Problem with Combined Loading and PSD Input.

```
$ RANDOM RESPONSE SOLUTION - CORRELATED MULTIPLE SOURCE
Ś
SOL MODAL FREQUENCY RESPONSE
Ś
DISPLACEMENT (PHASE, PSDF) = ALL
VELOCITY(PHASE, PSDF) = ALL
ACCELERATION (PHASE, PSDF) = ALL
FORCE(PHASE, PSDF) = ALL
Ś
TITLE = INSTALLATION TEST CASE
SUBTITLE = FORCED DYNAMIC RESPONSE
Ś
SPC = 1
SDAMPING = 20
FREOUENCY = 25
METHOD = 1
RANDOM = 200
Ś
SUBCASE 1
LABEL = ENFORCED DISPLACEMENT AT CONSTRAINED END
 DLOAD = 1
SUBCASE 2
 LABEL = FORCING FUNCTION AT MID-SPAN
 DLOAD = 2
Ś
BEGIN BULK
Ś
$ CONVERSION FACTOR FOR WEIGHT DENSITY TO MASS DENSITY
$ MASS = (1/q) *WEIGHT, G=32.2FT/SEC2, WTMASS = 1/(32.2*12) = 0.002588
Ś
PARAM, WTMASS, 0.002588
Ś
$ REQUEST COUPLED MASS MATRIX FORMULATION.
Ś
PARAM, COUPMASS, ON
Ś
$ DEFINE EIGENVALUE EXTRACTION PARAMETERS (0 TO 1000 Hz).
Ś
EIGRL, 1, 0., 1000.
Ś
$ DEFINE SOLUTION FREQUENCIES (O TO 100 Hz).
Ś
FREQ1, 25, 0., 1., 100
FREQ3, 25, 1., 100., , 20, 1.0
$ DEFINE LOADING -ENFORCED DISPLACEMENT.
DLOAD, 1, 2.+5, 0.002588, 11
Ś
$ DEFINE FREQUENCY-DEPENDENT LOADING.
Ś

      RLOAD1, 11, 100, , , 10

      TABLED4, 10, 0., 1., 0., 100.,

      , 0., 0., -39.4784, ENDT

      DAREA, 100, 1, 2, 1.

Ś
$ LARGE MASS OF (1xE6)*BAR MASS = (1xE6)*2.0
Ś
CONM2, 20, 1, , 2.+5
```
Ś

Listing 8-2. Model Input File for the Random Response 2-D Cantilever Beam Problem with Combined Loading and PSD Input. (Continued)

```
$ DEFINE LOADING -FORCING FUNCTION.
Ś
DLOAD, 2, 1., 1., 22
Ś
$ DEFINE FREQUENCY-DEPENDENT LOADING.
Ś
RLOAD1, 22, 200, , , 20
TABLED1, 20,
, 0., 0., 100., 1., ENDT
DAREA, 200, 6, 2, 1.
Ś
$ DEFINE RANDOM ANALYSIS DATA.
Ś

      RANDPS, 200, 1, 1, 1.-4, 0., 40

      RANDPS, 200, 2, 2, 1., 0., 40

      RANDPS, 200, 1, 2, 1.-5, 0., 40

TABRND1, 40,
, 0., 0., 9.99, 0., 10., 1., 90., 1.,
    90.01, 0., 100., 0., ENDT
Ś
$ 10% CRITICAL DAMPING.
Ś
TABDMP1, 20, CRIT,
   0., 0.1, 1000., 0.1, ENDT
Ś
$
  INSERT BASIC MODEL (SEE LISTING 8-1).
Ś
ENDDATA
```


Figure 8-7. PSD Tip Displacement of a 2-D Cantilever Beam with Combined Loading.

Table 8-3. Response RMS Values of Beam Tip.

Displacement (inches)	Velocity (inches/sec)	Acceleration (inches/sec ²)	
0.39898	160.45	67,958	

 Table 8-4.
 Number of Positive Zero Crossings.

1 st Mode Frequency	Tip Displacement
(Hz)	(Hz)
63.50	64.00

9. COMPLEX EIGENVALUE ANALYSIS

9.1 Introduction

Complex eigenvalue analysis is required when the global matrixes contain unsymmetric terms or damping effects where real modes analysis cannot be used. It is used for the analysis of aeroelastic flutter, acoustics, rotating bodies, and many other physical effects.

The unforced motion of a system of equations can be expressed as the sum of the motion of its eigenvectors, oscillating and decaying or expanding with terms of the form:

$$u(t) = \operatorname{Real}\left(\sum_{i=1}^{\infty} \{\phi_i\} e^{(\alpha_i + i\omega_i)t}\right)$$

The value of α_i gives a measure of the rate of decay or divergence of the i-th natural dynamic mode. If the value of ω_i is nonzero, it gives a measure of the rate of oscillation of the solution. For the most general case, ϕ_i , which represents the shape of the mode, contains complex numbers. The relative size of these numbers indicates which parts of the structure are most active in this mode of motion. The imaginary parts of $\{u\}$ signify phase differences or lag times between degrees of freedom.

The results of complex eigenvalue analysis can be used for such tasks as measuring the effect of damping materials on system performance and determining the stability of a system when it contains sources of energy such as rotating components. The solution is an end result in Autodesk Inventor Nastran. There are no provisions for using the complex shapes for modal response analysis.

The matrix equation used for the complex eigenvalue problem is:

$$|[K] + p[B] + p^2[M]|[\phi] = 0$$

$$p = \alpha + i\omega$$

where,

- [K] is the global linear stiffness matrix
- [*B*] is the global damping matrix
- [*M*] is the global mass matrix
- ϕ_i is the complex eigenvector for each mode

and *K*, *B*, or *M* may be symmetric or unsymmetric. As with response solutions, complex eigenvalue analysis can be performed using direct or modal methods. The direct method is not supported currently. The modal method uses reduced matrixes which are generated from the undamped real modes of the problem. If damping is not present ([B] = 0) we have

$$\left| \begin{bmatrix} A \end{bmatrix} + \lambda \begin{bmatrix} I \end{bmatrix} \right| \begin{bmatrix} \phi \end{bmatrix} = 0$$
$$\begin{bmatrix} A \end{bmatrix} = -\begin{bmatrix} M \end{bmatrix}^{-1} \begin{bmatrix} K \end{bmatrix}$$
$$\lambda = p^2$$

When damping is present (
$$[B] \neq 0$$
) we have

$$|[A] - p[I]|[\phi] = 0$$
$$[\phi] = \left[\frac{u}{v}\right]$$
$$[A] = \left[\begin{array}{c} 0 & [I] \\ -[M]^{-1}[K] & -[M]^{-1}[B] \end{array}\right]$$

For stable systems $\alpha < 0$. The damping coefficient is given by

$$g = -rac{2lpha}{|\omega|}$$

which is approximately twice the value of the conventional modal damping ratio.

Autodesk Inventor Nastran will also handle complex eigenvalue analysis of structures under initial stress. For more information see Section 14, *Linear Prestress Complex Eigenvalue Analysis*.

9.2 How to Setup a Model Input File for Complex Eigenvalue Analysis

In Autodesk Inventor Nastran you can perform frequency response analysis by setting SOLUTION = MODAL COMPLEX EIGENVALUE in the Model Initialization File or by specifying SOL 110 or SOL MODAL COMPLEX EIGENVALUE above the Case Control Section in the Model Input File. Both a METHOD and a CMETHOD command must be specified in the Case Control referencing an EIGRL and EIGC entry in the Bulk Data respectively. Only one reference to an EIGRL Bulk Data entry (METHOD Case Control command) is permitted. This request should be placed above the first subcase. Multiple subcases can be specified, each requesting a different output set.

9.3 Interpreting Results

As an example we will use the cantilever beam shown in Figure 9-1. It is desired to find the first 6 complex modes of the beam with 5% critical damping. Listing 9-1 contains the Model Input File and Listings 9-2 and 9-3 show the extracted frequencies and eigenvectors from the Model Results Output File.

Figure 9-1. 2-D Cantilever Beam Example Problem.

Listing 9-1. Model Input File for the Damped 2-D Cantilever Beam Problem.

```
$ MODAL COMPLEX EIGENVALUE SOLUTION.
Ś
SOL 110
CEND
Ś
DISPLACEMENT = ALL
TITLE = INSTALLATION TEST CASE
SUBTITLE = DAMPED VIBRATION OF A 2-D CANTILEVER BEAM
SUBCASE 1
 SPC = 1
 SDAMPING = 20
 METHOD = 1
 CMETHOD = 1
Ś
BEGIN BULK
Ś
$ CONVERSION FACTOR FOR WEIGHT DENSITY TO MASS DENSITY
$ MASS = (1/g)*WEIGHT, G=32.2FT/SEC2, WTMASS = 1/(32.2*12) = 0.002588
PARAM, WTMASS, 0.002588
$ REQUEST COUPLED MASS MATRIX FORMULATION.
Ś
PARAM, COUPMASS, ON
Ś
$ DEFINE REAL EIGENVALUE EXTRACTION PARAMETERS.
Ś
EIGRL, 1, , , 6
Ś
$ DEFINE COMPLEX EIGENVALUE EXTRACTION PARAMETERS.
Ś
EIGC, 1, , , , , , 6
Ś
$ 5% CRITICAL DAMPING.
$
TABDMP1, 20, CRIT,
, 1., 0.05, 10000., 0.05, ENDT
Ś
$ GEOMETRY DEFINITION (10" BEAM DIVIDED INTO 10 ELEMENTS).
Ś

      GRID,
      1,
      0,
      0.,
      0.,
      0

      GRID,
      2,
      0,
      1.,
      0.,
      0

      GRID,
      3,
      0,
      2.,
      0.,
      0

      GRID,
      3,
      0,
      2.,
      0.,
      0

      GRID,
      4,
      0,
      3.,
      0.,
      0,

      GRID,
      5,
      0,
      4.,
      0.,
      0

GRID, 6, 0,
                    5., 0., 0., 0

      GRID, 7, 0, 6., 0., 0., 0

      GRID, 8, 0, 7., 0., 0., 0

      GRID, 9, 0, 8., 0., 0., 0

GRID, 10, 0,
                     9., 0., 0.,
                                           0
GRID, 11, 0, 10., 0.,
                                    0.,
                                           0
Ś
$ BEAM MODELED WITH BAR ELEMENTS.
Ś
CBAR, 1, 10,
                       1,
                               2, 0., 1.,
                                                  0.
CBAR, 2, 10, 2, 3, 0., 1., 0.
CBAR, 3, 10, 3, 4, 0., 1., 0.
CBAR, 4, 10, 4, 5, 0., 1., 0.
CBAR, 5, 10, 5, 6, 0., 1., 0.
                             5, 0., 1.,
6, 0., 1.,
CBAR, 6, 10,
                      6,
                             7, 0., 1., 0.
                      7, 8, 0., 1.,
8, 9, 0., 1.,
CBAR, 7, 10,
CBAR, 8, 10,
                                                 Ο.
                                                 0.
CBAR, 9, 10,
                      9, 10, 0., 1.,
                                                 Ο.
CBAR, 10, 10, 10, 11, 0., 1., 0.
$ ELEMENT MATERIAL AND SECTION PROPERTIES (1.0" X 0.2" CROSS-SECTION).
Ś
PBAR, 10, 100, 0.2, 6.667E-4, 1.667E-2, 2.328E-3,
, -0.1, 0.5, 0.1, 0.5, -0.1, -0.5, 0.1, -0.5
```

Listing 9-1. Model Input File for the Damped 2-D Cantilever Beam Problem. (Continued)

```
$ ELEMENT MATERIAL PROPERTIES (ALUMINUM).
$
MAT1, 100, 1.E+7, , 0.33, 0.1
$
FIXED AT ONE END, MOVEMENT CONSTRAINED TO X-Z PLANE ONLY.
$
SPC1, 1, 123456, 1
SPC1, 1, 345, 1, THRU, 11
ENDDATA
```

The complex eigenvalue, p, is formed from the real quantities α and ω where $p = \alpha + i\omega$. If $\alpha = 0$., the radian frequency, ω of complex eigenvalue analysis is the same as that of real eigensolution. The real part, α , is a measure of the decay rate of a damped structure, or if negative, the rate of divergence of an unstable system. The imaginary part, ω , is the modified frequency in radians/unit time. However, roots with negative values of should be treated as special terms. The circular frequency in cycles per unit time is equal to $\omega/2\pi$.

The EIGC entry controls the number of modes extracted. Here, we have requested 6 modes as shown in Listings 9-2 and 9-3. The first and second columns contain α and ω respectively. The next column contains the circular frequency followed by the damping coefficient which is approximately twice the value of the conventional modal damping ratio. Note that if the magnitude of this term is computed to be less than 1.0E-12, it is reset to zero. The last column is the error measure and is determined using:

$$\boldsymbol{\varepsilon}_{i} = \frac{\left| \left[\boldsymbol{A} \right] \left\{ \boldsymbol{\phi} \right\}_{i} - \lambda_{i} \left\{ \boldsymbol{\phi} \right\}_{i} \right|}{\sqrt{\alpha_{i}^{2} + \omega_{i}^{2}}}$$

The eigenvalues are sorted first on ω and then on increasing magnitude.

COMPLEX EIGEN	VALUE			SUBCASE 1		
		C	COMPLEX E	IGENVALU	ES	
MODE	EIGEN	VALUE	CYCLES	DAMPING	ERROR	
NUMBER	(REAL)	(IMAGINARY)		COEFFICIENT	MEASURE	
1	-1.995058E+01	-3.985126E+02	6.342525E+01	1.001252E-01	1.027507E-09	
2	-1.995058E+01	3.985126E+02	6.342525E+01	1.001252E-01	1.027697E-09	
3	-1.249744E+02	-2.496361E+03	3.973082E+02	1.001252E-01	2.222772E-10	
4	-1.249744E+02	2.496361E+03	3.973082E+02	1.001252E-01	2.222561E-10	
5	-3.497479E+02	-6.986210E+03	1.111890E+03	1.001252E-01	1.019996E-10	
6	-3.497479E+02	6.986210E+03	1.111890E+03	1.001252E-01	1.019839E-10	
7	-6.850966E+02	-1.368479E+04	2.178002E+03	1.001252E-01	8.444388E-11	
8	-6.850965E+02	1.368479E+04	2.178002E+03	1.001252E-01	8.444607E-11	
9	-1.132679E+03	-2.262526E+04	3.600921E+03	1.001252E-01	1.461267E-11	
10	-1.132680E+03	2.262526E+04	3.600921E+03	1.001252E-01	1.461228E-11	
11	-1.545447E+03	-3.087028E+04	4.913158E+03	1.001252E-01	2.866571E-11	
12	-1.545447E+03	3.087028E+04	4.913158E+03	1.001252E-01	2.866561E-11	

Listing 9-2. Extracted Eigenvalues for the Damped 2-D Cantilever Beam.

<pre>CONTINUE 1 CONTINUE 1 T T T T T T T T T T T T T T T T T T</pre>	MODE = 1	COMPLEX EIGENVA	LUE = -1.995058E+0	01, -3.98512	26E+02	SUBCASE 1					
MADD COMPLANT F1 F2 F3 FA FA FA 1 0		COMPLEX EIGENVECTOR NUMBER 1 (REAL/IMAGINARY)									
LD LD <thld< th=""> LD LD LD<!--</th--><th>GRID</th><th>COORDINATE</th><th>Τ1</th><th>Т2</th><th>ΤЗ</th><th>R1</th><th>R2</th><th>R3</th><th></th></thld<>	GRID	COORDINATE	Τ1	Т2	ΤЗ	R1	R2	R3			
1 1	ID 2	ID	-2 706882E-14 1	677282E-02	0 000000E+00	0 0000000000000000000000000000000000000	0 000000E+00	3 273936E-02			
3 0 -5.37111-14 6.386542-02 0.000002-00 0.000002-00 0.00002-00 0.38832-02 4 0 -1.360448-12 0.338347-01 0.000002-00 0.000002-00 0.38832-02 5 0 -1.077912-13 2.39784-01 0.000002-00 0.000002-00 0.000002-00 0.38832-02 6 0 -1.223328-11 0.00002-00 0.0000	2	0	4.756704E-13 -9.	.659390E-12	0.000000E+00	0.000000E+00	0.000000E+00	-2.470024E-11			
4 0 -7.855782-2 1.347782-0 0.0000000000 0.00000000000000000000000000000000000	3	0	-5.347111E-14 6. 9.396283E-13 -5	.386868E-02 582915E-11	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	6.064993E-02			
1.1380382-12 1.230382-10 0.000000000 0.0000000000 0.1380112-11 6 0 -1.223500-13 3.955642-10 0.00000000000000000000000000000000000	4	0	-7.855676E-14 1.	.364788E-01	0.000000E+00	0.000000E+00	0.000000E+00	8.378142E-02			
<pre></pre>	5	0	1.380449E-12 -1. -1.017081E-13 2.	.320497E-10 .298786E-01	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	-7.569811E-11 1.022576E-01			
9 0 -1.223301-13 2.43314-13 0.0000000-00 0.0000000-00 1.43314-13 7 0 -1.339918-13 2.435378-13 0.0000000-00 0.0000000-00 1.433178-01 8 0 -1.41782-10 0.0000000-00 0.0000000-00 0.0000000-00 1.434378-01 9 0 -1.41782-10 0.0000000-00 0.0000000-00 1.434378-01 10 0 -1.7000000-00 0.0000000-00 0.0000000-00 1.434378-01 11 0 -1.7000000-00 0.000000-00 0.000000-00 1.434378-01 11 0 -1.7000000-00 0.000000-00 0.000000-00 1.745428-01 11 0 -1.7300000-13 0.000000-00 0.000000-00 1.745428-01 12 0 -1.433388-01 0.000000-00 0.000000-00 1.757538-01 12 0 -1.433388-01 0.000000-00 0.0000000-00 1.757538-02 12 0 -1.4203188-13 0.000000-00 0.0000000-00 0.0000000-00 0.0000000-00		-	1.787279E-12 -1.	.893848E-10	0.000000E+00	0.000000E+00	0.000000E+00	-3.454774E-11			
7 0 -1.39991E-31 4.611274E-01 0.000000F00 0.00000F00 0.00000F00 0.400000F00 0.40000F00 0.44444444 0.444444 0.444444 0.444444 0.444444 0.444444 0.444444 0.444444 0.444444 0.444444 0.444444 0.444444 0.4444444 0.4444444444 0.44444444444	6	0	-1.223550E-13 3. 2.150100E-12 -2.	.395162E-01 .051540E-10	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	-3.082215E-12			
8 0 -1.527922-15 0.00000000-00 0.00000000-00 0.00000000-00 0.00000000-00 0.00000000-00 0.0000000-00	7	0	-1.399891E-13 4.	.611274E-01	0.000000E+00	0.000000E+00	0.000000E+00	1.262747E-01			
 2.7.02948-12 - 1.7470078-10 0.00000000-00 0.0000000-00 0.0000000+00 1.341178-01 0 1 - 1.021478-13 - 1.0239598-71 0.0000000+00 0.0000000+00 0.0000000+00 1.341178-01 0 1 - 1.021478-13 - 1.0239598-71 0.0000000+00 0.0000000+00 0.0000000+00 1.341178-01 1 0 - 1.7.033600-13 1.0000000+00 0.0000000+00 0.000000+00 0.000000+00 0.3765342-01 3.0407018-12 0.000000+00 0.0000000+00 0.000000+00 0.000000+00 0.3765342-01 3.0407018-12 0.000000+00 0.000000+00 0.000000+00 0.000000+00 0.3.7365342-01 C O M F L E X E LG E N V E C T O R N U K B E R 2 KYRAL/YMAXINAKY GEED COORDINNE TI TI TZ T3 R1 R2 R3 1.0338378-13 - 0.470158-10 0.0000000+00 0.000000+00 0.000000+00 - 0.7373838-02 0 1.9397388-13 - 0.470158-10 0.0000000+00 0.000000+00 - 0.000000+00 - 0.42938-01 3 0 3.8297388-13 - 0.470158-11 0.0000000+00 0.000000+00 - 0.000000+00 - 0.429388-02 4 0 1.2507388-12 - 3.4216628-11 0.0000000+00 0.000000+00 - 0.000000+00 - 0.429388-02 4 0 1.2507388-12 - 3.4216628-11 0.0000000+00 0.000000+00 - 0.000000+00 - 4.629338-01 4 0 1.2507388-12 - 3.4216628-11 0.0000000+00 0.000000+00 - 0.000000+00 - 1.629388-01 4 0 1.2507388-12 - 3.4216628-11 0.0000000+00 0.000000+00 - 0.000000+00 - 1.629388-01 4 0 1.2527388-12 - 3.4216628-11 0.0000000+00 0.000000+00 - 0.000000+00 - 1.625388-12 6 0 8 .733888-12 - 3.9316628-11 0.0000000+00 0.000000+00 - 0.000000+00 - 1.625388-12 6 0 8 .733888-12 - 3.9316628-11 0.0000000+00 0.000000+00 0.000000+00 - 1.6246588-12 7 0 1.2527382-12 - 3.2217662-11 0.0000000+00 0.000000+00 0.000000+00 - 1.6246588-12 7 0 1.2527372-12 - 3.2217662-11 0.0000000+00 0.000000+00 0.000000+00 - 1.6246588-12 0 1.1024508-12 - 3.93468297-11 0.0000000+00 0.000000+00 0.000000+00 - 1.6246588-12 0 1.12824828-11 - 2.284788-11 0.0000000+00 0.000000+00 0.000000+00 0.00000+	8	0	-1.541762E-13 5.	.028958E-10 .908697E-01	0.000000E+00	0.000000E+00	0.000000E+00	1.326623E-01			
0 2.28321782-12 -1.0834882-10 0.00000020-00 0.00000000-00	9	0	2.709284E-12 -1.	.747007E-10	0.000000E+00	0.000000E+00	0.000000E+00	5.190285E-11			
10 0 -1.7000575-13 6.623988E-01 0.000000F-00 0.000000F-00 0.00000F-0 0.1.974628-01 11 0 -3.0027618-12 0.00000F-0 0.00000F-0 0.00000F-0 0.00000F-0 0.1.974628-01 12 COMPLEX FIGENVALUE1.995056F-01, 3.965126F-02 SUBJECKE I COMPLEX FIGENVALUE1.995056F-01, 3.762157 COMPLEX FIGENVALUE1.995056F-01, 3.965126F-02 SUBJECKE I COMPLEX FIGENVALUE1.995056F-01, 3.773356F-02 -1.257575F-12 -5.27358F-13 -7.346420F-11 0.00000F-00 0.00000F-00 0.00000FF-00 -3.753533F-11 4 0 5.5643775-13 -7.346420F-11 0.00000FF-00 0.00000FF-00 0.00000FF-0 0.3.753533F-11 4 0 5.5643775-13 -7.346420F-11 0.00000FF-00 0.00000FF-0 0.00000FF-0 0.3.753533F-11 4 0 5.5643775-13 -7.346420F-11 0.00000FF-0 0.00000FF-0 0.00000FF-0 0.20000FF-0 1.4543439-12 -1.257575F-12 -8.29356F-10 0.00000FF-0 0.00000FF-0 0.00000FF-0 0.00000FF-0 0.20566F-01 -1.252575F-12 -8.29376F-1 0.00000FF-0 0.00000FF-0 0.00000FF-0 0.20566F-01 -1.252575F-12 -8.29376F-1 0.00000FF-0 0.00000FF-0 0.00000FF-0 0.20566F-01 -1.252575F-12 -8.29376F-1 0.00000FF-0 0.00000FF-0 0.00000FF-0 1.2257475-01 -2.23777512 -8.1348-11 0.00000FF-0 0.00000FF-0 0.00000FF-0 1.2257475-01 -2.23777512 -8.23778F-1 0.00000FF-0 0.00000FF-0 0.00000FF-0 1.2257475-01 -2.23777512 -8.23378F-1 0.00000FF-0 0.00000FF-0 0.00000FF-0 1.2257475-01 -2.237752712 -8.1348-11 0.00000FF-0 0.00000FF-0 0.00000FF-0 1.2257475-01 -2.237752712 -8.2337751 -8.11000FF-0 0.00000FF-0 0.00000FF-0 0.00000FF-0 0.225765-01 -2.237752712 -8.2337751 -8.11000FF-0 0.00000FF-0 0.00000FF-0 0.00000FF-0 0.0000FF-0 0.225765-01 -2.237752712 -9.335257-01 0.00000FF-0 0.00000FF-0 0.00000FF-0 0.00000FF-0 0.22747558-01 -2.237557512 -2.324775-11 0.00000FF-0 0.00000FF-0 0.00000FF-0 0.0000FF-0 0.0000FF-0 0.0000FF-0 0.00000FF-0 0.00000FF-0 0.0	5	0	2.891878E-12 -1.	.038498E-10	0.000000E+00	0.000000E+00	0.000000E+00	7.980615E-11			
<pre>11 0 - 1.7303808-53 1.0000008+00 0.0000008+00 0.0000008+00 0.00008+00 0.0</pre>	10	0	-1.709057E-13 8.	.623968E-01	0.000000E+00	0.000000E+00	0.000000E+00	1.374542E-01 4 894805E-11			
BALE ADVOLET 2 0.00000000000 0.00000000000000000000000000000000000	11	0	-1.730360E-13 1.	.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00	1.376534E-01			
MODE = 2 COMPLEX LIGENVALUE = -1.9950588-01, 3.9851268+02 SUBCASE 1 C 0 M P L E X E I G E N V E C 70 R N U M B E R 2 CRID COORDINATE T1 T2 T3 R1 R2 R3 1D 0 1.938738E-13 1.677282E-02 0.000000F+00 0.00000F+00 0.000000F+00 0.0000			3.040701E-12 0.	.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00	3.164341E-11			
COMPLEXE BIG CONSTRUCTOR NUMBER 2 CRID TD CONSTRUCTOR TI TZ T3 R1 R2 R3 TD TD 1.9387388-13 1.677282E-02 0.000000E+00 0.000000E+00 0.000000E+00 -2237336E-02 10 TD TD 1.938738E-13 1.677282E-02 0.00000E+00 0.00000E+00 -228553E-11 3 0 3.227338E-13 6.3864872E-02 0.00000E+00 0.00000E+00 -6.00000E+01 -6.00000E+01 -6.00000E+01 -6.0000E+01 -6.00000E+01 -6.00000E+01 -6.00000E+01 -0.0000E+01 -0.00000E+01 -0.0000E+01 -0.0000E+01<	MODE = 2	COMPLEX EIGENVA	LUE = -1.995058E+0	01, 3.985126	5E+02	SUBCASE 1					
GRID COORDINATE TI TZ T3 R1 R2 R3 1 0 1.939738E-13 1.677282E-02 0.00000E+00 0.00000E+00 0.00000E+00 3.273396E-02 3 0 3.82738E-13 6.366688-02 0.00000E+00 0.00000E+00 0.00000E+00 4.6668532-12 4 0 5.264378-13 1.364788E-01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.62573582-11 5 0 7.284538E-12 -9.215622-11 0.00000E+00 0.00000E+00 1.02025162-12 6 0 8.7841428-02 0.00000E+00 0.00000E+00 1.02025162-12 7 0 1.9858858-12 -9.515622-11 0.00000E+00 0.00000E+00 1.02025162-12 7 0 1.02025182-12 0.00000E+00 0.00000E+00 0.00000E+00 1.0225182-12 7 0 1.02025182-12 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.0245178-01 7 0 1.104205782			СОМР	LEX EI	GENVECT (REAL/IMAGIN	OR NUMB ARY)	ER 2				
LD LD <thld< th=""> LD LD LD<!--</th--><th>GRID</th><td>COORDINATE</td><td>T1</td><td>Т2</td><td>Т3</td><td>R1</td><td>R2</td><td>R3</td><td></td></thld<>	GRID	COORDINATE	T1	Т2	Т3	R1	R2	R3			
-4.3270388-13 2.6770188-11 0.000008440 0.00000840 0.00000840 0.00000840 0.00000840 -8.5470318-13 7.3464208-11 0.00000840 0.000000840 0.000008400 0.0	1D 2	ID 0	1.938738E-13 1.	.677282E-02	0.000000E+00	0.000000E+00	0.000000E+00	3.273936E-02			
3 0 -8.5475318-13 -7.3464208-11 0.000008+00 0.0000008+00 0.0000008+00 0.00000	з	0	-4.327038E-13 -2.	.677015E-11	0.000000E+00	0.000000E+00	0.000000E+00	-4.628953E-11			
4 0 5.826437B-13 1.3647885-01 0.000000F+00 0.00000F+00 0.000000F+00	3	0	-8.547531E-13 -7.	.346420E-11	0.000000E+00	0.000000E+00	0.000000E+00	-3.659553E-11			
5 0 7.2845958-13 2.2397368-01 0.0000008+00 0.000008+0	4	0	5.626437E-13 1. -1.255755E-12 -8.	.364788E-01	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	8.378142E-02 2.056610E-12			
	5	0	7.284595E-13 2.	.298786E-01	0.000000E+00	0.000000E+00	0.000000E+00	1.022576E-01			
	6	0	-1.625837E-12 -8. 8.763381E-13 3.	.712483E-11 .395162E-01	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	-6.143463E-12 1.163047E-01			
A 0 -1.0220922-2 -0.431194E-11 0.000000E+00 0.00000E+00 0.00000E+00 1.202019E-10 8 0 1.104250E-12 5.908697E-01 0.00000E+00 0.00000E+00 0.00000E+00 1.26253E-01 9 0 1.178672E-12 7.254726E-01 0.00000E+00 0.00000E+00 0.00000E+00 1.36176E-01 -2.663059E-12 7.254726E-01 0.00000E+00 0.00000E+00 0.00000E+00 1.36176E-01 10 0 1.224071E-12 8.62396E-01 0.00000E+00 0.00000E+00 0.00000E+00 1.36176E-01 -2.750394E-12 7.239429E-11 0.00000E+00 0.00000E+00 0.00000E+00 1.376534E-01 11 0 1.239329E-12 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.376534E-01 12 0 -9.863026E-12 -9.262050E-02 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00 1.000000E+00 1.00000E+00 1.00	7	0	-1.955885E-12 -9.	.951562E-11	0.000000E+00	0.000000E+00	0.000000E+00	-8.461580E-12			
8 0 1.104250E-12 5.908697E-01 0.00000E+00 0.00000E+00 0.200000E+00 0.200000E+00 0.221472E-11 9 0 1.178672E-12 7.25472EE-01 0.00000E+00 0.00000E+00 0.200000E+01 0.321472E-11 10 0 1.224071E-12 8.62396EE-01 0.00000E+00 0.00000E+00 0.00000E+01 1.87652EE-11 11 0 1.239329E-12 1.00000E+00 0.00000E+00 0.00000E+00 1.876534E-01 11 0 1.239329E-12 1.00000E+00 0.00000E+00 0.00000E+00 1.876534E-01 12 0 -2.766039E-12 -2.496361E+03 SUECASE 1 MODE = 3 COMPLEX EIGENVALUE = -1.249744E+02, -2.496361E+03 SUECASE 1 1D ID ID -9.863026E-12 -9.262050E-02 0.00000E+00 0.00000E+00 -1.677458E-01 2 0 -9.863026E-12 -9.262050E-02 0.00000E+00 0.00000E+00 -1.677458E-01 3 0 -1.94974E+02, -2.496361E+03 SUECASE 1 -2.354558E-01 -2.354558E-01	,	0	-2.237772E-12 -8.	.491194E-11	0.000000E+00	0.000000E+00	0.000000E+00	3.875474E-11			
9 0 1.178672E-12 7.254726E-01 0.00000E+00 1.365346E-01 1D 1D 1D 1D 1D 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.36534E-01 2 0 -9.863026E-12 -9.262050E-02 0.00000E+00 0.00	8	0	1.104250E-12 5. -2.464559E-12 -4.	.908697E-01	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	1.326623E-01 3.221472E-11			
-2.6.30659E-12 -3.294796E-11 0.00000E+00 0.00000E+00 0.00000E+00 1.304522E-01 10 0 1.224071E-12 8.62386E-01 0.00000E+00 0.00000E+00 0.00000E+00 1.307628E-11 11 0 1.239329E-12 0.00000E+00 0.00000E+00 0.00000E+00 1.376534E-01 11 0 1.239329E-12 0.00000E+00 0.00000E+00 0.00000E+00 3.837291E-11 MODE = 3 COMPLEX EIGENVALUE = -1.249744E+02, -2.496361E+03 SUECASE 1 ID ID ID 0 -9.863026E-12 -9.262050E-02 0.00000E+00 0.00000E+00 -1.677458E-01 2 0 -9.863026E-12 -9.262050E-02 0.00000E+00 0.00000E+00 -1.677458E-01 3 0 -1.944319E-11 -5.830662E-10 0.00000E+00 0.00000E+00 -1.677458E-01 4 0 -2.355568E-11 -3.19474E-09 0.00000E+00 0.00000E+00 0.00000E+00 -1.677458E-01 4 0 -2.85568E-11 -3.010475E-01 0.00000E+00 0.00000E+00 -1.079745E-01 5 0 -3.705923E-01	9	0	1.178672E-12 7.	254726E-01	0.000000E+00	0.000000E+00	0.00000E+00	1.361176E-01			
-2.731984E-12 -3.22942TE-11 0.00000E+00 0.00000E+00 0.00000E+00 1.80762EE-11 11 0 1.239329E-12 1.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.376534E-01 -2.766039E-12 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 3.837291E-11 MODE = 3 COMPLEX EIGENVALUE = -1.249744E+02, -2.496361E+03 SUECASE 1 C O M P L E X E I G E N V E C T O R N U M B E R 3 (REAL/IMAGINARY) GRID COORDINATE T1 T2 T3 R1 R2 R3 1D ID 2 0 -9.863026E-12 -9.262050E-02 0.00000E+00 0.00000E+00 0.00000E+00 -1.677458E-01 -1.192465E-11 -5.830622E-10 0.00000E+00 0.00000E+00 0.00000E+00 -1.39212E-09 3 0 -1.494319E-11 -3.01043B-01 0.00000E+00 0.00000E+00 0.00000E+00 -1.39212E-09 4 0 -2.852568E-11 -1.914746E-09 0.00000E+00 0.00000E+00 0.00000E+00 -1.870458E-01 -3.460669E-11 -3.693232E-09 0.00000E+00 0.00000E+00 0.00000E+00 -1.870458E-01 -3.460669E-11 -3.693242E-09 0.00000E+00 0.00000E+00 0.00000E+00 -1.876463B-09 5 0 -3.705923B-11 -6.83346EE-01 0.00000E+00 0.00000E+00 0.00000E+00 -1.876463B-09 5 0 -3.705923B-11 -5.83155E-01 0.00000E+00 0.00000E+00 0.00000E+00 -1.876463B-09 6 0 -4.458232E-11 -5.3355E-09 0.00000E+00 0.00000E+00 0.00000E+00 -1.876463B-09 6 0 -4.458232E-11 -5.3355E-09 0.00000E+00 0.00000E+00 0.00000E+00 -1.02129E-01 -6.166958E-11 -5.896992E-01 0.00000E+00 0.00000E+00 0.00000E+00 -1.012129E-01 -6.166958E-11 -5.896992E-01 0.00000E+00 0.00000E+00 0.00000E+00 -1.02129E-01 -6.166958E-11 -5.896992E-01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 -1.02129E-01 -6.166958E-11 -5.896992E-01 0.00000E+00 0.00000E+00 0.00000E+00 2.01830E-01 -6.166958E-11 -5.896992E-01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 -1.02129E-01 -6.791946E-11 -4.07385E-09 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.023977E-09 8 0 -5.617701E-11 -3.173098E-01 0.00000E+00 0.00000E+00 0.00000E+00 1.023977E-09 9 0 -5.96309E-11 -5.896992E-01 0.00000E+00 0.00000E+00 0.00000E+00 1.023977E-09 10 0 -6.22769E1 -1 -5.07586E-09 0.00000E+00 0.00000E+00 0.00000E+00 1.023977E-09 10 0 -6.237699E-11 -7.778980E-01 0.00000E+00 0.00000E+00 0.00	10	0	-2.630659E-12 -3. 1.224071E-12 8.	.294796E-11 .623968E-01	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	-7.585660E-12 1.374542E-01			
11 0 1.2393929E-12 1.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 3.837291E-11 MODE = 3 COMPLEX EIGENVALUE = -1.249744E+02, -2.496361E+03 SUBCASE 1 C O M P L E X E I G E N V E C T O R N U M B E R 3.837291E-11 ID ID ID (REAL/IMAGINARY) 0.000000E+00 0.000000E+00 0.000000E+00 -1.677458E-01 2 0 -9.863026E-12 -9.262050E-02 0.000000E+00 0.000000E+00 0.000000E+00 -1.039212E-09 3 0 -1.943138E-11 -3.30062E-10 0.000000E+00 0.000000E+00 0.000000E+00 -2.324165E-01 -2.355568E-11 -3.14746E-09 0.000000E+00 0.000000E+00 0.000000E+00 -2.035496E-01 3 0 -1.948138E-11 -3.692362E-09 0.000000E+00 0.000000E+00 0.000000E+00 -2.035496E-01 -2.35566E-11 -5.261513E-01 0.000000E+00 0.000000E+00 0.000000E+00 -2.035496E-01 -3.460669E-11 -5.335255E-09 0.000000E+00 0.000000E+00 0.000000E+00 -0.00000E+00 -2.035496E-01 -6.693958E-11 -5.33		0	-2.731984E-12 -3.	.229427E-11	0.00000E+00	0.000000E+00	0.00000E+00	1.807628E-11			
MODE = 3 COMPLEX EIGENVALUE = -1.249744E+02, -2.496361E+03 SUECASE 1 COMPLEX EIGENVALUE = -1.249744E+02, -2.496361E+03 SUECASE 1 C O M P L E X E I G E N V E C T O R N U M B E R 3 (REAL/IMAGINARY) R1 R2 R3 ID ID 10 0 -9.863026E-12 -9.262050E-02 0.00000E+00 0.00000E+00 0.00000E+00 -1.039212E-09 3 0 -1.948319E-11 -3.0104538-01 0.00000E+00 0.00000E+00 0.00000E+00 -2.035046E-01 -2.355568E-11 -1.914746E-09 0.00000E+00 0.00000E+00 0.00000E+00 -2.035496E-01 -3.460669E-11 -3.625362E-09 0.00000E+00 0.00000E+00 0.00000E+00 -2.035496E-01 -3.460669E-11 -5.35255E-09 0.00000E+00 0.00000E+00 0.00000E+00 -1.02192E-01 -4.480557E-11 -5.351518E-01 0.00000E+00 0.00000E+00 0.00000E+00 -1.021914E-09 -6 -4.480557E-11 -5.351518E-01 0.00000E+00 0.00000E+00 0.00000E+00 1.021977E-09 6 -4.48057E-11 -5.35158EE-09 0.00000E+00<	11	U	-2.766039E-12 0.	.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00	1.3/0534E-01 3.837291E-11			
COMPLEX EIGENVECTOR NUMBER GRID COORDINATE TI TZ T3 R1 R2 R3 ID ID ID ID 0.00000E+00 0.00000E+00 0.00000E+00 -1.677458E-01 3 0 -1.92465E-11 -5.830062E-10 0.00000E+00 0.00000E+00 0.00000E+00 -1.039212E-09 3 0 -1.948319E-11 -3.010455E-01 0.00000E+00 0.00000E+00 0.00000E+00 -2.324165E-01 4 0 -2.855568E-11 -1.914746E-09 0.00000E+00 0.00000E+00 0.00000E+00 -2.00000E+00 -2.035496E-01 5 0 -3.705923E-11 -6.835468E-01 0.00000E+00 0.00000E+00 0.00000E+00 -1.021219E-01 6 0 -4.480557E-11 -5.335255E-09 0.00000E+00 0.00000E+00 0.00000E+00 -2.035496E-01 7 0 -5.1007658E-11 -5.335255E-09 0.00000E+00 0.00000E+00 0.00000E+00 -2.035496E-01 7 0 -5.1007658E-11 -5.1037658E-01 0.00000E+00 0.00000E+00 0.000000E+00 -2.035495E-01	MODE = 3	COMPLEX EIGENVA	$I_{\rm UE} = -1.249744 \text{E} + 0$	122 49636	51E+0.3	SUBCASE 1					
GRID COOMPLEX EIGENVECTOR NUMBER 3 GRID COORDINATE T1 T2 T3 R1 R2 R3 ID ID -9.863026E-12 -9.262050E-02 0.00000E+00 0.00000E+00 0.00000E+00 -1.677458E-01 2 0 -9.863026E-12 -9.262050E-02 0.00000E+00 0.00000E+00 -1.00000E+00 -1.039212E-09 3 0 -1.948319E-11 -3.010453E-01 0.00000E+00 0.00000E+00 -2.00000E+00 -2.0324165E-01 -2.355668E-11 -3.914746E-09 0.00000E+00 0.00000E+00 0.00000E+00 -2.035496E-01 -3.460669E-11 -3.692362E-09 0.00000E+00 0.00000E+00 0.00000E+00 -1.012129E-01 -4.80557E-11 -5.35255E-09 0.00000E+00 0.00000E+00 0.00000E+00 -2.035496E-01 -4.80557E-11 -5.81518E-09 0.00000E+00 0.00000E+00 0.00000E+00 2.035496E-01 -5.30119E-11 -5.81538E-09 0.00000E+00 0.00000E+00 0.000000E+00 2.03569E-02		SHILL BIGDING	1.219/11DIC	, 2.19090			م ت				
GRID COORDINATE TI T2 T3 R1 R2 R3 ID ID ID ID 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 -1.677458E-01 2 0 -1.948319E-11 -5.830062E-10 0.000000E+00 0.000000E+00 0.00000E+00 -0.00000E+00 -1.039212E-09 3 0 -1.948319E-11 -5.101453E-01 0.00000E+00 0.00000E+00 0.00000E+00 -2.352465E-01 -2.355568E-11 -5.261513E-01 0.00000E+00 0.00000E+00 0.00000E+00 -2.035496E-01 4 0 -2.862362E-11 -5.64513E-01 0.00000E+00 0.00000E+00 0.00000E+00 -2.035496E-01 5 0 -3.705923E-11 -6.835468E-01 0.00000E+00 0.00000E+00 -1.012129E-01 -4.480557E-11 -5.33525E=09 0.00000E+00 0.00000E+00 0.00000E+00 -2.035496E-01 7 0 -5.100765E-11 -5.896992E-01 0.00000E+00 0.00000E+00 2.018830E-01			COMP	LEX EI	(REAL/IMAGIN	ARY)	EK 3				
2 0 -9.863026E-12 -9.262050E-02 0.00000E+00 0.00000E+00 0.00000E+00 -1.677458E-01 3 0 -1.92465E-11 -5.830062E-10 0.00000E+00 0.00000E+00 0.00000E+00 -2.324165E-01 -2.355568E-11 -1.91474EE-09 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 -2.335496E-01 -2.362362E-11 -5.261513E-01 0.00000E+00 0.00000E+00 0.00000E+00 -2.035496E-01 -3.460669E-11 -3.692362E-09 0.00000E+00 0.00000E+00 0.00000E+00 -1.0746463E-09 5 0 -3.705923E-11 -6.835468E-01 0.00000E+00 0.00000E+00 0.00000E+00 -1.00000E+00 -1.02129E-01 -4.480557E-11 -5.35255E-09 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 -1.021914E-09 6 -4.458232E-11 -7.138195E-01 0.00000E+00 0.00000E+00 0.00000E+00 2.536147E-10 7 0 -5.617701E-11 -5.85982E-01 0.00000E+00 0.00000E+00 0.00000E+00 2.03830E-01 -6.166958E-11 -5.075868E-09 0.000000E+00 0.000000E+00	GRID ID	COORDINATE ID	T1	Т2	Т3	R1	R2	R3			
3 0 -1.94319E-11 -3.010453E-01 0.00000E+00 0.00000E+00 0.00000E+00 -2.035212E-09 4 0 -2.355568E-11 -1.914746E-09 0.00000E+00 0.00000E+00 -2.00000E+00 -2.035496E-01 5 0 -3.460669E-11 -3.692362E-09 0.00000E+00 0.00000E+00 0.00000E+00 -2.035496E-01 5 0 -3.705923E-11 -6.83468E-01 0.00000E+00 0.00000E+00 0.00000E+00 -1.0212128E-01 6 -4.480557E-11 -5.335255E-09 0.00000E+00 0.00000E+00 0.00000E+00 -1.021914E-09 6 -4.480232E-11 -5.138185E-01 0.00000E+00 0.00000E+00 0.00000E+00 4.523659E-02 7 0 -5.107658E-11 5.075868E-09 0.00000E+00 0.00000E+00 2.018382E-01 7 0 -5.617701E-11 -3.173098E-01 0.00000E+00 0.00000E+00 1.023977E-09 8 0 -5.617701E-11 -3.130558E-09 0.00000E+00 0.00000E+00 3.00850E-01 9 0 -5.96309E-11 -0.08000E+00 0.000000E+00 0.00000E+00 1.	2	0	-9.863026E-12 -9.	.262050E-02	0.000000E+00	0.000000E+00	0.000000E+00	-1.677458E-01			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	0	-1.948319E-11 -3.	.010453E-01	0.000000E+00	0.000000E+00	0.000000E+00	-2.324165E-01			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	0	-2.355568E-11 -1. -2.862362E-11 -5.	.914746E-09 .261513E-01	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	-1.590792E-09 -2.035496E-01			
5 0 -3.705923E-11 -0.83548EEU 0.00000EH00 0.00000EH00 0.00000EH00 -1.012129E-01 6 0 -4.480557E-11 -5.335255E-09 0.00000EH00 0.00000EH00 0.00000EH00 0.00000EH00 -1.201914E-09 6 0 -4.480557E-11 -5.335255E-09 0.00000EH00 0.00000EH00 0.00000EH00 2.00000EH00 4.523659E-02 7 0 -5.390119E-11 -5.815188E-09 0.00000EH00 0.00000EH00 0.00000EH00 2.536147E-10 7 0 -5.1070765E-11 -5.896992E-01 0.00000EH00 0.00000EH00 0.00000EH00 2.00000EH00	_	2	-3.460669E-11 -3.	.692362E-09	0.000000E+00	0.000000E+00	0.000000E+00	-1.876463E-09			
6 0 -4.458232E-11 -7.138195E-01 0.00000E+00 0.00000E+00 0.00000E+00 4.523659E-02 -5.390119E-11 -5.815188E-09 0.00000E+00 0.00000E+00 0.00000E+00 2.536147E-10 7 0 -5.100765E-11 -5.896992E-01 0.00000E+00 0.00000E+00 0.00000E+00 2.03830E-01 -6.166958E-11 -5.075868E-09 0.00000E+00 0.00000E+00 0.00000E+00 1.023977E-09 8 0 -5.617701E-11 -3.173098E-01 0.00000E+00 0.00000E+00 0.00000E+00 3.370850E-01 -6.791946E-11 -4.078385E-09 0.00000E+00 0.00000E+00 0.00000E+00 1.023977E-09 9 0 -5.96309E-11 6.30181E-02 0.00000E+00 0.00000E+00 0.00000E+00 1.023977E-01 9 0 -5.96309E-11 6.30181E-02 0.00000E+00 0.00000E+00 1.023977E-01 9 0 -5.96309E-11 6.30081E-02 0.00000E+00 0.00000E+00 1.00000E+00 9 0 -5.289630E-11 -3.130558E-09 0.00000E+00 0.00000E+00 1.084760E-09 10	5	U	-3./U5923E-11 -6. -4.480557E-11 -5.	.835468E-01 .335255E-09	0.000000E+00	0.000000E+00	0.000000E+00	-1.012129E-01 -1.201914E-09			
7 0 -5.100765E+11 -5.0692E-01 0.00000E+00 0.00000E+00 0.200000E+00 2.36147E+10 7 0 -5.100765E+11 -5.0692E-01 0.00000E+00 0.00000E+00 0.00000E+00 2.018830E+01 8 0 -5.617701E+11 -3.173098E-01 0.00000E+00 0.00000E+00 0.00000E+00 3.370850E+01 9 0 -5.96309E+11 -4.078385E-09 0.00000E+00 0.00000E+00 0.00000E+00 9.1082811E+10 9 0 -5.96309E+11 -3.130558E-09 0.00000E+00 0.00000E+00 0.00000E+00 4.288217E+01 9 0 -6.227269E+11 -3.130558E-09 0.00000E+00 0.00000E+00 1.084760E-09 10 0 -6.227269E+11 -3.236094E+01 0.00000E+00 0.00000E+00 0.00000E+00 1.084760E-09 11 0 -6.227769E+11 1.000000E+00 0.00000E+00 0.000000E+00 1.819634E-09 11 0 -6.22779E+11 0.00000E+00 0.000000E+00 0.000000E+00 1.819634E-09	6	0	-4.458232E-11 -7.	.138195E-01	0.000000E+00	0.000000E+00	0.000000E+00	4.523659E-02			
-6.166958E-11 -5.075868E-09 0.00000E+00 0.00000E+00 0.00000E+00 1.023977E-09 8 0 -5.617701E-11 -3.173098E-01 0.00000E+00 0.00000E+00 0.00000E+00 3.370850E-01 9 0 -5.96309E-11 -6.090181E-02 0.00000E+00 0.00000E+00 0.00000E+00 9.192811E-10 10 0 -6.227269E-11 5.236094E-01 0.00000E+00 0.00000E+00 0.00000E+00 1.084760E-09 11 0 -6.304893E-11 1.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.634734E-09 11 0 -6.22779E-11 0.00000E+00 0.00000E+00 0.00000E+00 1.819634E-09	7	0	-5.100765E-11 -5.	.896992E-01	0.000000E+00	0.000000E+00	0.000000E+00	2.018830E-01			
-6.791946E-11 -4.078385E-09 0.00000E+00 0.00000E+00 0.00000E+00 9.19281E-10 9 0 -5.996309E-11 6.980181E-02 0.00000E+00 0.00000E+00 0.00000E+00 4.288217E-01 -7.249694E-11 -3.130558E-09 0.00000E+00 0.00000E+00 0.00000E+00 4.288217E-01 10 0 -6.227269E-11 5.236094E-01 0.00000E+00 0.00000E+00 0.00000E+00 1.084760E-09 11 0 -6.304893E-11 1.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.634734E-09 11 0 -6.22779E-11 0.00000E+00 0.00000E+00 0.00000E+00 1.819634E-09	R	0	-6.166958E-11 -5.	.075868E-09	0.000000E+00	0.000000E+00	0.000000E+00 0.000000E+00	1.023977E-09 3.370850E-01			
9 0 -5.996309E-11 6.980181E-02 0.00000E+00 0.00000E+00 0.00000E+00 4.288217E-01 -7.249694E-11 -3.130558E-09 0.00000E+00 0.00000E+00 0.00000E+00 1.084760E-09 10 0 -6.227269E-11 5.236094E-01 0.00000E+00 0.00000E+00 0.00000E+00 4.710752E-01 -7.528330E-11 -1.767885E-09 0.00000E+00 0.00000E+00 0.00000E+00 1.634734E-09 11 0 -6.304893E-11 1.00000E+00 0.00000E+00 0.00000E+00 4.782311E-01 -7.622779E-11 0.00000E+00 0.00000E+00 0.00000E+00 1.819634E-09	0	0	-6.791946E-11 -4.	.078385E-09	0.000000E+00	0.000000E+00	0.000000E+00	9.192811E-10			
10 -6.227269E-11 5.236094E-01 0.00000E+00 0.00000E+00 0.00000E+00 1.000000E+00 1.000000E+00 1.000000E+00 1.000000E+00 1.000000E+00 1.034734E-09 11 0 -6.304893E-11 1.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 4.782311E-01 -7.622779E-11 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 1.819634E-09	9	0	-5.996309E-11 6. -7.249694E-11 -3	.980181E-02	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	4.288217E-01 1.084760E-09			
-7.528930E-11 -1.767885E-09 0.000000E+00 0.000000E+00 0.000000E+00 1.634734E-09 11 0 -6.304893E-11 1.000000E+00 0.000000E+00 0.000000E+00 4.782311E-01 -7.622779E-11 0.000000E+00 0.000000E+00 0.000000E+00 1.819634E-09	10	0	-6.227269E-11 5.	.236094E-01	0.000000E+00	0.000000E+00	0.000000E+00	4.710752E-01			
-7.622779E-11 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 1.819634E-09	11	0	-7.528930E-11 -1. -6.304893E-11 1.	.767885E-09 .000000E+00	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	1.634734E-09 4.782311E-01			
			-7.622779E-11 0.	.000000E+00	0.00000E+00	0.000000E+00	0.00000E+00	1.819634E-09			

Listing 9-3. Extracted Eigenvectors for the Damped 2-D Cantilever Beam.

E

MODE = 4	COMPLEX EIGENVA	LUE = -1.249744	E+02, 2.496361	E+03	SUBCASE 1					
	COMPLEX EIGENVECTOR NUMBER 4 (REAL/IMAGINARY)									
GRID	COORDINATE	Τ1	Т2	тЗ	R1	R2	R3			
10 2	0	-1.109426E-11	-9.262050E-02	0.000000E+00	0.000000E+00	0.000000E+00	-1.677458E-01			
2	0	1.074754E-11	-6.435569E-10	0.000000E+00	0.000000E+00	0.000000E+00	-1.333895E-09			
5	0	2.123044E-11	-2.595778E-09	0.000000E+00	0.000000E+00	0.000000E+00	-2.418737E-09			
4	0	-3.219681E-11 3.119057E-11	-5.261513E-01 -4.997701E-09	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	-2.035496E-01 -2.118104E-09			
5	0	-4.168547E-11	-6.835468E-01	0.000000E+00	0.000000E+00	0.000000E+00	-1.012129E-01			
6	0	-5.014770E-11	-7.138195E-01	0.000000E+00	0.000000E+00	0.000000E+00	4.523659E-02			
7	0	4.858045E-11 -5.737513E-11	-6.586383E-09 -5.896992E-01	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	4.112654E-10 2.018830E-01			
0	0	5.558200E-11	-5.782551E-09	0.000000E+00	0.000000E+00	0.000000E+00	1.166343E-09			
0	0	6.121494E-11	-4.296511E-09	0.000000E+00	0.000000E+00	0.000000E+00	1.754818E-09			
9	0	-6.744851E-11 6.534057E-11	6.980181E-02 -2.483817E-09	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	4.288217E-01 1.733065E-09			
10	0	-7.004643E-11	5.236094E-01	0.000000E+00	0.000000E+00	0.000000E+00	4.710752E-01			
11	0	-7.091956E-11	1.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00	4.782311E-01			
		6.870314E-11	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00	9.636255E-10			
MODE = 5	COMPLEX EIGENVA	LUE = -3.497479	E+02, -6.98621	0E+03	SUBCASE 1					
		СОМ	IPLEX EI	GENVECI (REAL/IMAGIN	'OR NUMB JARY)	ER 5				
GRID	COORDINATE	Τ1	Т2	тЗ	R1	R2	R3			
2	10	-9.346263E-12	2.280767E-01	0.000000E+00	0.000000E+00	0.000000E+00	3.766304E-01			
3	0	-2.415375E-12 -1.846239E-11	8.075124E-09 6.047084E-01	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	1.317785E-08 3.121163E-01			
4	0	-4.771275E-12	2.069064E-08	0.000000E+00	0.000000E+00	0.000000E+00	9.667908E-09			
4	0	-7.009691E-12	2.483371E-08	0.000000E+00	0.000000E+00	0.000000E+00	-1.307111E-09			
5	0	-3.511755E-11 -9.075504E-12	5.267839E-01 2.033773E-08	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	-4.058157E-01 -6.141994E-09			
6	0	-4.224648E-11	2.053366E-02	0.000000E+00	0.000000E+00	0.000000E+00	-5.554151E-01			
7	0	-4.833516E-11	-4.733227E-01	0.000000E+00	0.000000E+00	0.000000E+00	-3.796808E-01			
8	0	-1.249136E-11 -5.323367E-11	9.258382E-09 -6.575998E-01	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	-5.225090E-09 3.507367E-02			
0	0	-1.375729E-11	4.857943E-09	0.000000E+00	0.000000E+00	0.000000E+00	-2.970407E-09			
5	0	-1.468447E-11	3.571737E-09	0.000000E+00	0.000000E+00	0.000000E+00	-1.689824E-10			
10	0	-5.900998E-11 -1.525008E-11	2.279262E-01 2.824088E-09	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	7.341997E-01 -1.904478E-09			
11	0	-5.974554E-11	1.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00	7.855798E-01			
		1.01101/11 11	0.0000001000	0.0000001100		0.0000001000	3.2133111 03			
MODE = 6	COMPLEX EIGENVA	LUE = -3.497479	E+02, 6.986210	E+03	SUBCASE 1					
		СОМ	IPLEX EI	GENVECT (REAL/IMAGIN	'OR NUMB IARY)	ER 6				
GRID	COORDINATE	Τ1	Т2	ТЗ	R1	R2	R3			
2	0	-8.842369E-12	2.280767E-01	0.000000E+00	0.000000E+00	0.000000E+00	3.766304E-01			
3	0	3.943561E-12 -1.746701E-11	1.110826E-08 6.047084E-01	U.UUUUUU0E+00 0.000000E+00	U.UUUUUUUE+00 0.000000E+00	U.UUUUUU0E+00 0.000000E+00	1.477227E-08 3.121163E-01			
Д	0	7.790018E-12	2.100222E-08 7.568022E-01	0.000000E+00	0.000000E+00	0.000000E+00	4.699155E-09			
-	°	1.144466E-11	2.392219E-08	0.000000E+00	0.000000E+00	0.000000E+00	2.518356E-09			
5	U	-3.322422E-11 1.481749E-11	5.26/839E-01 2.438510E-08	0.000000E+00	0.000000E+00	0.000000E+00	-4.058157E-01 -3.808008E-09			
6	0	-3.996880E-11 1.782547E-11	2.053366E-02 1.483056E-08	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	-5.554151E-01 -1.337957E-08			
7	0	-4.572922E-11	-4.733227E-01	0.000000E+00	0.000000E+00	0.000000E+00	-3.796808E-01			
8	0	-5.036363E-11	-6.575998E-01	0.000000E+00	0.000000E+00	0.000000E+00	-4./44435E-09 3.507367E-02			
9	0	2.246140E-11 -5.375792E-11	5.037579E-09 -3.955047E-01	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	3.336627E-09 4.732967E-01			
1.0	°	2.397521E-11	5.945119E-09	0.000000E+00	0.000000E+00	0.000000E+00	-2.366942E-09			
TO	U	2.489866E-11	2.279091E-09	0.000000E+00	0.000000E+00	0.000000E+00	-3.407295E-09			
11	0	-5.652443E-11 2.520902E-11	1.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00	7.855798E-01 -1.738740E-09			

Listing 9-3. Extracted Eigenvectors for the Damped 2-D Cantilever Beam. (Continued)

10. LINEAR PRESTRESS STATIC ANALYSIS

10.1 Introduction

In Autodesk Inventor Nastran you can simulate how a structure's modes, displacements, stresses, etc. are affected by a pre-stiffened or prestressed structure. One example would be the out of plane deflection of a flat plate in an initial state of biaxial stress. Prestress tensile stresses would stiffen the plate in flexure and thus decrease the out of plane deflection resulting from a transverse load. The opposite is true for prestress compressive stresses.

In prestress analysis, the global stiffness matrix is augmented by the initial stress or differential stiffness matrix as shown below:

$$\left| \begin{bmatrix} K_I \end{bmatrix} + \begin{bmatrix} K_S \end{bmatrix} \right| \{ D \} = \{ R \}$$

where,

- $[K_l]$ is the global linear stiffness matrix
- $[K_s]$ is the global initial stress stiffness matrix
- $\{D\}$ is the global displacement vector
- $\{R\}$ is the global load vector

10.2 How to Setup a Model Input File for Linear Prestress Static Analysis

In Autodesk Inventor Nastran you can solve a linear prestress static problem by setting SOLUTION = LINEAR PRESTRESS STATIC in the Model Initialization File or by specifying SOL 181 or SOL LINEAR PRESTRESS STATIC above the Case Control Section in the Model Input File, and following the procedure listed below:

- 1. Apply prestress static loads to the first subcase. These loads will generate internal loads that are used to formulate the initial stress or differential stiffness matrix.
- 2. Additional loading is referenced in the second through n subcases.
- 3. The initial stress stiffness matrix is automatically generated for each element that supports differential stiffness. Elements that support differential stiffness are: CROD, CBAR, CBEAM, CQUAD4, CQUADR, CTRIA3, CTRIAR, CHEXA, CPENTA, CPYRA, and CTETRA.
- 4. Each subcase may have a different boundary condition; however, the global differential stiffness matrix will be based on the boundary conditions specified in the first subcase.
- 5. The parameter ADDPRESTRESS is used to control if the stress from the first subcase (initial stress state) is added to subsequent subcases. The default setting for ADDPRESTRESS is ON.

10.3 Interpreting Results

As an example we will use the cantilever beam shown in Figure 10-1. The 50 pound compressive load defines the initial stress state. It is desired to find deflection and rotation at the free end resulting from a 5 pound shear load. Listing 10-1 contains the Model Input File and Listing 10-2 shows the predicted displacements from the Model Results Output File. The deflected shape is plotted in Figure 10-2.

Figure 10-1. Prestress Beam Example Problem.

Listing 10-1. Model Input File for the Prestress Beam Problem.

```
$ LINEAR PRESTRESS STATIC SOLUTION.
Ś
SOL LINEAR PRESTRESS STATIC
Ś
$ OPTION FOR ADDING PRESTRESS SUBCASE 1 RESULTS TO FOLLOWING SUBCASES.
Ś
PARAM, ADDPRESTRESS, ON
Ś
TITLE = INSTALLATION TEST CASE
SUBTITLE = 2-D CANTILEVER BEAM WITH A PRESTRESS COMPRESSIVE LOAD
DISPLACEMENT = ALL
STRESS = ALL
SUBCASE 1
LABEL = PRESTRESS COMPRESSIVE LOAD (AXIAL).
 SPC = 1
 LOAD = 1
SUBCASE 2
 LABEL = POINT LOAD AT FREE END (SHEAR).
 SPC = 1
 LOAD = 2
Ś
BEGIN BULK
Ś
$ GEOMETRY DEFINITION (10" BEAM DIVIDED INTO 10 ELEMENTS).
Ś

      GRID,
      1,
      0,
      0.,
      0.,
      0

      GRID,
      2,
      0,
      1.,
      0.,
      0

      GRID,
      3,
      0,
      2.,
      0.,
      0

      GRID,
      3,
      0,
      2.,
      0.,
      0

      3.,
      0.,
      0.,
      0

      4.,
      0.,
      0.,
      0

      5.,
      0.,
      0.,
      0

GRID, 4, 0,
GRID, 5, 0,
GRID, 6, 0,

      GRID,
      7,
      0,
      6.,
      0.,
      0.,
      0

      GRID,
      8,
      0,
      7.,
      0.,
      0.,
      0

      GRID,
      9,
      0,
      8.,
      0.,
      0.,
      0

      GRID,
      10,
      0,
      9.,
      0.,
      0.,
      0

      GRID,
      10,
      0,
      9.,
      0.,
      0.,
      0

GRID, 11, 0, 10., 0., 0.,
                                                  0
Ś
$ BEAM MODELED WITH BAR ELEMENTS.
Ś
CBAR, 1, 10,
CBAR, 2, 10,
                                   2, 0., 1., 0.
3, 0., 1., 0.
                           1,
                           2,
CBAR, 3, 10, 3, 4, 0., 1., 0.
CBAR, 4, 10,
CBAR, 5, 10,
CBAR, 6, 10,
                          4, 5, 0., 1., 0.
5, 6, 0., 1., 0.
6, 7, 0., 1., 0.
CBAR, 7, 10,
                          7, 8, 0., 1., 0.
CBAR, 8, 10,
CBAR, 9, 10,
                          8,
                                   9, 0., 1., 0.
10, 0., 1., 0.
                           9, 10,
CBAR, 10, 10, 10, 11, 0., 1.,
                                                          0.
Ś
$ ELEMENT MATERIAL AND SECTION PROPERTIES (1.0" X 0.2" CROSS-SECTION).
Ś
PBAR, 10, 100, 0.2, 6.667E-4, 1.667E-2, 2.328E-3,
    -0.1, 0.5, 0.1, 0.5, -0.1, -0.5, 0.1, -0.5
Ś
$ ELEMENT MATERIAL PROPERTIES (ALUMINUM).
Ś
MAT1, 100, 1.E+7, , 0.33, 0.1
Ś
$ FIXED AT BOTH ENDS, MOVEMENT CONSTRAINED TO X-Y PLANE ONLY.
Ś
SPC1, 1, 123456, 1
SPC1, 1,
                    345, 1, THRU, 11
```

Listing 10-1. Model Input File for the Prestress Beam Problem. (Continued)

```
$ PRESTRESS COMPRESSIVE LOAD (AXIAL).
$
FORCE, 1, 11, 0, -50., 1., 0., 0.
$
$ POINT LOAD AT FREE END (SHEAR).
$
FORCE, 2, 11, 0, -5., 0., 1., 0.
ENDDATA
```


PRESTRESS COMPRESSIVE LOAD (AXIAL)					SUBCASE 1		
			LACEMEN		D		
			DISP	LACEMEN	T VECTO	K	
GRID	COORDINATE	Τ1	Т2	тЗ	R1	R2	R3
ID	ID						
2	0	-0.250000E-04	0.00000E+00	0.000000E+00	0.000000E+00	0.000000E+00	0.00000E+00
3	0	-0.500000E-04	0.00000E+00	0.000000E+00	0.000000E+00	0.000000E+00	0.00000E+00
4	0	-0.750000E-04	0.00000E+00	0.000000E+00	0.000000E+00	0.000000E+00	0.00000E+00
5	0	-0.100000E-03	0.00000E+00	0.000000E+00	0.000000E+00	0.000000E+00	0.00000E+00
6	0	-0.125000E-03	0.00000E+00	0.000000E+00	0.000000E+00	0.000000E+00	0.00000E+00
7	0	-0.150000E-03	0.00000E+00	0.000000E+00	0.000000E+00	0.000000E+00	0.00000E+00
8	0	-0.175000E-03	0.00000E+00	0.000000E+00	0.000000E+00	0.000000E+00	0.00000E+00
9	0	-0.200000E-03	0.00000E+00	0.000000E+00	0.00000E+00	0.000000E+00	0.00000E+00
10	0	-0.225000E-03	0.00000E+00	0.000000E+00	0.00000E+00	0.000000E+00	0.00000E+00
11	0	-0.250000E-03	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00	0.00000E+00
EDGILON	- 0 207004	F 1 F					
CTDAIN ENED	- U.39/904	E-10 2					
SIKAIN ENER	GI = 0.020000	E-02					
MAVIMIM DIG	PLACEMENT MAGN	TTUDE = 0 2500	00E-03 AT GRI	т 11			
	L DIJODIJIDIA I THION	11000 0.2000					
MAXIMUM DIS MAXIMUM ROT	ATTON MAGNITUD	E = 0.0000	100E±00 AT GR1	D 11			
MAXIMUM DIS MAXIMUM ROT.	ATION MAGNITUD	E = 0.0000	DODE+OO AT GRI	.D 11			
MAXIMUM DIS MAXIMUM ROT.	ATION MAGNITUD	E = 0.0000	000E+00 AT GR1	.D 11			
MAXIMUM DIS MAXIMUM ROT.	ATION MAGNITUD	E = 0.0000	JUUE+UU AT GRI	.D 11			
MAXIMUM DIS MAXIMUM ROT. POINT LOAD	ATION MAGNITUD: AT FREE END (E = 0.0000 Shear)	000E+00 AT GRI	.D 11	SUBCASE 2		
MAXIMUM DIS MAXIMUM ROT. POINT LOAD	ATION MAGNITUD: AT FREE END (E = 0.0000 SHEAR)	DOUE+00 AT GRI		SUBCASE 2	5	
POINT LOAD	ATION MAGNITUD: AT FREE END (.	E = 0.0000 SHEAR)	DODE+OO AT GRI D I S P	d II L A C E M E N	SUBCASE 2 T VECTO	R	
POINT LOAD	ATION MAGNITUD AT FREE END (. COORDINATE	E = 0.0000 SHEAR) T1	DISP T2	LACEMEN T3	SUBCASE 2 T VECTO R1	R R2	R3
MAXIMUM DIS MAXIMUM ROT POINT LOAD GRID ID	ATION MAGNITUD AT FREE END (COORDINATE ID	E = 0.0000 SHEAR) T1	DISP T2	d II L A C E M E N T3	SUBCASE 2 T VECTO R1	R R2	R3
GRID 2	ATION MAGNITUD AT FREE END (COORDINATE ID 0	E = 0.0000 SHEAR) T1 0.000000E+00	D I S P T2 -0.496293E-02	L A C E M E N T3 0.000000E+00	SUBCASE 2 T V E C T O R1 0.0000000E+00	R R2 0.000000E+00	R3 -0.979465E-02
GRID GRID 2 3	ATION MAGNITUD AT FREE END (COORDINATE ID 0 0	E = 0.0000 SHEAR) T1 0.000000E+00 0.000000E+00	D I S P T2 -0.496293E-02 -0.193149E-01	D II L A C E M E N T3 0.000000E+00 0.000000E+00	SUBCASE 2 T V E C T O R1 0.000000E+00 0.000000E+00	R R2 0.000000E+00 0.000000E+00	R3 -0.979465E-02 -0.187664E-01
MAXIMUM POINT POINT LOAD GRID ID 2 3 4	ATION MAGNITUD AT FREE END (COORDINATE ID 0 0 0	E = 0.0000 SHEAR) 0.000000E+00 0.000000E+00 0.000000E+00	D I S P T2 -0.496293E-02 -0.193149E-01 -0.421989E-01	L A C E M E N T3 0.0000000E+00 0.0000000E+00 0.000000E+00	SUBCASE 2 T V E C T O R1 0.000000E+00 0.000000E+00 0.000000E+00	R R2 0.000000E+00 0.000000E+00 0.000000E+00	R3 -0.979465E-02 -0.187664E-01 -0.268480E-01
GRID ID 2 3 4 5	ATION MAGNITUD AT FREE END (COORDINATE ID 0 0 0 0 0	E = 0.0000 SHEAR) 0.000000E+00 0.00000E+00 0.00000E+00	D I S P T2 -0.496293E-02 -0.193149E-01 -0.421989E-01 -0.726939E-01	L A C E M E N T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	SUBCASE 2 T V E C T O R1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R R2 0.00000E+00 0.00000E+00 0.000000E+00	R3 -0.979465E-02 -0.187664E-01 -0.268480E-01 -0.39789E-01
GRID GRID ID 2 3 4 5 6	ATION MAGNITUD AT FREE END (COORDINATE ID 0 0 0 0 0 0 0 0 0 0	E = 0.0000 SHEAR) 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00	D I S P T2 -0.496293E-02 -0.193149E-01 -0.421989E-01 -0.726939E-01 -0.108822E+00	L A C E M E N T3 0.000000E+00 0.00000E+00 0.00000E+00 0.000000E+00 0.000000E+00	SUBCASE 2 T V E C T O R1 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R R2 0.000000E+00 0.00000E+00 0.000000E+00 0.000000E+00	R3 -0.979465E-02 -0.187664E-01 -0.268480E-01 -0.339789E-01 -0.401056E-01
GRID GRID 2 3 4 5 6 7	ATION MAGNITUD AT FREE END (COORDINATE ID 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E = 0.0000 SHEAR) 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.000000E+00	D I S P T2 -0.496293E-02 -0.193149E-01 -0.421989E-01 -0.726939E-01 -0.19822E+00 -0.152555E+00	L A C E M E N T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	SUBCASE 2 T V E C T O R1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R R2 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R3 -0.979465E-02 -0.187664E-01 -0.268480E-01 -0.339789E-01 -0.401056E-01 -0.451822E-01
MAXIMUM POINT POINT LOAD GRID ID 2 3 4 5 6 7 8	ATION MAGNITUD AT FREE END (COORDINATE ID 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E = 0.0000 SHEAR)	D I S P T2 -0.496293E-02 -0.193149E-01 -0.726939E-01 -0.726939E-01 -0.152555E+00 -0.15255E+00	L A C E M E N T3 0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	SUBCASE 2 T V E C T O R1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R R2 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R3 -0.979465E-02 -0.187664E-01 -0.268480E-01 -0.339789E-01 -0.401056E-01 -0.451822E-01 -0.491707E-01
GRID GRID ID 2 3 4 5 6 7 8 9	ATION MAGNITUD AT FREE END (COORDINATE ID 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E = 0.0000 SHEAR)	D I S P T2 -0.496293E-02 -0.193149E-01 -0.421989E-01 -0.726939E-01 -0.109822E+00 -0.152555E+00 -0.199823E+00 -0.250524E+00	L A C E M E N T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	SUBCASE 2 T V E C T O R1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R R2 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R3 -0.979465E-02 -0.187664E-01 -0.268480E-01 -0.39789E-01 -0.401056E-01 -0.451822E-01 -0.491707E-01 -0.520412E-01
GRID DD GRID D 2 3 4 5 6 7 8 9 10	ATION MAGNITUD AT FREE END (COORDINATE ID 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E = 0.0000 SHEAR)	D I S P T2 -0.496293E-02 -0.193149E-01 -0.421989E-01 -0.726939E-01 -0.108822E+00 -0.152555E+00 -0.198823E+00 -0.250524E+00 -0.303526E+00	L A C E M E N T3 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.000000E+00	SUBCASE 2 T V E C T O R1 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R R2 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R3 -0.979465E-02 -0.187664E-01 -0.268480E-01 -0.339789E-01 -0.401056E-01 -0.451822E-01 -0.491707E-01 -0.520412E-01 -0.537721E-01
GRID DOINT LOAD GRID D 2 3 4 5 6 7 8 9 10 11	ATION MAGNITUD AT FREE END (COORDINATE ID 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E = 0.0000 SHEAR) T1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	D I S P T2 -0.496293E-02 -0.193149E-01 -0.421989E-01 -0.726339E-01 -0.15255E+00 -0.15255E+00 -0.250524E+00 -0.30526E+00 -0.357684E+00	L A C E M E N T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	SUBCASE 2 T V E C T O R1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R R2 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R3 -0.979465E-02 -0.187664E-01 -0.268480E-01 -0.401056E-01 -0.451822E-01 -0.491707E-01 -0.520412E-01 -0.537721E-01 -0.543506E-01
MAXIMUM POINT POINT LOAD GRID ID 2 3 4 5 6 7 8 9 10 11	ATION MAGNITUD AT FREE END (COORDINATE ID 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E = 0.0000 SHEAR) T1 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	D I S P T2 -0.496293E-02 -0.193149E-01 -0.421989E-01 -0.726939E-01 -0.109822E+00 -0.199823E+00 -0.250524E+00 -0.303526E+00 -0.357684E+00	L A C E M E N T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	SUBCASE 2 T V E C T O R1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R R2 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R3 -0.979465E-02 -0.187664E-01 -0.268480E-01 -0.401056E-01 -0.491707E-01 -0.491707E-01 -0.520412E-01 -0.537721E-01 -0.543506E-01
GRID D GRID D GRID D C S 6 7 8 9 10 11	ATION MAGNITUD AT FREE END (COORDINATE ID 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E = 0.0000 SHEAR) T1 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	D I S P T2 -0.496293E-02 -0.193149E-01 -0.421989E-01 -0.726939E-01 -0.109822E+00 -0.152555E+00 -0.199823E+00 -0.250524E+00 -0.303526E+00 -0.357684E+00	L A C E M E N T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	SUBCASE 2 T V E C T O R1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R R2 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R3 -0.979465E-02 -0.187664E-01 -0.268480E-01 -0.401056E-01 -0.451822E-01 -0.451822E-01 -0.520412E-01 -0.537721E-01 -0.543506E-01
GRID DD GRID D C GRID D C C C C C C C C C C C C C C C C C C	ATION MAGNITUD AT FREE END (COORDINATE ID 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E = 0.0000 SHEAR) T1 0.000000E+00 0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 1TUDE = 0.3576	D I S P T2 -0.496293E-02 -0.193149E-01 -0.421989E-01 -0.726339E-01 -0.109822E+00 -0.152555E+00 -0.15255524E+00 -0.303526E+00 -0.3057684E+00 S84E+00 AT GRI	L A C E M E N T3 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.000000E+00 0.000000E+00 D 11	SUBCASE 2 T V E C T O R1 0.000000E+00 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R R2 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R3 -0.979465E-02 -0.187664E-01 -0.268480E-01 -0.339789E-01 -0.40156E-01 -0.451822E-01 -0.491707E-01 -0.520412E-01 -0.543506E-01
GRID DOINT LOAD GRID ID 2 3 4 5 6 7 8 9 10 11 MAXIMUM DIS MAXIMUM ROT.	ATION MAGNITUD AT FREE END (COORDINATE ID 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E = 0.0000 SHEAR) T1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.0000E+00 0.0000E+0000E+00 0.0000E+000E+000E+000E+000E+000E+000	D I S P T2 -0.496293E-02 -0.193149E-01 -0.421989E-01 -0.726339E-01 -0.15255E+00 -0.15255E+00 -0.303526E+00 -0.3057684E+00 S84E+00 AT GRI	L A C E M E N T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	SUBCASE 2 T V E C T O R1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R R2 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R3 -0.979465E-02 -0.187664E-01 -0.268480E-01 -0.339789E-01 -0.401056E-01 -0.451822E-01 -0.451822E-01 -0.520412E-01 -0.537721E-01 -0.543506E-01
GRID ID 2 3 4 5 6 7 8 9 10 11 MAXIMUM DIS MAXIMUM ROT	ATION MAGNITUD AT FREE END (COORDINATE ID 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E = 0.0000 SHEAR) T1 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1TUDE = 0.3576 E = 0.5435 = 44	D I S P T2 -0.496293E-02 -0.193149E-01 -0.726939E-01 -0.726939E-01 -0.109822E+00 -0.198623E+00 -0.198623E+00 -0.303526E+00 -0.357684E+00 S84E+00 AT GRI 006E-01 AT GRI	L A C E M E N T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	SUBCASE 2 T V E C T O R1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R R2 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R3 -0.979465E-02 -0.187664E-01 -0.268480E-01 -0.401056E-01 -0.451822E-01 -0.451822E-01 -0.520412E-01 -0.537721E-01 -0.543506E-01
GRID POINT LOAD GRID ID 2 3 4 5 6 7 8 9 10 11 MAXIMUM DIS MAXIMUM DIS MAXIMUM COT	ATION MAGNITUD AT FREE END (COORDINATE ID 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E = 0.0000 SHEAR) T1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 ITUDE = 0.3576 E = 0.5435 E-11	D I S P T2 -0.496293E-02 -0.193149E-01 -0.421995-01 -0.193822E+00 -0.193822E+00 -0.193823E+00 -0.199823E+00 -0.303526E+00 -0.357684E+00 584E+00 AT GRI	L A C E M E N T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	SUBCASE 2 T V E C T O R1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R R2 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R3 -0.979465E-02 -0.187664E-01 -0.268480E-01 -0.401056E-01 -0.451822E-01 -0.451822E-01 -0.520412E-01 -0.537721E-01 -0.543506E-01

Note that regardless of the setting for the parameter ADDPRESTRESS, the subcase 1 and subcase 2 global displacement vectors are not combined. The subcase 2 displacement vector does, however, account for the decrease in flexural stiffness due the axial compressive load.

Table 10-1 shows a comparison between Autodesk Inventor Nastran and the theoretical result for beam end deflection and rotation. The theoretical result is based on the formula for a beam under simultaneous axial compression and transverse loading. The formula is:

$$\delta_y = \frac{-V}{kP}(\tan k\ell - k\ell)$$

$$\theta_z = \frac{-V}{P} \frac{1 - \cos k\ell}{\cos k\ell}$$

$$k = \sqrt{\frac{P}{EI}}$$

where,

- δ_y is the deflection in the y-direction at the beam end
- θ_z is the rotation about the z-axis at the beam end
- *V* is the transverse load at the beam end

P is the axial load

 ℓ is the length of the beam

Table 10-1. (Comparison of	Theoretical Versus	Predicted Beam	End Deflection and Rotation.

	Deflection		Rotation			
Theoretical (inches)	Autodesk Inventor Nastran (inches)	Difference (%)	Theoretical (radians)	Autodesk Inventor Nastran (radians)	Difference (%)	
-0.3577	-0.3577	0.0	-0.05435	-0.05435	0.0	

Table 10-2 compares Autodesk Inventor Nastran running a standard LINEAR STATIC solution compared to the theoretical result. The differences between the two solutions highlight the importance of prestress analysis.

Table 10-2. Comparison of Theoretical Versus Predicted Beam End Deflection and Rotation Using a Standard Static Solution.

	Deflection		Rotation		
Theoretical (inches)	Autodesk Inventor Nastran (inches)	Difference (%)	Theoretical (radians)	Autodesk Inventor Nastran (radians)	Difference (%)
-0.3577	-0.2500	30.1	-0.05435	-0.03750	31.0

11. LINEAR PRESTRESS MODAL ANALYSIS

11.1 Introduction

Linear prestress modal analysis allows you to determine the natural frequencies and mode shapes of a structure under a defined state of initial stress. A typical example is a vibrating string in tension. The state of initial stress can have a significant effect of the natural frequency of a structure. Tensile membrane forces increase natural frequencies. Compressive membrane forces decrease them and produce a zero frequency at the critical buckling load.

Autodesk Inventor Nastran determines prestress natural frequency by solving the eigenvalue problem:

$$\left| \left(\begin{bmatrix} \mathcal{K}_I \end{bmatrix} + \begin{bmatrix} \mathcal{K}_S \end{bmatrix} \right) + \lambda \begin{bmatrix} M \end{bmatrix} \right| \begin{bmatrix} \phi \end{bmatrix} = 0$$
$$\lambda_i = \omega_i^2$$

$$f_i = \frac{\omega_i}{2\pi}$$

where,

- $[K_l]$ is the global linear stiffness matrix
- $[K_s]$ is the global initial stress stiffness matrix
- [*M*] is the global mass matrix
- λ_i are the eigenvalues that yield the natural frequencies
- ϕ_i are the eigenvectors that represent the natural mode shapes
- ω_i are the circular frequencies (radians per second)
- f_i are the cyclic frequencies (hertz)

11.2 How to Setup a Model Input File for Linear Prestress Modal Analysis

In Autodesk Inventor Nastran you can perform linear prestress modal analysis by setting SOLUTION = LINEAR PRESTRESS MODAL in the Model Initialization File or by specifying SOL 182 or SOL LINEAR PRESTRESS MODAL above the Case Control Section in the Model Input File. Multiple subcases can be specified, each requesting a different constraint or output set.

11.3 Interpreting Results

As an example we will use the simply-supported beam with an applied axial load shown in Figure 11-1. It is desired to find the lowest natural frequency and the corresponding mode shape. Listing 11-1 contains the Model Input File and Listings 11-2 and 11-3 show the extracted frequencies and eigenvectors from the Model Results Output File. The mode shapes are plotted in Figure 11-2.

Figure 11-1. 2-D Simply-Supported Beam Example Problem.

Listing 11-1. Model Input File for the 2-D Simply-Supported Beam Problem.

```
$ LINEAR PRESTRESS MODAL SOLUTION.
Ś
SOL LINEAR PRESTRESS MODAL
TITLE = INSTALLATION TEST CASE
SUBTITLE= VIBRATION OF A 2-D SIMPLY-SUPPORTED BEAM IN TENSION
DISPLACEMENT = ALL
Ś
SUBCASE 1
 LABEL = PRESTRESS TENSILE LOAD (AXIAL)
 SPC = 1
 LOAD = 1
SUBCASE 2
 LABEL = MODAL
 SPC = 1
 METHOD = 1
Ś
BEGIN BULK
Ś
$ CONVERSION FACTOR FOR WEIGHT DENSITY TO MASS DENSITY
$ MASS = (1/g)*WEIGHT, G=32.2FT/SEC2, WTMASS = 1/(32.2*12) = 0.002588
Ś
PARAM, WTMASS, 0.002588
Ś
$ REQUEST COUPLED MASS MATRIX FORMULATION.
Ś
PARAM, COUPMASS, ON
Ś
$ DEFINE EIGENVALUE EXTRACTION PARAMETERS.
Ś
EIGRL, 1, , , 3, , ,
$ GEOMETRY DEFINITION (10" BEAM DIVIDED INTO 10 ELEMENTS).
Ś
GRID, 1, 0,
                   0., 0., 0., 0

      GRID,
      1,
      0,
      0.,
      0.,
      0.,
      0

      GRID,
      2,
      0,
      1.,
      0.,
      0.,
      0

      GRID,
      3,
      0,
      2.,
      0.,
      0.,
      0

      GRID,
      4,
      0,
      3.,
      0.,
      0.,
      0

      GRID,
      5,
      0,
      4.,
      0.,
      0.,
      0

                    5., 0., 0., 0
6., 0., 0., 0
7., 0., 0., 0
GRID, 6, 0,
GRID, 7, 0,
GRID, 8, 0,
GRID, 9, 0, 8., 0., 0., 0
GRID, 10, 0,
                    9., 0., 0.,
                                          0
GRID, 11, 0, 10., 0.,
                                   0.,
                                           0
Ś
$ BEAM MODELED WITH BAR ELEMENTS.
Ś
                                                  0.
CBAR, 1, 10,
                       1,
                              2, 0., 1.,

      CBAR, 2, 10, 2, 3, 0., 1., 0.

      CBAR, 3, 10, 3, 4, 0., 1., 0.

      CBAR, 4, 10, 4, 5, 0., 1., 0.

CBAR, 5, 10,
                             6, 0., 1., 0.
                       5,
CBAR, 6, 10,
                     6, 7, 0., 1., 0.
                     7, 8, 0., 1.,
8, 9, 0., 1.,
CBAR, 7, 10,
CBAR, 8, 10,
                                                0.
                                                 Ο.
CBAR, 9, 10,
                     9, 10, 0., 1.,
                                                 0.
CBAR, 10, 10, 10, 11, 0., 1., 0.
$ ELEMENT MATERIAL AND SECTION PROPERTIES (1.0" X 0.2" CROSS-SECTION).
Ś
PBAR, 10, 100, 0.2, 6.667E-4, 1.667E-2, 2.328E-3,
, -0.1, 0.5, 0.1, 0.5, -0.1, -0.5, 0.1, -0.5
$
$ ELEMENT MATERIAL PROPERTIES (ALUMINUM).
Ś
MAT1, 100, 1.E+7, , 0.33, 0.1
```

Listing 11-1. Model Input File for the 2-D Simply-Supported Beam Problem. (Continued)

```
$ FIXED AT BOTH ENDS, MOVEMENT CONSTRAINED TO X-Y PLANE ONLY.
$
SPC1, 1, 123, 1
SPC1, 1, 23, 11
SPC1, 1, 345, 1, THRU, 11
$
$
PRESTRESS TENSILE LOAD (AXIAL).
$
FORCE, 1, 11, 0, 1000., 1., 0., 0.
ENDDATA
```

If the beam in Figure 11-1 was unloaded, it would have natural frequency of 178.3 Hz. The 1000 pound tensile load increases the natural frequency to 282.9 Hz. If the load was reversed (i.e., 1000 pound compressive load) the extracted eigenvalues would all be negative, indicating that the beam has buckled (See Figure 11-3).

Listing 11-2. Extracted Eigenvectors for a 2-D Simply-Supported Beam under an Applied Tensile Load.

MODAL	MODAL SUBCASE 2										
REAL EIGENVALUES											
MODE NUMBER	EIGENVALUE	RADIANS	CYCLES	GENERALIZED MASS	GENERALIZED STIFFNESS	ORTHOGONALITY LOSS	ERROR MEASURE				
1	3.160466E+06	1.777770E+03	2.829409E+02	1.000000E+00	3.160466E+06	0.00000E+00	2.262793E-15				
2	2.767011E+07	5.260238E+03	8.371930E+02	1.000000E+00	2.767011E+07	7.439795E-16	3.461170E-14				
3	1.185489E+08	1.088802E+04	1.732882E+03	1.000000E+00	1.185489E+08	4.250073E-16	5.587210E-12				

User's Manual

The theoretical result is based on the following formula for the natural frequency of a uniform simplysupported beam under an applied axial load:

$$f_{i} = \frac{i^{2}\pi a}{2} \sqrt{1 + \frac{P_{i}\ell^{2}}{i^{2} E I \pi^{2}}}$$
$$a = \sqrt{\frac{E I g}{\rho A}}$$

where,

- f_i are the natural frequencies (hertz) corresponding to the i-th mode shape
- E is Young's Modulus
- *I* is the moment of inertia about the applicable plane
- A is the cross-sectional area
- ρ is the material density
- g is the gravitational acceleration (units consistent with length dimensions)
- ℓ is the length of the beam

Table 11-1 shows a comparison between Autodesk Inventor Nastran and the theoretical natural frequency. Both diagonal and coupled mass matrix formulations are included for comparison.

Table 11-1.	Comparison of Theoretical Versus Predicted Natural Frequency for a Simply-
	Supported Beam under an Applied Tensile Load.

	Theoretical	Autodesk Inv Diagonal Mas	entor Nastran s Formulation	Autodesk Inv Coupled Mas	entor Nastran s Formulation
Mode Number	Natural Frequency (Hz)	Natural Difference Frequency (%) (Hz)		Natural Frequency (Hz)	Difference (%)
1	283.0	282.8	0.0	282.9	0.0
2	837.7	835.6	0.3	837.2	0.1
3	1734.7	1724.5	0.6	1732.9	0.1

Listing 11-3. Extracted Eigenvectors for a 2-D Simply-Supported Beam under an Applied Tensile Load.

MODE = 1	EIGENVALUE = 3.1	60466E+06 CYCL	ES = 2.829409E	+02 S	UBCASE 2			
		R	EAL EIG	ENVECTO	R NUMBE	R 1		
GRID	COORDINATE	Т1	Т2	тЗ	R1	R2	R3	
ID	ID							
1	0	0.00000E+00	0.00000E+00	0.000000E+00	0.00000E+00	0.000000E+00	1.952550E+01	
2	0	0.00000E+00	1.920590E+01	0.000000E+00	0.000000E+00	0.000000E+00	1.856986E+01	
3	0	0.00000E+00	3.653179E+01	0.000000E+00	0.000000E+00	0.000000E+00	1.579646E+01	
4	0	0.00000E+00	5.028170E+01	0.000000E+00	0.000000E+00	0.00000E+00	1.147680E+01	
5	0	0.00000E+00	5.910968E+01	0.000000E+00	0.00000E+00	0.00000E+00	6.033712E+00	
6	0	0.00000E+00	6.215160E+01	0.00000E+00	0.000000E+00	0.00000E+00	-9.558105E-15	
7	0	0.00000E+00	5.910968E+01	0.000000E+00	0.000000E+00	0.000000E+00	-6.033712E+00	
8	0	0.00000E+00	5.028170E+01	0.000000E+00	0.000000E+00	0.000000E+00	-1.147680E+01	
9	0	0.00000E+00	3.653179E+01	0.000000E+00	0.000000E+00	0.000000E+00	-1.579646E+01	
10	0	0.00000E+00	1.920590E+01	0.000000E+00	0.000000E+00	0.000000E+00	-1.856986E+01	
11	0	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	-1.952550E+01	
MODE = 2	EIGENVALUE = 2.7	67011E+07 CYCL	ES = 8.371930E	+02 S	UBCASE 2			
		R	EAL EIG	ENVECTO	R NUMBE	R 2		
GRID ID	COORDINATE ID	Τ1	Τ2	Т3	R1	R2	R3	
1	0	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00	3.903967E+01	
2	0	0.00000E+00	3.652110E+01	0.000000E+00	0.000000E+00	0.000000E+00	3.158375E+01	
3	0	0.00000E+00	5.909239E+01	0.000000E+00	0.000000E+00	0.000000E+00	1.206392E+01	
4	0	0.00000E+00	5.909239E+01	0.000000E+00	0.000000E+00	0.000000E+00	-1.206392E+01	
5	0	0.00000E+00	3.652110E+01	0.000000E+00	0.000000E+00	0.000000E+00	-3.158375E+01	
6	0	0.00000E+00	8.511426E-15	0.000000E+00	0.000000E+00	0.000000E+00	-3.903967E+01	
7	0	0.00000E+00	-3.652110E+01	0.000000E+00	0.000000E+00	0.00000E+00	-3.158375E+01	
8	0	0.00000E+00	-5.909239E+01	0.000000E+00	0.000000E+00	0.00000E+00	-1.206392E+01	
9	0	0.00000E+00	-5.909239E+01	0.000000E+00	0.000000E+00	0.00000E+00	1.206392E+01	
10	0	0.00000E+00	-3.652110E+01	0.000000E+00	0.00000E+00	0.00000E+00	3.158375E+01	
11	0	0.00000E+00	0.00000E+00	0.000000E+00	0.00000E+00	0.000000E+00	3.903967E+01	
MODE = 3	EIGENVALUE = 1.1	85489E+08 CYCL	ES = 1.732882E	+03 S	UBCASE 2			
		R	EAL EIG	ENVECTO	R NUMBE	R 3		
GRID	COORDINATE	Τ1	Т2	ΤЗ	Rl	R2	R3	
ID	ID							
1	0	0.000000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	5.856185E+01	
2	0	2.951504E-15	5.026867E+01	0.000000E+00	0.00000E+00	0.00000E+00	3.442179E+01	
3	0	5.254517E-15	5.909436E+01	0.000000E+00	0.00000E+00	0.00000E+00	-1.809661E+01	
4	0	6.406638E-15	1.920092E+01	0.00000E+00	0.00000E+00	0.00000E+00	-5.569563E+01	
5	0	6.160262E-15	-3.652232E+01	0.000000E+00	0.00000E+00	0.00000E+00	-4.737753E+01	
6	0	4.571684E-15	-6.213549E+01	0.000000E+00	0.00000E+00	0.00000E+00	-7.534974E-15	
7	0	1.987842E-15	-3.652232E+01	0.000000E+00	0.00000E+00	0.00000E+00	4.737753E+01	
8	0	-1.026673E-15	1.920092E+01	0.000000E+00	0.000000E+00	0.00000E+00	5.569563E+01	
9	0	-3.813385E-15	5.909436E+01	U.000000E+00	U.000000E+00	U.000000E+00	1.809661E+01	
10	0	-5.767348E-15	5.026867E+01	U.000000E+00	U.000000E+00	U.000000E+00	-3.442179E+01	
11	U	-0.468533E-15	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.0000008+00	0.0000000000000000000000000000000000000	-2.820182E+01	

Figure 11-2. Mode Shapes of a 2-D Simply-Supported Beam Under an Applied Tensile Load.

The effect of axial load on natural frequency for the problem of Figure 11-1 is shown in Figure 11-3. Note that when the applied load becomes compressive, the frequency decreases rapidly until instability occurs at -658 pounds and 0 Hz. This load is the same critical load you would have arrived at if you ran a linear buckling solution.

Figure 11-3. Effect of Axial Load on Natural Frequency for a Simply-Supported Beam.

12. LINEAR PRESTRESS TRANSIENT RESPONSE ANALYSIS

12.1 Introduction

Linear prestress transient response analysis allows you to determine the response of a structure under a defined state of initial stress. A typical example is a vibrating string in tension. The state of initial stress can have a significant effect of the natural frequency of a structure, which will affect the response. Tensile membrane forces increase natural frequencies. Compressive membrane forces decrease them and produce a zero frequency at the critical buckling load.

12.2 How to Setup a Model Input File for Linear Prestress Transient Response Analysis

In Autodesk Inventor Nastran you can perform linear prestress transient response analysis by setting SOLUTION = LINEAR PRESTRESS TRANSIENT RESPONSE in the Model Initialization File or by specifying SOL 184 or SOL LINEAR PRESTRESS TRANSIENT RESPONSE above the Case Control Section in the Model Input File. Multiple subcases can be specified, each requesting a different load or output set. Only one reference to an EIGRL Bulk Data entry (METHOD Case Control command) is permitted. This request should be placed above the first subcase. Linear prestress transient response requires a modal transient response solution. Direct transient response is not supported.

13. LINEAR PRESTRESS FREQUENCY RESPONSE ANALYSIS

13.1 Introduction

Linear prestress frequency response analysis allows you to determine the response of a structure under a defined state of initial stress. A typical example is a vibrating string in tension. The state of initial stress can have a significant effect of the natural frequency of a structure, which will affect the response. Tensile membrane forces increase natural frequencies. Compressive membrane forces decrease them and produce a zero frequency at the critical buckling load.

13.2 How to Setup a Model Input File for Linear Prestress Frequency Response Analysis

In Autodesk Inventor Nastran you can perform linear prestress frequency response analysis by setting SOLUTION = LINEAR PRESTRESS FREQUENCY RESPONSE in the Model Initialization File or by specifying SOL 183 or SOL LINEAR PRESTRESS FREQUENCY RESPONSE above the Case Control Section in the Model Input File. Multiple subcases can be specified, each requesting a different load or output set. Only one reference to an EIGRL Bulk Data entry (METHOD Case Control command) is permitted. This request should be placed above the first subcase. Linear prestress frequency response requires a modal frequency response solution. Direct frequency response is not supported.

14. LINEAR PRESTRESS COMPLEX EIGENVALUE ANALYSIS

14.1 Introduction

Linear complex eigenvalue analysis allows you to determine the response of a structure under a defined state of initial stress. A typical example is turbine rotating at high speed. The state of initial stress can have a significant effect of the natural frequency of a structure, which will affect the response. Tensile membrane forces increase natural frequencies. Compressive membrane forces decrease them and produce a zero frequency at the critical buckling load.

14.2 How to Setup a Model Input File for Linear Prestress Complex Eigenvalue Analysis

In Autodesk Inventor Nastran you can perform linear prestress complex eigenvalue analysis by setting SOLUTION = LINEAR PRESTRESS COMPLEX EIGENVALUE in the Model Initialization File or by specifying SOL 188 or SOL LINEAR PRESTRESS COMPLEX EIGENVALUE above the Case Control Section in the Model Input File. Multiple subcases can be specified, each requesting a different output set. Each subcase must also reference an EIGC Bulk Data entry via the CMETHOD Case Control command.

15. NONLINEAR STATIC ANALYSIS

15.1 Introduction

There are many types of behavior that may be referred to as nonlinear. Some examples of nonlinear behavior include materials that change properties as they are loaded, displacements which cause loads to alter their distribution or magnitude, gaps which may open or close. The degree of nonlinearity may be mild or severe.

In linear static analysis we assume that displacements and rotations are small, supports do not settle, stress is directly proportional to strain, and loads maintain their original directions as the structure deforms. Most problems can usually be considered linear because they are loaded in their linear elastic, small deflection range. For these types of problems, the slight nonlinearity does not affect the results and the difference between a linear and nonlinear solution is negligible.

While many practical problems can be solved using linear analysis, some or all of its inherent assumptions may not be valid. Adjacent parts may make or break contact with the contact area changing as the loads change. Elastic materials may become plastic, or the material may not have a linear stress-strain relation at any stress level. Part of the structure may lose stiffness because of buckling or material failure. Displacements and rotations may become large enough that equilibrium equations must be written for the deformed rather than the original configuration. Large rotations cause pressure loads to change in direction, and also to change in magnitude if there is a change in area to which they are applied.

Nonlinear static analysis is implemented in Autodesk Inventor Nastran as an iterative process using the Newton-Raphson method where the path dependent problem is broken down into several linear steps. The equilibrium equations in incremental form can be written as:

$$[K_t]\{\Delta D\} = \{\Delta R\}$$

where,

 $[K_t]$ is the global tangent stiffness matrix

 $\{\Delta D\}$ is the global incremental displacement vector

 $\{\Delta R\}$ is the global incremental load vector

The global tangent stiffness matrix $[K_t]$ is a function of the global displacements $\{D\}$ because the problem is nonlinear. The current global displacement vector is the sum of the preceding $\{\Delta D\}$'s.

The iterative process allows Autodesk Inventor Nastran to solve contact, geometric (large displacement and rotation) or material (nonlinear elastic, elastic-plastic, and perfectly plastic) nonlinear statics problems. Several examples are given in this section which demonstrate how to setup, run, and interpret results for these types of problems.

15.2 How to Setup a Model Input File for Nonlinear Static Analysis

In Autodesk Inventor Nastran you can solve a nonlinear statics problem by setting SOLUTION = NONLINEAR STATIC in the Model Initialization File or by specifying SOL 106 or SOL NONLINEAR STATIC above the Case Control Section in the Model Input File, and following the guidelines listed below:

- 1. Most nonlinear statics problems can be setup the same as for linear statics (geometry, boundary conditions, loading, etc.). As a minimum, all subcases must reference an NLPARM Bulk Data entry via the NLPARM Case Control Command. The NLPARM entry controls the nonlinear iteration parameters (increment size, number of increments, output control, etc.). Since the solution to a particular load involves a nonlinear search procedure, the solution is not guaranteed. Care must be used when selecting the search procedures on the NLPARM Bulk Data entry. You may override nearly all iteration control restrictions.
- 2. All loads, boundary conditions, elements, element properties (except PCOMP with material nonlinearity), and material properties that are supported in linear statics analysis are supported in nonlinear statics.
- 3. For contact solutions, gap (CGAP), slide line (BCONP), or surface contact (BSCONP) elements must be specified. Contact elements can be used with all loads, boundary conditions, elements and types of nonlinearity supported. Note that for gap elements, contact planes do not rotate as a function of displacement. The user-specified stiffnesses (KA, KB, and KT on the PGAP Bulk Data entry) must be carefully selected when the non-adaptive form is used (TMAX ≤ 0.0 on the PGAP Bulk Data entry). An optimal selection of values is usually a compromise between accuracy and numerical performance. Slide line and surface contact elements rotate as a function of displacement effects are turned on (PARAM, LGDISP, ON), and allow elements to slide past each other.
- 4. Follower forces (forces that follow the deformed geometry) are generated automatically when using element pressures (PLOAD1, PLOAD2, and PLOAD4), element temperatures (TEMP, TEMPD, TEMPP1, and TEMPRB), acceleration loads (GRAV and RFORCE), and grid point forces and moments (FORCE1 and MOMENT1). Follower force effects are controlled using the LGDISP parameter.
- 5. Constraints apply only to the nonrotated displacements at a grid point. In particular, multipoint constraints and rigid elements may cause problems if the connected grid points undergo large motions. However, also note that replacement of the constraints with overly stiff elements may result in convergence problems.
- 6. Large deformations of elements may cause nonequilibrium loading effects. All elements are assumed to have constant length, area, and volume. Large displacement effects are controlled using the LGDISP parameter.
- 7. In large displacement analysis there are two different approaches for the angular motions: gimbal angle and rotation vector. In the gimbal angle approach, angular motions are treated as three ordered rotations about the x, y, and z-axes. The gimbal angle approach is requested by specifying PARAM, LANGLE, 1 (default) in the Model Input File. In the rotation vector approach, the three angular motions are treated as a vector. The rotation is about the rotation axis and the magnitude of rotation is equal to the amplitude of the rotation vector. The rotation vector approach is requested by specifying PARAM, LANGLE, 2 in the Model Input File.

- 8. Material nonlinear solutions require a MATS1 Bulk Data entry be specified for elements that have nonlinear material properties. Both linear and nonlinear materials may be specified in the same solution. Material nonlinear properties can be used with all loads, boundary conditions, elements and types of nonlinearity supported. Bar and rod elements support material nonlinearity only in the axial direction. Better performance may be achieved when using quad elements and elastic-plastic materials if PARAM, QUADINODE is set to OFF and PARAM, QUADRNODE is set to ON.
- 9. The use of CQUADR and CTRIAR elements are preferred over the use of PARAM, K6ROT when large displacements effects are turned on (PARAM, LGDISP, ON).
- 10. Unlike other solutions, subcase loads and results are additive. This allows different loads and boundary conditions to be applied in a specific sequence to the structure. Additionally, different nonlinear iteration parameters (NLPARM) may be specified for each subcase allowing further control. To initialize each subcase to zero set PARAM, NLSUBCREINIT to ON. This setting allows multiple subcases with each having the same zero starting point.
- 11. Arc-length methods are recommended for models where snap-through and post-buckling behavior exists. Arc-length parameters are specified on the NLPCI Bulk Data entry.
- 12. Models should be simple and relatively small initially to gain insight into behavior and verify the approach taken. A linear static solution should be run first to verify boundary conditions and loading. Large displacement and follower force effects can be turned off by setting PARAM, LGDISP to OFF.

15.3 Interpreting Results

In this section we will present several examples demonstrating the features and capabilities of nonlinear static analysis. We will look at three types of nonlinearity: geometric (large displacement and rotation), material (nonlinear elastic and elastic-plastic), and contact.

15.3.1 Large Rotations

The first problem is an example of very large displacement and rotation. It is desired to rotate the free end of the beam shown in Figure 15-1 completely around 360°. Listing 15-1 contains the Model Input File.

Figure 15-1. 2-D Cantilever Beam Example Problem with an End Moment.

Listing 15-1. Model Input File for the Cantilever Beam Problem with an End Moment.

```
$ NONLINEAR STATIC SOLUTION.
Ś
SOL NONLINEAR STATIC
TITLE = INSTALLATION TEST CASE
SUBTITLE = VERY LARGE ROTATION OF A CANTILEVER BEAM
DISPLACEMENT = ALL
Ś
SUBCASE 1
 LABEL = MOMENT AT FREE END ABOUT Z-DIR
 LOAD = 1
 NLPARM = 1
 SPC = 1
BEGIN BULK
$ TURN ON LARGE DISPLACEMENT EFFECTS.
Ś
PARAM, LGDISP, ON
$ DEFINE NONLINEAR SOLUTION PARAMETERS.
NLPARM, 1, 20, , ITER, 5, , , YES
Ś
$ GEOMETRY DEFINITION (10" BEAM DIVIDED INTO 10 ELEMENTS).
Ś

      GRID,
      1,
      0,
      0.,
      0.,
      0

      GRID,
      2,
      0,
      1.,
      0.,
      0

      GRID,
      3,
      0,
      2.,
      0.,
      0

      GRID,
      3,
      0,
      2.,
      0.,
      0

      3.,
      0.,
      0.,
      0

      4.,
      0.,
      0.,
      0

      5.,
      0.,
      0.,
      0

GRID, 4, 0,
GRID, 5, 0,
GRID, 6, 0,

      GRID,
      7,
      0,
      6.,
      0.,
      0,
      0

      GRID,
      7,
      0,
      6.,
      0.,
      0,
      0

      GRID,
      8,
      0,
      7.,
      0.,
      0,
      0

      GRID,
      9,
      0,
      8.,
      0.,
      0,
      0

      GRID,
      10,
      0,
      9.,
      0.,
      0.,
      0

GRID, 11, 0, 10., 0., 0.,
                                                           0
Ś
$ BEAM MODELED WITH BAR ELEMENTS.
Ś
CBAR, 1, 10,
CBAR, 2, 10,
                               1,
                                          2, 0., 0.,
                                                                      1.
                                           3, 0., 0.,
                                 2,
                                                                      1.

      CBAR,
      2,
      10,
      2,
      5,
      0.,
      1.

      CBAR,
      3,
      10,
      3,
      4,
      0.,
      0.,
      1.

      CBAR,
      4,
      10,
      4,
      5,
      0.,
      0.,
      1.

      CBAR,
      5,
      10,
      4,
      5,
      0.,
      0.,
      1.

      CBAR,
      5,
      10,
      5,
      6,
      0.,
      0.,
      1.

      CBAR,
      6,
      10,
      6,
      7,
      0.,
      0.,
      1.

CBAR, 7, 10,
                               7, 8, 0., 0., 1.
CBAR, 8, 10,
CBAR, 9, 10,
                               8,
                                          9, 0., 0., 1.
10, 0., 0., 1.
                                 9, 10,
CBAR, 10, 10, 10, 11, 0., 0., 1.
Ś
$ BAR ELEMENT MATERIAL AND SECTION PROPERTIES (1.0" X 0.2" CROSS-SECTION).
Ś
PBAR, 10, 100, 0.2, 1.667E-2, 6.667E-4, 2.328E-3,
     -0.5, 0.1, 0.5, 0.1, -0.5, -0.1, 0.5, -0.1
Ś
$ ELEMENT MATERIAL PROPERTIES (ALUMINUM).
Ś
MAT1, 100, 1.E+7, , 0.33, 0.1
Ś
$ FIXED AT ONE END, MOVEMENT CONSTRAINED TO X-Y PLANE ONLY.
Ś
SPC1, 1, 123456, 1
SPC1, 1,
                       345, 1, THRU, 11
Ś
$ END MOMENT (Z-DIRECTION).
Ś
MOMENT, 1, 11, 0, 4189., 0., 0., 1.
ENDDATA
```

Note that the orientation vector defining the bar element coordinate system must be defined parallel to the axis of rotation. Since the bar rotates about the global z-axis, the element y-axis is defined to be the global z-axis. This is important because the updated element coordinate system will be calculated using the undeformed element y-axis definition.

The NLPARM entry controls the nonlinear iteration and intermediate output. Here, we have requested that the 4189 inch-pound load be divided into 20 increments and that intermediate output be supplied for each increment. The maximum displacements from the Model Results Output File are shown in tabular form in Listing 15-2. Maximum vector results are output for each subcase. Note that the units for rotation are in radians. The deflected shapes are plotted in Figure 15-2.

Listing 15-2. Load Increment Maximum Displacements and Rotations.

			махімим	DISPLA	СЕМЕΝТЅ		
LOAD	LOAD	Τ1	Т2	тЗ	R1	R2	R3
INCREMENT	FACIOR	1 (207007 01	1 5570000.00	0 0000000000000000000000000000000000000	0 0000000000000000000000000000000000000	0 0000000000000000000000000000000000000	2 1415000 01
1	5.000000E-02	1.632/89E-01	1.55/983E+00	0.00000E+00	0.000000E+00	0.000000E+00	3.141592E-01
2	1.000000E-01	6.435680E-01	3.040089E+00	0.000000E+00	0.000000E+00	0.000000E+00	6.283185E-01
3	1.500000E-01	1.412885E+00	4.375353E+00	0.000000E+00	0.000000E+00	0.000000E+00	9.424777E-01
4	2.000000E-01	2.426751E+00	5.502288E+00	0.00000E+00	0.000000E+00	0.000000E+00	1.256637E+00
5	2.500000E-01	3.627253E+00	6.372747E+00	0.00000E+00	0.00000E+00	0.000000E+00	1.570796E+00
6	3.000000E-01	4.947011E+00	6.954843E+00	0.00000E+00	0.00000E+00	0.00000E+00	1.884956E+00
7	3.500000E-01	6.313747E+00	7.234680E+00	0.00000E+00	0.00000E+00	0.000000E+00	2.199115E+00
8	4.000000E-01	7.655110E+00	7.216829E+00	0.00000E+00	0.00000E+00	0.000000E+00	2.513274E+00
9	4.500000E-01	8.903427E+00	6.923490E+00	0.00000E+00	0.00000E+00	0.00000E+00	2.827433E+00
10	5.000000E-01	1.000000E+01	6.392453E+00	0.00000E+00	0.000000E+00	0.00000E+00	3.141593E+00
11	5.500000E-01	1.089868E+01	5.814916E+00	0.00000E+00	0.00000E+00	0.00000E+00	3.455752E+00
12	6.000000E-01	1.156842E+01	5.315670E+00	0.00000E+00	0.00000E+00	0.000000E+00	3.769911E+00
13	6.500000E-01	1.199474E+01	4.911833E+00	0.00000E+00	0.000000E+00	0.000000E+00	4.084071E+00
14	7.000000E-01	1.217989E+01	4.579621E+00	0.00000E+00	0.00000E+00	0.00000E+00	4.398230E+00
15	7.500000E-01	1.214183E+01	4.257288E+00	0.00000E+00	0.000000E+00	0.00000E+00	4.712389E+00
16	8.000000E-01	1.191213E+01	4.005218E+00	0.00000E+00	0.000000E+00	0.000000E+00	5.026549E+00
17	8.500000E-01	1.153297E+01	3.785962E+00	0.00000E+00	0.000000E+00	0.000000E+00	5.340708E+00
18	9.000000E-01	1.105341E+01	3.528039E+00	0.00000E+00	0.000000E+00	0.000000E+00	5.654867E+00
19	9.500000E-01	1.052547E+01	3.379959E+00	0.000000E+00	0.000000E+00	0.000000E+00	5.969026E+00
20	1.000000E+00	9.999999E+00	3.236068E+00	0.000000E+00	0.00000E+00	0.000000E+00	6.283186E+00

Table 15-1 shows a comparison between Autodesk Inventor Nastran and the theoretical end rotation. The formula is:

$$\theta_{end} = \frac{M\ell}{EI}$$

where,

 $\theta_{\rm end}$ is the end rotation

M is the end moment

E is Young's Modulus

- *l* is the moment of intertia about the applicable plane
- ℓ is the length of the beam
| Load
Increment | Load Factor
(%) | Theoretical
(degrees) | Autodesk Inventor
Nastran
(degrees) | Difference
(%) |
|-------------------|--------------------|--------------------------|---|-------------------|
| 5 | 25 | 90.0 | 90.0 | 0.0 |
| 10 | 50 | 180.0 | 180.0 | 0.0 |
| 15 | 75 | 270.0 | 270.0 | 0.0 |
| 20 | 100 | 360.0 | 360.0 | 0.0 |

Table 15-1. Comparison of Theoretical Versus Predicted Beam End Rotations.

15.3.2 Large Displacements

The next problem is another example of very large displacement and rotation. Initially, the beam in Figure 15-3 is subjected to an axial force $P = 0.9P_{Cr}$ and a small lateral force $P_i = 0.1P_{Cr}$ (initial disturbance) at the free end. The lateral force is subsequently removed and large rotations of the beam are produced when the axial force is increased above the critical value P_{Cr} . The critical load is calculated from Reference 18 using:

$$P_{cr} = \frac{\pi^2 EI}{4\ell^2}$$

Listing 15-3 contains the Model Input File.

Figure 15-3. 2-D Cantilever Beam Example Problem with an Axial End Force.

Listing 15-3. Model Input File for the Cantilever Beam Problem with an Axial End Force.

```
$ NONLINEAR STATIC SOLUTION.
Ś
SOL NONLINEAR STATIC
TITLE = INSTALLATION TEST CASE
SUBTITLE = POST BUCKLING ANALYSIS OF A CANTILEVER BEAM
DISPLACEMENT = ALL
FORCE = ALL
SPC = 1
NLPARM = 1
SUBCASE 1
 LABEL = P/Pcr = 0.900 PLUS LATERAL
 LOAD = 1
SUBCASE 2
 LABEL = P/Pcr = 1.152
 LOAD = 2
SUBCASE 3
 LABEL = P/Pcr = 1.518
 LOAD = 3
SUBCASE 4
 LABEL = P/Pcr = 2.541
 I_0AD = 4
SUBCASE 5
LABEL = P/Pcr = 4.029
 LOAD = 5
SUBCASE 6
 LABEL = P/Pcr = 9.116
LOAD = 6
Ś
BEGIN BULK
$ TURN ON LARGE DISPLACEMENT EFFECTS.
PARAM, LGDISP, ON
$
$ DEFINE NONLINEAR SOLUTION PARAMETERS.
Ś
NLPARM, 1, 10, , ITER, 1, , , NO
Ś
$ GEOMETRY DEFINITION (10" BEAM DIVIDED INTO 10 ELEMENTS).
Ś
GRID, 1, 0, 0., 0., 0., 0
GRID, 2, 0, 1., 0., 0., 0
GRID, 3, 0, 2., 0., 0., 0
GRID, 4, 0, 3., 0., 0., 0
GRID, 5, 0,
                4., 0., 0., 0
                5., 0., 0., 0
6., 0., 0., 0
7., 0., 0., 0
GRID, 6, 0,
GRID, 7, 0,
GRID, 8, 0,
GRID, 9, 0, 8., 0., 0.,
GRID, 10, 0, 9., 0., 0.,
GRID, 11, 0, 10., 0., 0.,
                                   0
                                   0
                                   0
Ś
$ BEAM MODELED WITH BAR ELEMENTS.
Ś
CBAR, 1, 10, 1, 2, 0., 0., 1.

      CBAR, 2, 10, 2, 3, 0., 0., 1.

      CBAR, 3, 10, 3, 4, 0., 0., 1.

      CBAR, 4, 10, 4, 5, 0., 0., 1.

CBAR, 5, 10, 5, 6, 0., 0., 1.
CBAR, 6, 10,
CBAR, 7, 10,
                  6, 7, 0., 0., 1.
7, 8, 0., 0., 1.
CBAR, 8, 10, 8, 9, 0., 0., 1.
CBAR, 9, 10,
                  9, 10, 0., 0., 1.
CBAR, 10, 10, 10, 11, 0., 0.,
                                         1.
Ś
\ bar element material and section properties (1.0" \times 0.2" cross-section).
Ś
      10, 100, 0.2, 1.667E-2, 6.667E-4, 2.328E-3,
PBAR,
, -0.5, 0.1, 0.5, 0.1, -0.5, -0.1, 0.5, -0.1
```

User's Manual

Ś

Listing 15-3. Model Input File for the Cantilever Beam Problem with an Axial End Force. (Continued)

\$ ELEMENT MATERIAL PROPERTIES (ALUMINUM). Ś MAT1, 100, 1.E+7, , 0.33, 0.1 Ś \$ FIXED AT ONE END, MOVEMENT CONSTRAINED TO X-Y PLANE ONLY. Ś SPC1, 1, 123456, 1 SPC1, 1, 345, 1, THRU, 11 Ś \$ LOADING (Pcr = 164.5).Ś FORCE, 1, 11, 0, 164.5, -0.900, 0.1, Ο. FORCE, 2, 11, 0, 164.5, -1.152, 0., 0. FORCE, 3, 11, 0, 164.5, -1.518, 0., Ο. FORCE, 4, 11, 0, 164.5, -2.541, FORCE, 5, 11, 0, 164.5, -4.029, FORCE, 6, 11, 0, 164.5, -9.116, 0., 0. 0., Ο. 0. 0., ENDDATA

In this example, the subcase structure is used to control the load application with the NLPARM entry used to control the nonlinear iteration and intermediate output. The analysis is performed in six subcases with each subcase divided into 10 increments. The first subcase contains the initial loading, which triggers the large bending beyond the critical buckling load. The lateral force is then removed with each of the remaining subcases corresponding to an increasing axial force ratio, P/P_{Cr} , of 1.152, 1.518, 2.541, 4.029, and 9.116. The ITER option of KMETHOD on the NLPARM Bulk Data entry is selected with KSTEP set to 1, specifying the full Newton's method. The maximum displacements from the Model Results Output File are shown in tabular form in Listing 15-4. Theoretical results given in Reference 18 at each P/P_{Cr} ratio are compared to predicted values in Table 15-2. The deflected shapes are plotted in Figure 15-4.

P/Pcr = 0.	900 PLUS LATERAL		SUBCASE 1				
			МАХІМИМ	DISPLA	СЕМЕΝТЅ		
LOAD INCREMEN	LOAD I FACTOR	Τ1	Τ2	ТЗ	R1	R2	R3
1	1.000000E-01	5.626600E-04	9.024624E-02	0.000000E+00	0.000000E+00	0.000000E+00	1.358794E-02
2	2.000000E-01	2.552055E-03	1.999392E-01	0.000000E+00	0.000000E+00	0.000000E+00	3.022102E-02
3	3.000000E-01	7.031550E-03	3.360746E-01	0.000000E+00	0.000000E+00	0.000000E+00	5.100405E-02
4	4.000000E-01	1.598085E-02	5.093251E-01	0.000000E+00	0.000000E+00	0.000000E+00	7.762938E-02
5	5.000000E-01	3.329118E-02	7.366284E-01	0.000000E+00	0.000000E+00	0.000000E+00	1.128003E-01
6	6.000000E-01	6.711409E-02	1.045930E+00	0.000000E+00	0.000000E+00	0.000000E+00	1.610273E-01
7	7.000000E-01	1.356572E-01	1.484171E+00	0.000000E+00	0.000000E+00	0.000000E+00	2.300512E-01
8	8.000000E-01	2.811141E-01	2.126161E+00	0.000000E+00	0.000000E+00	0.000000E+00	3.328186E-01
9	9.000000E-01	5.915713E-01	3.052338E+00	0.000000E+00	0.000000E+00	0.000000E+00	4.857224E-01
10	1.000000E+00	1.173620E+00	4.215686E+00	0.00000E+00	0.00000E+00	0.00000E+00	6.897444E-01

Listing 15-4. Subcase and Load Increment Maximum Displacements and Rotations.

Listing 15-4. Subcase and Load Increment Maximum Displacements and Rotations. (Continued)

P/Pcr = 1.152			SUBC	ASE 2		
		махімим	DISPLA	СЕМЕΝТЅ		
LOAD LOAD	Τ1	Т2	тЗ	R1	R2	R3
INCREMENT FACTOR 1 1.00000E-01 2 2.00000E-01 3 3.00000E-01 4 4.00000E-01 5 5.000000E-01 6 6.00000E-01 7 7.00000E-01 8 8.00000E-01 9 9.000000E-01 10 1.000000E+00	1.238127E+00 1.314203E+00 1.509937E+00 1.634144E+00 1.943816E+00 2.130151E+00 2.336150E+00 2.559498E+00	4.319003E+00 4.436674E+00 4.570193E+00 4.720654E+00 4.888358E+00 5.072444E+00 5.270653E+00 5.479375E+00 5.694045E+00 5.909754E+00	0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	7.095212E-01 7.321863E-01 7.581309E-01 7.877135E-01 8.211911E-01 8.586464E-01 8.999279E-01 9.446312E-01 9.921378E-01 1.041701E+00
P/Pcr = 1.518			SU	BCASE 3		
		махімим	DISPLA	СЕМЕΝТЅ		
LOAD LOAD INCREMENT FACTOR	Τ1	Τ2	тЗ	R1	R2	R3
1 1.00000E-01 2 2.00000E-01 3 3.00000E-01 4 4.00000E-01 5 5.000000E-01 6 6.00000E-01 7 7.00000E-01 8 8.00000E-01 9 9.000000E-01 10 1.000000E+00	3.074797E+00 3.555460E+00 4.004936E+00 4.42652E+00 5.193009E+00 5.543090E+00 5.87355E+00 6.185400E+00 6.480659E+00	6.352419E+00 6.703099E+00 6.884954E+00 7.213414E+00 7.359455E+00 7.551187E+00 7.674782E+00 7.775047E+00 7.855789E+00 7.920077E+00	0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.000000E+00 0.000000E+00 0.00000E+00 0.000000E+00	0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	1.148729E+00 1.242440E+00 1.325958E+00 1.401322E+00 1.46981E+00 1.533003E+00 1.591209E+00 1.695620E+00 1.695620E+00
P/Pcr = 2.541			SU	BCASE 4		
		МАХІМИМ	DISPLA	СЕМЕΝТЅ		
LOAD LOAD INCREMENT FACTOR	Τ1	Τ2	тЗ	R1	R2	R3
1 1.000000E-01 2 2.00000E-01 3 3.000000E-01 4 4.000000E-01 5 5.000000E-01 6 6.00000E-01 7 7.000000E-01 8 8.000000E-01 9 9.000000E-01 10 1.000000E+00	7.227439E+00 7.875935E+00 8.946105E+00 9.392528E+00 9.792158E+00 1.015199E+01 1.047770E+01 1.104469E+01	8.032060E+00 8.072446E+00 8.065437E+00 8.026574E+00 7.966190E+00 7.891328E+00 7.806881E+00 7.71629E+00 7.622038E+00 7.525861E+00	0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.000000E+00	1.860181E+00 1.960562E+00 2.047726E+00 2.124319E+00 2.124319E+00 2.35735E+00 2.357768E+00 2.402336E+00 2.443524E+00
P/Pcr = 4.029			SU	BCASE 5		
		МАХІМИМ	DISPLA	СЕМЕΝТЅ		
LOAD LOAD INCREMENT FACTOR 1 1.000000E-01 2 2.0000000E-01 3 3.000000E-01 4 4.000000E-01 5 5.000000E-01 6 6.000000E-01 7 7.000000E-01 8 8.000000E-01 9 9.000000E-01 10 1.000000E+00	T1 1.139931E+01 1.171466E+01 1.225167E+01 1.248250E+01 1.268292E+01 1.288566E+01 1.306300E+01 1.322683E+01 1.337876E+01	T2 7.385070E+00 7.245492E+00 6.975835E+00 6.847281E+00 6.604190E+00 6.489723E+00 6.379867E+00 6.274479E+00	T3 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R1 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R2 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R3 2.497474E+00 2.545407E+00 2.688254E+00 2.626763E+00 2.693062E+00 2.721756E+00 2.747958E+00 2.771959E+00 2.771959E+00 2.794003E+00
P/Pcr = 9.116			SU	BCASE 6		
		МАХІМИМ	DISPLA	СЕМЕΝТЅ		
LOAD LOAD INCREMENT FACTOR 1 000000E-01 2 2.000000E-01 4 4.00000E-01 5 5.000000E-01 6 6.000000E-01 7 7.000000E-01 8 8.00000E-01 9 9.000000E-01 10 1.000000E+00	T1 1.382518E+01 1.418606E+01 1.474027E+01 1.496002E+01 1.515253E+01 1.547595E+01 1.561387E+01 1.573928E+01	T2 5.945448E+00 5.658976E+00 5.407911E+00 5.186232E+00 4.989041E+00 4.812396E+00 4.653128E+00 4.508673E+00 4.376944E+00 4.256233E+00	T3 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R1 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R2 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R3 2.857236E+00 2.906079E+00 2.944554E+00 2.975339E+00 3.000293E+00 3.02740E+00 3.037652E+00 3.051753E+00 3.063596E+00 3.073603E+00

P/P _{cr}	Autodesk Inventor Nastran X _{end} /L	Theoretical X <i>end</i> /L	Difference (%)
1.152	0.744	0.741	0.4
1.518	0.352	0.349	0.9
2.541	0.105	0.107	1.9
4.029	-0.338	-0.340	0.6
9.116	-0.574	-0.577	0.5

Table 15-2a.	Comparison of	Theoretical Ver	rsus Predicted E	Beam End X-Dis	placements.
					plaoemento.

Table 15-2b.	Comparison o	f Theoretical Ve	ersus Predicted	Beam End `	Y-Displacements.
--------------	--------------	------------------	-----------------	------------	------------------

P/P _{cr}	Autodesk Inventor Nastran Y _{end} /L	Theoretical Y _{end} /L	Difference (%)
1.152	0.591	0.593	0.3
1.518	0.792	0.792	0.0
2.541	0.753	0.750	0.4
4.029	0.627	0.625	0.3
9.116	0.426	0.421	1.2

Table 15-2c.	Comparison of	Theoretical	Versus	Predicted	Beam End Rotation	ns.
--------------	---------------	-------------	--------	-----------	-------------------	-----

P/Pcr	Autodesk Inventor Nastran $ heta_{end}$	Theoretical $ heta_{end}$	Difference (%)
1.152	59.7	60.0	0.5
1.518	99.9	100.0	0.1
2.541	140.0	140.0	0.0
4.029	160.1	160.0	0.1
9.116	176.1	176.0	0.1

15.3.3 Nonlinear-Elastic Material

The next problem is an example of material nonlinearity. The beam in Figure 15-5 is made from a nonlinear elastic material and subjected to a 1000 pound axial force. The load is divided into 20 increments.

The material behavior is stress dependent and represented graphically in Figure 15-6. The stress dependence is input using MATS1 and TABLES1 Bulk Data entries. The MATS1 Bulk Data entry must reference an isotropic material. Listing 15-5 contains the Model Input File.

Figure 15-5. 2-D Cantilever Beam Example Problem with a Nonlinear Elastic Material.

Figure 15-6. TABLES1 Bulk Data Entry Equivalent Stress vs. Total Strain Input Data.

Listing 15-5. Model Input File for Cantilever Beam Problem with a Nonlinear Elastic Material.

```
$ NONLINEAR STATIC SOLUTION.
Ś
SOL NONLINEAR STATIC
Ś
TITLE = INSTALLATION TEST CASE
SUBTITLE = AXIAL LOADED CANTILEVER BEAM WITH NONLINEAR ELASTIC MATERIAL
Ś
DISPLACEMENT = ALL
FORCE = ALL
STRESS = ALL
Ś
SUBCASE 1
  LABEL = TENSILE LOAD IN X-DIR
  LOAD = 1
  NLPARM = 1
  SPC = 1
 Ś
BEGIN BULK
$ DEFINE NONLINEAR SOLUTION PARAMETERS.
 Ś
NLPARM, 1, 20, , , , , , , YES
Ś
$ GEOMETRY DEFINITION (10" BEAM DIVIDED INTO 10 ELEMENTS).
 Ś
                                 0., 0., 0., 0

1., 0., 0., 0

2., 0., 0., 0

3., 0., 0., 0

4., 0., 0., 0

5., 0., 0., 0
GRID, 1, 0,
GRID, 2, 0,
 GRID, 3, 0,
GRID, 4, 0,
GRID, 5, 0,
GRID, 6, 0,

        GRID,
        7,
        0,
        6.,
        0.,
        0.
        0
        GRID,
        0
        GRID,
        0
        0
        0
        GRID,
        0
        0
        0
        GRID,
        0
        0
        0
        0
        GRID,
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        <
GRID, 10, 0, 9., 0., 0.,
                                                                          0
GRID, 11, 0, 10., 0., 0.,
                                                                          0
Ś
$ BEAM MODELED WITH BAR ELEMENTS.
 Ś

      CBAR,
      1,
      10,
      1,
      2,
      0.,
      0.,
      1.

      CBAR,
      2,
      10,
      2,
      3,
      0.,
      0.,
      1.

      CBAR,
      3,
      10,
      3,
      4,
      0.,
      0.,
      1.

      CBAR,
      3,
      10,
      3,
      4,
      0.,
      0.,
      1.

      CBAR,
      4,
      10,
      4,
      5,
      0.,
      0.,
      1.

      CBAR,
      5,
      10,
      5,
      6,
      0.,
      0.,
      1.

      CBAR,
      6,
      10,
      6,
      7,
      0.,
      0.,
      1.

CBAR, 7, 10, 7, 8, 0., 0., 1.
CBAR, 8, 10, 8, 9, 0., 0., 1.
CBAR, 9, 10, 9, 10, 0., 0., 1.
CBAR, 10, 10, 10, 11, 0., 0.,
                                                                                    1.
Ś
 $ BAR ELEMENT MATERIAL AND SECTION PROPERTIES (1.0" X 0.2" CROSS-SECTION).
Ś
PBAR, 10, 100, 0.2, 1.667E-2, 6.667E-4, 2.328E-3, -0.5, 0.1, 0.5, 0.1, -0.5, -0.1, 0.5, -0.1
Ś
$ LINEAR ELEMENT MATERIAL PROPERTIES (ALUMINUM).
Ś
MAT1, 100, 1.E+7, , 0.33, 0.1
Ś
$ NONLINEAR-ELASTIC ELEMENT MATERIAL PROPERTIES.
 Ś
MATS1, 100, 10, NLELAST
 $
$ STRESS/STRAIN DATA.
Ś
TABLES1, 10,
   , 0., 0., 1.E-3, 1.E+4, 2.5E-3, 2.E+4, 5.E-3, 3.E+4,
     , 9.E-3, 4.E+4, 1.7E-2, 5.E+4, 3.E-2, 6.E+4, ENDT
```

Listing 15-5. Model Input File for the Cantilever Beam Problem with a Nonlinear Elastic Material. (Continued)

\$ FIXED AT ONE END, FREE TO TRANSLATE IN X-DIR AT OTHER END.
\$
SPC1, 1, 123456, 1
SPC1, 1, 23456, 2, THRU, 11
\$
\$
\$ TENSILE LOAD (X-DIRECTION).
\$
FORCE, 1, 11, 0, 1.E+4, 1., 0., 0.
ENDDATA

The maximum displacements from the Model Results Output File are shown in tabular form in Listing 15-6 and graphically in Figure 15-7. Bar element equivalent stress is plotted against effective strain in Figure 15-8. Since this is a simple case of axial loading, the input and output stress-strain curves are the same.

Listing 15-6. Load Increment Maximum Displacements.

LOAD	LOAD	Τ1	Т2	Т3	R1	R2	R3
NCREMENT	FACTOR						
1	5.000000E-02	2.500000E-03	0.000000E+00	0.000000E+00	0.00000E+00	0.000000E+00	0.00000E+00
2	1.000000E-01	5.00000E-03	0.000000E+00	0.000000E+00	0.00000E+00	0.000000E+00	0.00000E+00
3	1.500000E-01	7.500000E-03	0.00000E+00	0.000000E+00	0.00000E+00	0.000000E+00	0.000000E+00
4	2.000000E-01	1.00000E-02	0.00000E+00	0.000000E+00	0.00000E+00	0.000000E+00	0.000000E+00
5	2.500000E-01	1.375000E-02	0.00000E+00	0.000000E+00	0.000000E+00	0.00000E+00	0.000000E+00
6	3.000000E-01	1.750000E-02	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
7	3.500000E-01	2.125000E-02	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
8	4.000000E-01	2.500000E-02	0.00000E+00	0.000000E+00	0.00000E+00	0.000000E+00	0.000000E+00
9	4.500000E-01	3.125000E-02	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
10	5.000000E-01	3.750000E-02	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
11	5.500000E-01	4.375000E-02	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
12	6.00000E-01	5.000000E-02	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
13	6.500000E-01	6.00000E-02	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
14	7.000000E-01	7.000000E-02	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
15	7.500000E-01	8.00000E-02	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
16	8.000000E-01	9.000000E-02	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
17	8.500000E-01	1.100000E-01	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
18	9.000000E-01	1.300000E-01	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
19	9.500000E-01	1.500000E-01	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
20	1.000000E+00	1.700000E-01	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00

15.3.4 Thermal-Elastic Material

The next problem is an example thermal-elastic material nonlinearity. The beam in Figure 15-9 is made from a temperature dependent material and subjected to a 1000 pound axial force at initial temperature of 100 $^{\circ}$ F. The temperature then increased to 200 $^{\circ}$ F while the load is held constant. The temperature increment is divided into 10 increments.

There are two methods for analyzing this problem. Both methods yield the same results as will be shown. The material behavior is temperature dependent and represented graphically in Figure 15-10. In the first method, the temperature dependence is input using MATS1, TABLES1, and TABLEST Bulk Data entries. The MATS1 Bulk Data entry must reference an isotropic material. Listing 15-7 contains the Model Input File.

Figure 15-9. 2-D Cantilever Beam Example Problem with a Temperature Dependent Material.

Figure 15-10a. TABLES1 Bulk Data Entry Equivalent Stress vs. Total Strain Input Data at 100 °F.

Autodesk Inventor Nastran Solver 2021

Figure 15-10b. TABLES1 Bulk Data Entry Equivalent Stress vs. Total Strain Input Data at 200 °F.

Total Strain

Listing 15-7. Model Input File for the Cantilever Beam Problem with a Temperature Dependent Material.

```
$ NONLINEAR STATIC SOLUTION.
Ś
SOL NONLINEAR STATIC
Ś
TITLE = INSTALLATION TEST CASE
SUBTITLE = AXIAL LOADED CANTILEVER BEAM WITH TEMPERATURE DEPENDENT MATERIAL
Ś
DISPLACEMENT = ALL
FORCE = ALL
STRESS = ALL
Ś
SPC = 1
TEMPERATURE (INITIAL) = 100
SUBCASE 1
 LABEL = TENSILE LOAD IN X-DIR, TEMPERATURE AT 100 DEG.
  LOAD = 1
 NLPARM = 1
SUBCASE 2
  LABEL = TENSILE LOAD IN X-DIR, TEMPERATURE AT 200 DEG.
 TEMPERATURE (MATERIAL) = 200
 LOAD = 1
 NLPARM = 2
Ś
BEGIN BULK
Ś
$ DEFINE NONLINEAR SOLUTION PARAMETERS.
Ś
NLPARM, 1, 1, , , , , , , YES
NLPARM, 2, 10, , , , , , YES
Ś
$ GEOMETRY DEFINITION (10" BEAM DIVIDED INTO 10 ELEMENTS).
Ś

      GRID,
      1,
      0,
      0.,
      0.,
      0.,
      0

      GRID,
      2,
      0,
      1.,
      0.,
      0
      0

      GRID,
      3,
      0,
      2.,
      0.,
      0.,
      0

      GRID,
      3,
      0,
      2.,
      0.,
      0.,
      0

      GRID,
      4,
      0,
      3.,
      0.,
      0.,
      0

      GRID,
      5,
      0,
      4.,
      0.,
      0.,
      0

      GRID,
      6,
      0,
      5.,
      0.,
      0.,
      0

      GRID,
      7,
      0,
      5.,
      0.,
      0.,
      0

      GRID,
      7,
      0,
      6.,
      0.,
      0.

      GRID,
      8,
      0,
      7.,
      0.,
      0

      GRID,
      9,
      0,
      8.,
      0.,
      0.,
      0

GRID, 10, 0, 9., 0., 0.,
GRID, 11, 0, 10., 0., 0.,
                                                         0
                                                         0
Ś
$ BEAM MODELED WITH BAR ELEMENTS.
Ś

      CBAR, 1, 10, 1, 2, 0., 0., 1.

      CBAR, 2, 10, 2, 3, 0., 0., 1.

      CBAR, 3, 10, 3, 4, 0., 0., 1.

      CBAR, 4, 10, 4, 5, 0., 0., 1.

      CBAR, 5, 10, 5, 6, 0., 0., 1.

      CBAR, 6, 10, 6, 7, 0., 0., 1.

                                       7, 0., 0., 1.
CBAR, 7, 10, 7, 8, 0., 0., 1.
                            8,
CBAR, 8, 10,
CBAR, 9, 10,
                                       9, 0., 0.,
10, 0., 0.,
                                                                  1.
                              9, 10,
                                                                  1.
CBAR, 10, 10, 10, 11, 0., 0.,
                                                                 1.
Ś
$ BAR ELEMENT MATERIAL AND SECTION PROPERTIES (1.0" X 0.2" CROSS-SECTION).
Ś
PBAR, 10, 100, 0.2, 1.667E-2, 6.667E-4, 2.328E-3,
, -0.5, 0.1, 0.5, 0.1, -0.5, -0.1, 0.5, -0.1
Ś
$ LINEAR ELEMENT MATERIAL PROPERTIES (ALUMINUM).
Ś
MAT1, 100, 1.E+7, , 0.33, 0.1
```

Listing 15-7. Model Input File for the Cantilever Beam Problem with a Temperature Dependent Material. (Continued)

```
$ NONLINEAR-ELASTIC ELEMENT MATERIAL PROPERTIES.
Ś
MATS1, 100, 10, NLELAST
Ś
$ TEMPERATURE DEPENDENT STRESS/STRAIN DATA.
Ś
TABLEST, 10,
, 0., 20, 100., 30, 200., 40, ENDT
TABLES1, 20,
, -1., -1.E+7, 0., 0., 1., 1.E+7, ENDT
TABLES1, 30,
, -1., -1.E+7, 0., 0., 1., 1.E+7, ENDT
TABLES1, 40,
, -1., -5.E+6, 0., 0., 1., 5.E+6, ENDT
Ś
$ FIXED AT ONE END, FREE TO TRANSLATE IN X-DIR AT OTHER END.
Ś
                  .1
SPC1, 1, 123456,
SPC1, 1, 23456, 2, THRU, 11
Ś
$ TENSILE LOAD (X-DIRECTION).
Ś
FORCE, 1, 11, 0, 1.E+4, 1., 0., 0.
Ś
$ UNIFORM TEMPERATURE.
Ś
TEMPD, 100, 100.
TEMPD, 200, 200.
ENDDATA
```

The maximum displacements from the Model Results Output File are shown in tabular form in Listing 15-8 and graphically in Figure 15-11. Bar element total strain is plotted against load factor in Figure 15-12. Note that for subcase 2, a load factor of 0.0 corresponds to a temperature of 100 $^{\circ}$ F and at 1.0, a temperature of 200 $^{\circ}$ F.

Listing 15-8. Subcase 2 Load Increment Maximum Displacements.

LOAD	LOAD	Τ1	Т2	Т3	R1	R2	R3
INCREMENT	FACTOR						
1	1.000000E-01	5.263125E-02	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00
2	2.000000E-01	5.554209E-02	0.00000E+00	0.000000E+00	0.00000E+00	0.000000E+00	0.000000E+00
3	3.000000E-01	5.881059E-02	0.00000E+00	0.00000E+00	0.000000E+00	0.000000E+00	0.000000E+00
4	4.000000E-01	6.247772E-02	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00
5	5.000000E-01	6.664291E-02	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00
6	6.000000E-01	7.140140E-02	0.00000E+00	0.000000E+00	0.00000E+00	0.000000E+00	0.00000E+00
7	7.000000E-01	7.688979E-02	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00
8	8.000000E-01	8.330279E-02	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00
9	9.000000E-01	9.086483E-02	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00
10	1.000000E+00	9.994857E-02	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00

Figure 15-11. Maximum Displacement vs. Load Factor.

Figure 15-12. Bar Element Total Strain vs. Load Factor.

In the second method, the temperature dependence is input using MATT1 and TABLEM2 Bulk Data entries. The MATT1 Bulk Data entry must reference an isotropic material. Listing 15-9 contains the Model Input File.

Listing 15-9. Model Input File for the Cantilever Beam Problem with a Temperature Dependent Material –Alternate Method.

```
$ NONLINEAR STATIC SOLUTION.
 Ś
SOL NONLINEAR STATIC
Ś
TITLE = INSTALLATION TEST CASE
SUBTITLE = AXIAL LOADED CANTILEVER BEAM WITH TEMPERATURE DEPENDENT MATERIAL
Ś
DISPLACEMENT = ALL
FORCE = ALL
STRESS = ALL
Ś
SPC = 1
TEMPERATURE (INITIAL) = 100
SUBCASE 1
  LABEL = TENSILE LOAD IN X-DIR, TEMPERATURE AT 100 DEG.
  LOAD = 1
  NI_PARM = 1
SUBCASE 2
  LABEL = TENSILE LOAD IN X-DIR, TEMPERATURE AT 200 DEG.
  TEMPERATURE (MATERIAL) = 200
  LOAD = 1
 NLPARM = 2
 Ś
BEGIN BULK
Ś
$ DEFINE NONLINEAR SOLUTION PARAMETERS.
Ś
NLPARM, 1, 1, , , , , , , YES
NLPARM, 2, 10, , , , , , YES
$ GEOMETRY DEFINITION (10" BEAM DIVIDED INTO 10 ELEMENTS).
Ś

      GRID,
      1,
      0,
      0.,
      0.,
      0

      GRID,
      2,
      0,
      1.,
      0.,
      0

      GRID,
      3,
      0,
      2.,
      0.,
      0

      GRID,
      3,
      0,
      2.,
      0.,
      0

      GRID, 3, 0, 2., 0., 0., 0

      GRID, 4, 0, 3., 0., 0., 0

      GRID, 5, 0, 4., 0., 0., 0

      GRID, 6, 0, 5., 0., 0., 0

      GRID, 7, 0, 6., 0., 0., 0

      GRID, 8, 0, 7., 0., 0., 0

      GRID, 9, 0, 8., 0., 0., 0

      GRID, 10, 0, 9., 0., 0., 0

GRID, 11, 0, 10., 0.,
                                                        0.,
                                                                     0
$ BEAM MODELED WITH BAR ELEMENTS.
 Ś

      CBAR,
      1,
      10,
      1,
      2,
      0.,
      0.,
      1.

      CBAR,
      2,
      10,
      2,
      3,
      0.,
      0.,
      1.

      CBAR,
      3,
      10,
      2,
      3,
      0.,
      0.,
      1.

      CBAR,
      3,
      10,
      3,
      4,
      0.,
      0.,
      1.

      CBAR, 4, 10, 4, 5, 0., 0., 1.

      CBAR, 5, 10, 5, 6, 0., 0., 1.

      CBAR, 6, 10, 6, 7, 0., 0., 1.

CBAR, 7, 10, 7, 8, 0., 0., 1.
CBAR, 8, 10, 8, 9, 0., 0., 1.
CBAR, 9, 10, 9, 10, 0., 0., 1.
CBAR, 10, 10, 10, 11, 0., 0., 1.
```

Listing 15-9. Model Input File for the Cantilever Beam Problem with a Temperature Dependent Material –Alternate Method. (Continued)

```
$ BAR ELEMENT MATERIAL AND SECTION PROPERTIES (1.0" X 0.2" CROSS-SECTION).
Ś
PBAR, 10, 100, 0.2, 1.667E-2, 6.667E-4, 2.328E-3,
  -0.5, 0.1, 0.5, 0.1, -0.5, -0.1, 0.5, -0.1
Ś
$ LINEAR ELEMENT MATERIAL PROPERTIES (ALUMINUM).
$
MAT1, 100, 1.E+7, , 0.33, 0.1
Ś
$ MATERIAL TEMPERATURE DEPENDENCE.
Ś
MATT1, 100, 10, 10
Ś
TABLEM2, 10,
, 0., 1., 100., 1., 200., 0.5, ENDT
Ś
$ FIXED AT ONE END, FREE TO TRANSLATE IN X-DIR AT OTHER END.
Ś
SPC1, 1, 123456,
                   1
SPC1, 1, 23456, 2, THRU, 11
Ś
$ TENSILE LOAD (X-DIRECTION).
Ś
FORCE, 1, 11, 0, 1.E+4, 1., 0., 0.
Ś
$ UNIFORM TEMPERATURE.
Ś
TEMPD, 100, 100.
TEMPD, 200, 200.
ENDDATA
```

The maximum displacements from the Model Results Output File are shown in tabular form in Listing 15-10 and graphically in Figure 15-13. Bar element total strain is plotted against load factor in Figure 15-14. Note that both methods yield the same results.

Listing 15-10. Subcase 2 Load Increment Maximum Displacements.

			махімим	DISPLA	CEMENTS		
LOAD	LOAD	Τ1	Τ2	ΤЗ	R1	R2	R3
INCREMENT	FACTOR						
1	1.000000E-01	5.263125E-02	0.000000E+00	0.000000E+00	0.00000E+00	0.000000E+00	0.000000E+00
2	2.000000E-01	5.554209E-02	0.000000E+00	0.000000E+00	0.00000E+00	0.000000E+00	0.000000E+00
3	3.000000E-01	5.881059E-02	0.000000E+00	0.000000E+00	0.00000E+00	0.000000E+00	0.000000E+00
4	4.000000E-01	6.247772E-02	0.000000E+00	0.000000E+00	0.00000E+00	0.000000E+00	0.00000E+00
5	5.000000E-01	6.664291E-02	0.000000E+00	0.000000E+00	0.00000E+00	0.000000E+00	0.00000E+00
6	6.000000E-01	7.140140E-02	0.000000E+00	0.000000E+00	0.00000E+00	0.000000E+00	0.000000E+00
7	7.000000E-01	7.688979E-02	0.000000E+00	0.00000E+00	0.000000E+00	0.000000E+00	0.00000E+00
8	8.000000E-01	8.330279E-02	0.000000E+00	0.000000E+00	0.00000E+00	0.000000E+00	0.000000E+00
9	9.000000E-01	9.086483E-02	0.000000E+00	0.00000E+00	0.00000E+00	0.000000E+00	0.000000E+00
10	1.000000E+00	9.994857E-02	0.000000E+00	0.000000E+00	0.00000E+00	0.000000E+00	0.000000E+00

Figure 15-13. Maximum Displacement vs. Load Factor.

Figure 15-14. Bar Element Total Strain vs. Load Factor.

15.3.5 Elastic-Plastic Material

The next problem is another example of material nonlinearity. The beam in Figure 15-15 is made from an elastic-plastic material and subjected to a 1000 pound axial force. The load is gradually increased in subcase 1 to its full value, then decreased in subcase 2 to zero. The loading is divided into 20 increments for each subcase. The W option of CONV on the NLPARM Bulk Data entry is selected specifying the work convergence criteria (default is load and work convergence criteria).

The material behavior is stress dependent and represented graphically in Figure 15-16. The initial yield point (Y_1) and plasticity modulus (H) are input using the MATS1 Bulk Data entry. In this example, the initial yield point of the material is 3.0E+4 psi and the plasticity modulus is 1.0E+6 psi. The plasticity modulus is related to the tangent modulus, E_T , by:

$$H = \frac{E_{T}}{1 - \frac{E_{T}}{E}}$$

Listing 15-11 contains the Model Input File.

Figure 15-15. 2-D Cantilever Beam Example Problem with an Elastic-Plastic Material.

Figure 15-16. MATS1 Bulk Data Entry Equivalent Stress vs. Total Strain Input Data.

Listing 15-11. Model Input File for the Cantilever Beam Problem with an Elastic-Plastic Material.

```
$ NONLINEAR STATIC SOLUTION.
Ś
SOL NONLINEAR STATIC
Ś
TITLE = INSTALLATION TEST CASE
SUBTITLE = AXIAL LOADED CANTILEVER BEAM WITH ELASTIC-PLASTIC MATERIAL
Ś
DISPLACEMENT = ALL
FORCE = ALL
STRESS = ALL
Ś
SUBCASE 1
 LABEL = TENSILE LOAD IN X-DIR
 LOAD = 1
 NLPARM = 1
 SPC = 1
SUBCASE 2
 LABEL = UNLOAD
 NLPARM = 1
 SPC = 1
Ś
BEGIN BULK
Ś
$ DEFINE NONLINEAR SOLUTION PARAMETERS.
Ś
NLPARM, 1, 20, , , , , W, YES
Ś
$ GEOMETRY DEFINITION (10" BEAM DIVIDED INTO 10 ELEMENTS).
$
                   0., 0., 0., 0
1., 0., 0., 0
GRID, 1, 0,
GRID, 2, 0,

      GRID, 3, 0, 2., 0., 0., 0

      GRID, 4, 0, 3., 0., 0., 0

      GRID, 5, 0, 4., 0., 0., 0

                    5., 0., 0., 0
GRID, 6, 0,

      GRID, 7, 0, 6., 0., 0., 0

      GRID, 8, 0, 7., 0., 0., 0

      GRID, 9, 0, 8., 0., 0., 0

GRID, 10, 0,
                    9., 0., 0.,
                                         0
GRID, 11, 0, 10., 0., 0.,
                                          0
Ś
$ BEAM MODELED WITH BAR ELEMENTS.
$
CBAR, 1, 10,
                              2, 0., 0.,
                       1,
                                                 1.

      CBAR, 1, 10, 1, 2, 0., 0., 1.

      CBAR, 2, 10, 2, 3, 0., 0., 1.

      CBAR, 3, 10, 3, 4, 0., 0., 1.

      CBAR, 4, 10, 4, 5, 0., 0., 1.

      CBAR, 5, 10, 5, 6, 0., 0., 1.

CBAR, 6, 10, 6, 7, 0., 0., 1.
CBAR, 7, 10, 7, 8, 0., 0., 1.
CBAR, 8, 10, 8, 9, 0., 0., 1.
CBAR, 9, 10, 9, 10, 0., 0., 1.
                       9, 10, 0., 0., 1.
CBAR, 10, 10, 10, 11, 0., 0., 1.
Ś
$ BAR ELEMENT MATERIAL AND SECTION PROPERTIES (1.0" X 0.2" CROSS-SECTION).
Ś
PBAR, 10, 100, 0.2, 1.667E-2, 6.667E-4, 2.328E-3,
, -0.5, 0.1, 0.5, 0.1, -0.5, -0.1, 0.5, -0.1
Ś
$ LINEAR ELEMENT MATERIAL PROPERTIES (ALUMINUM).
Ś
MAT1, 100, 1.E+7, , 0.33, 0.1
$ ELASTIC-PLASTIC ELEMENT MATERIAL PROPERTIES.
$
MATS1, 100, , PLASTIC, 1.E+6, , , 3.0E+4
```

Listing 15-11. Model Input File for the Cantilever Beam Problem with an Elastic-Plastic Material. (Continued)

\$ FIXED AT ONE END, FREE TO TRANSLATE IN X-DIR AT OTHER END.
\$
SPC1, 1, 123456, 1
SPC1, 1, 23456, 2, THRU, 11
\$
\$
\$ TENSILE LOAD (X-DIRECTION).
\$
FORCE, 1, 11, 0, 1.E+4, 1., 0., 0.
ENDDATA

The maximum displacements from the Model Results Output File are shown in tabular form in Listing 15-12 and graphically in Figure 15-17. Bar element equivalent stress is plotted against total strain in Figure 15-18 and against effective plastic strain in Figure 15-19. A major difference between a nonlinear elastic and elastic-plastic material is that a nonlinear elastic material does not accumulate effective plastic strain, and when unloaded, will return to its initial configuration. In this example, the material is loaded past the initial yield point and well into the plastic range of the material. Plastic strain is accumulated and a residual strain of 2.0E-2 inch/inch exists after the beam is unloaded.

Listing 15-12. Load Increment Maximum Displacements.

TENSILE LOAD IN X-DIR		SUBCASE 1							
			MAXIMUM DISPLACEMENTS						
LOAD	LOAD	Τ1	Т2	тЗ	R1	R2	R3		
INCREMENT	FACTOR								
1	5.000000E-02	2.500000E-03	0.00000E+00	0.000000E+00	0.00000E+00	0.00000E+00	0.00000E+00		
2	1.00000E-01	5.000000E-03	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00		
3	1.500000E-01	7.500000E-03	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00		
4	2.00000E-01	1.00000E-02	0.00000E+00	0.00000E+00	0.00000E+00	0.000000E+00	0.00000E+00		
5	2.500000E-01	1.250000E-02	0.000000E+00	0.000000E+00	0.00000E+00	0.000000E+00	0.000000E+00		
6	3.000000E-01	1.500000E-02	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00		
7	3.500000E-01	1.750000E-02	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00		
8	4.000000E-01	2.000000E-02	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00		
9	4.500000E-01	2.250000E-02	U.UUUUUUE+00	0.000000E+00	0.000000E+00	U.UUUUUUE+00	U.UUUUUUUE+00		
10	5.000000E-01	2.500000E-02	U.UUUUUUE+00	U.UUUUUUE+00	0.000000E+00	U.UUUUUUE+00	U.UUUUUUUE+00		
11	5.500000E-01	2./50000E-02	0.000000E+00	0.0000000000000000000000000000000000000	0.000000E+00	0.000000E+00	0.000000E+00		
12	6.00000E-01	5.000000E-02	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000		
1.0	0.300000E-01	9 500000E-02	0.000000E+00	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.000000E+00	0.000000E+00		
14	7.000000E-01	0.300000E-02	0.000000E+00	0.000000E+00	0.000000E+00	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000		
15	7.300000E-01 8.000000E-01	1.123000E-01	0.000000E+00	0.0000000000000000000000000000000000000	0.000000E+00	0.000000E+00	0.000000E+00		
17	8 500000E 01	1 675000E 01	0.0000000000000000000000000000000000000	0.000000E+00	0.000000E+00	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000		
1.8	9 000000E-01	1 950000E-01	0.000000E+00	0.000000E+00	0.000000E+00	0 000000E+00	0.000000E+00		
19	9 500000E-01	2 225000E-01	0 000000E+00	0 000000E+00	0 000000E+00	0 000000E+00	0 000000E+00		
20	1 000000E+00	2 500000E-01	0 000000E+00	0 000000E+00	0 000000E+00	0 000000E+00	0 000000E+00		
UNIT ON D									
UNLOAD				SU	BCASE 2				
UNLOAD			МАХІМИМ	SU DISPLA	BCASE 2 CEMENTS				
UNLOAD LOAD	LOAD	Tl	МАХІМИМ Т2	SU D I S P L A T3	BCASE 2 C E M E N T S R1	R2	R3		
UNLOAD LOAD INCREMENT	LOAD F FACTOR	T1	M A X I M U M T2	SU D I S P L A T3	BCASE 2 CEMENTS R1	R2	R3		
UNLOAD LOAD INCREMENT 1	LOAD FACTOR 9.500000E-01	T1 2.475000E-01	M A X I M U M T2 0.000000E+00	SU D I S P L A T3 0.000000E+00	ECASE 2 C E M E N T S R1 0.000000E+00	R2	R3		
UNLOAD LOAD INCREMENJ 1 2	LOAD F FACTOR 9.500000E-01 9.000000E-01	T1 2.475000E-01 2.450000E-01	M A X I M U M T2 0.000000E+00 0.000000E+00	SU D I S P L A T3 0.000000E+00 0.000000E+00	ECASE 2 C E M E N T S R1 0.000000E+00 0.000000E+00	R2 0.000000E+00 0.000000E+00	R3 0.000000E+00 0.000000E+00		
UNLOAD LOAD INCREMENJ 1 2 3 4	LOAD F FACTOR 9.500000E-01 8.500000E-01 8.00000E-01	T1 2.475000E-01 2.45000E-01 2.425000E-01	M A X I M U M T2 0.000000E+00 0.000000E+00 0.000000E+00	SU D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00	ECASE 2 C E M E N T S R1 0.000000E+00 0.000000E+00 0.000000E+00	R2 0.000000E+00 0.00000E+00 0.00000E+00	R3 0.000000E+00 0.00000E+00 0.00000E+00		
UNLOAD LOAD INCREMENT 2 3 4 5	LOAD F FACTOR 9.500000E-01 9.00000E-01 8.500000E-01 8.00000E-01 7.500000E-01	T1 2.475000E-01 2.45000E-01 2.425000E-01 2.400000E-01 2.375000E-01	M A X I M U M T2 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	SU D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	ECASE 2 C E M E N T S R1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R2 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00		
UNLOAD LOAD INCREMENT 1 2 3 4 5 6	LOAD FACTOR 9.500000E-01 9.00000E-01 8.500000E-01 7.500000E-01 7.00000E-01	T1 2.475000E-01 2.450000E-01 2.425000E-01 2.400000E-01 2.375000E-01 2.35000E-01	M A X I M U M T2 0.000000E+00 0.000000E+00 0.00000E+00 0.000000E+00 0.000000E+00	SU D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	C E M E N T S R1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R2 0.000000E+00 0.000000E+00 0.00000E+00 0.000000E+00 0.000000E+00	R3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00		
UNLOAD LOAD INCREMENT 1 2 3 4 5 6 7	LOAD F FACTOR 9.500000E-01 8.500000E-01 8.000000E-01 7.500000E-01 7.500000E-01 6.500000E-01	T1 2.475000E-01 2.450000E-01 2.425000E-01 2.375000E-01 2.350000E-01 2.325000E-01	M A X I M U M T2 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	SU D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	ECASE 2 C E M E N T S R1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R2 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00		
UNLOAD LOAD INCREMENT 2 3 4 5 6 7 8	LOAD FACTOR 9.500000E-01 8.500000E-01 8.00000E-01 7.500000E-01 6.500000E-01 6.00000E-01	T1 2.475000E-01 2.425000E-01 2.425000E-01 2.375000E-01 2.35000E-01 2.325000E-01 2.30000E-01	M A X I M U M T2 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	SU D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	ECASE 2 C E M E N T S R1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R2 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R3 0.00000E+00 0.00000E+00 0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00		
UNLOAD LOAD INCREMENT 2 3 4 5 6 7 8 9	LOAD FACTOR 9.500000E-01 9.00000E-01 8.500000E-01 7.500000E-01 7.000000E-01 6.500000E-01 6.500000E-01 5.500000E-01	T1 2.475000E-01 2.45000E-01 2.425000E-01 2.37500E-01 2.35000E-01 2.325000E-01 2.30000E-01 2.75000E-01	M A X I M U M T2 0.000000E+00 0.000000E+00 0.000000E+00 0.00000E+00 0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00	SU D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	ECASE 2 C E M E N T S R1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R2 0.000000E+00 0.000000E+00 0.000000E+00 0.00000E+00 0.00000E+00 0.000000E+00 0.000000E+00	R3 0.000000E+00 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00		
UNLOAD LOAD INCREMENT 1 2 3 4 5 6 7 8 9 10	LOAD FACTOR 9.500000E-01 8.500000E-01 8.00000E-01 7.500000E-01 6.500000E-01 6.00000E-01 5.500000E-01 5.00000E-01	T1 2.475000E-01 2.45000E-01 2.425000E-01 2.375000E-01 2.35000E-01 2.325000E-01 2.30000E-01 2.275000E-01 2.25000E-01	M A X I M U M T2 0.000000E+00 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	SU D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	C E M E N T S R1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R2 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R3 0.00000E+00 0.00000E+00 0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00		
UNLOAD LOAD INCREMENT 1 2 3 4 5 6 7 8 9 10 11	LOAD FACTOR 9.500000E-01 8.500000E-01 8.500000E-01 7.500000E-01 6.500000E-01 6.500000E-01 5.500000E-01 5.00000E-01 4.50000E-01	T1 2.475000E-01 2.450000E-01 2.425000E-01 2.375000E-01 2.350000E-01 2.325000E-01 2.275000E-01 2.25000E-01 2.225000E-01 2.225000E-01	M A X I M U M T2 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	SU D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	C E M E N T S R1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R2 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R3 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00		
UNLOAD LOAD INCREMENT 1 2 3 4 5 6 7 8 9 10 11 12	LOAD FACTOR 9.50000E-01 8.50000E-01 8.50000E-01 7.50000E-01 7.50000E-01 6.50000E-01 5.50000E-01 5.50000E-01 4.00000E-01 4.00000E-01	T1 2.475000E-01 2.425000E-01 2.425000E-01 2.35000E-01 2.35000E-01 2.325000E-01 2.275000E-01 2.25000E-01 2.225000E-01 2.220000E-01	M A X I M U M T2 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	SU D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	C E M E N T S R1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R2 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R3 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00		
UNLOAD LOAD INCREMENT 1 2 3 4 5 6 7 8 9 10 11 12 13	LOAD FACTOR 9.500000E-01 8.500000E-01 8.500000E-01 7.500000E-01 6.500000E-01 6.500000E-01 5.500000E-01 4.500000E-01 4.000000E-01 3.500000E-01	T1 2.475000E-01 2.45000E-01 2.425000E-01 2.375000E-01 2.35000E-01 2.325000E-01 2.300000E-01 2.275000E-01 2.225000E-01 2.225000E-01 2.275000E-01 2.175000E-01	M A X I M U M T2 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	SU D I S P L A T3 0.000000E+00 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00	C E M E N T S R1 0.000000E+00 0.000000E+00 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R2 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R3 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.000000E+00 0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00		
UNLOAD LOAD INCREMENT 1 2 3 4 5 6 7 8 9 10 11 12 13 14	LOAD FACTOR 9.500000E-01 8.500000E-01 8.500000E-01 7.500000E-01 6.500000E-01 5.500000E-01 5.500000E-01 4.500000E-01 3.500000E-01 3.500000E-01	T1 2.475000E-01 2.45000E-01 2.425000E-01 2.375000E-01 2.35000E-01 2.35000E-01 2.30000E-01 2.25000E-01 2.25000E-01 2.225000E-01 2.17500E-01 2.15000E-01	M A X I M U M T2 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	SU D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	C E M E N T S R1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R2 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00		
UNLOAD LOAD INCREMENT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	LOAD FACTOR 9.500000E-01 8.500000E-01 8.500000E-01 7.500000E-01 6.500000E-01 6.500000E-01 5.00000E-01 4.500000E-01 4.500000E-01 3.500000E-01 3.500000E-01 2.500000E-01	T1 2.475000E-01 2.45000E-01 2.425000E-01 2.375000E-01 2.35000E-01 2.325000E-01 2.25000E-01 2.25000E-01 2.225000E-01 2.225000E-01 2.175000E-01 2.15000E-01 2.125000E-01	M A X I M U M T2 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	SU D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	C E M E N T S R1 0.000000E+00 0.00000E+00 0.0000E+0000E+0000E+0000E+000E+000E+000	R2 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R3 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00		
UNLOAD LOAD INCREMENT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	LOAD F FACTOR 9.500000E-01 8.500000E-01 8.500000E-01 7.500000E-01 6.500000E-01 6.000000E-01 5.500000E-01 4.500000E-01 4.500000E-01 3.500000E-01 3.500000E-01 2.500000E-01	T1 2.475000E-01 2.425000E-01 2.425000E-01 2.35000E-01 2.35000E-01 2.325000E-01 2.275000E-01 2.25000E-01 2.25000E-01 2.25000E-01 2.175000E-01 2.15000E-01 2.15000E-01 2.15000E-01	M A X I M U M T2 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	SU D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	C E M E N T S R1 0.000000E+00 0.0000000E+00 0.0000000000E+00 0.000000E+00	R2 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R3 0.00000E+00 0.00000E+00 0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00		
UNLOAD LOAD INCREMENT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	LOAD FACTOR 9.500000E-01 9.00000E-01 8.500000E-01 7.500000E-01 6.500000E-01 6.500000E-01 5.500000E-01 4.000000E-01 3.500000E-01 3.500000E-01 3.500000E-01 2.500000E-01 2.00000E-01 1.500000E-01	T1 2.475000E-01 2.45000E-01 2.425000E-01 2.375000E-01 2.35000E-01 2.325000E-01 2.25000E-01 2.25000E-01 2.225000E-01 2.225000E-01 2.175000E-01 2.175000E-01 2.15000E-01 2.10000E-01 2.075000E-01	M A X I M U M T2 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	SU D I S P L A T3 0.000000E+00 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	C E M E N T S R1 0.000000E+00 0.0000000E+00 0.0000000000E+00 0.0000000E+00 0.000000E+00	R2 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R3 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00		
UNLOAD LOAD INCREMENT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	LOAD FACTOR 9.500000E-01 8.500000E-01 8.500000E-01 7.500000E-01 6.500000E-01 6.500000E-01 5.500000E-01 4.500000E-01 3.500000E-01 3.500000E-01 3.500000E-01 2.500000E-01 1.500000E-01 1.500000E-01	T1 2.475000E-01 2.45000E-01 2.425000E-01 2.375000E-01 2.35000E-01 2.325000E-01 2.25000E-01 2.25000E-01 2.25000E-01 2.25000E-01 2.175000E-01 2.15000E-01 2.125000E-01 2.05000E-01 2.05000E-01	M A X I M U M T2 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	SU D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	C E M E N T S R1 0.000000E+00 0.00000000000E+00 0.0000000E+00 0.000000E+00	R2 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R3 0.000000E+00 0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00		
UNLOAD LOAD INCREMENT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	LOAD FACTOR 9.50000E-01 8.00000E-01 8.00000E-01 7.50000E-01 7.00000E-01 6.00000E-01 5.00000E-01 4.00000E-01 3.50000E-01 3.50000E-01 2.00000E-01 1.00000E-01 1.00000E-01 5.00000E-01 1.00000E-02	T1 2.475000E-01 2.425000E-01 2.425000E-01 2.375000E-01 2.35000E-01 2.325000E-01 2.275000E-01 2.25000E-01 2.25000E-01 2.25000E-01 2.175000E-01 2.125000E-01 2.125000E-01 2.055000E-01 2.055000E-01	M A X I M U M T2 0.000000E+00	SU D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	C E M E N T S R1 0.00000E+00	R2 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00		

Figure 15-17. Maximum Displacement vs. Load Factor.

Figure 15-18. Bar Element Equivalent Stress vs. Total Strain.

Figure 15-19. Bar Element Equivalent Stress vs. Effective Plastic Strain.

15.3.6 Combined Large Displacement and Nonlinear-Elastic Material

The next problem is an example of combined geometric and material nonlinearity. Figure 15-20 shows a cable which is clamped (fixed) at one end and attached with a pulley (free to translate in the x-direction) at the other end. In subcase 1, the cable is initially lose (modeled using nonlinear elastic material nonlinearity) and is tighten by the addition of a tensile load at the pulley. After the slack has been removed, subcase 2 through subcase 4 gradually apply a mid-span load causing the cable to sag a large amount. The sagging cable is then tightened again in subcase 5 with the increase of the tensile load at the pulley and the cable straightens out again (not fully though). Note that the subcase structure is used to initially add a very small amount of shear load, which is then gradually increased thus preventing divergence and increasing solution efficiency. Listing 15-13 contains the Model Input File.

Figure 15-20. 2-D Cable Example Problem.

Listing 15-13. Model Input File for the Cable Example Problem.

```
$ NONLINEAR STATIC SOLUTION.
Ś
SOL NONLINEAR STATIC
TITLE = INSTALLATION TEST CASE
SUBTITLE = SLACK CABLE LOADED OUT OF PLANE THEN PULLED TAUGHT
DISPLACEMENT = ALL
FORCE = ALL
STRESS = ALL
Ś
SPC = 1
SUBCASE 1
 LABEL = INITIAL AXIAL LOAD IN CABLE ADDED WITH P AT 10% -SLACK IS REMOVED
 LOAD = 10
 NLPARM = 1
SUBCASE 2
 LABEL = MID-SPAN LOAD ADDED AT 0.1% OF V, AXIAL LOAD AT 10% OF P
 LOAD = 20
 NLPARM = 1
SUBCASE 3
 LABEL = MID-SPAN LOAD AT 1% OF V, AXIAL LOAD AT 10% OF P
 LOAD = 30
 NI_PARM = 1
SUBCASE 4
 LABEL = MID-SPAN LOAD AT 100% OF V, AXIAL LOAD AT 10% OF P
 LOAD = 40
 NLPARM = 1
SUBCASE 5
 LABEL = MID-SPAN LOAD AT 100% OF V, AXIAL LOAD AT 100% OF P
 IOAD = 50
 NLPARM = 1
BEGIN BULK
$ TURN ON LARGE DISPLACEMENT EFFECTS.
PARAM, LGDISP, ON
Ś
$ DEFINE NONLINEAR SOLUTION PARAMETERS.
Ś
NLPARM, 1, 10, , , , 50, P, YES
Ś
$ GEOMETRY DEFINITION (10" BEAM DIVIDED INTO 10 ELEMENTS).
Ś
GRID, 1, 0,
                          0., 0., 0.,
                                                    0
GRID, 2, 0,
                         1., 0., 0.,
                                                    0
GRID, 3, 0,
                         2., 0., 0.,
                                                    0
                         3., 0., 0.,
4., 0., 0.,
GRID, 4, 0,
GRID, 5, 0,
                                                    0
                                                    0
                         5., 0., 0.,
GRID, 6, 0,
                                                    0

        GRID,
        7,
        0,
        6.,
        0.,
        0.,
        GRID,
        GRID,
        8,
        0,
        7.,
        0.,
        0.,
        GRID,
        GRID,
        9,
        0,
        8.,
        0.,
        0.,
        0.,
        GRID,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0.,
        0
                                                    0
                                                    0
                                                    0
GRID, 10, 0, 9., 0., 0.,
                                                    0
GRID, 11, 0, 10., 0., 0.,
                                                    0
Ś
$ CABLE MODELED WITH BAR ELEMENTS.
Ś
CBAR, 1, 10,
                           1,
                                     2, 0., 0.,
                                                             1.
CBAR, 2, 10,
                             2, 3, 0., 0.,
                                                             1.
CBAR, 3, 10,
                           3, 4, 0., 0., 1.
CBAR, 4, 10,
CBAR, 5, 10,
                           4,
                                    5, 0., 0.,
                                                             1.
                             5,
                                     6,
                                           0.,
                                                   0.,
                                                             1.
CBAR, 6, 10,
                           6,
                                    7, 0., 0., 1.
CBAR, 7, 10,
                           7, 8, 0., 0., 1.
CBAR, 8, 10,
CBAR, 9, 10,
                                     9,
                                           0.,
                           8,
                                                   0.,
                                                             1.
                            9, 10,
                  10,
                                           0.,
                                                   Ο.,
                                                             1.
CBAR, 10, 10, 10, 11, 0.,
                                                    0.,
                                                            1.
$ ELEMENT MATERIAL AND SECTION PROPERTIES.
Ś
PBAR, 10, 100, 0.20, 1.E-9, 1.E-9, 1.E-9
```

Listing 15-13. Model Input File for the Cable Example Problem. (Continued)

```
$ LINEAR ELEMENT MATERIAL PROPERTIES (ALUMINUM).
Ś
MAT1, 100, 1.E+7, , 0.33, 0.1
Ś
$ NONLINEAR-ELASTIC ELEMENT MATERIAL PROPERTIES.
Ś
MATS1, 100, 10, NLELAST
Ś
$ STRESS/STRAIN DATA.
Ś
TABLES1, 10,
 , 0., 0., 1.E-3, 1.E+3, 1., 1.E+7, ENDT
Ś
$ FIXED AT BOTH ENDS -ONE END FREE TO TRANSLATE IN X-DIR.
Ś
SPC1, 1, 123456,
                    1
SPC1, 1, 23456, 11
SPC1, 1, 345, 1,
             345, 1, THRU, 11
$ AXIAL TENSILE LOAD (X-DIRECTION).
FORCE, 1, 11, 0, 1.E+5, 1., 0., 0.
$ MID-SPAN OUT OF PLANE LOAD (Y-DIRECTION).
Ś
FORCE, 2, 6, 0, 5.E+3, 0., -1., 0.
Ś
$ SCALE TOTAL LOADS TO GET SUBCASE LOADING.
Ś
LOAD, 10, 1., 0.,
                         2, 0.1, 1
LOAD, 20, 1., 0.001, 2, 0.1, 1
LOAD, 30, 1., 0.001, 2, 0.1, 1
LOAD, 40, 1., 1., 2, 0.1, 1
LOAD, 50, 1., 1.,
                        2, 1.,
                                   1
ENDDATA
```

The cable is modeled using a nonlinear elastic material, which has very little stiffness until a stress level of 1000 psi is reached (slack removed). The cable moments of inertia are made fictitiously small to represent an actual cable. While great amount of bending does occur, the initial bending stiffness is primary due to the differential stiffness contribution generated from the initial prestress in the cable (subcase 1). The maximum displacements from the Model Results Output File are shown in tabular form in Listing 15-14. The deflected shapes are plotted in Figure 15-21.

Listing 15-14. Subcase and Load Increment Maximum Displacements and Rotations.

INITIAL AXIA	INITIAL AXIAL LOAD IN CABLE ADDED WITH P AT 10% -SLACK IS REMOVED SUBCASE 1										
	MAXIMUM DISPLACEMENTS										
LOAD INCREMENT	LOAD FACTOR	Τ1	Τ2	ТЗ	R1	R2	R3				
1	1.000000E-01	1.399680E-02	0.00000E+00	0.000000E+00	0.00000E+00	0.000000E+00	0.000000E+00				
2	2.000000E-01	1.899190E-02	0.000000E+00	0.000000E+00	0.00000E+00	0.000000E+00	0.000000E+00				
3	3.000000E-01	2.398740E-02	0.000000E+00	0.000000E+00	0.00000E+00	0.000000E+00	0.000000E+00				
4	4.000000E-01	2.898290E-02	0.000000E+00	0.00000E+00	0.000000E+00	0.000000E+00	0.000000E+00				
5	5.000000E-01	3.397840E-02	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00				
6	6.000000E-01	3.897390E-02	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00				
7	7.000000E-01	4.396940E-02	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00				
8	8.000000E-01	4.896490E-02	0.000000E+00	0.000000E+00	0.00000E+00	0.000000E+00	0.000000E+00				
9	9.000000E-01	5.396040E-02	0.000000E+00	0.000000E+00	0.00000E+00	0.000000E+00	0.000000E+00				
10	1.00000E+00	5.895590E-02	0.00000E+00	0.00000E+00	0.00000E+00	0.000000E+00	0.00000E+00				
Listing 15-14. Subcase and Load Increment Maximum Displacements and Rotations. (Continued)

MID-SPAN LC	AD ADDED AT 0.1%	S OF V, AXIAL LO	AD AT 10% OF P	SUB	CASE 2		
			махімим	DISPLA	СЕМЕΝТЅ		
LOAD	LOAD	Tl	Τ2	тЗ	R1	R2	R3
INCREMENT 1	1 000000E 01		1 1010000 04	0 0000000000000000000000000000000000000	0 0000000000000000000000000000000000000	0 0000000000000000000000000000000000000	2 412002E 0E
1	1.000000E-01	5.095590E-02	1.191090E-04	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	2.4130U3E-U3 4 995105E 05
2	2.000000E-01	5.095509E-02	2.442023E-04	0.0000000000000000000000000000000000000	0.000000E+00	0.0000000000000000000000000000000000000	4.005105E-05
3	3.000000E-01	5.89558/E-U2	3.69949/E-04	0.00000E+00	0.000000E+00	0.000000E+00	7.354801E-05
4	4.000000E-01	5.895585E-UZ	4.956/65E-04	0.000000E+00	0.000000E+00	0.000000E+00	9.823953E-U5
5	5.000000E-01	5.095502E-U2	0.21411/E=04	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	1.229303E=04
7	7 000000E-01	5.895575E-02	8 7288/0E=04	0.000000E+00	0.0000000000000000000000000000000000000	0.000000E+00	1 7231178-04
8	8 000000E-01	5.895570E-02	9 986216E-04	0.000000E+00	0.000000E+00	0.000000E+00	1 970026E-04
9	9 000000E-01	5.895565E-02	1 124358E-03	0 000000E+00	0 000000E+00	0 000000E+00	2 216935E-04
10	1.000000E+00	5.895559E-02	1.250095E-03	0.000000E+00	0.000000E+00	0.000000E+00	2.463845E-04
MID-SPAN LC	DAD AT 1% OF V, A	AXIAL LOAD AT 10	% OF P	SUB	CASE 3		
			МИХІМИМ	DISPLA	СЕМЕΝТЅ		
LOAD	LOAD	Tl	Т2	тЗ	R1	R2	R3
1	1 000000E=01	5 895505E-02	2 328704E-03	0 000000E+00	0 000000E+00	0 000000E+00	4 641798E-04
2	2 000000E 01	5.895378E-02	3 455821E-03	0.000000E+00	0.000000E+00	0.000000E+00	6 865740E-04
3	3 000000E-01	5.895199E-02	4 586895E-03	0.000000E+00	0 000000E+00	0 000000E+00	9 088407E-04
4	4.000000E-01	5.894968E-02	5.718445E-03	0.000000E+00	0.000000E+00	0.000000E+00	1.131064E-03
5	5.000000E-01	5.894687E-02	6.850061E-03	0.000000E+00	0.000000E+00	0.000000E+00	1.353281E-03
6	6.000000E-01	5.894355E-02	7.981686E-03	0.000000E+00	0.000000E+00	0.000000E+00	1.575498E-03
7	7.000000E-01	5.893972E-02	9.113311E-03	0.00000E+00	0.000000E+00	0.000000E+00	1.797715E-03
8	8.000000E-01	5.893538E-02	1.024494E-02	0.00000E+00	0.00000E+00	0.00000E+00	2.019932E-03
9	9.000000E-01	5.893054E-02	1.137656E-02	0.00000E+00	0.000000E+00	0.00000E+00	2.242150E-03
10	1.00000E+00	5.892520E-02	1.250818E-02	0.00000E+00	0.00000E+00	0.00000E+00	2.464369E-03
MID-SPAN LC	AD AT 100% OF V,	AXIAL LOAD AT	10% OF P	SUB	CASE 4		
MID-SPAN LC	DAD AT 100% OF V,	AXIAL LOAD AT	10% OF P MAXIMUM	SUB DISPLA	CASE 4 CEMENTS		
MID-SPAN LO	LOAD LOAD	AXIAL LOAD AT T1	10% OF P M A X I M U M T2	SUE DISPLA T3	CASE 4 CEMENTS R1	R2	R3
MID-SPAN LC LOAD INCREMENT	LOAD FACTOR	T1	10% OF P M A X I M U M T2	SUE D I S P L A T3	CASE 4 C E M E N T S R1	R2	R3
MID-SPAN LC LOAD INCREMENT 1 2	LOAD FACTOR 1.00000E-01 2.00000E-01	AXIAL LOAD AT T1 5.524412E-02 4.545541E-02	10% OF P M A X I M U M T2 1.369622E-01 2 611414E-01	SUE D I S P L A T3 0.000000E+00	CASE 4 C E M E N T S R1 0.000000E+00	R2	R3 2.690013E-02 5.130230E-02
MID-SPAN LC LOAD INCREMENT 1 2 3	LOAD FACTOR 1.00000E-01 2.00000E-01 3.00000E-01	AXIAL LOAD AT T1 5.524412E-02 4.545541E-02 2.961242E-02	10% OF P M A X I M U M T2 1.369622E-01 2.611414E-01 3.848461E-01	SUE D I S P L A T3 0.000000E+00 0.000000E+00	CASE 4 C E M E N T S R1 0.000000E+00 0.000000E+00	R2 0.000000E+00 0.000000E+00 0.000000E+00	R3 2.690013E-02 5.130230E-02 7.56425TE-02
MID-SPAN LC LOAD INCREMENT 1 2 3 4	LOAD AT 100% OF V, LOAD FACTOR 1.00000E-01 2.00000E-01 3.00000E-01	T1 5.524412E-02 4.545541E-02 2.961242E-02 7.806385E-03	10% OF P M A X I M U M T2 1.369622E-01 2.611414E-01 3.848461E-01 5.078039E-01	SUE D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00	CASE 4 C E M E N T S R1 0.000000E+00 0.00000E+00 0.000000E+00	R2 0.000000E+00 0.00000E+00 0.000000E+00 0.000000E+00	R3 2.690013E-02 5.130230E-02 7.564257E-02 9.987711E-02
MID-SPAN LC LOAD INCREMENT 1 2 3 4 5	LOAD FACTOR 1.00000E-01 2.00000E-01 3.00000E-01 4.00000E-01	T1 5.524412E-02 4.545541E-02 2.961242E-02 7.806385E-03 1.985301E-02	10% OF P M A X I M U M T2 1.369622E-01 2.611414E-01 3.848461E-01 5.078039E-01 6.299070E-01	SUE D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	CASE 4 C E M E N T S R1 0.000000E+00 0.00000E+00 0.000000E+00 0.000000E+00	R2 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R3 2.690013E-02 5.130230E-02 7.564257E-02 9.987711E-02 1.240078E-01
MID-SPAN LC LOAD INCREMENT 2 3 4 5 6	LOAD FACTOR 1.00000E-01 2.00000E-01 3.00000E-01 4.00000E-01 5.00000E-01	T1 5.524412E-02 4.545541E-02 2.961242E-02 7.806385E-03 1.985301E-02 5.321625E-02	10% OF P M A X I M U M T2 1.369622E-01 2.611414E-01 3.848461E-01 5.078039E-01 6.299070E-01 7.508961E-01	SUE D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	CASE 4 C E M E N T S R1 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R2 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R3 2.690013E-02 5.130230E-02 7.564257E-02 9.987711E-02 1.240078E-01 1.479919E-01
MID-SPAN LC LOAD INCREMENT 1 2 3 4 5 6 7	LOAD AT 100% OF V, LOAD FACTOR 1.000000E-01 2.000000E-01 3.000000E-01 5.000000E-01 6.00000E-01	T1 5.524412E-02 4.545541E-02 2.961242E-02 7.806385E-03 1.985301E-02 5.321625E-02 9.210474E-02	10% OF P M A X I M U M T2 1.369622E-01 2.611414E-01 3.848461E-01 5.078039E-01 6.299070E-01 7.508961E-01 8.706718E-01	SUE D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	CASE 4 C E M E N T S R1 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R2 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R3 2.690013E-02 5.130230E-02 7.564257E-02 9.987711E-02 1.240078E-01 1.479919E-01 1.718358E-01
MID-SPAN LC LOAD INCREMENT 1 2 3 4 5 6 7 8	LOAD AT 100% OF V, LOAD FACTOR 1.00000E-01 2.00000E-01 3.00000E-01 5.00000E-01 6.00000E-01 7.00000E-01	T1 5.524412E-02 4.545541E-02 2.961242E-02 7.806385E-03 1.985301E-02 5.321625E-02 9.210474E-02 1.363304E-01	10% OF P M A X I M U M T2 1.369622E-01 2.611414E-01 3.848461E-01 5.078039E-01 6.299070E-01 7.508961E-01 8.706718E-01 9.888429E-01	SUE D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	CASE 4 C E M E N T S R1 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R2 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R3 2.690013E-02 5.130230E-02 7.564257E-02 9.987711E-02 1.240078E-01 1.479919E-01 1.718358E-01 1.954441E-01
MID-SPAN LC LOAD INCREMENT 1 2 3 4 5 6 7 8 9	LOAD AT 100% OF V, LOAD FACTOR 1.00000E-01 2.00000E-01 4.000000E-01 5.000000E-01 6.00000E-01 8.000000E-01 9.000000E-01	T1 5.524412E-02 4.545541E-02 2.961242E-02 7.806385E-03 1.985301E-02 5.321625E-02 9.210474E-02 1.363304E-01 1.856641E-01	10% OF P M A X I M U M T2 1.369622E-01 2.611414E-01 3.848461E-01 5.078039E-01 6.299070E-01 7.508961E-01 8.706718E-01 9.888429E-01 1.105347E+00	SUE D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	CASE 4 C E M E N T S R1 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R2 0.000000E+00 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R3 2.690013E-02 5.130230E-02 7.564257E-02 9.987711E-02 1.240078E-01 1.479919E-01 1.95441E-01 2.188300E-01
MID-SPAN LC LOAD INCREMENT 1 2 3 4 5 6 7 8 9 10	LOAD AT 100% OF V, LOAD FACTOR 1.00000E-01 2.00000E-01 3.00000E-01 4.00000E-01 6.00000E-01 7.00000E-01 8.00000E-01 1.00000E-01 1.00000E+00	T1 5.524412E-02 4.545541E-02 2.961242E-02 7.806385E-03 1.985301E-02 5.321625E-02 9.210474E-02 1.363304E-01 1.856641E-01 2.398641E-01	10% OF P M A X I M U M T2 1.369622E-01 2.611414E-01 3.848461E-01 5.078039E-01 6.299070E-01 8.706718E-01 9.888429E-01 1.105347E+00 1.220022E+00	SUE D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	CASE 4 C E M E N T S R1 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R2 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R3 2.690013E-02 5.130230E-02 7.564257E-02 9.987711E-02 1.240078E-01 1.479919E-01 1.718358E-01 1.954441E-01 2.188300E-01 2.419702E-01
MID-SPAN LC LOAD INCREMENT 1 2 3 4 5 6 7 8 9 10 MID-SPAN LC	LOAD FACTOR 1.00000E-01 2.00000E-01 3.00000E-01 4.00000E-01 5.00000E-01 6.00000E-01 8.00000E-01 9.00000E-01 1.000000E-01 1.000000E+00 WAD AT 100% OF V,	T1 5.524412E-02 4.545541E-02 2.961242E-02 7.806385E-03 1.985301E-02 5.321625E-02 9.210474E-02 1.363304E-01 1.856641E-01 2.398641E-01 AXIAL LOAD AT	10% OF P M A X I M U M T2 1.369622E-01 2.611414E-01 3.848461E-01 5.078039E-01 6.299070E-01 7.508961E-01 8.706718E-01 9.888429E-01 1.105347E+00 1.220022E+00 100% OF P	SUE D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 SUE	CASE 4 C E M E N T S R1 0.000000E+00 0.00000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.000E+00 0.0000E+0000E+0000E+0000E+000E+000E+000	R2 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.000000E+00	R3 2.690013E-02 5.130230E-02 7.564257E-02 9.987711E-02 1.240078E-01 1.479919E-01 1.718358E-01 1.954441E-01 2.188300E-01 2.419702E-01
MID-SPAN LC LOAD INCREMENT 1 2 3 4 5 6 7 8 9 10 MID-SPAN LC	LOAD AT 100% OF V, LOAD FACTOR 1.00000E-01 2.00000E-01 3.00000E-01 5.00000E-01 6.00000E-01 8.000000E-01 9.00000E-01 1.00000E-01 1.00000E+00 AD AT 100% OF V,	T1 5.524412E-02 4.545541E-02 2.961242E-02 7.806385E-03 1.985301E-02 5.321625E-02 9.210474E-02 1.363304E-01 1.856641E-01 2.398641E-01 AXIAL LOAD AT	10% OF P M A X I M U M T2 1.369622E-01 2.611414E-01 3.848461E-01 5.078039E-01 6.299070E-01 7.508961E-01 8.706718E-01 9.888429E-01 1.105347E+00 1.220022E+00 100% OF P M A X I M U M	UE D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 D I S P L A	CASE 4 C E M E N T S R1 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 CASE 5 C E M E N T S	R2 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.000000E+00	R3 2.690013E-02 5.130230E-02 7.564257E-02 9.987711E-02 1.240078E-01 1.479919E-01 1.954441E-01 2.188300E-01 2.419702E-01
MID-SPAN LC LOAD INCREMENT 1 2 3 4 5 6 7 8 9 10 MID-SPAN LC LOAD	LOAD AT 100% OF V, LOAD FACTOR 1.00000E-01 2.00000E-01 3.00000E-01 5.00000E-01 6.00000E-01 9.00000E-01 9.00000E-01 1.00000E-01 1.00000E+00 NAD AT 100% OF V, LOAD	T1 5.524412E-02 4.545541E-02 2.961242E-02 7.806385E-03 1.985301E-02 5.321625E-02 9.210474E-02 1.363304E-01 1.856641E-01 2.398641E-01 AXIAL LOAD AT T1	10% OF P M A X I M U M T2 1.369622E-01 2.611414E-01 3.848461E-01 5.078039E-01 6.299070E-01 7.508961E-01 8.706718E-01 9.888429E-01 1.105347E+00 1.220022E+00 100% OF P M A X I M U M T2	SUE D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 SUE D I S P L A T3	CASE 4 C E M E N T S R1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 CASE 5 C E M E N T S R1	R2 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R3 2.690013E-02 5.130230E-02 7.564257E-02 9.987711E-02 1.240078E-01 1.479919E-01 1.718358E-01 1.954441E-01 2.188300E-01 2.419702E-01
MID-SPAN LC LOAD INCREMENT 1 2 3 4 5 6 7 8 9 10 MID-SPAN LC LOAD INCREMENT 1	LOAD AT 100% OF V, LOAD FACTOR 1.00000E-01 2.00000E-01 3.00000E-01 5.00000E-01 6.00000E-01 8.000000E-01 1.00000E-01 1.00000E-01 1.00000E-01 1.00000E-01 LOAD FACTOR 1.00000E-01	T1 5.524412E-02 4.545541E-02 2.961242E-02 7.806385E-03 1.985301E-02 5.321625E-02 9.210474E-02 1.363304E-01 2.398641E-01 AXIAL LOAD AT T1 1.839034E-02	10% OF P M A X I M U M T2 1.369622E-01 2.611414E-01 3.848461E-01 5.078039E-01 6.299070E-01 7.508961E-01 8.706718E-01 9.888429E-01 1.105347E+00 1.220022E+00 100% OF P M A X I M U M T2 6.590703E-01	SUE D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 SUE D I S P L A T3	CASE 4 C E M E N T S R1 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 CASE 5 C E M E N T S R1 0.000000E+00	R2 0.000000E+00 0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 R2	R3 2.690013E-02 5.130230E-02 7.564257E-02 9.987711E-02 1.240078E-01 1.479919E-01 1.718358E-01 1.95441E-01 2.188300E-01 2.419702E-01 R3
MID-SPAN LC LOAD INCREMENT 1 2 3 4 5 6 7 8 9 10 MID-SPAN LC LOAD INCREMENT 1 2	LOAD AT 100% OF V, LOAD FACTOR 1.00000E-01 2.00000E-01 3.00000E-01 4.000000E-01 6.00000E-01 1.00000E-01 1.00000E-01 1.00000E-01 1.00000E-01 2.00000E-01 2.00000E-01 2.00000E-01	T1 5.524412E-02 4.545541E-02 2.961242E-02 7.806385E-03 1.985301E-02 5.321625E-02 9.210474E-02 1.363304E-01 2.398641E-01 2.398641E-01 AXIAL LOAD AT T1 1.839034E-02 1.091632E-01	10% OF P M A X I M U M T2 1.369622E-01 2.611414E-01 3.848461E-01 5.078039E-01 6.299070E-01 7.508961E-01 8.706718E-01 9.888429E-01 1.105347E+00 1.220022E+00 100% OF P M A X I M U M T2 6.590703E-01 4.515147E-01	SUE D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 D I S P L A T3 0.0000000E+00	CASE 4 C E M E N T S R1 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 CASE 5 C E M E N T S R1 0.000000E+00 0.000000E+00	R2 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R3 2.690013E-02 5.130230E-02 7.564257E-02 9.987711E-02 1.240078E-01 1.479919E-01 1.718358E-01 1.954441E-01 2.188300E-01 2.419702E-01 R3 R3 1.260254E-01 8.447664E-02
MID-SPAN LC LOAD INCREMENT 1 2 3 4 5 6 7 8 9 10 MID-SPAN LC INCREMENT 1 2 3	LOAD AT 100% OF V, LOAD FACTOR 1.00000E-01 2.00000E-01 3.000000E-01 4.00000E-01 6.00000E-01 8.00000E-01 9.00000E-01 1.00000E-01 2.000000E-01 2.000000E-01 2.000000E-01 2.000000E-01	T1 5.524412E-02 4.545541E-02 2.961242E-02 7.806385E-03 1.985301E-02 5.321625E-02 9.210474E-02 1.363304E-01 1.856641E-01 2.398641E-01 AXIAL LOAD AT T1 1.839034E-02 1.091632E-01 1.710144E-01	10% OF P M A X I M U M T2 1.369622E-01 2.611414E-01 3.848461E-01 5.078039E-01 6.299070E-01 7.508961E-01 8.706718E-01 9.888429E-01 1.105347E+00 1.220022E+00 100% OF P M A X I M U M T2 6.590703E-01 4.515147PE-01 3.437879E-01	SUE D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00	CASE 4 C E M E N T S R1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 CASE 5 C E M E N T S R1 0.000000E+00 0.000000E+00 0.000000E+00	R2 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.000000E+00 0.000000E+00 R2 R2 0.000000E+00 0.000000E+00	R3 2.690013E-02 5.130230E-02 7.564257E-02 9.987711E-02 1.240078E-01 1.479919E-01 1.718358E-01 1.954441E-01 2.188300E-01 2.419702E-01 R3 1.260254E-01 8.447664E-02 6.287747E-02
MID-SPAN LC LOAD INCREMENT 1 2 3 4 5 6 7 8 9 10 MID-SPAN LC INCREMENT 1 2 3 4	LOAD AT 100% OF V, LOAD FACTOR 1.00000E-01 2.00000E-01 3.00000E-01 5.00000E-01 5.00000E-01 6.00000E-01 9.00000E-01 1.00000E-01 1.00000E-01 2.00000E-01 2.00000E-01 3.00000E-	T1 5.524412E-02 4.545541E-02 2.961242E-02 7.806385E-03 1.985301E-02 5.321625E-02 9.210474E-02 1.363304E-01 1.856641E-01 2.398641E-01 AXIAL LOAD AT T1 1.839034E-02 1.091632E-01 1.710144E-01 2.241714E-01	10% OF P M A X I M U M T2 1.369622E-01 2.611414E-01 3.848461E-01 5.078039E-01 6.299070E-01 7.508961E-01 8.706718E-01 9.888429E-01 1.105347E+00 1.220022E+00 100% OF P M A X I M U M T2 6.590703E-01 4.515147E-01 3.437879E-01 2.773184E-01	SUE D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 SUE D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00	CASE 4 C E M E N T S R1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 CASE 5 C E M E N T S R1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R2 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R3 2.690013E-02 5.130230E-02 7.564257E-02 9.987711E-02 1.240078E-01 1.479919E-01 1.718358E-01 2.188300E-01 2.419702E-01 8.447664E-02 6.287747E-02 4.946210E-02
MID-SPAN LC LOAD INCREMENT 1 2 3 4 5 6 7 8 9 10 MID-SPAN LC INCREMENT 1 2 3 4 5	LOAD AT 100% OF V, LOAD FACTOR 1.00000E-01 2.00000E-01 3.00000E-01 5.00000E-01 5.00000E-01 5.00000E-01 9.00000E-01 1.00000E-01 1.00000E-01 2.00000E-01 2.00000E-01 3.00000E-01 3.00000E-01 3.00000E-01 3.00000E-01 3.00000E-01 3.00000E-01 3.00000E-01 3.00000E-01	T1 5.524412E-02 4.545541E-02 2.961242E-02 7.806385E-03 1.985301E-02 5.321625E-02 9.210474E-02 1.363304E-01 2.398641E-01 AXIAL LOAD AT T1 1.839034E-02 1.091632E-01 1.710144E-01 2.734531E-01	10% OF P M A X I M U M T2 1.369622E-01 2.611414E-01 3.848461E-01 5.078039E-01 6.299070E-01 7.508961E-01 8.706718E-01 9.888429E-01 1.105347E+00 1.220022E+00 100% OF P M A X I M U M T2 6.590703E-01 4.515147E-01 3.437879E-01 2.7338403E-01 2.33803E-01	SUE D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	CASE 4 C E M E N T S R1 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 CASE 5 C E M E N T S R1 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R2 0.000000E+00 0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R3 2.690013E-02 5.130230E-02 7.564257E-02 9.987711E-02 1.240078E-01 1.718358E-01 1.95441E-01 2.188300E-01 2.419702E-01 8.447664E-01 8.447664E-02 6.287747E-02 4.966210E-02 4.966210E-02
MID-SPAN LC LOAD INCREMENT 1 2 3 4 5 6 7 8 9 10 MID-SPAN LC LOAD INCREMENT 1 2 3 4 5 6	LOAD AT 100% OF V, LOAD FACTOR 1.00000E-01 2.00000E-01 3.00000E-01 5.00000E-01 5.00000E-01 5.00000E-01 9.00000E-01 1.00000E-01 1.00000E-01 2.000000E-01 3.00000E-01 3.00000E-01 5.00000E-01 5.00000E-01 5.00000E-01	T1 5.524412E-02 4.545541E-02 2.961242E-02 7.806385E-03 1.985301E-02 5.321625E-02 9.210474E-02 1.363304E-01 2.398641E-01 2.398641E-01 AXIAL LOAD AT T1 1.839034E-02 1.091632E-01 1.710144E-01 2.241714E-01 2.734531E-01 3.210294E-01	10% OF P M A X I M U M T2 1.369622E-01 2.611414E-01 3.848461E-01 5.078039E-01 6.299070E-01 7.508961E-01 8.706718E-01 9.888429E-01 1.105347E+00 1.220022E+00 100% OF P M A X I M U M T2 6.590703E-01 4.515147E-01 3.437879E-01 2.773184E-01 2.33803E-01 2.018570E-01	SUE D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	CASE 4 C E M E N T S R1 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 CASE 5 C E M E N T S R1 0.000000E+00 0.00000E+00	R2 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R3 2.690013E-02 5.130230E-02 7.564257E-02 9.987711E-02 1.240078E-01 1.479919E-01 1.718358E-01 1.954441E-01 2.188300E-01 2.419702E-01 8.447664E-02 6.287747E-02 4.966274E-02 3.423515E-02
MID-SPAN LC LOAD INCREMENT 1 2 3 4 5 6 7 8 9 10 MID-SPAN LC INCREMENT 1 2 3 4 5 6 7	LOAD AT 100% OF V, LOAD FACTOR 1.00000E-01 2.00000E-01 3.000000E-01 4.00000E-01 4.00000E-01 4.00000E-01 8.00000E-01 1.00000E-01 1.00000E-01 2.00000E-01 2.00000E-01 3.000000E-01 4.00000E-01 5.0000E-01 5.0	T1 5.524412E-02 4.545541E-02 2.961242E-02 7.806385E-03 1.985301E-02 5.321625E-02 9.210474E-02 1.363304E-01 1.856641E-01 2.398641E-01 AXIAL LOAD AT T1 1.839034E-02 1.091632E-01 1.710144E-01 2.241714E-01 2.241714E-01 2.734531E-01 3.210294E-01 3.680206E-01	10% OF P M A X I M U M T2 1.369622E-01 2.611414E-01 3.848461E-01 5.078039E-01 6.299070E-01 7.508961E-01 8.706718E-01 9.888429E-01 1.105347E+00 1.220022E+00 100% OF P M A X I M U M T2 6.590703E-01 4.515147E-01 2.433879E-01 2.773184E-01 2.33803E-01 2.018570E-01 1.763287E-01	SUE D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	CASE 4 C E M E N T S R1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 CASE 5 C E M E N T S R1 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+0000E+00 0.0000E+00 0.000E+000E+000E+000	R2 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R3 2.690013E-02 5.130230E-02 7.564257E-02 9.987711E-02 1.240078E-01 1.479919E-01 1.718358E-01 1.954441E-01 2.188300E-01 2.419702E-01 8.447664E-01 8.447664E-02 6.287747E-02 4.946210E-02 4.946210E-02 3.423515E-02 2.886501E-02
MID-SPAN LC LOAD INCREMENT 1 2 3 4 5 6 7 8 9 10 MID-SPAN LC INCREMENT 1 2 3 4 5 6 7 8 8	LOAD AT 100% OF V, LOAD Control Contr	T1 5.524412E-02 4.545541E-02 2.961242E-02 7.806385E-03 1.985301E-02 5.321625E-02 9.210474E-02 1.363304E-01 1.856641E-01 2.398641E-01 AXIAL LOAD AT T1 1.839034E-02 1.091632E-01 1.710144E-01 2.241714E-01 2.241714E-01 2.241714E-01 3.68026E-01 3.68026E-01 3.68026E-01 3.68026E-01	10% OF P M A X I M U M T2 1.369622E-01 2.611414E-01 3.848461E-01 5.078039E-01 6.299070E-01 7.508961E-01 8.706718E-01 9.888429E-01 1.105347E+00 1.220022E+00 100% OF P M A X I M U M T2 6.590703E-01 4.515147E-01 3.437879E-01 2.73184E-01 2.33803E-01 2.018570E-01 1.763287E-01 1.563103E-01	UP I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 D I S P L A T3 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.000E+000E+00 0.0000E+00 0.000E+000E+00	CASE 4 C E M E N T S R1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 CASE 5 C E M E N T S R1 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+000E+00 0.0000E+00 0.000E+000E+00 0.00	R2 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R3 2.690013E-02 5.130230E-02 7.564257E-02 9.987711E-02 1.240078E-01 1.479919E-01 1.718358E-01 2.188300E-01 2.419702E-01 8.447664E-01 8.447664E-02 6.287747E-02 4.946210E-02 4.960874E-02 2.886501E-02 2.886501E-02 2.521486E-02
MID-SPAN LC LOAD INCREMENT 1 2 3 4 5 6 7 8 9 10 MID-SPAN LC INCREMENT 1 2 3 4 5 6 7 8 9 10	LOAD AT 100% OF V, LOAD Control Contr	T1 5.524412E-02 4.545541E-02 2.961242E-02 7.806385E-03 1.985301E-02 5.321625E-02 9.210474E-02 1.363304E-01 1.856641E-01 2.398641E-01 AXIAL LOAD AT T1 1.839034E-02 1.091632E-01 1.710144E-01 2.241714E-01 2.241714E-01 3.210294E-01 3.680206E-01 4.140753E-01 4.598664E-01	10% OF P M A X I M U M T2 1.369622E-01 2.611414E-01 3.848461E-01 5.078039E-01 6.299070E-01 7.508961E-01 8.706718E-01 9.888429E-01 9.888429E-01 1.105347E+00 1.220022E+00 100% OF P M A X I M U M T2 6.590703E-01 4.515147E-01 3.437879E-01 2.73184E-01 2.33803E-01 1.563103E-01 1.563103E-01 1.435603E-01	SUE D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 D I S P L A T3 0.0000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	CASE 4 C E M E N T S R1 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 CASE 5 C E M E N T S R1 0.000000E+00 0.0000E+00 0.000E+00 0.000E+00 0.0000E+00 0.000E+00 0.000E+000E+00 0.000E	R2 0.000000E+00 0.00000E+00	R3 2.690013E-02 5.130230E-02 7.564257E-02 9.987711E-02 1.240078E-01 1.718358E-01 1.95441E-01 2.188300E-01 2.419702E-01 8.447664E-02 4.946210E-02 4.946210E-02 4.946210E-02 2.521486E-02 2.521486E-02 2.521486E-02 2.220493E-02
MID-SPAN LC LOAD INCREMENT 1 2 3 4 5 6 7 8 9 10 MID-SPAN LC LOAD INCREMENT 1 2 3 4 5 6 7 8 9 10	LOAD AT 100% OF V, LOAD CONTRACTOR LOAD CONTRACTOR LOODOUE-01 LOUDOUE-01 LOUDOUE-01 LOUDOUE-01 LOAD CONTRACTOR LOAD AT 100% OF V, LOAD AT 100% OF V, LOAD AT 100% OF V, LOAD CONTRACTOR LOUDOUE-01 LO	T1 5.524412E-02 4.545541E-02 2.961242E-02 7.806385E-03 1.985301E-02 5.321625E-02 9.210474E-02 1.363304E-01 1.856641E-01 2.398641E-01 AXIAL LOAD AT T1 1.839034E-02 1.091632E-01 1.710144E-01 2.241714E-01 2.734531E-01 3.210294E-01 3.680206E-01 4.598664E-01 5.054500E-01	10% OF P M A X I M U M T2 1.369622E-01 2.611414E-01 3.848461E-01 5.078039E-01 6.299070E-01 7.508961E-01 8.706718E-01 9.888429E-01 1.105347E+00 1.220022E+00 100% OF P M A X I M U M T2 6.590703E-01 4.515147E-01 3.437879E-01 2.733803E-01 2.018570E-01 1.763287E-01 1.563103E-01 1.435603E-01 1.313985E-01	UP I S P L A T3 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 D I S P L A T3 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	CASE 4 C E M E N T S R1 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 CASE 5 C E M E N T S R1 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R2 0.000000E+00 0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R3 2.690013E-02 5.130230E-02 7.564257E-02 9.987711E-02 1.240078E-01 1.718358E-01 1.95441E-01 2.188300E-01 2.419702E-01 8.447664E-02 6.287747E-02 4.946210E-02 4.946210E-02 4.946210E-02 3.423515E-02 2.826501E-02 2.521486E-02 2.220493E-02 1.971218E-02

15.3.7 Combined Gap Contact with Large Displacement and Rotation

The next problem is an example of contact with large displacement and rotation. The cantilever beam in Figure 15-22 is subjected to a shear load at its free end. The beam deflects normally until hitting a rigid support, which is modeled using a gap element. After contacting the support, the beam continues to deflect resulting in a reaction force in the gap element. Listing 15-15 contains the Model Input File.

Figure 15-22. 2-D Cantilever Beam Example Problem with Contact.

Listing 15-15. Model Input File for the Cantilever Beam Problem with Contact.

```
$ NONLINEAR STATIC SOLUTION.
Ś
SOL NONLINEAR STATIC
TITLE = INSTALLATION TEST CASE
SUBTITLE = SHEAR LOADED CANTILEVER BEAM WITH CONTACT
DISPLACEMENT = ALL
FORCE = ALL
STRESS = ALL
SUBCASE 1
 LABEL = POINT LOAD AT FREE END (SHEAR)
 LOAD = 1
 NLPARM = 1
 SPC = 1
Ś
BEGIN BULK
$ TURN ON LARGE DISPLACEMENT EFFECTS.
PARAM, LGDISP, ON
$ DEFINE NONLINEAR SOLUTION PARAMETERS.
Ś
NLPARM, 1, 10, , , , , P, YES
Ś
$ GEOMETRY DEFINITION (10" BEAM DIVIDED INTO 10 ELEMENTS).
Ś
GRID, 1, 0, 0., 0., 0., 0

        GRID,
        2,
        0,
        1.,
        0.,
        0.,
        0
        GRID,
        0,
        0,
        0
        0
        GRID,
        0,
        0.,
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0</th
GRID, 5, 0,
                               4., 0., 0.,
                                                                0
GRID, 6, 0,
GRID, 7, 0,
                               5., 0., 0.,
6., 0., 0.,
                                                                0
                                                                0
                               7., 0., 0., 0
GRID, 8, 0,

      GRID, 9, 0, 8., 0., 0., 0

      GRID, 10, 0, 9., 0., 0., 0

      GRID, 11, 0, 10., 0., 0., 0

GRID, 12, 0, 6., -1.,
                                                    0.,
                                                                 0
$ BEAM MODELED WITH BAR ELEMENTS.
Ś

      CBAR, 1, 10, 1, 2, 0., 0., 1.

      CBAR, 2, 10, 2, 3, 0., 0., 1.

      CBAR, 3, 10, 3, 4, 0., 0., 1.

CBAR, 4, 10, 4, 5, 0., 0., 1.
CBAR, 5, 10,
CBAR, 6, 10,
                                 5, 6, 0., 0., 1.
6, 7, 0., 0., 1.
CBAR, 7, 10,
                                 7, 8, 0., 0., 1.
CBAR, 8, 10, 8, 9, 0., 0., 1.
CBAR, 9, 10, 9, 10, 0., 0., 1.
CBAR, 10, 10, 10, 11, 0., 0., 1.
Ś
$ GAP ELEMENT.
Ś
CGAP, 11, 20, 7, 12, 1., 0., 0.
Ś
$ BAR ELEMENT MATERIAL AND SECTION PROPERTIES (1.0" X 0.2" CROSS-SECTION).
Ś
PBAR, 10, 100, 0.2, 1.667E-2, 6.667E-4, 2.328E-3, -0.5, -0.1, 0.5, -0.1, 0.5, 0.1, -0.5, 0.1
Ś
$ LINEAR ELEMENT MATERIAL PROPERTIES (ALUMINUM).
Ś
MAT1, 100, 1.E+7, , 0.33, 0.1
Ś
$ GAP ELEMENT PROPERTIES.
Ś
PGAP, 20, 1., 0., 1.E+7
```

Listing 15-15. Model Input File for the Cantilever Beam Problem with Contact. (Continued)

```
$ FIXED AT ONE END, MOVEMENT CONSTRAINED TO X-Y PLANE ONLY.
$
SPC1, 1, 123456, 1
SPC1, 1, 345, 2, THRU, 11
SPC1, 1, 123456, 12
$
$
POINT LOAD AT FREE END (SHEAR).
$
FORCE, 1, 11, 0, 1.5E+2, 0., -1., 0.
ENDDATA
```

The maximum displacements from the Model Results Output File are shown in tabular form in Listing 15-16. The gap axial force and deflection are plotted in Figures 15-23 and 15-24, respectively. The bar element stresses at the fixed end of the beam are plotted in Figure 15-25. The deflected shapes are plotted in Figure 15-26.

In this example, the gap element is defined with an initial opening of 1 inch, as specified on the CGAP Bulk Data entry. At a load factor of 40%, the beam has deflected 1 inch just above the contact point, the gap closes, and contact is made. At this point, axial load begins to develop in the gap element and a discontinuity occurs in the bar element stresses. Since no friction has been defined on the PGAP Bulk Data entry, no shear forces are developed when contact is made.

			МАХІМИМ	DISPLA	CEMENTS		
LOAD INCREMENT	LOAD	Τ1	Τ2	ТЗ	R1	R2	R3
1	1.000000E-01	3.334812E-02	7.456519E-01	0.000000E+00	0.000000E+00	0.000000E+00	1.119740E-01
2	2.000000E-01	1.297465E-01	1.466728E+00	0.000000E+00	0.00000E+00	0.000000E+00	2.209795E-01
3	3.000000E-01	2.794321E-01	2.143234E+00	0.000000E+00	0.000000E+00	0.000000E+00	3.245490E-01
4	4.000000E-01	3.464905E-01	2.362401E+00	0.000000E+00	0.00000E+00	0.000000E+00	3.700575E-01
5	5.000000E-01	3.809492E-01	2.448332E+00	0.000000E+00	0.00000E+00	0.000000E+00	3.983580E-01
6	6.000000E-01	4.168033E-01	2.531740E+00	0.000000E+00	0.00000E+00	0.000000E+00	4.260638E-01
7	7.000000E-01	4.538512E-01	2.612513E+00	0.00000E+00	0.000000E+00	0.000000E+00	4.531351E-01
8	8.000000E-01	4.919300E-01	2.690641E+00	0.000000E+00	0.00000E+00	0.000000E+00	4.795643E-01
9	9.000000E-01	5.308484E-01	2.766058E+00	0.000000E+00	0.00000E+00	0.000000E+00	5.053217E-01
10	1.000000E+00	5.704526E-01	2.838782E+00	0.000000E+00	0.00000E+00	0.000000E+00	5.304044E-01

Listing 15-16. Load Increment Maximum Displacements and Rotations.

Figure 15-24. Gap Element Axial Displacement vs. Load Factor.

Figure 15-25. Bar Element Stresses at Fixed End vs. Load Factor.

15.3.8 Gap Contact with Friction

The next problem is an example of contact with friction. The cantilever beam in Figure 15-27 is subjected to axial and shear loads at its free end. A gap element with friction is positioned just under the shear load at the free end. The first subcase applies the shear load, which closes the gap and activates the gap element friction. The second subcase adds an axial load. The axial load is resisted by the gap element friction, which is directly proportional to the applied shear load. As the axial load is incremented, it reaches a point where it overcomes the frictional force resulting in the beam deflecting axially. Listing 15-17 contains the Model Input File.

Figure 15-27. 2-D Cantilever Beam Example Problem with Contact and Friction.

Listing 15-17. Model Input File for the Cantilever Beam Problem with Contact and Friction.

```
$ NONLINEAR STATIC SOLUTION.
Ś
SOL NONLINEAR STATIC
TITLE = INSTALLATION TEST CASE
SUBTITLE = AXIAL LOADED CANTILEVER BEAM WITH CONTACT AND FRICTION
DISPLACEMENT = ALL
FORCE = ALL
STRESS = ALL
Ś
SPC = 1
SUBCASE 1
 LABEL = POINT LOAD AT FREE END (SHEAR)
 I_0AD = 1
NLPARM = 1
SUBCASE 2
 LABEL = POINT LOADS AT FREE END (AXIAL AND SHEAR)
 LOAD = 3
NLPARM = 2
BEGIN BULK
$ TURN ON LARGE DISPLACEMENT EFFECTS.
Ś
PARAM, LGDISP, ON
Ś
$ DEFINE NONLINEAR SOLUTION PARAMETERS.
Ś
NLPARM, 1, 2, , , , , , , YES
NLPARM, 2, 10, , , , , , , YES
Ś
$ GEOMETRY DEFINITION (10" BEAM DIVIDED INTO 10 ELEMENTS).
Ś
GRID, 1, 0,
GRID, 2, 0,
                    0., 0., 0.,
1., 0., 0.,
                                         0
                                         0
GRID, 3, 0, 2., 0., 0.,
                                         0
GRID, 4, 0, 3., 0., 0.,
GRID, 5, 0, 4., 0., 0.,
GRID, 6, 0, 5., 0., 0.,
                                         0
                  4., 0., 0.,
5., 0., 0.,
0., 0.,
                                          0
                                          0
GRID, 7, 0,
                   6., 0., 0.,
                                         0
GRID, 8, 0, 7., 0., 0.,
GRID, 9, 0, 8., 0., 0.,
                                          0
                                         0
GRID, 10, 0, 9., 0., 0., 0
GRID, 11, 0, 10., 0., 0., 0
GRID, 12, 0, 10., -0.1, 0.,
                                          0
Ś
$ BEAM MODELED WITH BAR ELEMENTS.
Ś
CBAR, 1, 10,
                      1,
                             2, 0., 0.,
                                               1.
CBAR, 2, 10, 2, 3, 0., 0., 1.

        CBAR,
        3,
        10,
        3,
        4,
        0.,
        0.,
        1.

        CBAR,
        4,
        10,
        4,
        5,
        0.,
        0.,
        1.

        CBAR,
        5,
        10,
        5,
        6,
        0.,
        0.,
        1.

                      5,
CBAR, 6, 10, 6, 7, 0., 0., 1.

      CBAR, 7, 10, 7, 8, 0., 0., 1.

      CBAR, 8, 10, 8, 9, 0., 0., 1.

      CBAR, 9, 10, 9, 10, 0., 0., 1.

CBAR, 10, 10, 10, 11, 0., 0., 1.
$ GAP ELEMENT.
Ś
CGAP, 11, 20, 11, 12, 1., 0., 0.
Ś
$ BAR ELEMENT MATERIAL AND SECTION PROPERTIES (1.0" X 0.2" CROSS-SECTION).
Ś
PBAR, 10, 100, 0.2, 1.667E-2, 6.667E-4, 2.328E-3, , -0.5, 0.1, 0.5, 0.1, -0.5, -0.1, 0.5, -0.1
Ś
$ LINEAR ELEMENT MATERIAL PROPERTIES (ALUMINUM).
Ś
MAT1, 100, 1.E+7, , 0.33, 0.1
```

Ś

Listing 15-17. Model Input File for the Cantilever Beam Problem with Contact and Friction. (Continued)

```
$ GAP ELEMENT PROPERTIES.
Ś
PGAP, 20, , , 1.E+9, , , 0.1
Ś
$ FIXED AT ONE END, MOVEMENT CONSTRAINED TO X-Y PLANE ONLY.
Ś
SPC1, 1, 123456, 1, 12
SPC1, 1, 345, 2, THRU, 11
Ś
$ POINT LOAD AT FREE END (SHEAR).
Ś
FORCE, 1, 11, 0, 5.E+3, 0., -1., 0.
$ POINT LOAD AT FREE END (AXIAL).
Ś
FORCE, 2, 11, 0, 1.E+3, 1., 0., 0.
Ś
$ COMBINE LOADS.
LOAD, 3, 1., 1., 1, 1., 2
ENDDATA
```

The maximum displacements from the Model Results Output File are shown in tabular form in Listing 15-18. The gap shear force and deflection are plotted in Figures 15-28 and 15-29, respectively. The bar element forces at the fixed end of the beam are plotted in Figure 15-30.

Since the gap element friction force is related to the gap axial force by:

$$F_{\text{friction}} = \mu F_{\text{axial}}$$

And the applied shear load has a constant value of 5000 pounds, the applied axial load must exceed 500 pounds before the static frictional force is overcome. This occurs in subcase 2, increment 6 when the applied axial load is incremented from 500 pounds to 600 pounds.

Listing 15-18. Load Increment Maximum Displacements and Rotations.

			махімим	DISPLA	СЕМЕΝТЅ		
LOAD INCREMENT	LOAD FACTOR	Τ1	Τ2	ТЗ	R1	R2	R3
1	1.000000E-01	9.980040E-07	5.000000E-06	0.00000E+00	0.000000E+00	0.00000E+00	7.499625E-07
2	2.000000E-01	1.996008E-06	5.000000E-06	0.000000E+00	0.00000E+00	0.000000E+00	7.499250E-07
3	3.000000E-01	2.994012E-06	5.000000E-06	0.00000E+00	0.00000E+00	0.000000E+00	7.498875E-07
4	4.000000E-01	3.992016E-06	5.000000E-06	0.000000E+00	0.000000E+00	0.000000E+00	7.498501E-07
5	5.000000E-01	4.990020E-06	5.000000E-06	0.000000E+00	0.000000E+00	0.000000E+00	7.498127E-07
6	6.000000E-01	5.002450E-04	5.000000E-06	0.00000E+00	0.00000E+00	0.000000E+00	7.325524E-07
7	7.000000E-01	1.000000E-03	5.000000E-06	0.000000E+00	0.000000E+00	0.000000E+00	7.166867E-07
8	8.000000E-01	1.500000E-03	5.000000E-06	0.000000E+00	0.000000E+00	0.000000E+00	7.034875E-07
9	9.000000E-01	2.000000E-03	5.000000E-06	0.000000E+00	0.00000E+00	0.00000E+00	6.920503E-07
10	1.00000E+00	2.500000E-03	5.00000E-06	0.000000E+00	0.00000E+00	0.00000E+00	6.818862E-07

Figure 15-28. Gap Element Shear Force vs. Load Factor.

Figure 15-29. Gap Element Shear Displacement vs. Load Factor.

Figure 15-30. Bar Element Axial Force at Fixed End vs. Load Factor.

15.3.9 Slide Line Contact

The next problem is another example of contact using the slide line contact element. The upper cantilever beam in Figure 15-31 supports a distributed load over half its span. The lower beam is simply supported. The upper beam deflects normally until contacting the lower beam. Listing 15-19 contains the Model Input File.

Figure 15-31. 2-D Cantilever Beam Example Problem with Slide Line Contact.

Listing 15-19. Model Input File for the Cantilever Beam Problem with Slide Line Contact.

```
$ NONLINEAR STATIC SOLUTION.
Ś
SOL NONLINEAR STATIC
TITLE = INSTALLATION TEST CASE
SUBTITLE = DISTRIBUTED LOADED CANTILEVER BEAM WITH SLIDE LINE CONTACT
DISPLACEMENT = ALL
STRESS = ALL
FORCE = ALL
SUBCASE 1
 LABEL = DISTRIBUTED LOAD ON UPPER BEAM
 LOAD = 1
NLPARM = 1
SPC = 1
Ś
BEGIN BULK
Ś
$ TURN ON LARGE DISPLACEMENT EFFECTS.
PARAM, LGDISP, ON
$ DEFINE NONLINEAR SOLUTION PARAMETERS.
Ś
NLPARM, 1, 20, , , , , , , YES
Ś
$ GEOMETRY DEFINITION (10" BEAM DIVIDED INTO 10 ELEMENTS).
Ś
$ LOWER BEAM.
Ś
                 0., 0., 0.,

1., 0., 0.,

2., 0., 0.,

3., 0., 0.,

4., 0., 0.,
GRID, 1, 0,
                                     0
GRID, 2, 0,
                                     0
GRID, 3, 0,
                                    0
GRID, 4, 0,
GRID, 5, 0,
                                     0
                                    0
GRID, 6, 0, 5., 0., 0., 0

      GRID, 7, 0, 6., 0., 0., 0

      GRID, 8, 0, 7., 0., 0., 0

      GRID, 9, 0, 8., 0., 0., 0

GRID, 10, 0, 9., 0., 0.,
                                     0
Ś
$ UPPER BEAM.
Ś
GRID, 11, 0, 10., 0., 0, 0
GRID, 12, 0, 3., 2., 0., 0
GRID, 13, 0, 4., 2., 0., 0
GRID, 14, 0, 5., 2., 0.,
                                    0
GRID, 15, 0, 6., 2., 0.,
GRID, 16, 0, 7., 2., 0.,
                                     0
                                    0
GRID, 17, 0, 8., 2., 0., 0
GRID, 18, 0, 9., 2., 0.,
GRID, 19, 0, 10., 2., 0.,
                                    0
                                     0
GRID, 20, 0, 11., 2., 0.,
                                     0
GRID, 21, 0, 12., 2., 0.,
GRID, 22, 0, 13., 2., 0.,
                                     0
                                     0
$ BEAMS MODELED WITH BAR ELEMENTS.
Ś
$ LOWER BEAM.
Ś
CBAR, 1, 10, 1, 2, 0., 0., 1.
CBAR, 2, 10, 2, 3, 0., 0.,
CBAR, 3, 10, 3, 4, 0., 0.,
                                           1.
                                           1.
CBAR, 4, 10, 4, 5, 0., 0., 1.
CBAR, 5, 10, 5, 6, 0., 0., 1.
                   6,
CBAR, 6, 10,
CBAR, 7, 10,
                    6, 7, 0., 0.,
7, 8, 0., 0.,
                                           1.
                                           1.
CBAR, 8, 10, 8, 9, 0., 0., 1.
CBAR, 9, 10, 9,
CBAR, 10, 10, 10,
                   9, 10, 0., 0.,
                                          1.
                        11,
                               0.,
                                    0.,
                                           1.
```

Ś

Listing 15-19. Model Input File for the Cantilever Beam Problem with Slide Line Contact. (Continued)

```
$ UPPER BEAM.
Ś
CBAR, 11, 20, 12, 13, 0., 0., 1.

        CBAR, 12, 20, 13, 14, 0., 0., 1.

        CBAR, 13, 20, 14, 15, 0., 0., 1.

        CBAR, 14, 20, 15, 16, 0., 0., 1.

CBAR, 15, 20, 16, 17, 0., 0., 1.
CBAR, 16, 20, 17, 18, 0., 0., 1.
CBAR, 17, 20, 18, 19, 0., 0., 1.

      CBAR, 17, 20, 10, 10, 0, 0, 0, 1

      CBAR, 18, 20, 19, 20, 0, 0, 0, 1

      CBAR, 19, 20, 20, 21, 0, 0, 1

      CBAR, 20, 20, 21, 22, 0, 0, 1

Ś
$ BAR ELEMENT MATERIAL AND SECTION PROPERTIES.
Ś
$ UPPER BEAM (1.0" X 0.2" CROSS-SECTION).
Ś
PBAR, 10, 100, 0.2, 1.667E-2, 6.667E-4, 2.328E-3, -0.5, 0.1, 0.5, 0.1, -0.5, -0.1, 0.5, -0.1
Ś
$ LOWER BEAM (1.0" X 0.1" CROSS-SECTION).
Ś
PBAR, 20, 100, 0.2, 8.333E-3, 3.333E-5, 3.133E-4,
, -0.5, -0.05, 0.5, -0.05, 0.5, 0.05, -0.5, 0.05
Ś
$ LINEAR ELEMENT MATERIAL PROPERTIES (ALUMINUM).
Ś
MAT1, 100, 1.E+7, , 0.33, 0.1
Ś
$ SLIDE LINE ELEMENT DEFINITION (SYMMETRIC PENETRATION).
Ś
BCONP, 21, 2, 1, , , 2
$ LOWER SLINE LINE SEGMENTS (1.0" WIDTH).
BLSEG, 1, 1, THRU, 11
BWIDTH, 1, 1.
Ś
$ UPPER SLINE LINE SEGMENTS (1.0" WIDTH).
BLSEG, 2, 22, THRU, 12, BY, -1
BWIDTH, 2, 1.
Ś
$ SLIDE LINE OUTPUT REQUEST.
Ś
BOUTPUT, 21, ALL
\ upper beam fixed at one end, lower beam pinned at one end and
$ FREE TO SLIDE AT THE OTHER, MOVEMENT CONSTRAINED TO X-Y PLANE
$ ONLY.
Ś
SPC1, 1, 12345, 1
SPC1, 1,
               345, 2, THRU, 10
SPC1, 1,
SPC1, 1,
               2345,
                        11
               345,
                        12, THRU, 21
SPC1, 1, 123456, 22
Ś
$ DISTRIBUTED LOAD IN NEGATIVE Y-DIRECTION ON HALF OF UPPER BEAM.
Ś
PLOAD1, 1, 11, FZE, FR, 0., 100., 1., 100.
PLOAD1, 1, 12, FZE, FR, 0., 100., 1., 100.
PLOAD1, 1, 13, FZE, FR, 0., 100., 1., 100.
PLOAD1, 1, 14, FZE, FR, 0., 100., 1., 100.
PLOAD1, 1, 15, FZE, FR, 0., 100., 1., 100.
ENDDATA
```

The upper beam y-displacement and contact stress at the beam tip is plotted Figures 15-32 and 15-33, respectively. The bar element stresses at the fixed end of the upper beam and mid-span of the lower beam are plotted in Figure 15-34. The deflected shapes are plotted in Figure 15-35.

The slide line element is defined using the BCONP Bulk Data entry, which references a primary and secondary region defined using the BLSEG Bulk Data entry. The BLSEG entry references consecutive grid points, which form a line or region. Each consecutive pair of grid points defines a segment. In this example, the width of each segment is 1.0 inches, defined via the BWIDTH Bulk Data entry. The slide line coordinate system z-axis is specified on the BCONP entry and defines the slide line contact plane. The normal direction for a slide line segment is formed from the cross product of the vector from primary node 1 to primary node 2 and the slide line plane vector. The direction of the slide line plane vector and the grid point ordering of the primary line is defined so that the normal direction points toward the secondary region. For symmetric penetration the normals of the primary and secondary segments must face each other. In this example this is accomplished by ordering the grid points counterclockwise since the slide line plane vector is the z-direction of the basic coordinate system (default on the BCONP entry).

Figure 15-32. Upper Beam Tip Y-Displacement vs. Load Factor.

Load Factor

Figure 15-33. Upper Beam Tip Contact Stress vs. Load Factor.

Figure 15-34. Bar Element Stresses at Upper Beam Fixed End vs. Load Factor.

Figure 15-35. Deformed Shapes of a Cantilever Beam with Slide Line Contact.

15.3.10 Tension Only Cable

The next problem is another example of geometric nonlinearity using the Autodesk Inventor Nastran cable element. The cable element is a tension only element with optional bending stiffness. Figure 15-36 shows a cable which is clamped (fixed) at one end and attached with a pulley (free to translate in the x-direction) at the other end. In subcase 1, the cable is initially lose and is tighten by the addition of a tensile load at the pulley. After the slack has been removed, subcase 2 through subcase 4 gradually apply a mid-span load causing the cable to sag a large amount. The sagging cable is then tightened again in subcase 5 with the increase of the tensile load at the pulley and the cable straightens out again (not fully though). Note that the subcase structure is used to initially add a very small amount of shear load, which is then gradually increased thus preventing divergence and increasing solution efficiency. Listing 15-20 contains the Model Input File.

Figure 15-36. 2-D Cable Example Problem.

Listing 15-20. Model Input File for the Cable Example Problem.

```
$ NONLINEAR STATIC SOLUTION.
Ś
SOL NONLINEAR STATIC
TITLE = INSTALLATION TEST CASE
SUBTITLE = SLACK CABLE LOADED OUT OF PLANE THEN PULLED TAUGHT
DISPLACEMENT = ALL
FORCE = ALL
STRESS = ALL
Ś
SPC = 1
SUBCASE 1
 LABEL = INITIAL AXIAL LOAD IN CABLE ADDED WITH P AT 10% -SLACK IS REMOVED
LOAD = 10
NLPARM = 1
SUBCASE 2
 LABEL = MID-SPAN LOAD ADDED AT 0.1% OF V, AXIAL LOAD AT 10% OF P
LOAD = 20
NLPARM = 1
SUBCASE 3
 LABEL = MID-SPAN LOAD AT 1% OF V, AXIAL LOAD AT 10% OF P
LOAD = 30
NI_PARM = 1
SUBCASE 4
LABEL = MID-SPAN LOAD AT 100% OF V, AXIAL LOAD AT 10% OF P
LOAD = 40
 NLPARM = 1
SUBCASE 5
LABEL = MID-SPAN LOAD AT 100% OF V, AXIAL LOAD AT 100% OF P
 IOAD = 50
NLPARM = 1
BEGIN BULK
$ TURN ON LARGE DISPLACEMENT EFFECTS.
PARAM, LGDISP, ON
Ś
$ DEFINE NONLINEAR SOLUTION PARAMETERS.
Ś
NLPARM, 1, 10, , , , 50, P, YES
Ś
$ GEOMETRY DEFINITION (10" BEAM DIVIDED INTO 10 ELEMENTS).
Ś
GRID, 1, 0,
                  0., 0., 0.,
                                   0
GRID, 2, 0,
                 1., 0., 0.,
                                   0
GRID, 3, 0,
                2., 0., 0.,
                                  0
GRID, 4, 0,
GRID, 5, 0,
                3., 0., 0.,
4., 0., 0.,
                                   0
                                   0
GRID, 6, 0,
                5., 0., 0., 0

      GRID,
      7,
      0,
      6.,
      0.,
      0.,

      GRID,
      8,
      0,
      7.,
      0.,
      0.,

      GRID,
      9,
      0,
      8.,
      0.,
      0.,

                                  0
                                   0
                                   0
GRID, 10, 0, 9., 0., 0.,
                                   0
GRID, 11, 0, 10., 0., 0.,
                                   0
Ś
$ CABLE MODELED WITH CABLE ELEMENTS.
Ś
                                     0.,
CCABLE, 1,
              10,
                     1,
                           2, 0.,
                                          1.
CCABLE, 2, 10,
                          3, 0., 0., 1.
                     2,
CCABLE, 3, 10,
CCABLE, 4, 10,
CCABLE, 5, 10,
                    З,
                          4, 0., 0., 1.
                    4,
                                    0., 1.
0., 1.
                          5, 0.,
                     5,
                           6, 0.,
                                    0.,
CCABLE, 6, 10,
                    6,
                          7, 0., 0., 1.
CCABLE, 7, 10,
CCABLE, 8, 10,
CCABLE, 9, 10,
                    7,
                          8, 0., 0., 1.
                    8,
9,
                                          1.
1.
                           9, 0.,
                                     0.,
                          10, 0.,
                                     0.,
CCABLE, 10, 10, 10, 11, 0., 0., 1.
```

Listing 15-20. Model Input File for the Cable Example Problem. (Continued)

```
$ ELEMENT MATERIAL AND SECTION PROPERTIES.
Ś
PCABLE, 10, 100, 0., 0., 0.2
Ś
$ LINEAR ELEMENT MATERIAL PROPERTIES (ALUMINUM).
Ś
MAT1, 100, 1.E+7, , 0.33, 0.1
Ś
$ FIXED AT BOTH ENDS -ONE END FREE TO TRANSLATE IN X-DIR.
SPC1, 1, 123456,
                     1
SPC1, 1, 23456, 11
SPC1, 1, 345, 1,
             345, 1, THRU, 11
$ AXIAL TENSILE LOAD (X-DIRECTION).
Ś
FORCE, 1, 11, 0, 1.E+5, 1., 0., 0.
Ś
$ MID-SPAN OUT OF PLANE LOAD (Y-DIRECTION).
Ś
FORCE, 2, 6, 0, 5.E+3, 0., -1., 0.
Ś
$ SCALE TOTAL LOADS TO GET SUBCASE LOADING.
Ś
LOAD, 10, 1., 0.,
                          2, 0.1,
                                   1
LOAD, 20, 1., 0.001, 2, 0.1, 1
LOAD, 30, 1., 0.01, 2, 0.1, 1
LOAD, 40, 1., 1., 2, 0.1, 1
LOAD, 50, 1., 1., 2, 1., 1
ENDDATA
```

The cable element must reference a linear isotropic material, but may be temperature dependent. Both thermal and inertia element loads are supported.

The cable element, when subjected to lateral loading, requires a small amount of bending stiffness. The default bending stiffness is based on the square of the area of a circular cross-section. While great amount of bending does occur, the initial bending stiffness is primary due to the differential stiffness contribution generated from the initial prestress in the cable (subcase 1). The maximum displacements from the Model Results Output File are shown in tabular form in Listing 15-21. The deflected shapes are plotted in Figure 15-37.

Listing 15	5-21. Subc	ase and Load I	ncrement Maximun	n Displacements	and Rotations
------------	------------	----------------	------------------	-----------------	---------------

INITIAL AXI	AL LOAD IN CABLE	ADDED WITH P A	T 10% -SLACK I	S REMOVED SU	BCASE 1		
			махімим	DISPLA	СЕМЕΝТЅ		
LOAD INCREMENT	LOAD FACTOR	Τ1	Т2	тЗ	R1	R2	R3
1	1.000000E-01	5.000000E-03	0.00000E+00	0.00000E+00	0.00000E+00	0.000000E+00	0.000000E+00
2	2.000000E-01	1.000000E-02	0.000000E+00	0.000000E+00	0.00000E+00	0.000000E+00	0.000000E+00
3	3.000000E-01	1.500000E-02	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
4	4.00000E-01	2.000000E-02	0.00000E+00	0.00000E+00	0.00000E+00	0.000000E+00	0.000000E+00
5	5.000000E-01	2.500000E-02	0.00000E+00	0.00000E+00	0.00000E+00	0.000000E+00	0.000000E+00
6	6.000000E-01	3.000000E-02	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
7	7.000000E-01	3.500000E-02	0.00000E+00	0.00000E+00	0.000000E+00	0.000000E+00	0.000000E+00
8	8.000000E-01	4.00000E-02	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
9	9.000000E-01	4.500000E-02	0.00000E+00	0.00000E+00	0.00000E+00	0.000000E+00	0.000000E+00
10	1.00000E+00	5.000000E-02	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00

Listing 15-21. Subcase and Load Increment Maximum Displacements and Rotations. (Continued)

MID-SPAN LO	DAD ADDED AT 0.1%	OF V, AXIAL LC	AD AT 10% OF P	S	UBCASE 2		
			махімим	DISPLA	СЕМЕΝТЅ		
LOAD	LOAD	Τ1	Т2	ΤЗ	Rl	R2	R3
INCREMENT	FACTOR						
1	1.000000E-01	5.000000E-02	4.599373E-05	0.000000E+00	0.000000E+00	0.000000E+00	1.292988E-05
2	2.000000E-01	5.000000E-02	9.286826E-05	0.00000E+00	0.00000E+00	0.00000E+00	2.604774E-05
3	3.000000E-01	5.000000E-02	1.397576E-04	0.000000E+00	0.000000E+00	0.000000E+00	3.916815E-05
4	4.000000E-01	5.000000E-02	1.866471E-04	0.000000E+00	0.000000E+00	0.000000E+00	5.228859E-05
5	5.000000E-01	4.999999E-02	2.335366E-04	0.000000E+00	0.000000E+00	0.000000E+00	6.540904E-05
6	6.000000E-01	4.9999999E-02	2.804262E-04	0.000000E+00	0.000000E+00	0.000000E+00	7.852949E-05
/	7.000000E-01	4.9999998E-UZ	3.2/315/E=04	0.000000E+00	0.000000E+00	0.000000E+00	9.164993E-05
9	9 000000E-01	4.9999990E-02 / 000007E=02	1 2109/8E=04	0.000000E+00	0.000000E+00	0.000000E+00	1 178908E=04
10	1 000000E 01	4.999996E-02	4 679843E-04	0.000000E+00	0.000000E+00	0.000000E+00	1 310113E-04
10	1.000002.00	1.000002 02	1.0,00102 01	0.0000002.00	0.0000002.00	0.0000002.00	1.0101101 01
MID-SPAN LO	DAD AT 1% OF V, A	XIAL LOAD AT 10	% OF P	S	UBCASE 3		
			махімим	DISPLA	СЕМЕΝТЅ		
LOAD	LOAD	Τ1	Т2	Т3	R1	R2	R3
INCREMENT	FACTOR						
1	1.000000E-01	4.999995E-02	8.828237E-04	0.00000E+00	0.00000E+00	0.00000E+00	2.475708E-04
2	2.000000E-01	4.999983E-02	1.304708E-03	U.UUUUUUUE+00	U.UUUUUUUE+00	U.UUUUUUUE+00	3.656336E-04
3	3.000000E-01	4.999962E-02	1.726710E-03	0.000000E+00	0.000000E+00	0.000000E+00	4.837168E-04
4	4.000000E-01	4.9999933E=U2	2.148/14E=03 2.570716E_03	0.000000E+00	0.000000E+00	0.000000E+00	5.018000E-04
6	6 000000E-01	4.9999897E-02 4.999853E-02	2.370710E-03	0.000000E+00	0.000000E+00	0.000000E+00	8 379656E-04
7	7 000000E-01	4 999800E-02	3 414718E-03	0.000000E+00	0 000000E+00	0.000000E+00	9 560480E-04
8	8.000000E-01	4.999740E-02	3.836718E-03	0.000000E+00	0.000000E+00	0.000000E+00	1.074130E-03
9	9.000000E-01	4.999672E-02	4.258716E-03	0.000000E+00	0.00000E+00	0.000000E+00	1.192212E-03
10	1.00000E+00	4.999595E-02	4.680714E-03	0.00000E+00	0.000000E+00	0.000000E+00	1.310294E-03
MTD = CDAN TC	10 NT 100% OF V		100 05 5	0	TIDCACE /		
MID-SPAN LO	DAD AT 100% OF V,	AXIAL LOAD AT	10% OF P	S	UBCASE 4		
MID-SPAN LO	AD AT 100% OF V,	AXIAL LOAD AT	10% OF P MAXIMUM	SDISPLA	UBCASE 4 C E M E N T S		
MID-SPAN LO	LOAD AT 100% OF V,	AXIAL LOAD AT	10% OF P MAXIMUM T2	S DISPLA T3	UBCASE 4 C E M E N T S R1	R2	R3
LOAD	LOAD AT 100% OF V, LOAD F FACTOR	AXIAL LOAD AT T1	10% OF P MAXIMUM T2	S DISPLA T3	UBCASE 4 C E M E N T S R1	R2	R3
MID-SPAN LO LOAD INCREMENT 1	LOAD F FACTOR 1.00000E-01	T1 4.942530E-02	10% OF P M A X I M U M T2 5.109248E-02	S DISPLA T3 0.000000E+00	UBCASE 4 C E M E N T S R1 0.000000E+00	R2 0.000000E+00	R3 1.429679E-02
MID-SPAN LC LOAD INCREMENT 1 2	LOAD F FACTOR 1.00000E-01 2.00000E-01	T1 4.942530E-02 4.787843E-02	10% OF P M A X I M U M T2 5.109248E-02 9.741249E-02	S D I S P L A T3 0.000000E+00 0.00000E+00	UBCASE 4 C E M E N T S R1 0.000000E+00 0.000000E+00	R2 0.000000E+00 0.000000E+00	R3 1.429679E-02 2.725629E-02
LOAD INCREMENT 1 2 3	LOAD F FACTOR 1.000000E-01 2.000000E-01 3.000000E-01	T1 4.942530E-02 4.787843E-02 4.538477E-02	10% OF P M A X I M U M T2 5.109248E-02 9.741249E-02 1.438168E-01	S D I S P L A T3 0.000000E+00 0.00000E+00 0.00000E+00	UBCASE 4 C E M E N T S R1 0.000000E+00 0.00000E+00 0.00000E+00	R2 0.000000E+00 0.000000E+00 0.000000E+00	R3 1.429679E-02 2.725629E-02 4.024897E-02
LOAD INCREMENT 2 3 4 5	LOAD F FACTOR 1.00000E-01 2.00000E-01 3.00000E-01 4.00000E-01 5.00000E-01	T1 4.942530E-02 4.787843E-02 4.538477E-02 4.193677E-02 3.75325E-02	10% OF P M A X I M U M T2 5.109248E-02 9.741249E-02 1.438168E-01 1.901387E-01 2.36250E-01	S D I S P L A T3 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00	UBCASE 4 C E M E N T S R1 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R2 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R3 1.429679E-02 2.725629E-02 4.024897E-02 5.321722E-02 6.61427E-02
LOAD INCREMENT 1 2 3 4 5 6	LOAD F FACTOR 1.00000E-01 2.00000E-01 3.00000E-01 4.00000E-01 5.00000E-01 6.00000E-01	T1 4.942530E-02 4.787843E-02 4.538477E-02 4.193677E-02 3.218677E-02 3.218677E-02	10% OF P M A X I M U M T2 5.109248E-02 9.741249E-02 1.438168E-01 1.901387E-01 2.862959E-01 2.862959E-01	S D I S P L A T3 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	UBCASE 4 C E M E N T S R1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R2 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R3 1.429679E-02 2.725622E-02 4.024897E-02 5.321722E-02 6.614271E-02 7.907912E-02
LOAD INCREMENT 1 2 3 4 5 6 7	LOAD F FACTOR 1.000000E-01 2.000000E-01 3.000000E-01 4.000000E-01 5.000000E-01 7.000000E-01	T1 4.942530E-02 4.787843E-02 4.538477E-02 4.193677E-02 3.753335E-02 3.218672E-02 2.594701E-02	10% OF P M A X I M U M T2 5.109248E-02 9.741249E-02 1.438168E-01 1.901387E-01 2.362959E-01 2.824505E-01 3.282489E-01	S D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	UBCASE 4 C E M E N T S R1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R2 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R3 1.429679E-02 2.725629E-02 4.024897E-02 5.321722E-02 6.614271E-02 7.907912E-02 9.191215E-02
NID-SPAN LO LOAD INCREMENT 1 2 3 4 5 6 7 8	LOAD F FACTOR 1.00000E-01 2.00000E-01 3.00000E-01 4.00000E-01 5.00000E-01 6.00000E-01 8.00000E-01	T1 4.942530E-02 4.787843E-02 4.538477E-02 4.193677E-02 3.753335E-02 3.218672E-02 2.594701E-02 1.869709E-02	10% OF P M A X I M U M T2 5.109248E-02 9.741249E-02 1.438168E-01 1.901387E-01 2.362959E-01 2.824595E-01 3.742844E-01	S D I S P L A T3 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	UBCASE 4 C E M E N T S R1 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R2 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R3 1.429679E-02 2.725629E-02 4.024897E-02 5.321722E-02 6.614271E-02 7.907912E-02 9.191215E-02 1.048308E-01
MID-SPAN LO LOAD INCREMENT 1 2 3 4 5 6 7 8 9	LOAD F FACTOR 1.00000E-01 2.00000E-01 3.00000E-01 4.00000E-01 5.00000E-01 6.00000E-01 7.00000E-01 8.00000E-01 9.00000E-01	T1 4.942530E-02 4.787843E-02 4.538477E-02 4.538477E-02 3.753335E-02 3.218672E-02 2.594701E-02 1.869709E-02 1.056318E-02	10% OF P M A X I M U M T2 5.109248E-02 9.741249E-02 1.438168E-01 1.901387E-01 2.362959E-01 3.2824505E-01 3.282489E-01 3.742844E-01 4.200367E-01	S D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	UBCASE 4 C E M E N T S R1 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R2 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R3 1.429679E-02 2.725629E-02 4.024897E-02 5.321722E-02 6.614271E-02 7.907912E-02 9.191215E-02 1.048308E-01 1.176788E-01
LOAD INCREMENT 1 2 3 4 5 6 7 8 9 10	LOAD F FACTOR 1.00000E-01 2.00000E-01 3.00000E-01 4.00000E-01 6.00000E-01 7.00000E-01 8.00000E-01 9.00000E-01 1.00000E+00	T1 4.942530E-02 4.787843E-02 4.538477E-02 3.218672E-02 3.218672E-02 2.594701E-02 1.869709E-02 1.056318E-02 4.546152E-03	10% OF P M A X I M U M T2 5.109248E-02 9.741249E-02 1.438168E-01 1.901387E-01 2.362959E-01 3.282489E-01 3.742844E-01 4.200367E-01	S D I S P L A T3 0.000000E+00 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	UBCASE 4 C E M E N T S R1 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R2 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R3 1.429679E-02 2.725629E-02 4.024897E-02 5.321722E-02 6.614271E-02 7.907912E-02 9.191215E-02 1.048308E-01 1.176788E-01 1.304138E-01
LOAD INCREMENT 1 2 3 4 5 6 7 8 9 10	LOAD FACTOR 1.00000E-01 2.00000E-01 3.00000E-01 4.00000E-01 5.00000E-01 6.00000E-01 7.00000E-01 9.00000E-01 1.00000E+00	T1 4.942530E-02 4.787843E-02 4.538477E-02 4.193677E-02 3.218672E-02 3.218672E-02 2.594701E-02 1.869709E-02 1.056318E-02 4.546152E-03	10% OF P M A X I M U M T2 5.109248E-02 9.741249E-02 1.438168E-01 1.901387E-01 2.362959E-01 3.2824505E-01 3.282489E-01 3.742844E-01 4.200367E-01 100% OF P	S D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	UBCASE 4 C E M E N T S R1 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R2 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R3 1.429679E-02 2.725629E-02 4.024897E-02 5.321722E-02 6.614271E-02 7.907912E-02 9.191215E-02 1.048308E-01 1.176788E-01 1.304138E-01
LOAD INCREMENT 1 2 3 4 5 6 7 8 9 10 MID-SPAN LO	LOAD F FACTOR 1.00000E-01 2.00000E-01 3.00000E-01 4.00000E-01 5.00000E-01 6.00000E-01 8.00000E-01 9.00000E-01 1.00000E+00 DAD AT 100% OF V,	T1 4.942530E-02 4.787843E-02 4.538477E-02 3.753335E-02 3.218672E-02 2.594701E-02 1.869709E-02 1.056318E-02 4.546152E-03 AXIAL LOAD AT	10% OF P M A X I M U M T2 5.109248E-02 9.741249E-02 1.438168E-01 2.362959E-01 2.362959E-01 3.282489E-01 3.742844E-01 4.200367E-01 4.653870E-01 100% OF P	S D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 S	UBCASE 4 C E M E N T S R1 0.000000E+00 0.000000E+00 0.0000E+00 0.0000E+000E+00 0.0000E+000E+0000E+0000E+000E+000E+000E	R2 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R3 1.429679E-02 2.725629E-02 4.024897E-02 5.321722E-02 6.614271E-02 7.907912E-02 9.191215E-02 1.048308E-01 1.176788E-01 1.304138E-01
MID-SPAN LC LOAD INCREMENT 1 2 3 4 5 6 7 8 9 10 MID-SPAN LC	LOAD F FACTOR 1.000000E-01 2.000000E-01 3.000000E-01 4.000000E-01 5.000000E-01 6.000000E-01 8.000000E-01 9.000000E-01 1.000000E+00 DAD AT 100% OF V,	T1 4.942530E-02 4.787843E-02 4.538477E-02 3.753335E-02 3.218672E-02 2.594701E-02 1.869709E-02 1.056318E-02 4.546152E-03 AXIAL LOAD AT	10% OF P M A X I M U M T2 5.109248E-02 9.741249E-02 1.438168E-01 1.901387E-01 2.362959E-01 2.2624505E-01 3.282489E-01 3.742844E-01 4.200367E-01 4.653870E-01 100% OF P M A X I M U M	S D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 S D I S P L A	UBCASE 4 C E M E N T S R1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 UBCASE 5 C E M E N T S	R2 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R3 1.429679E-02 2.725629E-02 4.024897E-02 5.321722E-02 6.614271E-02 7.907912E-02 9.191215E-02 1.048308E-01 1.176788E-01 1.304138E-01
LOAD INCREMENT 1 2 3 4 5 6 7 8 9 10 MID-SPAN LO	LOAD F FACTOR 1.000000E-01 2.000000E-01 3.000000E-01 4.00000E-01 5.000000E-01 6.000000E-01 8.000000E-01 9.000000E-01 1.000000E+00 DAD AT 100% OF V,	T1 4.942530E-02 4.787843E-02 4.538477E-02 3.753335E-02 3.218672E-02 2.594701E-02 1.869709E-02 1.056318E-02 4.546152E-03 AXIAL LOAD AT T1	10% OF P M A X I M U M T2 5.109248E-02 9.741249E-02 1.438168E-01 1.901387E-01 2.362959E-01 2.362959E-01 3.282489E-01 3.742844E-01 4.200367E-01 4.653870E-01 100% OF P M A X I M U M T2	S D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 S D I S P L A T3	UBCASE 4 C E M E N T S R1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 UBCASE 5 C E M E N T S R1	R2 0.000000E+00 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R3 1.429679E-02 2.725629E-02 4.024897E-02 5.321722E-02 6.614271E-02 7.907912E-02 9.191215E-02 1.048308E-01 1.176788E-01 1.304138E-01
LOAD INCREMENT 1 2 3 4 5 6 7 8 9 10 MID-SPAN LO LOAD INCREMENT	LOAD F FACTOR 1.00000E-01 2.00000E-01 3.00000E-01 4.00000E-01 5.00000E-01 6.00000E-01 8.00000E-01 9.00000E-01 1.00000E-01 1.00000E+00 DAD AT 100% OF V, LOAD F FACTOR 1 00000E 01	T1 4.942530E-02 4.787843E-02 4.538477E-02 3.753335E-02 3.218672E-02 2.594701E-02 1.056318E-02 4.546152E-03 AXIAL LOAD AT T1 6.076204E.02	10% OF P M A X I M U M T2 5.109248E-02 9.741249E-02 1.438168E-01 2.362959E-01 2.824505E-01 3.282489E-01 3.742844E-01 4.653870E-01 100% OF P M A X I M U M T2 2.308500E.01	S D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 S D I S P L A T3	UBCASE 4 C E M E N T S R1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 UBCASE 5 C E M E N T S R1 0.000000E+00	R2 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R3 1.429679E-02 2.725629E-02 4.024897E-02 5.321722E-02 6.614271E-02 7.907912E-02 9.191215E-02 1.048308E-01 1.176788E-01 1.304138E-01 R3 R3
LOAD INCREMENT 1 2 3 4 5 6 7 8 9 10 MID-SPAN LO INCREMENT 1 2	LOAD F FACTOR 1.00000E-01 2.000000E-01 3.00000E-01 4.00000E-01 5.00000E-01 6.00000E-01 7.00000E-01 1.00000E-01 1.00000E+00 DAD AT 100% OF V, LOAD F FACTOR 1.00000E-01 2.00000E-01	T1 4.942530E-02 4.78743E-02 4.78743E-02 4.193677E-02 3.218672E-02 2.594701E-02 1.869709E-02 1.056318E-02 4.546152E-03 AXIAL LOAD AT T1 6.976324E-02 1.246073E 01	10% OF P M A X I M U M T2 5.109248E-02 9.741249E-02 1.438168E-01 1.901387E-01 2.362959E-01 2.824595E-01 3.742844E-01 4.200367E-01 4.653870E-01 100% OF P M A X I M U M T2 3.398500E-01 2.664120E.01	S D I S P L A T3 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.000000E+00 0.000000E+00 S D I S P L A T3 0.000000E+00	UBCASE 4 C E M E N T S R1 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 UBCASE 5 C E M E N T S R1 0.000000E+00 0.000000E+00	R2 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R3 1.429679E-02 2.725629E-02 4.024897E-02 5.321722E-02 6.614271E-02 7.907912E-02 9.191215E-02 1.048308E-01 1.176788E-01 1.304138E-01 R3 9.294212E-02 7.178141E-02
LOAD INCREMENT 1 2 3 4 5 6 7 8 9 10 MID-SPAN LO INCREMENT 1 2 3	LOAD F FACTOR 1.00000E-01 2.000000E-01 3.000000E-01 4.00000E-01 5.00000E-01 6.00000E-01 8.00000E-01 1.00000E-01 1.00000E+00 DAD AT 100% OF V, LOAD F FACTOR 1.00000E-01 2.00000E-01 3.00000E-01	T1 4.942530E-02 4.787843E-02 4.53847TE-02 4.193677E-02 3.753335E-02 3.218672E-02 2.594701E-02 1.869709E-02 1.056318E-02 4.546152E-03 AXIAL LOAD AT T1 6.976324E-02 1.246073E-01 1.745826E-01	10% OF P M A X I M U M T2 5.109248E-02 9.741249E-02 1.438168E-01 2.362959E-01 2.362959E-01 3.742844E-01 4.200367E-01 4.653870E-01 100% OF P M A X I M U M T2 3.398500E-01 2.864120E-01 2.227584E-01	S D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 S D I S P L A T3 0.000000E+00 0.000000E+00	UBCASE 4 C E M E N T S R1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 UBCASE 5 C E M E N T S R1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R2 0.000000E+00 0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R3 1.429679E-02 2.725629E-02 4.024897E-02 5.321722E-02 6.614271E-02 7.907912E-02 9.191215E-02 1.048308E-01 1.176788E-01 1.304138E-01 R3 9.294212E-02 7.179141E-02 5.838510E-02
LOAD INCREMENT 1 2 3 4 5 6 7 8 9 10 MID-SPAN LO INCREMENT 1 2 3 4	LOAD F FACTOR 1.000000E-01 2.000000E-01 3.000000E-01 4.000000E-01 5.000000E-01 5.000000E-01 9.000000E-01 1.000000E-01 1.000000E+00 DAD AT 100% OF V, LOAD F FACTOR 1.000000E-01 3.000000E-01 4.000000E-01 4.000000E-01	T1 4.942530E-02 4.787843E-02 4.787843E-02 4.538477E-02 3.753335E-02 3.218672E-02 2.594701E-02 1.869709E-02 1.056318E-02 4.546152E-03 AXIAL LOAD AT T1 6.976324E-02 1.246073E-01 1.745826E-01 2.24773E-01	10% OF P M A X I M U M T2 5.109248E-02 9.741249E-02 1.438168E-01 2.362959E-01 2.362959E-01 3.282489E-01 3.742844E-01 4.200367E-01 4.653870E-01 100% OF P M A X I M U M T2 3.398500E-01 2.684120E-01 2.227584E-01 1.907897E-01	S D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 S D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	UBCASE 4 C E M E N T S R1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 UBCASE 5 C E M E N T S R1 0.000000E+00 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.000000E+00 0.0000E+00 0.000E+00 0.000E+00 0.0000E+00 0.000E+000E+00 0.0000E+00E+00E	R2 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R3 1.429679E-02 2.725629E-02 4.024897E-02 5.321722E-02 6.614271E-02 7.907912E-02 9.191215E-02 1.048308E-01 1.176788E-01 1.304138E-01 R3 9.294212E-02 7.179141E-02 5.838510E-02 4.90808E-02
MID-SPAN LC LOAD INCREMENT 1 2 3 4 5 6 7 8 9 10 MID-SPAN LC INCREMENT 1 2 3 4 5	LOAD F FACTOR 1.000000E-01 2.000000E-01 3.000000E-01 4.000000E-01 5.000000E-01 5.000000E-01 8.000000E-01 1.000000E-01 1.000000E-01 1.00000E-01 2.000000E-01 3.00000E-01 4.000000E-01 5.000000E-01	T1 4.942530E-02 4.787843E-02 4.787843E-02 4.538477E-02 3.753335E-02 3.218672E-02 2.594701E-02 1.869709E-02 1.056318E-02 4.546152E-03 AXIAL LOAD AT T1 6.976324E-02 1.246073E-01 1.745826E-01 2.693440E-01	10% OF P M A X I M U M T2 5.109248E-02 9.741249E-02 1.438168E-01 1.901387E-01 2.362959E-01 2.824505E-01 3.282489E-01 3.742844E-01 4.653870E-01 100% OF P M A X I M U M T2 3.398500E-01 2.684120E-01 2.227584E-01 1.907897E-01 1.670149E-01	S D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 S D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	UBCASE 4 C E M E N T S R1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 UBCASE 5 C E M E N T S R1 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R2 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R3 1.429679E-02 2.725629E-02 4.024897E-02 5.321722E-02 6.614271E-02 7.907912E-02 9.191215E-02 1.048308E-01 1.176788E-01 1.304138E-01 8 R3 9.294212E-02 7.179141E-02 5.838510E-02 4.201547E-02
MID-SPAN LC LOAD INCREMENT 1 2 3 4 5 6 7 8 9 10 MID-SPAN LC INCREMENT 1 2 3 4 5 6	LOAD F FACTOR 1.00000E-01 2.00000E-01 3.00000E-01 4.00000E-01 4.00000E-01 6.00000E-01 7.00000E-01 1.00000E-01 1.00000E+00 DAD AT 100% OF V, LOAD F FACTOR 1.00000E-01 3.00000E-01 4.00000E-01 5.00000E-01 5.00000E-01	T1 4.942530E-02 4.787843E-02 4.787843E-02 4.193677E-02 3.218672E-02 3.218672E-02 2.594701E-02 1.869709E-02 1.056318E-02 4.546152E-03 AXIAL LOAD AT T1 6.976324E-02 1.246073E-01 1.745826E-01 2.224723E-01 2.693440E-01 3.155724E-01	10% OF P M A X I M U M T2 5.109248E-02 9.741249E-02 1.438168E-01 1.901387E-01 2.362959E-01 2.824505E-01 3.742844E-01 4.200367E-01 4.653870E-01 100% OF P M A X I M U M T2 3.398500E-01 2.684120E-01 2.227584E-01 1.907897E-01 1.670149E-01 1.48335E-01	S D I S P L A T3 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.000000E+00 0.000000E+00 S D I S P L A T3 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	UBCASE 4 C E M E N T S R1 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 UBCASE 5 C E M E N T S R1 0.000000E+00 0.000000E+00 0.0000E+00 0.0000E+000E+000E+000E+000E+000E+000E+0	R2 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R3 1.429679E-02 2.725629E-02 4.024897E-02 5.321722E-02 6.614271E-02 7.907912E-02 1.048308E-01 1.176788E-01 1.304138E-01 R3 9.294212E-02 7.179141E-02 5.838510E-02 4.908088E-02 4.908088E-02 3.698013E-02
LOAD INCREMENT 1 2 3 4 5 6 7 8 9 10 MID-SPAN LO MID-SPAN LO INCREMENT 1 2 3 4 5 6 7	LOAD F FACTOR 1.00000E-01 2.000000E-01 3.000000E-01 4.00000E-01 5.00000E-01 6.00000E-01 7.00000E-01 1.00000E-01 1.00000E+00 DAD AT 100% OF V, LOAD F FACTOR 1.00000E-01 3.00000E-01 3.00000E-01 4.00000E-01 5.00000E-01 7.00000E-01 7.00000E-01 7.00000E-01	T1 4.942530E-02 4.787843E-02 4.787843E-02 4.193677E-02 3.753335E-02 3.218672E-02 2.594701E-02 1.869709E-02 1.056318E-02 4.546152E-03 AXIAL LOAD AT T1 6.976324E-02 1.246073E-01 1.745826E-01 2.224723E-01 2.693440E-01 3.613846E-01	10% OF P M A X I M U M T2 5.109248E-02 9.741249E-02 1.438168E-01 2.362959E-01 2.362959E-01 3.742844E-01 4.200367E-01 4.653870E-01 100% OF P M A X I M U M T2 3.398500E-01 2.227584E-01 1.907897E-01 1.670149E-01 1.488335E-01 1.349679E-01	S D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 S D I S P L A T3 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	UBCASE 4 C E M E N T S R1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 UBCASE 5 C E M E N T S R1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R2 0.000000E+00 0.00000E+00 0.000000E+00 0.000000E+00 0.00000E+00 0.000000E+00 0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	R3 1.429679E-02 2.725629E-02 4.024897E-02 5.321722E-02 6.614271E-02 7.907912E-02 9.191215E-02 1.048308E-01 1.176788E-01 1.304138E-01 8 8 9.294212E-02 7.179141E-02 5.838510E-02 4.908088E-02 4.221547E-02 3.698013E-02 3.307577E-02
LOAD INCREMENT 1 2 3 4 5 6 7 8 9 10 MID-SPAN LO INCREMENT 1 2 3 4 5 6 7 8	LOAD F FACTOR 1.00000E-01 2.00000E-01 3.00000E-01 3.00000E-01 4.00000E-01 5.00000E-01 3.00000E-01 9.00000E-01 1.00000E-01 1.00000E+00 DAD AT 100% OF V, LOAD F FACTOR 1.00000E-01 3.00000E-01 3.00000E-01 5.00000E-01 5.00000E-01 6.00000E-01 8.00000E-01 8.00000E-01	T1 4.942530E-02 4.787843E-02 4.53847TE-02 4.53847TE-02 3.753335E-02 3.218672E-02 2.594701E-02 1.869709E-02 1.056318E-02 4.546152E-03 AXIAL LOAD AT T1 6.976324E-02 1.246073E-01 1.745826E-01 2.224723E-01 2.693440E-01 3.613846E-01 4.070960E-01	10% OF P M A X I M U M T2 5.109248E-02 9.741249E-02 1.438168E-01 2.362959E-01 2.362959E-01 3.2824505E-01 3.742844E-01 4.200367E-01 4.653870E-01 100% OF P M A X I M U M T2 3.398500E-01 2.684120E-01 2.227584E-01 1.907897E-01 1.670149E-01 1.488335E-01 1.349679E-01 1.22913E-01	S D I S P L A T3 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.000000E+00 0.000000E+00 S D I S P L A T3 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	UBCASE 4 C E M E N T S R1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 UBCASE 5 C E M E N T S R1 0.000000E+00	R2 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.000000E+00 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	R3 1.429679E-02 2.725629E-02 4.024897E-02 5.321722E-02 6.614271E-02 7.907912E-02 9.191215E-02 1.048308E-01 1.176788E-01 1.304138E-01 83 9.294212E-02 7.179141E-02 5.838510E-02 4.921547E-02 3.698013E-02 3.307577E-02 2.954238E-02
MID-SPAN 10 LOAD INCREMENT 1 2 3 4 5 6 7 8 9 10 MID-SPAN 10 INCREMENT 1 2 3 4 5 6 7 8 9 10 MID-SPAN 10 INCREMENT 1 2 3 4 5 6 7 8 9 10 INCREMENT 1 1 2 3 4 5 6 7 8 9 10 INCREMENT 1 1 2 3 4 5 6 7 8 9 10 INCREMENT 1 1 2 3 4 5 6 7 8 9 10 INCREMENT 10 INCREMENT 10 INCREMENT 10 INCREMENT 10 INCREMENT 10 INCREMENT 10 INCREMENT 10 INCREMENT 10 INCREMENT 10 INCREMENT 10 INCREMENT 10 INCREMENT 10 INCREMENT 10 INCREMENT 10 INCREMENT 12 3 4 5 6 7 8 9 10 INCREMENT 12 3 4 5 6 7 8 9 10 INCREMENT 12 3 4 5 6 7 8 9 10 INCREMENT 12 3 4 5 6 7 8 9 9 10 INCREMENT 12 3 4 5 6 7 8 9 9 10 INCREMENT 12 3 4 5 6 7 7 8 9 9 9 10 10 10 10 10 10 10 10 10 10	LOAD F FACTOR 1.00000E-01 2.00000E-01 3.00000E-01 4.00000E-01 5.00000E-01 5.00000E-01 8.00000E-01 9.00000E-01 1.00000E-01 1.00000E+00 DAD AT 100% OF V, LOAD F FACTOR 1.00000E-01 2.00000E-01 3.00000E-01 5.00000E-01 6.00000E-01 8.00000E-01 9.00000E-01 9.00000E-01	T1 4.942530E-02 4.787843E-02 4.787843E-02 4.538477E-02 3.753335E-02 3.218672E-02 2.594701E-02 1.869709E-02 1.056318E-02 4.546152E-03 AXIAL LOAD AT T1 6.976324E-02 1.246073E-01 1.745826E-01 2.693440E-01 3.155724E-01 3.155724E-01 3.613846E-01 4.070960E-01 4.525827E-01	10% OF P M A X I M U M T2 5.109248E-02 9.741249E-02 1.438168E-01 2.362959E-01 2.362959E-01 3.282489E-01 3.742844E-01 4.200367E-01 4.653870E-01 100% OF P M A X I M U M T2 3.398500E-01 2.684120E-01 2.227584E-01 1.97897E-01 1.670149E-01 1.496335E-01 1.22973E-01 1.22973E-01 1.22973E-01 1.22973E-01 1.22973E-01 1.22973E-01 1.22973E-01 1.22973E-01 1.22973E-01 1.22973E-01 1.22975E-0	S D I S P L A T3 0.000000E+00	UBCASE 4 C E M E N T S R1 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.00000E+00 0.00000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.000E+00 0.0000E+00 0.0000E+00 0.000E+000E+00 0.0000E+00 0.00	R2 0.000000E+00 0.00000E+00	R3 1.429679E-02 2.725629E-02 4.024897E-02 5.321722E-02 6.614271E-02 7.907912E-02 9.191215E-02 1.048308E-01 1.176788E-01 1.304138E-01 83 9.294212E-02 7.179141E-02 5.838510E-02 4.908088E-02 4.221547E-02 3.698013E-02 3.698013E-02 3.698013E-02 3.698013E-02 3.698013E-02 3.698013E-02 3.698013E-02 3.698013E-02 3.698013E-02 3.698013E-02 3.698013E-02 3.698013E-02 3.6977E-02 3.698013E-02 3.6977E-02 3.6971430E-02
MID-SPAN 10 LOAD INCREMENT 1 2 3 4 5 6 7 8 9 10 MID-SPAN 10 INCREMENT 1 2 3 4 5 6 7 8 9 10 MID-SPAN 10 INCREMENT 1 1 2 3 4 5 6 7 8 9 10 INCREMENT 1 1 2 3 4 5 6 7 8 9 10 INCREMENT 1 1 2 3 4 5 6 7 8 9 10 INCREMENT 1 1 2 3 4 5 6 7 8 9 10 INCREMENT 1 1 1 1 1 1 1 1 1 1 1 1 1	LOAD F FACTOR 1.00000E-01 2.00000E-01 3.00000E-01 4.00000E-01 5.00000E-01 5.00000E-01 8.00000E-01 9.00000E-01 1.00000E-01 1.00000E-01 3.00000E-01 3.00000E-01 3.00000E-01 5.00000E-01 5.00000E-01 7.00000E-01 8.00000E-01 9.00000E-01 1.00000E-01 1.00000E-01 1.00000E-01 1.00000E-01 1.00000E-01 1.00000E-01 1.00000E-01 1.00000E-01 1.00000E-01 1.00000E-01 1.00000E-01 1.00000E-01 1.00000E-01 1.00000E-01 1.00000E-01 1.00000E-01 1.00000E-01 1.00000E+00	T1 4.942530E-02 4.787843E-02 4.787843E-02 4.538477E-02 3.753335E-02 3.218672E-02 2.594701E-02 1.869709E-02 1.056318E-02 4.546152E-03 AXIAL LOAD AT T1 6.976324E-02 1.246073E-01 1.745826E-01 2.224723E-01 3.613846E-01 4.070960E-01 4.525827E-01 4.979398E-01	10% OF P M A X I M U M T2 5.109248E-02 9.741249E-02 1.438168E-01 2.362959E-01 2.362959E-01 3.282489E-01 3.742844E-01 3.742844E-01 4.653870E-01 100% OF P M A X I M U M T2 3.398500E-01 2.684120E-01 2.227584E-01 1.670149E-01 1.488335E-01 1.349679E-01 1.22913E-01 1.22970E-01 1.2970E-01 1.2970E-01 1.2970E-01 1.2970E-01	S D I S P L A T3 0.000000E+00	UBCASE 4 C E M E N T S R1 0.000000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.000E+00 0.0000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0	R2 0.000000E+00 0.00000E+00	R3 1.429679E-02 2.725629E-02 4.024897E-02 5.321722E-02 6.614271E-02 7.907912E-02 9.191215E-02 1.048308E-01 1.176788E-01 1.304138E-01 1.304138E-01 R3 9.294212E-02 7.179141E-02 5.838510E-02 4.221547E-02 3.698013E-02 3.698013E-02 3.698013E-02 2.954238E-02 2.671430E-02 2.671430E-02 2.671430E-02

The next problem is another application of the cable element. The cantilever beam in Figure 15-38 is supported by 3 vertical cables and is subjected to a shear load at its free end. The left cable is preloaded to 1000 pounds. The middle cable is initially loose with 1.0 inch of slack. The right cable has a defined tensile allowable of 7.E+4 psi, above which it will fail completely. The first third of the applied loading (0.0 to 1.0 load factor) extends the beam axially while the left cable deflects the beam upward at its attach point deflecting the tip downward slightly. The next third (1.0 to 2.0 load factor) introduces a shear load at the beam tip, which results in only a slight deflection due to the support of the right cable. As the load is increased a point is reached (1.5 load factor) where the allowable for the right cable is exceeded and the cable snaps. The load path is then transferred to beam bending until the 1.0 inch slack in the middle cable is taken up and the middle cable begins to load.

Listing 15-22 contains the Model Input File. Stress for each cable is plotted in Figure 15-39. The beam tip deflection is plotted in Figure 15-40.

Figure 15-38. 2-D Cantilever Beam Example Problem with Cable Elements.

Listing 15-22. Model Input File for the Cantilever Beam Problem with Cable Elements.

```
$ NONLINEAR STATIC SOLUTION.
Ś
SOL NONLINEAR STATIC
TITLE = INSTALLATION TEST CASE
SUBTITLE = CANTILEVER BEAM SUPPORTED BY CABLES
DISPLACEMENT = ALL
FORCE = ALL
STRESS = ALL
Ś
SPC = 1
SUBCASE 1
 LABEL = INITIAL AXIAL LOAD AT FREE END OF THE BEAM
 LOAD = 10
NLPARM = 1
SUBCASE 2
 LABEL = END LOAD AT 10% OF V, AXIAL LOAD AT 100% OF P
 LOAD = 20
 NLPARM = 1
SUBCASE 3
 LABEL = END LOAD AT 100% OF V, AXIAL LOAD AT 100% OF P
 LOAD = 30
 NLPARM = 1
Ś
BEGIN BULK
Ś
$ TURN ON LARGE DISPLACEMENT EFFECTS.
Ś
PARAM, LGDISP, ON
Ś
$ DEFINE NONLINEAR SOLUTION PARAMETERS.
Ś
NLPARM, 1, 10, , , , , P, YES
Ś
$ GEOMETRY DEFINITION (10" BEAM DIVIDED INTO 10 ELEMENTS).
$

      GRID,
      1,
      0,
      0.,
      0.,
      0

      GRID,
      2,
      0,
      1.,
      0.,
      0

      GRID,
      3,
      0,
      2.,
      0.,
      0.,
      0

                   3., 0., 0.,
4., 0., 0.,
5., 0., 0.,
GRID, 4, 0,
                                       0
GRID, 5, 0,
GRID, 6, 0,
                                        0
                                        0
GRID, 7, 0, 6., 0., 0., 0
GRID, 8, 0, 7., 0., 0.,
GRID, 9, 0, 8., 0., 0.,
GRID, 10, 0, 9., 0., 0.,
                                       0
                                        0
                                        0
GRID, 11, 0, 10., 0., 0., 0
GRID, 12, 0, 3., 3., 0.,
GRID, 13, 0, 8., 3., 0.,
                                        0
                                        0
GRID, 14, 0, 10., 3.,
                                 0.,
                                        0
Ś
$ BEAM MODELED WITH BAR ELEMENTS.
Ś
CBAR, 1, 10, 1, 2, 0., 0., 1.
CBAR, 2, 10, 2, 3, 0., 0.,
CBAR, 3, 10, 3, 4, 0., 0.,
                                              1.
                                               1.
CBAR, 4, 10, 4, 5, 0., 0., 1.
CBAR, 5, 10, 5, 6, 0., 0., 1.
CBAR, 6, 10,
CBAR, 7, 10,
                     6, 7, 0., 0.,
7, 8, 0., 0.,
                                               1.
                                              1.

      CBAR, 8, 10, 8, 9, 0., 0., 1.

      CBAR, 9, 10, 9, 10, 0., 0., 1.

      CBAR, 10, 10, 10, 11, 0., 0., 1.

$
$ CABLE ELEMENTS.
                      4, 12
CCABLE, 11, 20,
CCABLE, 12, 30, 9, 13
CCABLE, 13, 40, 11, 14
```

Ś

Listing 15-22. Model Input File for the Cantilever Beam Problem with Cable Elements. (Continued)

```
$ BAR ELEMENT MATERIAL AND SECTION PROPERTIES (1.0" X 0.2" CROSS-SECTION).
Ś
PBAR, 10, 100, 0.2, 1.667E-2, 6.667E-4, 2.328E-3,
, -0.5, -0.1, 0.5, -0.1, 0.5, 0.1, -0.5, 0.1
Ś
$ LINEAR ELEMENT MATERIAL PROPERTIES (ALUMINUM).
$
MAT1, 100, 1.E+7, , 0.33, 0.1
Ś
$ CABLE ELEMENT PROPERTIES (0.1" DIAMETER).
Ś

      PCABLE, 20, 100, 0., 1000., 7.854E-3

      PCABLE, 30, 100, 1., 0., 7.854E-3

      PCABLE, 40, 100, 0., 0., 7.854E-3, 7.E+4

Ś
$ PINNED AT ONE END AND MIDPOINT, MOVEMENT CONSTRAINED TO$ X-Y PLANE
$ ONLY.
Ś
              12345, 1
345, 2, THRU, 11
SPC1, 1, 12345,
SPC1, 1,
SPC1, 1, 123456, 12, THRU, 14
SPC1, 1, 12345,
                      6
Ś
$ AXIAL TENSILE LOAD (X-DIRECTION).
Ś
FORCE, 1, 11, 0, 1.E+4, 1., 0., 0.
Ś
$ POINT LOAD AT FREE END (SHEAR).
$
FORCE, 2, 11, 0, 1.E+4, 0., -1., 0.
Ś
$ ADD COMPONENT LOADS TO GET SUBCASE LOADING.
Ś
LOAD, 10, 1., 1., 1, 0., 2
LOAD, 20, 1., 1., 1, 0.1, 2
LOAD, 30, 1., 1., 1, 2
ENDDATA
```


Figure 13-39. Cable Element Stress vs. Load Factor.

Figure 13-40. Beam Tip Displacement vs. Load Factor.

15.3.11 Creep and Viscoelastic Material

The next problem is an example of creep analysis using a generalized viscoelastic material. The beam in Figure 15-41 is made from an elastic material and subjected to a 4000 pound axial force at 1000 °F for 6000 hours. The load is ramped up over 5 increments in the first subcase without any creep effects. The second subcase maintains the load while adding the creep effects over 20 increments with each increment representing 300 hours.

The material behavior is both stress and time dependent and is represented using:

$$\epsilon^{c}(\sigma,t) = A(\sigma) \left[1 - e^{-R(\sigma)t} \right] + K(\sigma)t$$

where for this example,

 $\begin{aligned} & \mathcal{A}(\sigma) = (6.985\text{E} - 6)\sigma^{2.444} \\ & \mathcal{R}(\sigma) = (7.032\text{E} - 4)e^{0.1072\sigma} \\ & \mathcal{K}(\sigma) = (6.73\text{E} - 9)[\sinh(0.1479\sigma)]^{3.0} \end{aligned}$

The above creep law is defined using the CREEP Bulk Data entry where the input parameters are typically obtained empirically. For this example time is in hours and applied load is in kilo pounds. Listing 15-23 contains the Model Input File.

Figure 15-41. 2-D Cantilever Beam Example Problem with Creep Effects.

Listing 15-23. Model Input File for Cantilever Beam Problem with Creep Effects.

```
$ NONLINEAR STATIC SOLUTION.
Ś
SOL NONLINEAR STATIC
TITLE = INSTALLATION TEST CASE
SUBTITLE = AXIAL LOADED CANTILEVER BEAM WITH CREEP EFFECTS
DISPLACEMENT = ALL
STRESS = ALL
FORCE = ALL
TEMPERATURE (INITIAL) = 1
SUBCASE 1
 LABEL = TENSILE LOAD IN X-DIR WITHOUT CREEP
 TEMPERATURE (MATERIAL) = 1
 IOAD = 1
 NLPARM = 1
 SPC = 1
SUBCASE 2
 LABEL = TENSILE LOAD IN X-DIR WITH CREEP
 TEMPERATURE (MATERIAL) = 1
 LOAD = 1
 NLPARM = 2
SPC = 1
Ś
BEGIN BULK
Ś
$ TURN ON LARGE DISPLACEMENT EFFECTS.
PARAM, LGDISP, ON
Ś
$ DEFINE NONLINEAR SOLUTION PARAMETERS.
                 5,
NLPARM, 1, 5, 0., , , , , , YES
NLPARM, 2, 20, 300., , , , , YES
$ FAHRENHEIT TO ABSOLUTE TEMPERATURE CONVERSION FACTOR.
PARAM, TABS, 459.69
Ś
$ GEOMETRY DEFINITION (10" BEAM DIVIDED INTO 10 ELEMENTS).
Ś

      GRID,
      1,
      0,
      0.,
      0.,
      0.,
      0

      GRID,
      2,
      0,
      1.,
      0.,
      0.,
      0

      GRID,
      3,
      0,
      2.,
      0.,
      0.,
      0

      GRID,
      3,
      0,
      2.,
      0.,
      0.,
      0

GRID, 4, 0,
GRID, 5, 0,
GRID, 6, 0,
                   3., 0., 0.,
4., 0., 0.,
5., 0., 0.,
                                        0
                                         0
                                        0
GRID, 7, 0,
                   6., 0., 0., 0
                  7., 0., 0.,
8., 0., 0.,
9., 0., 0.,
GRID, 8, 0,
GRID, 9, 0,
                                        0
                                        0
GRID, 10, 0,
                                         0
GRID, 11, 0, 10., 0.,
                                 0.,
                                         0
Ś
$ BEAM MODELED WITH BAR ELEMENTS.
Ś
CBAR, 1, 10,
CBAR, 2, 10,
                             2, 0., 0.,
3, 0., 0.,
                                               1.
                     1,
                      2,
                                                1.
CBAR, 3, 10, 3, 4, 0., 0., 1.
CBAR, 4, 10, 4, 5, 0., 0., 1.
CBAR, 5, 10, 5, 6, 0., 0., 1.
CBAR, 6, 10, 6, 7, 0., 0., 1.
                                                1.
CBAR, 7, 10,
                     7, 8, 0., 0., 1.
CBAR, 8, 10,
CBAR, 9, 10,
                     8,
                            9, 0., 0.,
                                               1.
                          10,
                                 0.,
                      9,
                                        0.,
                                                1.
CBAR, 10, 10, 10, 11, 0., 0., 1.
Ś
$ BAR ELEMENT MATERIAL AND SECTION PROPERTIES (1.0" X 0.2" CROSS-SECTION).
Ś
PBAR, 10, 100, 0.2, 1.667E-2, 6.667E-4, 2.328E-3
```

Ś

Listing 15-23. Model Input File for the Cantilever Beam Problem with Creep Effects. (Continued)

```
$ LINEAR ELEMENT MATERIAL PROPERTIES (MA956 IN KSI).
Ś
MAT1, 100, 3.4E+4, , 0.33, 0.3
Ś
$ CREEP CHARACTERISTICS.
Ś
CREEP, 100, 1000., , CRLAW,
, 111, 6.985E-6, 2.444, 7.032E-4, 0.1072, 6.73E-9, 0.1479, 3.0
Ś
$ FIXED AT ONE END, FREE TO TRANSLATE IN X-DIR AT OTHER END.
Ś
SPC1, 1, 123456, 1
SPC1, 1, 23456, 2, THRU, 11
Ś
$ TENSILE LOAD (X-DIRECTION IN KIPS).
Ś
FORCE, 1, 11, 0, 4., 1., 0., 0.
Ś
$ INITIAL TEMPERATURE DISTRIBUTION.
Ś
TEMPD, 1, 1000.
ENDDATA
```

The maximum displacements from the Model Results Output File are shown in tabular form in Listing 15-24 and graphically in Figure 15-42. Bar element equivalent stress is plotted against effective creep strain in Figure 15-43 and time is plotted against total strain in Figure 15-44.

Listing 1	5-24.	Load	Increment	Maximum	Dis	placements.
-----------	-------	------	-----------	---------	-----	-------------

TENSILE LOAD	IN X-DIR WITHOU	T CREEP		SUB	CASE 1			
MAXIMUM DISPLACEMENTS								
LOAD INCREMENT	LOAD FACTOR	Τ1	Τ2	ТЗ	R1	R2	R3	
1	2.000000E-01	1.176471E-03	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00	0.00000E+00	
2	4.000000E-01	2.352941E-03	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00	
3	6.000000E-01	3.529412E-03	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00	
4	8.000000E-01	4.705882E-03	0.000000E+00	0.00000E+00	0.000000E+00	0.000000E+00	0.000000E+00	
5	1.000000E+00	5.882353E-03	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	

Listing 15-24. Load Increment Maximum Displacements. (Continued)

TENSILE LOAD	IN X-DIR WITH	CREEP		SUB	CASE 2		
			махімим	DISPLA	СЕМЕΝТЅ		
LOAD	LOAD	Τ1	Т2	тЗ	R1	R2	R3
INCREMENT	FACTOR						
1	5.000000E-02	8.396330E-02	0.00000E+00	0.000000E+00	0.00000E+00	0.000000E+00	0.00000E+00
2	1.000000E-01	1.201145E-01	0.00000E+00	0.000000E+00	0.00000E+00	0.000000E+00	0.00000E+00
3	1.500000E-01	1.428504E-01	0.00000E+00	0.000000E+00	0.00000E+00	0.000000E+00	0.00000E+00
4	2.000000E-01	1.612447E-01	0.000000E+00	0.000000E+00	0.00000E+00	0.000000E+00	0.000000E+00
5	2.500000E-01	1.782919E-01	0.00000E+00	0.000000E+00	0.00000E+00	0.000000E+00	0.00000E+00
6	3.000000E-01	1.948112E-01	0.00000E+00	0.000000E+00	0.00000E+00	0.000000E+00	0.00000E+00
7	3.500000E-01	2.112452E-01	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00
8	4.00000E-01	2.276483E-01	0.00000E+00	0.000000E+00	0.00000E+00	0.000000E+00	0.00000E+00
9	4.500000E-01	2.440406E-01	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00
10	5.000000E-01	2.604289E-01	0.00000E+00	0.000000E+00	0.00000E+00	0.000000E+00	0.00000E+00
11	5.500000E-01	2.768159E-01	0.00000E+00	0.000000E+00	0.00000E+00	0.000000E+00	0.000000E+00
12	6.000000E-01	2.932023E-01	0.00000E+00	0.000000E+00	0.00000E+00	0.000000E+00	0.000000E+00
13	6.500000E-01	3.095886E-01	0.00000E+00	0.000000E+00	0.00000E+00	0.000000E+00	0.00000E+00
14	7.000000E-01	3.259749E-01	0.00000E+00	0.000000E+00	0.00000E+00	0.000000E+00	0.00000E+00
15	7.500000E-01	3.423611E-01	0.000000E+00	0.000000E+00	0.00000E+00	0.000000E+00	0.000000E+00
16	8.000000E-01	3.587473E-01	0.00000E+00	0.000000E+00	0.00000E+00	0.000000E+00	0.000000E+00
17	8.500000E-01	3.751335E-01	0.00000E+00	0.000000E+00	0.00000E+00	0.000000E+00	0.000000E+00
18	9.000000E-01	3.915197E-01	0.00000E+00	0.000000E+00	0.00000E+00	0.000000E+00	0.000000E+00
19	9.500000E-01	4.079059E-01	0.00000E+00	0.000000E+00	0.00000E+00	0.000000E+00	0.000000E+00
20	1.000000E+00	4.244452E-01	0.00000E+00	0.000000E+00	0.00000E+00	0.000000E+00	0.000000E+00

Figure 15-42. Maximum Displacement vs. Load Factor.

Figure 15-43. Bar Element Equivalent Stress vs. Effective Creep Strain.

Figure 15-44. Bar Element Total Strain vs. Time.

15.3.12 Arc-length Methods

It is often necessary to study the post buckling behavior of a structure whose response is unstable during part of its loading history. Arc-length methods allow solutions in this unstable regime by modulating the applied loads in order to produce displacement increments of manageable size for a given load step. In order to modulate the applied load, an additional variable and a constraint equation are introduced.

The residual load vector $\{R\}$ is given by

$$R(u, \mu) = P(u, \mu) - F(u)$$

where F represents the internal forces and the total external load P is given by

$$P(u,\mu) = P_0 + \mu \Delta P$$

where P_0 denotes the applied load at the end of the preceding subcase, ΔP represents the load increment in the current subcase and μ is the load factor varying from 0 to 1 within the subcase. Note that the load factor is not limited to the range 0 to 1 and may become negative during load modulation.

There are three different arc-length method available in Autodesk Inventor Nastran: Crisfield, Riks, and Modified Riks. The primary difference is the constraint equation that is used to solve for μ .

For Crisfield's method (default) the constraint equation is given by

$$\left\{u_n^i-u_n^0\right)\left\{u_n^i-u_n^0\right\}+w^2\left(\mu^i-\mu^0\right)^2=\varDelta l_n^2$$

For Riks' method the constraint equation is given by

$$\left\{u_{n}^{i}-u_{n}^{i-1}\right\}^{T}\left\{u_{n}^{1}-u_{n}^{0}\right\}+w^{2}\varDelta\mu^{i}=0$$

And for the Modified Riks' method the constraint equation is given by

$$\left\{u_{n}^{i}-u_{n}^{i-1}\right\}^{T}\left\{u_{n}^{i-1}-u_{n}^{0}\right\}+w^{2}\varDelta\mu^{i}\left(\mu^{i-1}-\mu^{0}\right)=0$$

where w is the user-specified scaling factor used to handle dimension disparities

 $\boldsymbol{\mu}$ is the load factor

 ΔI is the arc-length

The constraint equation is defined using the NLPCI Bulk Data entry. Generally the Crisfield method performs best and is the default.

As an example consider the shallow circular arch shown in Figure 15-45. The arch is simply supported at its ends and is loaded uniformly. The objective is to find the structural response for snap-through. The material is linear elastic. Listing 15-25 contains the Model Input File.

Figure 15-45. 2-D Circular Arch Snap-Through Example Problem.

Listing 15-25. Model Input File for 2-D Circular Arch Snap-Through.

```
$ REQUEST X-Y PLOT OUTPUT TO A COMMA SEPERATED VARIABLE FILE.
Ś
NASTRAN XYPLOTCSVOUT=ON
Ś
$ NONLINEAR STATIC SOLUTION.
Ś
SOL NONLINEAR STATIC
Ś
TITLE = INSTALLATION TEST CASE
SUBTITLE = 2-D CIRCULAR ARCH SNAP-THROUGH
DISPLACEMENT = ALL
STRESS = ALL
FORCE = ALL
SUBCASE 1
LABEL = 200 POUND/INCH DISTRIBUTED LOAD
 LOAD = 1
NLPARM = 1
SPC = 1
Ś
$ REQUEST X-Y PLOT OUTPUT AT MODEL CENTER POINT IN Y-DIRECTION.
Ś
XYDATA, 6, 2
Ś
BEGIN BULK
Ś
$ TURN ON LARGE DISPLACEMENT EFFECTS.
PARAM, LGDISP, ON
$ DEFINE NONLINEAR SOLUTION PARAMETERS.
NLPARM, 1, 5, , , , , , , YES
Ś
$ SPECIFY ARC-LENGTH METHOD.
Ś
NLPCI, 1
Ś
$ GEOMETRY DEFINITION (10" BEAM DIVIDED INTO 10 ELEMENTS).
Ś
      1, 0, 0., 0., 0., 0.,
2, 0, 0.99619, 0.15688, 0.,
3, 0, 1.99239, 0.27890, 0.,
                                      0.,
GRID,
                                           0
GRID,
                                           0
GRID,
                                           0
       4, 0, 2.98858, 0.36606, 0.,
GRID,
                                           0
      5, 0, 3.98478, 0.41835, 0.,
6, 0, 4.98097, 0.43578, 0.,
7, 0, 5.97717, 0.41835, 0.,
GRID,
                                           0
GRID,
                                           0
                                           0
GRID.
GRID,
       8, 0, 6.97336, 0.36606, 0.,
                                           0
GRID, 9, 0, 7.96956, 0.27890, 0.,
GRID, 10, 0, 8.96575, 0.15688, 0.,
                                           0
                                           0
GRID, 11, 0, 9.96195, 0.,
                                      0.,
                                           0
Ś
$ BEAM MODELED WITH BAR ELEMENTS.
Ś
CBAR, 1, 10, 1, 2, 0., 0., 1.
CBAR, 2, 10, 2, 3, 0., 0.,
CBAR, 3, 10, 3, 4, 0., 0.,
                                      1.
                                      1.
CBAR, 4, 10,
                 4,
                       5, 0., 0., 1.
CBAR, 5, 10,
                 5, 6, 0., 0., 1.
CBAR, 6, 10,
CBAR, 7, 10,
                 6,
                       7, 0., 0.,
                                      1.
                  7,
                      8, 0., 0.,
                                      1.
CBAR, 8, 10, 8, 9, 0., 0., 1.
CBAR, 9, 10, 9,
CBAR, 10, 10, 10,
                           0.,
                                0.,
                 9, 10,
                                      1.
                      11,
                           0.,
                                0.,
                                      1.
\ bar element material and section properties (1.0" \times 0.2" cross-section).
PBAR, 10, 100, 0.2, 1.667E-2, 6.667E-4, 2.328E-3,
   -0.5, 0.1, 0.5, 0.1, -0.5, -0.1, 0.5, -0.1
Ś
$ LINEAR ELEMENT MATERIAL PROPERTIES (ALUMINUM).
Ś
MAT1, 100, 1.E+7, , 0.33, 0.1
```

Listing 15-25. Model Input File for 2-D Circular Arch Snap-Through. (Continued)

\$ PINNED AT BOTH ENDS, MOVEMENT CONSTRAINED TO X-Y PLANE ONLY.
\$
SPC1, 1, 12345, 1, 11
SPC1, 1, 345, 2, THRU, 10
\$
\$ DISTRIBUTED LOAD (NEGATIVE Y-DIRECTION IN POUNDS/INCH).
\$
PLOAD1, 1, 1, FZE, FR, 0., 200., 1., 200.
PLOAD1, 1, 2, FZE, FR, 0., 200., 1., 200.
PLOAD1, 1, 3, FZE, FR, 0., 200., 1., 200.
PLOAD1, 1, 4, FZE, FR, 0., 200., 1., 200.
PLOAD1, 1, 5, FZE, FR, 0., 200., 1., 200.
PLOAD1, 1, 6, FZE, FR, 0., 200., 1., 200.
PLOAD1, 1, 7, FZE, FR, 0., 200., 1., 200.
PLOAD1, 1, 8, FZE, FR, 0., 200., 1., 200.
PLOAD1, 1, 9, FZE, FR, 0., 200., 1., 200.
PLOAD1, 1, 9, FZE, FR, 0., 200., 1., 200.
PLOAD1, 1, 10, FZE, FR, 0., 200., 1., 200.
ENDDATA

The maximum displacements from the Model Results Output File are shown in tabular form in Listing 15-26. The center point y-displacement is plotted against load factor in Figure 15-46 and the deflected shapes are plotted in Figure 15-47. The critical load is reached at 64% and the load must be decrease and eventually reverse direction even though continued increased displacement occurs. At -29% the load direction reverses again and the arch begins to load until the full load is reached.

			махімим	DISPLA	СЕМЕΝТЅ		
LOAD INCREMENT	LOAD	Τ1	Τ2	ТЗ	Rl	R2	R3
1	2 000000E=01	1 064369E-03	2 734367E-02	0 000000E+00	0 000000E+00	0 000000E+00	9 172597E-03
2	3 984177E-01	1 944157E-03	5 288588E-02	0.000000E+00	0 000000E+00	0 000000E+00	1 717400E-02
3	5 484409E-01	2 713847E-03	7 913130E-02	0 000000E+00	0 000000E+00	0 000000E+00	2 451466E-02
4	6 028619E-01	3 292669E-03	1 065737E-01	0 000000E+00	0 000000E+00	0 000000E+00	3 042178E-02
5	4.240425E-01	3.600876E-03	1.360917E-01	0.000000E+00	0.000000E+00	0.000000E+00	3.486059E-02
6	5 427737E-01	3 826832E-03	1 675944E-01	0 000000E+00	0 000000E+00	0 000000E+00	4 336880E-02
7	6 035162E-01	3 952592E-03	1 996172E-01	0 000000E+00	0 000000E+00	0 000000E+00	5 590519E-02
8	6.087544E-01	4.127067E-03	2.316369E-01	0.000000E+00	0.000000E+00	0.000000E+00	6.948030E-02
9	5.958818E-01	4.401700E-03	2.634977E-01	0.000000E+00	0.000000E+00	0.000000E+00	8.231548E-02
10	5.255065E-01	4.767492E-03	2.949992E-01	0.000000E+00	0.000000E+00	0.000000E+00	9.420700E-02
11	4.809419E-01	5.202060E-03	3.259921E-01	0.000000E+00	0.000000E+00	0.000000E+00	1.051385E-01
12	4.290141E-01	5.681659E-03	3.563879E-01	0.000000E+00	0.000000E+00	0.000000E+00	1.151531E-01
13	3.814839E-01	6.185126E-03	3.861782E-01	0.000000E+00	0.000000E+00	0.000000E+00	1.243602E-01
14	3.303640E-01	6.696317E-03	4.152996E-01	0.000000E+00	0.000000E+00	0.000000E+00	1.327593E-01
15	2.812991E-01	7.294053E-03	4.437942E-01	0.000000E+00	0.000000E+00	0.000000E+00	1.404487E-01
16	2.319508E-01	8.132173E-03	4.716095E-01	0.000000E+00	0.000000E+00	0.000000E+00	1.474345E-01
17	1.830144E-01	8.962259E-03	4.987683E-01	0.000000E+00	0.000000E+00	0.000000E+00	1.537691E-01
18	1.346517E-01	9.766097E-03	5.252444E-01	0.000000E+00	0.000000E+00	0.000000E+00	1.594637E-01
19	8.622582E-02	1.052849E-02	5.511030E-01	0.00000E+00	0.000000E+00	0.00000E+00	1.645481E-01
20	3.989072E-02	1.123141E-02	5.762565E-01	0.00000E+00	0.000000E+00	0.000000E+00	1.690182E-01
21	5.888430E-03	1.185919E-02	6.006764E-01	0.000000E+00	0.000000E+00	0.000000E+00	1.728701E-01
22	5.140279E-02	1.239708E-02	6.243199E-01	0.00000E+00	0.00000E+00	0.000000E+00	1.761000E-01
23	9.296791E-02	1.283125E-02	6.471669E-01	0.00000E+00	0.00000E+00	0.00000E+00	1.787020E-01
24	1.337138E-01	1.314759E-02	6.691645E-01	0.000000E+00	0.00000E+00	0.000000E+00	1.806610E-01
25	1.720680E-01	1.333263E-02	6.902560E-01	0.00000E+00	0.00000E+00	0.00000E+00	1.819603E-01
26	2.073506E-01	1.337366E-02	7.103773E-01	0.000000E+00	0.000000E+00	0.000000E+00	1.862311E-01
27	2.388643E-01	1.325922E-02	7.294628E-01	0.000000E+00	0.00000E+00	0.000000E+00	1.908725E-01
28	2.655994E-01	1.297712E-02	7.476317E-01	0.000000E+00	0.00000E+00	0.000000E+00	1.952105E-01
29	2.862614E-01	1.251942E-02	7.647548E-01	0.00000E+00	0.00000E+00	0.000000E+00	1.992289E-01
30	3.049074E-01	1.188075E-02	7.808460E-01	0.00000E+00	0.00000E+00	0.00000E+00	2.029030E-01
31	3.040150E-01	1.106461E-02	7.960439E-01	0.00000E+00	0.00000E+00	0.000000E+00	2.062640E-01
32	2.938784E-01	1.008549E-02	8.106727E-01	0.00000E+00	0.00000E+00	0.00000E+00	2.154939E-01
33	3.267057E-01	8.053404E-03	8.362994E-01	0.00000E+00	0.00000E+00	0.00000E+00	2.387010E-01
34	2.251854E-01	5.997927E-03	8.647077E-01	0.00000E+00	0.00000E+00	0.00000E+00	2.641085E-01
35	6.510297E-02	4.314709E-03	8.972744E-01	0.00000E+00	0.000000E+00	0.00000E+00	2.877671E-01
36	4.567181E-01	2.543297E-03	9.332464E-01	0.00000E+00	0.000000E+00	0.00000E+00	3.097129E-01
37	9.420496E-01	2.232125E-03	9.636789E-01	0.00000E+00	0.00000E+00	0.00000E+00	3.263458E-01

Listing 15-26. Load Increment Maximum Displacements.

Figure 15-46. Y-Displacement vs. Load Factor.

Load Factor = 100%

16. NONLINEAR TRANSIENT RESPONSE ANALYSIS

16.1 Introduction

In the previous section we dealt with static analysis where loads and boundary conditions did not vary with time and inertia effects were ignored. If the effects of inertia, damping, and transient loading are to be included in the nonlinear analysis, the nonlinear transient response is analyzed using a direct approach. For this approach we use a step-by-step integration of the general equation of equilibrium system in motion:

$$[M]\{\ddot{u}(t)\} + [B]\{\ddot{u}(t)\} + [K]\{u(t)\} = \{R(t)\}$$

where,

- [*K*] is the global stiffness matrix
- [M] is the global mass matrix
- [*B*] is the global damping matrix
- $\{R\}$ is the global load vector
- $\{\ddot{u}\}$ is the global acceleration vector
- $\{\dot{u}\}$ is the global velocity vector
- $\{u\}$ is the global displacement vector

By direct numerical integration, equilibrium is satisfied at discrete time steps with an interval of Δt . The equilibrium is obtained through nonlinear iterations until convergence is reached. Newmark's method of direct integration is used with adaptive time stepping and bisection to improve solution efficiency. Just as in linear transient response loads can be time dependent. However unlike linear transient response nonlinear effects like large displacements and rotation, material nonlinearity, and contact can be included. Convergence is achieved at each time step using the same Newton-Raphson iteration method used in nonlinear static analysis.

16.2 How to Setup a Model Input File for Nonlinear Transient Response Analysis

In Autodesk Inventor Nastran you can solve a nonlinear statics problem by setting SOLUTION = NONLINEAR TRANSIENT RESPONSE in the Model Initialization File or by specifying SOL 129 or SOL NONLINEAR TRANSIENT RESPONSE above the Case Control Section in the Model Input File, and following the guidelines listed below:

- 1. Most nonlinear transient response problems can be setup the same as for linear transient response (geometry, boundary conditions, loading, etc.). As a minimum, all subcases must reference a TSTEPNL Bulk Data entry via the TSTEPNL Case Control Command. The TSTEPNL entry is a combination of the TSTEP entry used in linear transient response and the NLPARM entry used in nonlinear statics. It controls both the direct time integration (number of time steps, time increment, output interval, etc.), and the nonlinear iteration parameters (maximum iterations permitted, convergence method and tolerances, etc.). Since the solution to a particular load involves a nonlinear search procedure, the solution is not guaranteed. Care must be used when selecting the search procedures on the TSTEPNL Bulk Data entry. You may override nearly all iteration control restrictions.
- 2. All loads, boundary conditions, elements (except CSHEAR), element properties (except PCOMP with material nonlinearity), and material properties that are supported in linear transient response analysis are supported in nonlinear transient response.
- 3. For contact solutions, gap (CGAP) or slide line (BCONP) elements must be specified. Contact elements can be used with all loads, boundary conditions, elements and types of nonlinearity supported. Note that for gap elements, contact planes do not rotate as a function of displacement. The user-specified stiffnesses (KA, KB, and KT on the PGAP Bulk Data entry) must be carefully selected when the non-adaptive form is used (TMAX ≤ 0.0 on the PGAP Bulk Data entry). An optimal selection of values is usually a compromise between accuracy and numerical performance. Slide line and surface contact elements do rotate as a function of displacement, if large displacement effects are turned on (PARAM, LGDISP, ON), and allow elements to slide past each other.
- 4. Follower forces (forces that follow the deformed geometry) are generated automatically when using element pressures (PLOAD1, PLOAD2, and PLOAD4), element temperatures (TEMP, TEMPD, TEMPP1, and TEMPRB), acceleration loads (GRAV and RFORCE), and grid point forces and moments (FORCE1 and MOMENT1). Follower force effects are controlled using the LGDISP parameter.
- 5. Constraints apply only to the nonrotated displacements at a grid point. In particular, multipoint constraints and rigid elements may cause problems if the connected grid points undergo large motions. However, also note that replacement of the constraints with overly stiff elements may result in convergence problems.
- 6. Large deformations of elements may cause nonequilibrium loading effects. All elements are assumed to have constant length, area, and volume. Large displacement effects are controlled using the LGDISP parameter.
- 7. In large displacement analysis there are two different approaches for the angular motions: gimbal angle and rotation vector. In the gimbal angle approach, angular motions are treated as three ordered rotations about the x, y, and z-axes. The gimbal angle approach is requested by specifying PARAM, LANGLE, 1 (default) in the Model Input File. In the rotation vector approach, the three angular motions are treated as a vector. The rotation is about the rotation axis and the magnitude of rotation is equal to the amplitude of the rotation vector. The rotation vector approach is requested by specifying PARAM, LANGLE, 2 in the Model Input File.

- 8. Material nonlinear solutions require a MATS1 Bulk Data entry be specified for elements that have nonlinear material properties. Both linear and nonlinear materials may be specified in the same solution. Material nonlinear properties can be used with all loads, boundary conditions, elements and types of nonlinearity supported. Beam, bar, and rod elements support material nonlinearity only in the axial direction. Better performance may be achieved when using quad elements and elastic-plastic materials if PARAM, QUADINODE is set to OFF and PARAM, QUADRNODE is set to ON.
- 9. The use of CQUADR and CTRIAR elements are preferred over the use of PARAM, K6ROT when large displacements effects are turned on (PARAM, LGDISP, ON). If PARAM, K6ROT is set to a value greater than zero, only the work convergence criteria (W) on the NLPARM Bulk Data entry should be used.
- 10. Unlike other solutions, subcase loads and results are additive. This allows different loads and boundary conditions to be applied in a specific sequence to the structure. Additionally, different time integration and nonlinear iteration parameters (TSTEPNL) may be specified for each subcase allowing further control.
- 11. Models should be simple and relatively small initially to gain insight into behavior and verify the approach taken. A linear static or transient solution should be run first to verify boundary conditions and loading. Large displacement and follower force effects can be turned off by setting PARAM, LGDISP to OFF.

16.3 Interpreting Results

In this section we will present several examples demonstrating the features and capabilities of nonlinear transient response analysis. We will look at three types of nonlinearity: geometric (large displacement and rotation), material (nonlinear elastic and elastic-plastic), and contact.

16.3.1 Impact Analysis

The first problem is an example of large displacement and contact that are involved in impact analysis. A block at rest is dropped from initial height of 5 inches and is accelerated by gravity until impacting the tip of a cantilever beam as shown in Figure 16-1. The block then bounces back and the beam resonates. Gap elements are used to represent the contact between the beam and block. Structural damping is applied based on the resonant frequency of the beam (63.2 Hz). Listing 16-1 contains the Model Input File.

Figure 16-1. 2-D Cantilever Beam Example Problem with Impact.

Listing 16-1. Model Input File for the Cantilever Beam Problem with Impact.

```
$ NONLINEAR TRANSIENT RESPONSE SOLUTION.
Ś
SOL NONLINEAR TRANSIENT RESPONSE
CEND
Ś
DISPLACEMENT = ALL
FORCE = ALL
STRESS = ALL
Ś
TITLE = INSTALLATION TEST CASE
SUBTITLE = NONLINEAR DYNAMIC RESPONSE - IMPACT
Ś
LOADSET = 10
$
SUBCASE 1
LABEL = 1 G ACCELERATION IN NEGATIVE Y-DIRECTION
DLOAD = 1
TSTEPNL = 1
SPC = 1
Ś
BEGIN BULK
Ś
$ CONVERSION FACTOR FOR WEIGHT DENSITY TO MASS DENSITY
$ MASS = (1/g)*WEIGHT, G=32.2FT/SEC2, WTMASS = 1/(32.2*12) = 0.002588
Ś
PARAM, WTMASS, 0.002588
Ś
$ REQUEST COUPLED MASS MATRIX FORMULATION.
Ś
PARAM, COUPMASS, ON
Ś
$ DEFINE STRUCTURAL DAMPING FREQUENCY OF INTEREST (63.2Hz).
Ś
PARAM, W4, 397.1
Ś
$ TURN ON LARGE DISPLACEMENT EFFECTS.
$
PARAM, LGDISP, ON
Ś
$ DEFINE NONLINEAR TRANSIENT SOLUTION PARAMETERS.
Ś
TSTEPNL, 1, 2500, 0.0001
Ś
$ DEFINE LOADING.
Ś
DLOAD, 1, 1., 1., 11
Ś
$ DEFINE TIME-DEPENDENT LOADING -CONSTANT.
Ś
TLOAD1, 11, 100, , , 10
TABLED1, 10,
  , 0., 1., 1., 1., ENDT
Ś
$ 1 G ACCELERATION IN NEGATIVE Y-DIRECTION
Ś
GRAV, 1, , 1., 0., -1., 0.
LSEQ, 10, 100, 1
Ś
$ GEOMETRY DEFINITION (10" BEAM DIVIDED INTO 10 ELEMENTS).
               0., 0., 0., 0
GRID, 1, 0,
GRID, 2, 0,
               1., 0., 0.,
                              0
GRID, 3, 0,
GRID, 4, 0,
              2., 0., 0.,
3., 0., 0.,
                               0
                               0
GRID, 5, 0,
              4., 0., 0., 0
GRID, 6, 0,
              5., 0., 0., 0
GRID, 7, 0,
GRID, 8, 0,
               6., 0.,
7., 0.,
                         0.,
                               0
                         0.,
                               0
GRID, 9, 0, 8., 0., 0.,
                               0
GRID, 10, 0,
               9., 0., 0.,
                               0
GRID, 11, 0, 10.,
                    0.,
                          0.,
                               0
```

```
$ GEOMETRY DEFINITION (1" X 1" BLOCK WITH A 1 X 1 MESH).
Ś
GRID, 13, 0, 9., 6., 0., 0
GRID, 14, 0, 9., 5., 0., 0
GRID, 15, 0, 10., 6., 0., 0
GRID, 16, 0, 10., 5., 0., 0$
$ BEAM MODELED WITH BAR ELEMENTS.

      CBAR, 1, 10, 1, 2, 0., 0., 1.

      CBAR, 2, 10, 2, 3, 0., 0., 1.

      CBAR, 3, 10, 3, 4, 0., 0., 1.

CBAR, 4, 10, 4, 5, 0., 0., 1.
CBAR, 5, 10,
CBAR, 6, 10,
                  5, 6, 0., 0.,
6, 7, 0., 0.,
                                         1.
                                         1.
CBAR, 7, 10,
                  7, 8, 0., 0., 1.
CBAR, 8, 10, 8, 9, 0., 0., 1.
CBAR, 9, 10, 9, 10, 0., 0., 1.
CBAR, 10, 10, 10, 11, 0., 0., 1.
Ś
$ GAP ELEMENTS.
Ś
CGAP, 11, 20, 10, 14, 1., 0., 0.
CGAP, 12, 20, 11, 16, 1., 0., 0.
Ś
$ BLOCK MODELED WITH A SHELL ELEMENT.
Ś
CQUADR, 13, 30, 15, 16, 14, 13
Ś
$ ELEMENT MATERIAL AND SECTION PROPERTIES (1.0" X 0.2" CROSS-SECTION).
Ś
PBAR, 10, 100, 0.2, 1.667E-2, 6.667E-4, 2.328E-3,
, -0.5, 0.1, 0.5, 0.1, -0.5, -0.1, 0.5, -0.1
Ś
$ GAP ELEMENT PROPERTIES.
Ś
PGAP, 20, -1., 0., 1.E+7, 0., 0.
Ś
$ ELEMENT MATERIAL AND THICKNESS (1.0").
Ś
PSHELL, 30, 200, 1., 200, , 200
$ ELEMENT MATERIAL PROPERTIES (ALUMINUM) WITH 4% CRITICAL DAMPING
$ (2*C/C0).
Ś
MAT1, 100, 1.E+7, , 0.33, 0.1, , , 0.08
Ś
$ ELEMENT MATERIAL PROPERTIES (STEEL).
Ś
MAT1, 200, 3.E+7, , 0.33, 0.3
$ FIXED AT ONE END, MOVEMENT CONSTRAINED TO X-Y PLANE ONLY, ONE EDGE
$ OF BLOCK CONSTRAINED FROM ROTATION.
Ś
SPC1, 1, 123456, 1
            345, 1, THRU, 14
13456, 15, 16
SPC1, 1,
SPC1, 1,
ENDDATA
```

Listing 16-1. Model Input File for the Cantilever Beam Problem with Impact. (Continued)

The TSTEPNL entry controls the direct time integration and nonlinear iteration parameters. The specified number of time steps and time increment are initial values that define the duration of the analysis. The default integration method is an adaptive approach which automatically adjusts the time increment based on changes in the model's dominant frequency.

Figure 16-2 compares the beam tip and block displacement and velocity versus time. The deflected shapes are plotted in Figure 16-3.

Figure 16-2a. Beam Tip and Block Displacement Versus Time.

Figure 16-2b. Beam Tip and Block Velocity Versus Time.

Figure 16-3. Deformed Shapes of a Cantilever Beam with Impact.

Table 16-1 shows a comparison between Autodesk Inventor Nastran and the theoretical time to impact and the velocity at impact. The formulas for a body starting at rest are:

$$t_{\text{impact}} = \sqrt{\frac{2d}{g}}$$

$$V_{\text{impact}} = 2gd$$

where,

- d is the distance transversed
- g is the gravitational acceleration

Table 16-1a.	Comparison	of Theoretical	Versus	Predicted	Time to Impact.
--------------	------------	----------------	--------	-----------	-----------------

Theoretical (sec)	Autodesk Inventor Nastran (sec)	Difference (%)
0.1608	0.1607	0.0

Table 16-1b. Comparison of Theoretical Versus Predicted Velocity at Impact.

Theoretical (sec)	Autodesk Inventor Nastran (sec)	Difference (%)
-62.16	-61.32	1.3

16.3.2 Elastic-Plastic Material with Rupture

The next problem is an example of material nonlinearity in a transient response solution. Figure 16-4 shows a cantilever beam with a large mass at its free end. The beam is subjected to a step load of varying magnitudes: $0.5F_y$, $0.66F_y$, $0.88F_y$, and F_y where F_y is the axial force corresponding to the initial yield of the rod. As a result, the mass responds with different patterns. Listing 16-2 contains the Model Input File for the first loading condition.

Figure 16-4. 2-D Cantilever Beam Example Problem an Elastic-Plastic Material.

Ś

Listing 16-2. Model Input File for the Cantilever Beam Problem with an Elastic-Plastic Material.

```
$ NONLINEAR TRANSIENT RESPONSE SOLUTION.
Ś
SOL NONLINEAR TRANSIENT RESPONSE
CEND
Ś
DISPLACEMENT = ALL
STRESS = ALL
TITLE = INSTALLATION TEST CASE
SUBTITLE = NONLINEAR DYNAMIC RESPONSE WITH ELASTIC-PLASTIC MATERIAL
Ś
LOADSET = 10
Ś
SUBCASE 1
LABEL = 25,000 LB MASS AT TIP, AXIAL LOAD AT 0.5*Fy
DLOAD = 1
TSTEPNL = 1
SPC = 1
Ś
BEGIN BULK
Ś
$ CONVERSION FACTOR FOR WEIGHT DENSITY TO MASS DENSITY
$ MASS = (1/g)*WEIGHT, G=32.2FT/SEC2, WTMASS = 1/(32.2*12) = 0.002588
PARAM, WTMASS, 0.002588
$ DEFINE STRUCTURAL DAMPING FREQUENCY OF INTEREST (63.2Hz).
Ś
PARAM, W4, 397.1
Ś
$ TURN ON LARGE DISPLACEMENT EFFECTS.
Ś
PARAM, LGDISP, ON
Ś
$ DEFINE NONLINEAR TRANSIENT SOLUTION PARAMETERS.
Ś
TSTEPNL, 1, 50, 0.005
Ś
$ DEFINE LOADING (0.5*Fy).
Ś
DLOAD, 1, 0.5, 1., 11
Ś
$ DEFINE TIME-DEPENDENT LOADING -CONSTANT.
Ś
TLOAD1, 11, 100, , , 10
TABLED1, 10,
 , 0., 1., 1., 1., ENDT
Ś
$ TENSILE LOAD (X-DIRECTION).
Ś
FORCE, 1, 11, 0, 6.E+3, 1., 0., 0.
LSEQ, 10, 100, 1
Ś
$ GEOMETRY DEFINITION (10" BEAM DIVIDED INTO 10 ELEMENTS).
Ś
GRID, 1, 0, 0., 0., 0., 0
GRID, 2, 0, 1., 0., 0., 0
GRID, 3, 0, 2., 0., 0., 0
GRID, 4, 0, 3., 0., 0., 0
GRID, 5, 0,
               4., 0., 0., 0
GRID, 6, 0,
GRID, 7, 0,
               5., 0., 0.,
6., 0., 0.,
                                0
                                 0
                7., 0., 0., 0
GRID, 8, 0,
GRID, 9, 0, 8., 0., 0.,
GRID, 10, 0, 9., 0., 0.,
GRID, 11, 0, 10., 0., 0.,
                                0
                                 0
                                 0
```

Listing 16-2. Model Input File for the Cantilever Beam Problem with an Elastic-Plastic Material. (Continued)

```
Ś
$ BEAM MODELED WITH BAR ELEMENTS.
Ś
CBAR, 1, 10, 1, 2, 0., 0., 1.

      CBAR, 2, 10, 2, 3, 0., 0., 1.

      CBAR, 3, 10, 3, 4, 0., 0., 1.

      CBAR, 4, 10, 4, 5, 0., 0., 1.

      CBAR, 5, 10, 5, 6, 0., 0., 1.

      CBAR, 6, 10, 6, 7, 0., 0., 1.

      CBAR, 7, 10, 7, 8, 0., 0., 1.

CBAR, 8, 10, 8, 9, 0., 0., 1.
CBAR, 9, 10, 9, 10, 0., 0., 1.
CBAR, 10, 10, 10, 11, 0., 0., 1.
Ś
$ 25,000 LB MASS.
Ś
CONM2, 11, 11, , 2.5E+4
$ BAR ELEMENT MATERIAL AND SECTION PROPERTIES (1.0" X 0.2" CROSS-SECTION).
PBAR, 10, 100, 0.2, 1.667E-2, 6.667E-4, 2.328E-3,
    -0.5, 0.1, 0.5, 0.1, -0.5, -0.1, 0.5, -0.1
Ś
$ LINEAR ELEMENT MATERIAL PROPERTIES (ALUMINUM).
Ś
MAT1, 100, 1.E+7, , 0.33, 0.1
Ś
$ ELASTIC-PLASTIC ELEMENT MATERIAL PROPERTIES.
Ś
MATS1, 100, , PLASTIC, 0., , , 3.0E+4
Ś
$ FIXED AT ONE END, FREE TO TRANSLATE IN X-DIR AT OTHER END.
Ś
SPC1, 1, 123456,
SPC1, 1, 23456,
                          1
                         2, THRU, 11
ENDDATA
```

The theoretical solution can be considered in three different regimes: elastic, plastic, and unloading. In the elastic regime the solution can be obtained by

$$u = \frac{P}{k}(1 - \cos \omega t)$$

which is valid for $P \le 0.5F_y$. For $0.5F_y < P < F_y$, there is a point in time where the stress in the rod reaches the yield point. During plastic deformation, the solution may be obtained from

$$M\ddot{u} + F_v = P$$

with the correct initial conditions. When the displacement reaches the maximum value, the system is governed by an elastic equation for rebound. If $P > F_y$, no rebound occurs and the mass will separate from the beam. Figure 16-5 gives the beam tip displacement versus time for the four different loading conditions run.

17. NONLINEAR STEADY STATE HEAT TRANSFER ANALYSIS

17.1 Introduction

Of principal interest in heat transfer analysis is the temperature distribution within a solid body. A byproduct of temperature calculation is information about the magnitude and direction of heat flow in the body. Temperature and temperature gradients are an important cause of stress in structures.

Heat is transferred to or from a body by convection and radiation (Figure 17-1). Heat flow across a boundary is analogous to a surface load (pressure) in structural analysis. Additionally, there may be internal heat generation, produced by electric current, dielectric heating, or other sources. A distributed internal heat source is analogous to a body force (gravity) in stress analysis. Points may have prescribed temperatures either on the boundary or within. Prescribed temperatures are analogous to prescribed displacements (single point constraints). Heat moves within the body through conduction. For a linear steady state (time independent) problem:

$$[K]{T} = {R}$$

where,

[K] is the global conductivity matrix

- $\{T\}$ is the global temperature vector
- $\{R\}$ is the global thermal load vector

The global conductivity matrix depends on the conductivity of the material and is usually a function of temperature. If present, convection and radiation boundary conditions contribute terms to both the conductivity matrix and the thermal load vector. The solution yields a grid point temperature distribution within the solid and is analogous to the solution of displacements in a structural analysis. However, one of the major differences between heat transfer and structural analysis is that temperature is a scalar, whereas displacement is a vector which Autodesk Inventor Nastran assumes may have as many as six components. An important feature of Autodesk Inventor Nastran is that the same model used for heat transfer analysis can be used for thermal stress analysis, where the grid point thermal loading is generated directly from the heat transfer solution (Section 17.5).

As mentioned above, thermal conductivity and other properties, may depend on temperature strongly enough that [K] must be regarded as a function of temperature rather than a matrix of constants. The nonlinear properties permitted with Autodesk Inventor Nastran are temperature dependent material conductivity, temperature dependent free convection heat transfer coefficient, and temperature dependent volume heat addition. For these types of problems, a nonlinear solution is recommended.

Nonlinear static analysis is implemented in Autodesk Inventor Nastran as an iterative process using the Newton-Raphson method where the path dependent problem is broken down into several linear steps. The equilibrium equations in incremental form can be written as:

$$[K_t]\{\Delta T\} = \{\Delta R\}$$

where,

- $[K_t]$ is the global tangent conductivity matrix
- $\{\Delta T\}$ is the global incremental temperature vector
- $\{\Delta R\}$ is the global incremental thermal load vector

The global tangent conductivity matrix $[K_t]$ is a function of the global temperatures $\{T\}$ because the material conductivity and free convection heat transfer coefficient are temperature dependent. The current global temperature vector is the sum of the preceding $\{\Delta T\}$'s.

The iterative process allows Autodesk Inventor Nastran to solve many nonlinear heat transfer problems. Several examples are given in this section which demonstrate how to setup, run, and interpret results for these types of problems.

Figure 17-1. Thermal Loads and Boundary Conditions into an Arbitrary Solid.

17.2 How to Setup a Model Input File for Nonlinear Heat Transfer Analysis

In Autodesk Inventor Nastran you can solve a nonlinear heat transfer problem by setting SOLUTION = NONLINEAR STEADY STATE HEAT TRANSFER in the Model Initialization File or by specifying SOL 153 or SOL NONLINEAR STEADY STATE HEAT TRANSFER above the Case Control Section and ANALYSIS = HEAT in the Case Control Section of the Model Input File. The following the guidelines listed below:

- 1. Most nonlinear heat transfer problems can be setup the same as for linear heat transfer (geometry, boundary conditions, loading, etc.). As a minimum, all subcases must reference an NLPARM Bulk Data entry via the NLPARM Case Control Command. The NLPARM entry controls the nonlinear iteration parameters (increment size, number of increments, output control, etc.). A load increment of one (default) is recommended. Since the solution to a particular load involves a nonlinear search procedure, the solution is not guaranteed. Care must be used when selecting the search procedures on the NLPARM Bulk Data entry. You may override nearly all iteration control restrictions.
- 2. All loads and material properties that are supported in linear heat transfer analysis are supported in nonlinear heat transfer analysis.
- 3. All grid points must have an initial temperature defined. The TEMPD Bulk Data entry can be used for this purpose.
- 4. The iterative solution may be sensitive to the initial temperature for highly nonlinear problems. It is recommended to set the initial temperature vector high for radiation dominated problems.
- 5. Unlike other solutions, subcase loads and results are additive. This allows different loads and boundary conditions to be applied in a specific sequence to the structure. Additionally, different nonlinear iteration parameters (NLPARM) may be specified for each subcase allowing further control.
- 6. Incremental loading reduces the imbalance of the equilibrium equation caused by applied loads. If the solution takes more iterations than the default value for the maximum number of iterations allowed for convergence, the increment size should be reduced.
- 7. Models should be simple and relatively small initially to gain insight into behavior and verify the approach taken. A linear heat transfer solution should be run first to verify boundary conditions and loading.

17.3 How to Setup a Model Input File for Linear Steady State Heat Transfer Analysis

In Autodesk Inventor Nastran you can solve a linear heat transfer problem by setting SOLUTION = LINEAR STEADY STATE HEAT TRANSFER in the Model Initialization File or by specifying SOL 101 or SOL LINEAR STEADY STATE HEAT TRANSFER above the Case Control Section and ANALYSIS = HEAT in the Case Control Section of the Model Input File. Linear steady state heat transfer is only recommended if material property temperature dependence is mild. The initial temperature distribution, specified using the TEMPERATURE (INITIAL) Case Control command, is used to define a constant temperature for material property generation.

17.4 Interpreting Results

In this section we will present several examples demonstrating the features and capabilities of nonlinear steady state heat transfer analysis. We will look at several types of thermal loading and boundary conditions.

17.4.1 Nonlinear Conduction

The first problem is an example of nonlinear conduction. The circular bar in Figure 17-2 has prescribed temperatures at each end and is completely insulated over the rest of its surface area. Listing 17-1 contains the Model Input File.

Figure 17-2. 1-Dimensional Bar Example Problem with Constrained End Temperatures.

Listing 17-1. Model Input File for Bar Model with Constrained End Temperatures.

```
$ NONLINEAR STEADY STATE HEAT TRANSFER SOLUTION.
Ś
SOL NONLINEAR STEADY STATE HEAT TRANSFER
Ś
ANALYSIS = HEAT
Ś
TITLE = INSTALLATION TEST CASE
SUBTITLE = BAR WITH NONLINEAR TEMPERATURE DEPENDENT MATERIAL
Ś
THERMAL = ALL
SPCFORCE = ALL
FLUX = ALL
Ś
TEMPERATURE (INITIAL) = 1
SUBCASE 1
 LABEL = CONSTRAINED END TEMPERATURES
 NLPARM = 1
 SPC = 1
Ś
BEGIN BULK
$ DEFINE NONLINEAR SOLUTION PARAMETERS.
Ś
NLPARM, 1, 1
Ś
$ GEOMETRY DEFINITION (10" BAR DIVIDED INTO 10 ELEMENTS).
Ś
$

GRID, 1, , 0., 0., 0.,

GRID, 2, , 1., 0., 0.,

GRID, 3, , 2., 0., 0.,

GRID, 4, , 3., 0., 0.,

GRID, 5, , 4., 0., 0.,

GRID, 7, , 6., 0., 0.,

GRID, 8, , 7., 0., 0.,

GRID, 9, , 8., 0., 0.,

GRID, 10, , 9., 0., 0.,

GRID, 11, , 10., 0., 0.,
GRID, 11, , 10., 0., 0.,
Ś
$ CIRCULAR BAR MODELED WITH ROD ELEMENTS.
Ś
CROD, 1, 10,
                     1,
                            2
CROD, 2, 10,
                      2,
                            3
CROD, 3, 10,
                    З,
                            4
CROD, 4, 10,
CROD, 5, 10,
CROD, 6, 10,
                     4,
                           5
                     5,
                            6
                     6,
                            7
CROD, 7, 10,
                    7, 8
CROD, 8, 10,
CROD, 9, 10,
                     8,
                            9
                          10
                     9,
CROD, 10, 10, 10, 11
Ś
$ ROD ELEMENT MATERIAL AND SECTION PROPERTIES (1.0" DIAMETER).
Ś
PROD, 10, 100, 0.7854
```

Ś

Listing 17-1. Model Input File for Bar Model with Constrained End Temperatures. (Continued)

```
$ ELEMENT CONDUCTIVITY (MA956).
Ś
MAT4, 100, 1.
Ś
$ NONLINEAR TEMPERATURE DEPENDENT PROPERTIES.
Ś
MATT4, 100, 10
Ś
$ TEMPERATURE DEPENDENT CONDUCTIVITY DATA.
Ś
TABLEM2, 10,
  70., 1.466E-4, 200., 1.620E-4, 400., 1.852E-4, 600., 2.083E-4,
800., 2.315E-4, 1000., 2.508E-4, 1200., 2.739E-4, 1400., 2.951E-4,
1600., 3.164E-4, 1800., 3.376E-4, ENDT
,
Ś
$ CONSTRAIN BAR END TEMPERATURES.
Ś
SPC, 1, 1, 1, 0.
SPC, 1, 11, 1, 1000.
Ś
$ INITIAL TEMPERATURE DISTRIBUTION.
Ś
TEMP, 1, 1, 0.
TEMP, 1, 11, 1000.
TEMPD, 1, 1000.
ENDDATA
```

Heat is conducted through the bar according to the Fourier heat conduction equation:

$$f_{\mathbf{x}} = -k \frac{\partial T}{\partial \mathbf{x}}$$

where f_x is heat flux per unit area and k is the thermal conductivity. The negative sign means that heat flows in a direction opposite to the direction of temperature increase.

In this example, conductivity varies with temperature as shown in Figure 17-3. The temperature dependence is input using MATT4 and TABLEM2 Bulk Data entries. The MATT4 Bulk Data entry must reference an isotropic material. For anisotropic materials, the MATT5 and MAT5 Bulk Data entries may be used.

Figure 17-3. TABLEM2 Bulk Data Entry Conductivity vs. Temperature Input Data.

The grid point temperatures from the Model Results Output File are shown in tabular form in Listing 17-2 and plotted against percent of bar length in Figure 17-4. Rod element thermal gradients and heat fluxes are shown in tabular listing form in Listing 17-3. Thermal gradients are plotted against percent of bar length in Figure 17-5.

	Listing 17-2.	Temperature	Vector for	Bar Model with	Constrained End	Temperatures.
--	---------------	-------------	------------	-----------------------	------------------------	---------------

		TEMPERATURE VECTOR
GRID	TEMPERATURE	
ID		
2	1.342274E+02	
3	2.558578E+02	
4	3.680668E+02	
5	4.727612E+02	
6	5.712747E+02	
7	6.645875E+02	
8	7.534450E+02	
9	8.384298E+02	
10	9.205141E+02	
11	1.00000E+03	

Figure 17-4. Temperature vs. Bar Model Normalized Length.

Listing 17-3. Element Thermal Gradients and Heat Fluxes for Bar Model with Constrained End Temperatures.

	THERMAL	GRADIENTS	A N D	НЕАТ	FLUXES	I N	ROD	ELEMENTS
ELEMENT	GRADIENT	FLUX						
ID								
1	1.342274E+02	-1.963187E-04						
2	1.216303E+02	-1.963187E-04						
3	1.122090E+02	-1.963207E-04						
4	1.046944E+02	-1.963230E-04						
5	9.851153E+01	-1.963249E-04						
6	9.331281E+01	-1.963257E-04						
7	8.885748E+01	-1.963254E-04						
8	8.498476E+01	-1.963241E-04						
9	8.208429E+01	-1.963216E-04						
10	7.948594E+01	-1.963201E-04						

Figure 17-5. Thermal Gradient vs. Bar Model Normalized Length.

User's Manual

The next problem is another example of nonlinear conduction. The circular bar in Figure 17-6 has a prescribed temperature at one end, an applied heat flux at the other end, and is completely insulated over the rest of its surface area. Listing 17-4 contains the Model Input File.

Figure 17-6. 1-Dimensional Bar Example Problem with Constrained End Temperature and Applied Heat Flux.

The grid point temperatures from the Model Results Output File are shown in tabular form in Listing 17-5 and plotted against percent of bar length in Figure 17-7. Rod element thermal gradients and heat fluxes are shown in tabular listing form in Listing 17-6. Thermal gradients are plotted against percent of bar length in Figure 17-8.

Ś

Listing 17-4. Model Input File for Bar Model with Constrained End Temperature and Applied Grid Point Heat Flux.

```
$ NONLINEAR STEADY STATE HEAT TRANSFER SOLUTION.
Ś
SOL NONLINEAR STEADY STATE HEAT TRANSFER
Ś
ANALYSIS = HEAT
Ś
TITLE = INSTALLATION TEST CASE
SUBTITLE = BAR WITH NONLINEAR TEMPERATURE DEPENDENT MATERIAL
Ś
THERMAL = ALL
SPCFORCE = ALL
FLUX = ALL
Ś
TEMPERATURE (INITIAL) = 1
SUBCASE 1
 LABEL = CONSTRAINED END TEMPERATURE AND APPLIED END HEAT FLUX
 LOAD = 1
 NLPARM = 1
 SPC = 1
Ś
BEGIN BULK
$ DEFINE NONLINEAR SOLUTION PARAMETERS.
Ś
NLPARM, 1, 1
 Ś
$ GEOMETRY DEFINITION (10" BAR DIVIDED INTO 10 ELEMENTS).
$

GRID, 1, , 0., 0., 0.,

GRID, 2, , 1., 0., 0.,

GRID, 3, , 2., 0., 0.,

GRID, 4, , 3., 0., 0.,

GRID, 5, , 4., 0., 0.,

GRID, 6, , 5., 0., 0.,

GRID, 7, , 6., 0., 0.,

GRID, 9, 8., 0., 0.,

GRID, 10, 9., 0., 0.,

GRID, 11, , 10., 0., 0.,
$
 Ś
$ CIRCULAR BAR MODELED WITH ROD ELEMENTS.
$
CROD, 1, 10,
CROD, 2, 10,
CROD, 3, 10,
                      1,
                              2
                       2,
                              3
                     З,
                              4
CROD, 4, 10,
CROD, 5, 10,
CROD, 6, 10,
                      4,
                             5
                      5,
                              6
                       6,
                              7
CROD, 7, 10,
                      7,
                              8
CROD, 8, 10, 8, 9
CROD, 9, 10, 9, 10
CROD, 10, 10, 10, 11
Ś
$ ROD ELEMENT MATERIAL AND SECTION PROPERTIES (1.0" DIAMETER).
Ś
PROD, 10, 100, 0.7854
```

Ś

Listing 17-4. Model Input File for Bar Model with Constrained End Temperature and Applied Grid Point Heat Flux. (Continued)

```
$ ELEMENT CONDUCTIVITY (MA956).
Ś
MAT4, 100, 1.
Ś
$ NONLINEAR TEMPERATURE DEPENDENT PROPERTIES.
Ś
MATT4, 100, 10
$
$ TEMPERATURE DEPENDENT CONDUCTIVITY DATA.
Ś
TABLEM2, 10,
  70., 1.466E-4, 200., 1.620E-4, 400., 1.852E-4, 600., 2.083E-4,
800., 2.315E-4, 1000., 2.508E-4, 1200., 2.739E-4, 1400., 2.951E-4,
1600., 3.164E-4, 1800., 3.376E-4, ENDT
,
,
,
$
$ GRID POINT HEAT FLUX.
$
QHBDY, 1, POINT, 0.02, 0.7854, 11
$
$ CONSTRAIN BAR END TEMPERATURE.
Ś
SPC, 1, 1, 1, 0.
Ś
$ INITIAL TEMPERATURE DISTRIBUTION.
Ś
TEMP, 1, 1, 0.
TEMPD, 1, 0.
ENDDATA
```

Listing 17-5. Temperature Vector for Bar Model with Constrained End Temperature and Applied Grid Point Heat Flux.

		TEMPERATURE VECTOR
GRID	TEMPERATURE	
ID		
2	1.366126E+02	
3	2.602129E+02	
4	3.741140E+02	
5	4.803034E+02	
6	5.801821E+02	
7	6.747510E+02	
8	7.647634E+02	
9	8.508763E+02	
10	9.340643E+02	
11	1.014610E+03	

Figure 17-7. Temperature vs. Bar Model Normalized Length.

Listing 17-6. Element Thermal Gradients and Heat Fluxes for Bar Model with Constrained End Temperature and Applied Grid Point Heat Flux.

	THERMAL	GRADIENTS	A N D	НЕАТ	FLUXES	I N	ROD	ELEMENTS
ELEMENT	GRADIENT	FLUX						
ID								
1	1.366126E+02	-2.000000E-02						
2	1.236003E+02	-2.000000E-02						
3	1.139011E+02	-2.000000E-02						
4	1.061895E+02	-2.000000E-02						
5	9.987864E+01	-2.000000E-02						
6	9.456890E+01	-2.000001E-02						
7	9.001246E+01	-2.00003E-02						
8	8.611284E+01	-2.000010E-02						
9	8.318802E+01	-2.000034E-02						
10	8.054531E+01	-2.000129E-02						

Figure 17-8. Thermal Gradient vs. Bar Model Normalized Length.

Heat flux loads can be either applied directly into a set of grid points or onto a CHBDYG or CHBDYP surface element. Listing 17-4 was an example of heat flux loads applied directly into a set of grid points using the QHBDY Bulk Data entry. Listing 17-7 is an example of heat flux loads applied onto a CHBDYP element.

The grid point temperatures from the Model Results Output File are shown in tabular form in Listing 17-8 and plotted against percent of bar length in Figure 17-9. Heat flow into the hbdy element is shown in Listing 17-9. Both examples yield equivalent results.

Listing 17-7. Model Input File for Bar Model with Constrained End Temperature and Applied Element Heat Flux.

```
$ NONLINEAR STEADY STATE HEAT TRANSFER SOLUTION.
Ś
SOL NONLINEAR STEADY STATE HEAT TRANSFER
Ś
ANALYSIS = HEAT
Ś
TITLE = INSTALLATION TEST CASE
SUBTITLE = BAR WITH NONLINEAR TEMPERATURE DEPENDENT MATERIAL
Ś
THERMAL = ALL
SPCFORCE = ALL
FLUX = ALL
Ś
TEMPERATURE (INITIAL) = 1
SUBCASE 1
 LABEL = CONSTRAINED END TEMPERATURE AND APPLIED END HEAT FLUX
 LOAD = 1
 NLPARM = 1
 SPC = 1
Ś
BEGIN BULK
Ś
$ DEFINE NONLINEAR SOLUTION PARAMETERS.
Ś
NLPARM, 1, 1
Ś
$ GEOMETRY DEFINITION (10" BAR DIVIDED INTO 10 ELEMENTS).
$
GRID, 1, ,
                     0., 0., 0.,

      GRID, 1, , 0., 0., 0., 0.,

      GRID, 2, , 1., 0., 0.,

      GRID, 3, , 2., 0., 0.,

      GRID, 4, , 3., 0., 0.,

      GRID, 5, , 4., 0., 0.,

      GRID, 6, , 5., 0., 0.,

      GRID, 7, , 6., 0., 0.,

      GRID, 8, , 7., 0., 0.,

      GRID, 9, , 8., 0., 0.,

      GRID, 10, , 9., 0., 0.,

GRID, 10, , 9., 0., 0.,
GRID, 11, , 10., 0., 0.,
Ś
$ CIRCULAR BAR MODELED WITH ROD ELEMENTS.
$
CROD, 1, 10,
                       1,
                               2
CROD, 2, 10, 2,
                               3
CROD, 3, 10, 3,
CROD, 4, 10, 4,
                               4
                                5
CROD, 5, 10,
                       5,
                                6
                       6,
CROD, 6, 10,
                               7
CROD, 7, 10,
CROD, 8, 10,
                       7,
                                8
                        8,
                                9
CROD, 9, 10,
                       9, 10
CROD, 10, 10, 10, 11
Ś
$ ROD ELEMENT MATERIAL AND SECTION PROPERTIES (1.0" DIAMETER).
Ś
PROD, 10, 100, 0.7854
```

Listing 17-7. Model Input File for Bar Model with Constrained End Temperature and Applied Element Heat Flux. (Continued)

```
$ ELEMENT CONDUCTIVITY (MA956).
Ś
MAT4, 100, 1.
Ś
$ NONLINEAR TEMPERATURE DEPENDENT PROPERTIES.
Ś
MATT4, 100, 10
$
$ TEMPERATURE DEPENDENT CONDUCTIVITY DATA.
Ś
TABLEM2, 10,
  70., 1.466E-4, 200., 1.620E-4, 400., 1.852E-4, 600., 2.083E-4,
800., 2.315E-4, 1000., 2.508E-4, 1200., 2.739E-4, 1400., 2.951E-4,
1600., 3.164E-4, 1800., 3.376E-4, ENDT
,
,
,
$
$ DEFINE BOUNDARY HEAT FLUX.
$
CHBDYP, 11, 20, POINT, , , 11,
 , , , , , 1., 0., 0.
Ś
$ AREA FACTOR TO DEFINE ROD END SURFACE AREA
$ AREA = (PI/4)*DIAMETER**2 = 0.7854
Ś
PHBDY, 20, 0.7854
Ś
$ HEAT FLUX.
Ś
QBDY1, 1, 0.02, 11
$
$ CONSTRAIN BAR END TEMPERATURE.
Ś
SPC, 1, 1, 1, 0.
Ś
$ INITIAL TEMPERATURE DISTRIBUTION.
Ś
TEMP, 1, 1, 0.
TEMPD, 1, 0.
ENDDATA
```

Listing 17-8. Temperature Vector for Bar Model with Constrained End Temperature and Applied Element Heat Flux.

		TEMPERATURE VECTOR	
GRID	TEMPERATURE		
ID			
2	1.366126E+02		
3	2.602129E+02		
4	3.741140E+02		
5	4.803034E+02		
6	5.801821E+02		
7	6.747510E+02		
8	7.647634E+02		
9	8.508763E+02		
10	9.340643E+02		
11	1.014610E+03		

Figure 17-9. Temperature vs. Bar Model Normalized Length.

		НЕАТ	FLOW	ΙΝΤΟ	НВDҮ	ELEMENTS
ELEMENT	APPLIED	CONVECTION	TOTAL			
11	1.570800E-02	0.00000E+00	1.570800E-0	2		

17.4.2 Volume Heat Addition

The next problem is example of volume heat addition. The circular bar in Figure 17-10 has a prescribed temperature at one end, temperature dependent volumetric heat addition in each element, and is completely insulated over the rest of its surface area. Listing 17-10 contains the Model Input File.

Figure 17-10. 1-Dimensional Bar Example Problem with Constrained End Temperature and Volumetric Heat Addition.

Volumetric heat addition results in elemental power input given by the equation:

Where QVOL is the power density given on the QVOL Bulk Data entry and HGEN is a temperature dependent scale factor given on the MAT4 or MAT5 Bulk Data entry.

The grid point temperatures from the Model Results Output File are shown in tabular form in Listing 17-11 and plotted against percent of bar length in Figure 17-11. Rod element thermal gradients and heat fluxes are shown in tabular listing form in Listing 17-12. Thermal gradients are plotted against percent of bar length in Figure 17-12.

Listing 17-10. Model Input File for Bar Model with Constrained End Temperature and Volumetric Heat Addition.

```
$ NONLINEAR STEADY STATE HEAT TRANSFER SOLUTION.
Ś
SOL NONLINEAR STEADY STATE HEAT TRANSFER
Ś
ANALYSIS = HEAT
Ś
TITLE = INSTALLATION TEST CASE
SUBTITLE = BAR WITH NONLINEAR TEMPERATURE DEPENDENT MATERIAL
Ś
THERMAL = ALL
SPCFORCE = ALL
FLUX = ALL
Ś
TEMPERATURE (INITIAL) = 1
SUBCASE 1
 LABEL = CONSTRAINED END TEMPERATURE AND VOLUME HEAT ADDITION
 LOAD = 1
 NLPARM = 1
 SPC = 1
Ś
BEGIN BULK
$ DEFINE NONLINEAR SOLUTION PARAMETERS.
Ś
NLPARM, 1, 1
 Ś
$ GEOMETRY DEFINITION (10" BAR DIVIDED INTO 10 ELEMENTS).
$

GRID, 1, , 0., 0., 0.,

GRID, 2, , 1., 0., 0.,

GRID, 3, , 2., 0., 0.,

GRID, 4, , 3., 0., 0.,

GRID, 5, , 4., 0., 0.,

GRID, 6, , 5., 0., 0.,

GRID, 7, , 6., 0., 0.,

GRID, 9, , 8., 0., 0.,

GRID, 10, , 9., 0., 0.,

GRID, 11, , 10., 0., 0.,
$
 Ś
$ CIRCULAR BAR MODELED WITH ROD ELEMENTS.
$
CROD, 1, 10,
CROD, 2, 10,
CROD, 3, 10,
                      1,
                              2
                        2,
                               3
                      З,
                               4
CROD, 4, 10,
CROD, 5, 10,
CROD, 6, 10,
                      4,
                              5
                      5,
                              6
                       6,
                              7
CROD, 7, 10,
                      7,
                              8
CROD, 8, 10, 8, 9
CROD, 9, 10, 9, 10
CROD, 10, 10, 10, 11
Ś
$ ROD ELEMENT MATERIAL AND SECTION PROPERTIES (1.0" DIAMETER).
Ś
PROD, 10, 100, 0.7854
```

Listing 17-10. Model Input File for Bar Model with Constrained End Temperature and Volumetric Heat Addition. (Continued)

```
$ ELEMENT CONDUCTIVITY (MA956).
Ś
MAT4, 100, 1.
Ś
$ NONLINEAR TEMPERATURE DEPENDENT PROPERTIES.
Ś
MATT4, 100, 10
$
$ TEMPERATURE DEPENDENT CONDUCTIVITY DATA.
Ś
TABLEM2, 10,
  70., 1.466E-4, 200., 1.620E-4, 400., 1.852E-4, 600., 2.083E-4,
800., 2.315E-4, 1000., 2.508E-4, 1200., 2.739E-4, 1400., 2.951E-4,
1600., 3.164E-4, 1800., 3.376E-4, ENDT
,
,
$
$ VOLUME HEAT ADDITION.
$
QVOL, 1, 0.01, , 1, THRU, 10
$
$ ELEMENT POWER DENSITY.
Ś
MAT4, 200, , , , , , 1.
Ś
$ NONLINEAR TEMPERATURE DEPENDENT PROPERTIES.
Ś
MATT4, 200, , , , , , , 20
Ś
$ TEMPERATURE DEPENDENT HEAT GENERATION COEFFICIENT.
$
TABLEM2, 20,
   70., 0.993, 200., 0.980, 400., 0.960, 600., 0.940,
,
  800., 0.920, 1000., 0.900, 1200., 0.880, 1400., 0.860, 1600., 0.840, 1800., 0.820, ENDT
,
Ś
$ CONSTRAIN BAR END TEMPERATURE.
Ś
SPC, 1, 1, 1, 0.
$
$ INITIAL TEMPERATURE DISTRIBUTION.
Ś
TEMP, 1, 1, 0.
TEMPD, 1, 0.
ENDDATA
```

Listing 17-11. Temperature Vector for Bar Model with Constrained End Temperature and Volumetric Heat Addition.

		TEMPERATURE VECTOR
GRID ID	TEMPERATURE	
2	5.555005E+02	
3	9.332160E+02	
4	1.221964E+03	
5	1.447538E+03	
6	1.625198E+03	
7	1.763098E+03	
8	1.866315E+03	
9	1.938081E+03	
10	1.980407E+03	
11	1.994398E+03	

Figure 17-11. Temperature vs. Bar Model Normalized Length.

Listing 17-12. Element Thermal Gradients and Heat Fluxes for Bar Model with Constrained End Temperature and Volumetric Heat Addition.

	THERMAL	GRADIENTS	A N D	HEAT	FLUXES	I N	ROD	ELEMENTS
ELEMENT ID	GRADIENT	FLUX						
1	5.555005E+02	-9.500115E-02						
2	3.777156E+02	-8.500321E-02						
3	2.887477E+02	-7.500556E-02						
4	2.255742E+02	-6.500677E-02						
5	1.776602E+02	-5.500771E-02						
6	1.379001E+02	-4.500778E-02						
7	1.032173E+02	-3.500706E-02						
8	7.176593E+01	-2.500562E-02						
9	4.232571E+01	-1.500361E-02						
10	1.399088E+01	-5.001245E-03						

Figure 17-12. Thermal Gradient vs. Bar Model Normalized Length.

17.4.3 Nonlinear Convection

The next problem is an example of nonlinear convection. The circular bar in Figure 17-13 has prescribed temperature at one end and a convection boundary condition over the rest of its surface area. Listing 17-11 contains the Model Input File.

Figure 17-13. 1-Dimensional Bar Example Problem with Constrained End Temperature and a Convection Boundary Condition.

The CONV Bulk Data entry defines the convection properties and the ambient grid points. The basic exchange relationship defines the rate of heat transfer as:

$$q = H*(T - TAMB)$$

where H is the temperature dependent free convection heat transfer coefficient given on the MAT4 Bulk Data entry and T and TAMB are the fluid film and ambient temperatures, respectively. H is given in Reference 7 for various shapes and conditions. For our example, H is plotted as a function of temperature in Figure 17-14.

Figure 17-14. TABLEM2 Bulk Data Entry Free Convection Heat Transfer Coefficient vs. Temperature Input Data.

The grid point temperatures from the Model Results Output File are shown in tabular form in Listing 17-14 and plotted against percent of bar length in Figure 17-15. Rod element thermal gradients and heat fluxes are shown in tabular listing form in Listing 17-15. Thermal gradients are plotted against percent of bar length in Figure 17-16. Heat flows into the hbdy elements are shown in tabular form in Listing 17-16 and plotted against percent of bar length in Figure 17-17.

Listing 17-13. Model Input File for Bar Model with Constrained End Temperature and a Convection Boundary Condition.

```
$ NONLINEAR STEADY STATE HEAT TRANSFER SOLUTION.
Ś
SOL NONLINEAR STEADY STATE HEAT TRANSFER
Ś
ANALYSIS = HEAT
Ś
TITLE = INSTALLATION TEST CASE
SUBTITLE = BAR WITH NONLINEAR TEMPERATURE DEPENDENT MATERIAL
Ś
THERMAL = ALL
SPCFORCE = ALL
FLUX = ALL
Ś
TEMPERATURE (INITIAL) = 1
SUBCASE 1
 LABEL = CONSTRAINED END TEMPERATURE AND FREE CONVECTION BOUNDARY
 SPC = 1
 NLPARM = 1
 Ś
BEGIN BULK
Ś
$ DEFINE NONLINEAR SOLUTION PARAMETERS.
Ś
NLPARM, 1, 1
Ś
$ GEOMETRY DEFINITION (10" BAR DIVIDED INTO 10 ELEMENTS).
Ś
GRID, 1, , 0., 0., 0.,

      GRID,
      1,
      ,
      0.,
      0.,
      0.,

      GRID,
      2,
      ,
      1.,
      0.,
      0.,

      GRID,
      3,
      ,
      2.,
      0.,
      0.,

      GRID,
      4,
      ,
      3.,
      0.,
      0.,

      GRID,
      5,
      ,
      4.,
      0.,
      0.,

      GRID,
      6,
      ,
      5.,
      0.,
      0.,

      GRID,
      6,
      ,
      5.,
      0.,
      0.,

      GRID,
      8,
      ,
      7.,
      0.,
      0.,

      GRID,
      9,
      ,
      8.,
      0.,
      0.,

GRID, 9, , 8., 0., 0.,
GRID, 10, , 9., 0., 0.,
GRID, 11, , 10., 0., 0.,
CRID, 12, 0., 0.,
GRID, 12, ,
                        0., 0., 0.,
 Ś
$ CIRCULAR BAR MODELED WITH ROD ELEMENTS.
Ś
CROD, 1, 10,
CROD, 2, 10,
CROD, 3, 10,
                             1,
                                        2
                               2,
                                        3
                            з,
                                        4
CROD, 4, 10, 4,
CROD, 5, 10, 5,
CROD, 6, 10, 6,
                                       5
                                        6
                                        7
CROD, 7, 10,
                             7,
                                        8
CROD, 8, 10, 8, 9
CROD, 9, 10, 9, 10
CROD, 10, 10, 10, 11
Ś
$ ROD ELEMENT MATERIAL AND SECTION PROPERTIES (1.0" DIAMETER).
Ś
PROD, 10, 100, 0.7854
Ś
$ ELEMENT CONDUCTIVITY (MA956).
Ś
MAT4, 100, 1.
```

Listing 17-13. Model Input File for Bar Model with Constrained End Temperature and a Convection Boundary Condition. (Continued)

```
$ NONLINEAR TEMPERATURE DEPENDENT PROPERTIES.
Ś
MATT4, 100, 10
Ś
$ TEMPERATURE DEPENDENT CONDUCTIVITY DATA.
Ś
TABLEM2, 10,
    70., 1.466E-4, 200., 1.620E-4, 400., 1.852E-4, 600., 2.083E-4,
800., 2.315E-4, 1000., 2.508E-4, 1200., 2.739E-4, 1400., 2.951E-4,
1600., 3.164E-4, 1800., 3.376E-4, ENDT
,
,
Ś
$ CONVECTION BOUNDARY DEFINITION.
Ś
CHBDYP, 11, 20, LINE, ,
                                                                          2,
                           , 0., 1., 0.
20. TT
                                                               1,
CHEDYP, 12, 20, LINE, , ,
, , , , 0., 1., 0.
                                                                  2,
                                                                            З,
, , , , , , 0., 1., 0.

CHBDYP, 13, 20, LINE, , ,

, , , , , 0., 1., 0.

CHBDYP, 14, 20, LINE, , ,
                                                                  З,
                                                                          4,
                                                                  4,
                                                                           5.
                            , 0., 1., 0.
, , , , , , 0., 1., U.
CHBDYP, 15, 20, LINE, , ,
                                                               5,
                                                                        6.
                                0., 1., 0.
, , , , , , <sup>U</sup>., <sup>1</sup>., <sup>U</sup>.
CHBDYP, 16, 20, LINE, , ,
                                                                           7,
                                                                  6,
CHEDYP, 17, 20, LINE, , ,
CHEDYP, 17, 20, LINE, , ,
, , , 0., 1., 0.
CHEDYP, 18, 20, LINE, , ,
. , , , 0., 1., 0.
                                                                 7,
                                                                          8.
                                                              8, 9,
, , , , , , 0., 1., 0.
CHBDYP, 19, 20, LINE, , ,
                                                               9, 10,
   , , , , , 0., 1., 0.
CHBDYP, 20, 20, LINE, , , 10, 11,
   , , , , , 0., 1.,
                                                     Ο.
Ś
$ AREA FACTOR TO DEFINE ROD SURFACE AREA
$ AF = PI*DIAMETER = 3.142, AREA = AF*LENGTH
Ś
PHBDY, 20, 3.142
Ś
$ CONVECTION LOAD.
Ś
CONV, 11, 30, , , 12, 12

      CONV,
      11,
      30,
      ,
      12,
      12

      CONV,
      12,
      30,
      ,
      12,
      12

      CONV,
      13,
      30,
      ,
      12,
      12

      CONV,
      13,
      30,
      ,
      12,
      12

      CONV,
      14,
      30,
      ,
      12,
      12

      CONV,
      15,
      30,
      ,
      12,
      12

      CONV,
      16,
      30,
      ,
      12,
      12

      CONV,
      17,
      30,
      ,
      12,
      12

      CONV,
      18,
      30,
      ,
      12,
      12

      CONV,
      19,
      30,
      ,
      12,
      12

      CONV,
      20,
      30,
      ,
      12,
      12

Ś
$ CONVECTION PROPERTY REFERENCE.
Ś
PCONV, 30, 200
$ FREE CONVECTION HEAT TRANSFER COEFFICIENT (AIR).
Ś
MAT4, 200, , , , 1.
Ś
$ NONLINEAR TEMPERATURE DEPENDENT PROPERTIES.
Ś
MATT4, 200, , , , 20
```

Listing 17-13. Model Input File for Bar Model with Constrained End Temperature and a Convection Boundary Condition. (Continued)

\$ TEMPERATURE DEPENDENT FREE CONVECTION HEAT TRANSFER COEFFICIENT. Ś TABLEM2, 20, 600., 3.877E-6, 800., 3.946E-6, 1000., 3.993E-6, 1200., 4.015E-6, 1400., 4.039E-6, 1600., 4.068E-6, 1800., 4.142E-6, 2000., 4.261E-6, 2200., 4.380E-6, 2400., 4.501E-6, ENDT , , Ś \$ AMBIENT TEMPERATURE DEFINITION. Ś SPC, 1, 12, 1, 500. Ś \$ CONSTRAIN BAR END TEMPERATURE. Ś SPC, 1, 1, 1, 1500. \$ \$ INITIAL TEMPERATURE DISTRIBUTION. \$ TEMP, 1, 12, 500. TEMPD, 1, 1500. ENDDATA

Listing 17-14. Temperature Vector for Bar Model with Constrained End Temperature and a Convection Boundary Condition.

		TEMPERATURE VECTOR
GRID	TEMPERATURE	
ID		
1	1.500000E+03	
2	1.324682E+03	
3	1.161522E+03	
4	1.027907E+03	
5	9.205718E+02	
6	8.366836E+02	
7	7.728891E+02	
8	7.261412E+02	
9	6.943046E+02	
10	6.758315E+02	
11	6.697793E+02	
12	5.000000E+02	

Figure 17-15. Temperature vs. Bar Model Normalized Length.

Listing 17-15. Element Thermal Gradients and Heat Fluxes for Bar Model with Constrained End Temperature and a Convection Boundary Condition.

	THERMAL	GRADIENTS	A N D	HEAT	FLUXES	I N	ROD	ELEMENTS
ELEMENT	GRADIENT	FLUX						
ID								
1	-1.933375E+02	5.712249E-02						
2	-1.601330E+02	4.431186E-02						
3	-1.310460E+02	3.409244E-02						
4	-1.050667E+02	2.597509E-02						
5	-8.204297E+01	1.954236E-02						
6	-6.235922E+01	1.441586E-02						
7	-4.568761E+01	1.027550E-02						
8	-3.109997E+01	6.856118E-03						
9	-1.803999E+01	3.925574E-03						
10	-5.909447E+00	1.277711E-03						

Figure 17-16. Thermal Gradient vs. Bar Model Normalized Length.

Listing 17-16. Heat Flow Into Hbdy Elements for Bar Model with Constrained End Temperature and a Convection Boundary Condition.

		HEAT	I FLOW 1	илто нвру	ELEMENTS
ELEMENT ID	APPLIED	CONVECTION	RADIATION	TOTAL	
11	0.00000E+00	-1.130096E-02	0.000000E+00	-1.130096E-02	
12	0.00000E+00	-9.042538E-03	0.000000E+00	-9.042538E-03	
13	0.00000E+00	-7.197530E-03	0.000000E+00	-7.197530E-03	
14	0.00000E+00	-5.705421E-03	0.000000E+00	-5.705421E-03	
15	0.00000E+00	-4.533716E-03	0.000000E+00	-4.533716E-03	
16	0.00000E+00	-3.635937E-03	0.000000E+00	-3.635937E-03	
17	0.00000E+00	-2.967883E-03	0.000000E+00	-2.967883E-03	
18	0.00000E+00	-2.495028E-03	0.000000E+00	-2.495028E-03	
19	0.00000E+00	-2.193265E-03	0.000000E+00	-2.193265E-03	
20	0.000000E+00	-2.046431E-03	0.000000E+00	-2.046431E-03	

Figure 17-17. Surface Heat Flow vs. Bar Model Normalized Length.

17.4.4 Nonlinear Radiation

The next problem is an example of nonlinear radiation. The circular bar in Figure 17-18 has prescribed temperature at one end and a radiation boundary condition over the rest of its surface area. Listing 17-17 contains the Model Input File.

Figure 17-18. 1-Dimensional Bar Example Problem with Constrained End Temperature and a Radiation Boundary Condition.

The RADBC Bulk Data entry defines the radiation properties and the ambient grid point. The basic exchange relationship defines the rate of heat transfer as:

$$q = \sigma * FAMB*(\epsilon T^4 - \alpha TAMB^4)$$

where σ is the Stefan-Boltzmann constant, FAMB is the radiation view factor between the surface and the ambient point, ϵ and α are the temperature dependent surface emissivity and absorptivity given on the RADM Bulk Data entry, and T and TAMB are the surface and ambient temperatures, respectively. For our example, emissivity and absorptivity are equal with the emissivity plotted as a function of temperature in Figure 17-19.

Figure 17-19. TABLEM2 Bulk Data Entry Emissivity vs. Temperature Input Data.

The grid point temperatures from the Model Results Output File are shown in tabular form in Listing 17-18 and plotted against percent of bar length in Figure 17-20. Rod element thermal gradients and heat fluxes are shown in tabular listing form in Listing 17-19. Thermal gradients are plotted against percent of bar length in Figure 17-21. Heat flows into the hbdy elements are shown in tabular form in Listing 17-20 and plotted against percent of bar length in Figure 17-22.

Listing 17-17. Model Input File for Bar Model with Constrained End Temperature and a Radiation Boundary Condition.

```
$ NONLINEAR STEADY STATE HEAT TRANSFER SOLUTION.
Ś
SOL NONLINEAR STEADY STATE HEAT TRANSFER
Ś
ANALYSIS = HEAT
Ś
TITLE = INSTALLATION TEST CASE
SUBTITLE = BAR WITH NONLINEAR TEMPERATURE DEPENDENT MATERIAL
Ś
THERMAL = ALL
SPCFORCE = ALL
FLUX = ALL
Ś
TEMPERATURE (INITIAL) = 1
SUBCASE 1
 LABEL = CONSTRAINED END TEMPERATURE AND RADIATION BOUNDARY
 SPC = 1
 NLPARM = 1
 Ś
BEGIN BULK
Ś
$ DEFINE NONLINEAR SOLUTION PARAMETERS.
Ś
NLPARM, 1, 1
Ś
$ DEFINE STEFAN-BOLTZMANN CONSTANT.
Ś
PARAM, SIGMA, 3.97E-14
Ś
$ FAHRENHEIT TO ABSOLUTE TEMPERATURE CONVERSION FACTOR.
Ś
PARAM, TABS, 459.69
 Ś
$ GEOMETRY DEFINITION (10" BAR DIVIDED INTO 10 ELEMENTS).
$

GRID, 1, , 0., 0., 0.,

GRID, 2, , 1., 0., 0.,

GRID, 3, , 2., 0., 0.,

GRID, 4, , 3., 0., 0.,

GRID, 5, , 4., 0., 0.,

GRID, 6, , 5., 0., 0.,

GRID, 7, , 6., 0., 0.,

GRID, 9, , 8., 0., 0.,

GRID, 10, , 9., 0., 0.,

GRID, 11, , 10., 0., 0.,

GRID, 12, , 0., 0., 0.,
Ś
GRID, 12, , 0., 0., 0.,
Ś
$ CIRCULAR BAR MODELED WITH ROD ELEMENTS.
Ś
CROD, 1, 10,
                             2
                      1,
CROD, 2, 10, 2,
                            3
CROD, 3, 10, 3,
CROD, 4, 10, 4,
CROD, 5, 10, 5,
                             4
                             5
                             6
CROD, 6, 10,
                             7
                     6,
CROD, 7, 10,
CROD, 8, 10,
CROD, 9, 10,
                     7,
                            8
                     8,
                             9
                      9, 10
CROD, 10, 10, 10, 11
Ś
$ ROD ELEMENT MATERIAL AND SECTION PROPERTIES (1.0" DIAMETER).
$
PROD, 10, 100, 0.7854
```

Listing 17-17. Model Input File for Bar Model with Constrained End Temperature and a Radiation Boundary Condition. (Continued)

```
$ ELEMENT CONDUCTIVITY (MA956).
Ś
MAT4, 100, 1.
Ś
$ NONLINEAR TEMPERATURE DEPENDENT PROPERTIES.
Ś
MATT4, 100, 10
Ś
$ TEMPERATURE DEPENDENT CONDUCTIVITY DATA.
Ś
TABLEM2, 10,
   70., 1.466E-4, 200., 1.620E-4, 400., 1.852E-4, 600., 2.083E-4,
800., 2.315E-4, 1000., 2.508E-4, 1200., 2.739E-4, 1400., 2.951E-4,
1600., 3.164E-4, 1800., 3.376E-4, ENDT
,
$
$ CONVECTION BOUNDARY DEFINITION.
Ś
CHBDYP, 11, 20, LINE, , ,
                                              1,
                                                      2,
CHBDYP, 12, 20, IINE, , , 1,

, 200, , , , 0., 1., 0.

CHBDYP, 12, 20, LINE, , , 2,

, 200, , , , 0., 1., 0.

CHBDYP, 13, 20, LINE, , , 3,
                                                      3.
                                                      4,
, 200, , , , 0., 1., 0
CHBDYP, 14, 20, LINE, , ,
   , 200,
                            0., 1., 0.
                                               4,
                                                      5,
CHBDYP, 14, 20, HINE, , , 4,

, 200, , , 0., 1., 0.

CHBDYP, 15, 20, LINE, , 5,

, 200, , , 0., 1., 0.

CHBDYP, 16, 20, LINE, , 6,

, 200, , , 0., 1., 0.

CHBDYP, 17, 20, LINE, , 7,
                                                      6.
                                                      7,
                                                      8,
  , 200, ,
                   , , 0., 1., 0.
CHBDYP, 18, 20, LINE, , , 8,
                                                     9,
CHBDIP, 18, 20, LINE, , , 8, 9,
, 200, , , 0., 1., 0.
CHBDYP, 19, 20, LINE, , , 9, 10,
, 200, , , 0., 1., 0.
CHBDYP, 20, 20, LINE, , , 10, 11,
, 200, , , 0., 1., 0.
$ AREA FACTOR TO DEFINE ROD END SURFACE AREA
$ AREA = (PI/4)*DIAMETER**2 = 0.7854
Ś
PHBDY, 20, 0.7854
$
$ RADIATION LOAD.
Ś
RADBC, 12, 1., , 11, THRU, 20
$ RADIATION BOUNDARY MATERIAL PROPERTIES.
Ś
RADM, 200, 1., 1.
Ś
$ NONLINEAR TEMPERATURE DEPENDENT PROPERTIES.
Ś
RADMT, 200, 20, 20
Ś
$ TEMPERATURE DEPENDENT EMISSIVITY AND ABSORPTIVITY DATA.
Ś
TABLEM2, 20,
, 400., 0.800, 600., 0.6500, 800., 0.550, 1000., 0.475,
   1200., 0.435, 1400., 0.4125, 1600., 0.400, ENDT
```

Listing 17-17. Model Input File for Bar Model with Constrained End Temperature and a Radiation Boundary Condition. (Continued)

\$
\$ BOUNDARY TEMPERATURE DEFINITION.
\$
SPC, 1, 12, 1, 500.
\$
\$ CONSTRAIN BAR END TEMPERATURE.
\$
SPC, 1, 1, 1, 1500.
\$
\$ INITIAL TEMPERATURE DISTRIBUTION.
\$
TEMP, 1, 12, 500.
TEMPD, 1, 1500.
ENDDATA

Listing 17-18. Temperature Vector for Bar Model with Constrained End Temperature and a Radiation Boundary Condition.

		TEMPERATURE VECTOR
GRID	TEMPERATIRE	
ID		
1	1.500000E+03	
2	9.894889E+02	
3	7.417983E+02	
4	6.182798E+02	
5	5.572263E+02	
6	5.274541E+02	
7	5.131228E+02	
8	5.062922E+02	
9	5.030968E+02	
10	5.017062E+02	
11	5.013176E+02	
12	5.00000E+02	

Figure 17-20. Temperature vs. Bar Model Normalized Length.

Listing 17-19. Element Thermal Gradients and Heat Fluxes for Bar Model with Constrained End Temperature and a Radiation Boundary Condition.

	THERMAL	GRADIENTS	A N D	HEAT	FLUXES	I N	ROD	ELEMENTS
ELEMENT	GRADIENT	FLUX						
ID								
1	-5.105111E+02	1.422503E-01						
2	-2.476905E+02	5.890938E-02						
3	-1.235186E+02	2.687573E-02						
4	-6.105351E+01	1.263108E-02						
5	-2.977215E+01	6.003266E-03						
6	-1.433133E+01	2.853272E-03						
7	-6.830613E+00	1.351582E-03						
8	-3.195369E+00	6.304214E-04						
9	-1.390655E+00	2.739972E-04						
10	-3.885286E-01	7.651085E-05						

Figure 17-21. Thermal Gradient vs. Bar Model Normalized Length.

Listing 17-20. Heat Flow Into Hbdy Elements for Bar Model with Constrained End Temperature and a Radiation Boundary Condition.

		HEA	T FLOW I	пто нвру	ELEMENTS
ELEMENT ID	APPLIED	CONVECTION	RADIATION	TOTAL	
11	0.00000E+00	0.00000E+00	-1.017733E-01	-1.017733E-01	
12	0.00000E+00	0.00000E+00	-3.664700E-02	-3.664700E-02	
13	0.00000E+00	0.00000E+00	-1.595929E-02	-1.595929E-02	
14	0.000000E+00	0.000000E+00	-7.305986E-03	-7.305986E-03	
15	0.00000E+00	0.000000E+00	-3.456245E-03	-3.456245E-03	
16	0.00000E+00	0.00000E+00	-1.638538E-03	-1.638538E-03	
17	0.000000E+00	0.00000E+00	-7.797943E-04	-7.797943E-04	
18	0.00000E+00	0.00000E+00	-3.761259E-04	-3.761259E-04	
19	0.00000E+00	0.000000E+00	-1.921777E-04	-1.921777E-04	
20	0.00000E+00	0.000000E+00	-1.209322E-04	-1.209322E-04	

Figure 17-22. Surface Heat Flow vs. Bar Model Normalized Length.

User's Manual

Nonlinear Steady State Heat Transfer Analysis

The next problem is another example of nonlinear radiation. In this example a heat flux is applied to the surface of a flat plate with a radiation boundary condition as shown in Figure 17-23. Listing 17-21 contains the Model Input File. The grid point temperatures from the Model Results Output File are shown in tabular form in Listing 17-22. Heat flows into the hbdy elements are shown in Listing 17-23.

Figure 17-23. 3-D Plate Example Problem with an Applied Heat Flux and a Radiation Boundary Condition.

For this example, the energy balance can be expressed as:

$$\mathsf{Q} = \sigma \, \mathsf{A} \varepsilon \, \mathsf{F} (\mathsf{T}_{\mathsf{e}}^{\, \mathsf{4}} - \mathsf{T}_{\infty}^{\, \mathsf{4}})$$

or,

which gives,

Listing 17-21. Model Input File for 3-D Plate with an Applied Heat Flux and a Radiation Boundary Condition.

```
$ NONLINEAR STEADY STATE HEAT TRANSFER SOLUTION.
Ś
SOL NONLINEAR STEADY STATE HEAT TRANSFER
Ś
ANALYSIS = HEAT
Ś
TITLE = INSTALLATION TEST CASE
SUBTITLE = PLATE IN RADIATIVE EQUILIBRIUM
Ś
THERMAL = ALL
SPCFORCE = ALL
FLUX = ALL
Ś
TEMPERATURE (INITIAL) = 1
SUBCASE 1
 LABEL = APPLIED HEAT FLUX WITH RADIATION BOUNDARY
 LOAD = 1
 NLPARM = 1
 SPC = 1
Ś
BEGIN BULK
$ DEFINE NONLINEAR SOLUTION PARAMETERS.
Ś
NLPARM, 1, 1
Ś
$ DEFINE STEFAN-BOLTZMANN CONSTANT.
Ś
PARAM, SIGMA, 3.97E-14
Ś
$ FAHRENHEIT TO ABSOLUTE TEMPERATURE CONVERSION FACTOR.
Ś
PARAM, TABS, 459.69
Ś
$ GEOMETRY DEFINITION (10" X 10" PLATE WITH A 1 X 1 MESH).
Ś
GRID, 1, 0, 0., 0., 0., 0
GRID, 2, 0, 10., 0., 0

      GRID,
      3,
      0,
      10.,
      10.,
      0

      GRID,
      4,
      0,
      0.,
      10.,
      0,
      0

      GRID,
      5,
      0,
      0.,
      0.,
      0.,
      0

Ś
$ BLOCK MODELED WITH A SHELL ELEMENT.
Ś
CQUAD4, 1, 30, 1, 2, 3, 4
Ś
$ ELEMENT MATERIAL AND THICKNESS (0.1").
Ś
PSHELL, 30, 100, 0.1, 100, , 100
Ś
$ ELEMENT CONDUCTIVITY (MA956).
$
MAT4, 100, 1.
Ś
$ NONLINEAR TEMPERATURE DEPENDENT PROPERTIES.
Ś
MATT4, 100, 10
Ś
$ TEMPERATURE DEPENDENT CONDUCTIVITY DATA.
Ś
TABLEM2, 10,
   70., 1.466E-4, 200., 1.620E-4, 400., 1.852E-4, 600., 2.083E-4,
800., 2.315E-4, 1000., 2.508E-4, 1200., 2.739E-4, 1400., 2.951E-4,
1600., 3.164E-4, 1800., 3.376E-4, ENDT
,
,
```

Listing 17-21. Model Input File for 3-D Plate with an Applied Heat Flux and a Radiation Boundary Condition. (Continued)

```
Ś
$ RADIATION BOUNDARY DEFINITION.
Ś
CHBDYG, 2, , AREA4, , , 200, , ,
 , 1, 2, 3, 4
Ś
$ RADIATION LOAD.
$
RADBC, 5, 1., , 2
Ś
$ RADIATION BOUNDARY MATERIAL PROPERTIES.
Ś
RADM, 200, 1., 1.
Ś
$ HEAT FLUX.
$
QBDY1, 1, 0.1, 2
Ś
$ BOUNDARY TEMPERATURE DEFINITION.
Ś
SPC, 1, 5, 1, 0.
Ś
$ INITIAL TEMPERATURE DISTRIBUTION.
Ś
TEMPD, 1, 0.
ENDDATA
```

Listing 17-22. Temperature Vector for 3-D Plate with an Applied Heat Flux and a Radiation Boundary Condition.

		TEMPERATURE VECTOR	
GRID	TEMPERATURE		
ID			
1	8.056589E+02		
2	8.056589E+02		
3	8.056589E+02		
4	8.056589E+02		

Listing 17-23. Heat Flow Into Hbdy Elements for 3-D Plate with an Applied Heat Flux and a Radiation Boundary Condition.

		HEA	T FLOW I	имто нвру	ELEMENTS
ELEMENT TD	APPLIED	CONVECTION	RADIATION	TOTAL	
2	1.000000E+01	0.00000E+00	-1.000000E+01	-1.520630E-06	

The next problem is an example of enclosure radiation. In this example two square plates are part of a radiation enclosure with the radiation boundary conditions as shown in Figure 17-24. Listing 17-24 contains the Model Input File. Heat flows into the hbdy elements are shown in Listing 17-25.

Figure 17-24. Two Plates Radiation Enclosure.

The RADCAV Bulk Data entry defines a radiation cavity and uses the parameters defined through VIEWand VIEW3D Bulk Data entries for view factor calculations. The RADSET Bulk Data entry specifies which radiation cavities are to be included for the radiation enclosure analysis. The RADM Bulk Data entry defines the absorptivity, α , and the emissivity, ϵ . If an absorptivity is not defined, it is assumed to be equal emissivity. The Stefan-Boltzmann constant, σ , is defined through the parameter SIGMA. When modeling radiation, if the temperatures in the model are defined in Fahrenheit or Celsius, the parameter TABS is needed to convert to absolute temperatures.

For this example, the energy balance can be expressed as:

$$\{Q\} = -[R]\{T\}^4$$

where,

- $\{Q\}$ is the heat flow vector
- [*R*] is the radiation exchange matrix
- $\{T\}$ is the vector of absolute temperatures

$$\{q\}^{in} = \sigma \left[(A - F(I - \alpha))^{-1} F \varepsilon \right] \{T\}^4$$
$$\{q\}^{out} = \sigma \left[\varepsilon + (I - \alpha) (A - F(I - \alpha))^{-1} F \varepsilon \right] \{T\}^4$$
$$\{Q\} = -[A] \left\{ \{q\}^{in} - \{q\}^{out} \right\} = -[R] \{T\}^4$$

where,

$\{q\}^{in}$	is the irradiation vector
$\{q\}^{out}$	is the radiosity vector
σ	is the Stefan-Boltzmann constant
Α	is the diagonal matrix element areas
F	is the matrix of exchange coefficients, $A_i f_{ij}$
f _{ij}	is the view factor
α	is the diagonal matrix of surface absorptivities
ε	is the diagonal matrix of surface emissivities

The radiation exchange matrix, $\left[R\right]$, is defined as:

$$[R] = \sigma \Big[A\varepsilon - A\alpha (A - F(I - \alpha))^{-1} F\varepsilon \Big]$$

Assume the plates are black bodies, therefore $\alpha_1 = \alpha_2 = \varepsilon_1 = \varepsilon_2 = 1.0$

$$A\varepsilon = \begin{bmatrix} A_{1}\varepsilon_{1} & 0\\ 0 & A_{2}\varepsilon_{2} \end{bmatrix} = \begin{bmatrix} A_{1} & 0\\ 0 & A_{2} \end{bmatrix}$$
$$A\alpha = \begin{bmatrix} A_{1}\alpha_{1} & 0\\ 0 & A_{2}\alpha_{2} \end{bmatrix} = \begin{bmatrix} A_{1} & 0\\ 0 & A_{2} \end{bmatrix}$$
$$F\varepsilon = \begin{bmatrix} 0 & A_{1}f_{12}\varepsilon_{2}\\ A_{2}f_{21}\varepsilon_{1} & 0 \end{bmatrix} = \begin{bmatrix} 0 & A_{1}f_{12}\\ A_{2}f_{21} & 0 \end{bmatrix}$$
$$(A - F(I - \alpha))^{-1} = \begin{bmatrix} A_{1} & 0\\ 0 & A_{2} \end{bmatrix} - \begin{bmatrix} 0 & A_{1}f_{12}\\ A_{2}f_{21} & 0 \end{bmatrix} \begin{bmatrix} 1 - \alpha_{1} & 0\\ 0 & 1 - \alpha_{2} \end{bmatrix} \end{bmatrix}^{-1}$$
$$(A - F(I - \alpha))^{-1} = \begin{bmatrix} A_{1} & -A_{1}f_{12}(1 - \alpha_{2})\\ -A_{2}f_{21}(1 - \alpha_{1}) & A_{2} \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{A_{1}} & 0\\ 0 & \frac{1}{A_{2}} \end{bmatrix}$$

$$[R] = \sigma \begin{bmatrix} A_{1} & 0 \\ 0 & A_{2} \end{bmatrix} - \begin{bmatrix} A_{1} & 0 \\ 0 & A_{2} \end{bmatrix} \begin{bmatrix} \frac{1}{A_{1}} & 0 \\ 0 & \frac{1}{A_{2}} \end{bmatrix} \begin{bmatrix} 0 & A_{1}f_{12} \\ A_{2}f_{21} & 0 \end{bmatrix} \\ [R] = \sigma \begin{bmatrix} A_{1} & -A_{1}f_{12} \\ -A_{2}f_{21} & A_{2} \end{bmatrix} \\ \{Q\} = -[R]\{T\}^{4} \\ \{Q\} = -\sigma \begin{bmatrix} A_{1} & -A_{1}f_{12} \\ -A_{2}f_{21} & A_{2} \end{bmatrix} \begin{bmatrix} T_{1}^{4} \\ T_{2}^{4} \end{bmatrix} \\ \begin{bmatrix} Q_{1} \\ Q_{2} \end{bmatrix} = -\sigma \begin{bmatrix} A_{1}T_{1}^{4} - A_{1}f_{12}T_{2}^{4} \\ -A_{2}f_{21}T_{1}^{4} + A_{2}T_{2}^{4} \end{bmatrix}$$

In this model:

 $A_1 = A_2 = 1.0$ $f_{12} = f_{21} \approx 0.2$

which gives:

$$Q_{1} = -\sigma \left(T_{1}^{4} - (0.2)T_{2}^{4} \right) = -\sigma \left((1000^{4}) - (0.2)(0^{4}) \right) = -3.97 \times 10^{-2}$$
$$Q_{2} = -\sigma \left(-A_{2}f_{21}T_{1}^{4} + A_{2}T_{2}^{4} \right) = -\sigma \left(-(0.2)(1000^{4}) + (0^{4}) \right) = 7.94 \times 10^{-3}$$

```
$ NONLINEAR STEADY STATE HEAT TRANSFER SOLUTION.
Ś
SOL NONLINEAR STEADY STATE HEAT TRANSFER
$
ANALYSIS = HEAT
Ś
TITLE = INSTALLATION TEST CASE
SUBTITLE = TWO PLATE RADIATION ENCLOSURE
Ś
THERMAL = ALL
SPCFORCE = ALL
FLUX = ALL
Ś
TEMPERATURE (INITIAL) = 1
SUBCASE 1
LABEL = RADIATION ENCLOSURE
LOAD = 1
NLPARM = 1
SPC = 1
Ś
BEGIN BULK
Ś
$ DEFINE NONLINEAR SOLUTION PARAMETERS.
Ś
NLPARM, 1, 1,
, , , , , , , 6, , 0.2
Ś
$ DEFINE STEFAN-BOLTZMANN CONSTANT.
Ś
PARAM, SIGMA, 3.97E-14
Ś
$ FAHRENHEIT TO ABSOLUTE TEMPERATURE CONVERSION FACTOR.
Ś
PARAM, TABS, 459.69
$
$ GEOMETRY DEFINITION (TWO 1" X 1" PLATES WITH 1 X 1 MESH, 1" APART).
Ś
GRID, 1, 0, 0., 0., 0., 0
GRID, 2, 0, 1., 0., 0., 0
GRID, 3, 0, 1., 1., 0., 0
GRID, 4, 0 0., 1., 0., 0
GRID, 5, 0, 0., 0., 1., 0
GRID, 6, 0,
             1., 0., 1., 0
GRID, 7, 0, 1., 1., 1., 0
GRID, 8, 0, 0., 1., 1., 0
Ś
$ PLATES MODELED WITH SHELL ELEMENTS.
Ś
CQUAD4, 1, 30, 1, 2, 3, 4
CQUAD4, 2, 30, 5, 6, 7, 8
```

Listing 17-24. Model Input File for Two Plates Radiation Enclosure.

```
$ ELEMENT MATERIAL AND THICKNESS (0.1").
Ś
PSHELL, 30, 100, 0.1, 100, , 100
$
$ ELEMENT MATERIAL.
Ś
MAT4, 100, 1.
Ś
$ RADIATION BOUNDARY DEFINITION.
Ś
CHBDYG, 3, , AREA4, 1, , 200, , ,
, 1, 2, 3, 4
CHBDYG, 4, , AREA4, 1, , 200, , ,
, 5, 8, 7, 6
Ś
$ RADIATION BOUNDARY MATERIAL PROPERTIES.
Ś
RADM, 200, 1., 1.
$
$ VIEW FACTOR DEFNITION.
$
VIEW, 1, 400, BOTH
Ś
$ VIEW FACTOR DEFINITION - GAUSSIAN INTEGRATION METHOD.
$
VIEW3D, 400
Ś
$ RADIATION CAVITY IDENTIFICATION.
Ś
RADCAV, 400
$
$ IDENTIFIES A SET OF RADIATION CAVITIES.
Ś
RADSET, 400
$
$ BOUNDARY TEMPERATURE DEFINITION.
$
SPC, 1, 1, 1, 540.31
SPC, 1, 2, 1, 540.31
SPC, 1, 3, 1, 540.31
SPC, 1, 4, 1, 540.31
SPC, 1, 5, 1, -459.69
SPC, 1, 6, 1, -459.69
SPC, 1, 7, 1, -459.69
SPC, 1, 8, 1, -459.69
Ś
$ INITIAL TEMPERATURE DISTRIBUTION.
Ś
TEMPD, 1, -459.69
ENDDATA
```

Listing 17-24. Model Input File for Two Plates Radiation Enclosure. (Continued)

Listing 17-25. Heat Flow Into Hbdy Elements from Two Plates Radiation Enclosure.

		HEA	T FLOW 1	ENTO HBD	Y ELEMENTS
ELEMEN' ID	r Applied	CONVECTION	RADIATION	TOTAL	
3 4	0.00000E+00 0.000000E+00	0.000000E+00 0.000000E+00	3.970000E-02 -7.933051E-03	3.970000E-02 -7.933051E-03	

17.5 Grid Point Temperature Generation

Temperatures generated from heat transfer solutions can be used directly in structural analysis in Autodesk Inventor Nastran. This section discusses how to translate output grid point temperature into TEMP Bulk Data entries. The TEMP Bulk Data entries are used to define temperature distributions within the model, which are further used to define temperature dependent material properties and thermal loading.

At the end of a heat transfer solution, grid point temperatures are translated into TEMP Bulk Data entries and output to the Bulk Data Output File (*filename*.BDF). This operation is controlled with the TRSLMODLDATA, TRSLTEMPDATA, and OUTTEMPSETID Model Initialization directives (see *Nastran Solver Reference Guide*, Section 2, *Initialization*, for directive format). When TRSLTEMPDATA is set to ON, the result heat transfer grid point temperatures are output using the setid specified by OUTTEMPSETID. These temperatures can then be imported directly into a modeler or merged into a Model Input File.

As an example, we will use the conduction problem shown in Figure 17-2. Listing 17-26 shows the model input file for a nonlinear static solution.

Listing 17-26.	Model Input File for	Thermally loaded	Bar Model with	Constrained Ends.
----------------	----------------------	------------------	----------------	--------------------------

```
$ NONLINEAR STATIC SOLUTION.
Ś
SOL NONLINEAR STATIC
TITLE = INSTALLATION TEST CASE
SUBTITLE = CONSTRAINED BAR WITH TEMPERATURE DEPENDENT MATERIAL
Ś
STRESS = ALL
FORCE = ALL
TEMPERATURE (INITIAL) = 1
SUBCASE 1
 LABEL = THERMAL GRADIENT PRODUCED FROM NONLINEAR HEAT TRANSFER SOLUTION
 TEMPERATURE (BOTH) = 2
 NLPARM = 1
 SPC = 1
Ś
BEGIN BULK
Ś
$ DEFINE NONLINEAR SOLUTION PARAMETERS.
Ś
NLPARM, 1, 10, , , , , , , YES
$ GEOMETRY DEFINITION (10" BAR DIVIDED INTO 10 ELEMENTS).
Ś

      GRID,
      1,
      0,
      0.,
      0.,
      0

      GRID,
      2,
      0,
      1.,
      0.,
      0

      GRID,
      3,
      0,
      2.,
      0.,
      0

      GRID,
      3,
      0,
      2.,
      0.,
      0

GRID, 4, 0,
GRID, 5, 0,
GRID, 6, 0,
                     3., 0., 0., 0
4., 0., 0., 0
5., 0., 0., 0
GRID, 7, 0, 6., 0., 0., 0
                     7., 0., 0.,
8., 0., 0.,
9., 0., 0.,
GRID, 8, 0,
GRID, 9, 0,
                                    0., 0
                                             0
GRID, 10, 0,
                                              0
GRID, 11, 0, 10., 0., 0., 0
```

Listing 17-26. Model Input File for Thermally Loaded Bar Model with Constrained Ends. (Continued)

\$ CIRCULAR BAR MODELED WITH ROD ELEMENTS. Ś CROD, 1, 10, 1, 2 CROD, 2, 10, 2, CROD, 3, 10, 3, CROD, 4, 10, 4, 3 4 5 CROD, 5, 10, 5, 6 CROD, 6, 10, CROD, 7, 10, 6, 7 7, 8 CROD, 8, 10, 8, 9 CROD, 9, 10, 9, CROD, 10, 10, 10, 9, 10 11 Ś \$ ROD ELEMENT MATERIAL AND SECTION PROPERTIES (1.0" DIAMETER). Ś PROD, 10, 100, 0.7854 Ś \$ LINEAR ELEMENT MATERIAL PROPERTIES (MA956). MAT1, 100, 1., , 0.33, 0.3, 1. Ś \$ NONLINEAR TEMPERATURE DEPENDENT PROPERTIES. Ś MATT1, 100, 10, , , , 20 Ś \$ TEMPERATURE DEPENDENT MODULUS OF ELASTICITY. Ś TABLEM2, 10, 70., 39.0E+6, 200., 38.4E+6, 400., 37.4E+6, 600., 36.5E+6, 800., 35.1E+6, 1000., 33.9E+6, 1200., 32.5E+6, 1400., 30.6E+6, 1600., 29.4E+6, 1800., 28.0E+6, ENDT Ś \$ TEMPERATURE DEPENDENT COEFFICIENT OF THERMAL EXPANSION. Ś TABLEM2, 20, 70., 6.00E-6, 200., 6.25E-6, 400., 6.47E-6, 600., 6.67E-6, 800., 6.89E-6, 1000., 7.11E-6, 1200., 7.33E-6, 1400., 7.61E-6, 1600., 7.89E-6, 1800., 8.22E-6, ENDT Ś \$ FIXED AT BOTH ENDS. Ś SPC1, 1, 123456, 1, 11 SPC1, 1, 23456, 2, THRU, 10 \$ INITIAL TEMPERATURE DISTRIBUTION. Ś TEMPD, 1, 70. Ś \$ TEMPERATURE DISTRIBUTION FROM HEAT TRANSFER ANALYSIS. Ś TEMP, 0.0 2, 1. 2, 134.2 TEMP, 2, TEMP, 2, 3, 255.8 TEMP, 2, 4, 368.0 TEMP, 2, 5, 472.7 TEMP, 2, 6, 571.2 TEMP, 2, TEMP, 2, TEMP, 2, 7, 664.5 8, 753.4 9, 838.4 TEMP, 2, 10, 920.5 TEMP, 2, 11, 1000.0 ENDDATA
18. NONLINEAR TRANSIENT HEAT TRANSFER ANALYSIS

18.1 Introduction

In the previous section we dealt with steady state heat transfer where loads and boundary conditions did not vary with time. When steady state conditions do not prevail, temperature change in a unit volume of material is resisted by thermal mass that depends on the mass density of the material and its specific heat. The general heat transfer equation then becomes

$$[K]{T}+[C]{\dot{\tau}}={R}$$

where,

[K] is the global conductivity matrix

[C] is the global capacitance matrix

 $\{T\}$ is the global temperature vector

 $\{\dot{\tau}\}$ is $\partial T/\partial t$

 $\{R\}$ is the global thermal load vector

Nonlinear transient heat transfer analysis is implemented in Autodesk Inventor Nastran using Newmark's method with adaptive time stepping. Loads can be both temperature and time dependent. Nonlinear effects like temperature dependent materials and radiation can also be included. Convergence is achieved at each time step using the same Newton-Raphson iteration method used in nonlinear steady state heat transfer analysis.

18.2 How to Setup a Model Input File for Nonlinear Transient Heat Transfer Analysis

In Autodesk Inventor Nastran you can solve a nonlinear transient heat transfer problem by setting SOLUTION = NONLINEAR TRANSIENT HEAT TRANSFER in the Model Initialization File or by specifying SOL 159 or SOL NONLINEAR TRANSIENT HEAT TRANSFER above the Case Control Section and ANALYSIS = HEAT in the Case Control Section of the Model Input File. The following the guidelines listed below:

- 1. Most nonlinear transient response problems can be setup the same as for linear transient response (geometry, boundary conditions, loading, etc.). One exception is that initial conditions are specified using the IC Case Control command which references a starting temperature distribution in the Bulk Data. As a minimum, all subcases must reference a TSTEPNL Bulk Data entry via the TSTEPNL Case Control command. The TSTEPNL entry is a combination of the TSTEP entry used in linear transient response and the NLPARM entry used in nonlinear statics. It controls both the direct time integration (number of time steps, time increment, output interval, etc.), and the nonlinear iteration parameters (maximum iterations permitted, convergence method and tolerances, etc.). Since the solution to a particular load involves a nonlinear search procedure, the solution is not guaranteed. Care must be used when selecting the search procedures on the TSTEPNL Bulk Data entry. You may override nearly all iteration control restrictions.
- 2. All loads and material properties that are supported in steady state heat transfer analysis are supported in nonlinear transient heat transfer analysis.
- 3. All grid points must have an initial temperature defined. The TEMPD Bulk Data entry can be used for this purpose. The IC Case Control command is then used to reference this temperature set.
- 4. Unlike other solutions, subcase loads and results are additive. This allows different loads and boundary conditions to be applied in a specific sequence to the structure. Additionally, different time integration and nonlinear iteration parameters (TSTEPNL) may be specified for each subcase allowing further control.
- 5. Models should be simple and relatively small initially to gain insight into behavior and verify the approach taken. A linear heat transfer solution should be run first to verify boundary conditions and loading.

18.3 Interpreting Results

In this section we will present several examples demonstrating the features and capabilities of nonlinear transient heat transfer analysis. We will look at several types of thermal loading and boundary conditions.

18.3.1 Volume Heat Addition

The first problem is an example of transient volume heat addition. The circular bar in Figure 18-1 is initially at 0 °F. The volumetric heat addition load is both transient and temperature dependent and is applied to the first element only. Listing 18-1 contains the Model Input File.

Steady state volumetric heat addition results in elemental power input given by the equation:

Where QVOL is the power density given on the QVOL Bulk Data entry and HGEN is a temperature dependent scale factor given on the MAT4 or MAT5 Bulk Data entry. Unlike structural solutions which require a load sequence entry (LSEQ) to define a dynamic area (reference link), heat transfer load sets are directly referenced on TLOADi Bulk Data entries. The time-dependent dynamic load (TLOAD1) then references the area factor defined by the QVOL set identification number for spatial definition (area) and a TABLED1 for temporal definition (time). The DLOAD Bulk Data entry is optionally used to combine and scale dynamic loads defined using the TLOADi Bulk Data entries. The DLOAD and/or TLOADi Bulk Data entries are called out in the Case Control Section using the DLOAD Case Control command. The resulting load time history is shown graphically in Figure 18-2.

Listing 18-1. Model Input File for Bar Model with Transient Volumetric Heat Addition.

```
$ NONLINEAR TRANSIENT HEAT TRANSFER SOLUTION.
Ś
SOL NONLINEAR TRANSIENT HEAT TRANSFER
Ś
ANALYSIS = HEAT
Ś
TITLE = INSTALLATION TEST CASE
SUBTITLE = BAR WITH NONLINEAR TEMPERATURE DEPENDENT MATERIAL
Ś
THERMAL = ALL
FLUX = ALL
Ś
IC = 10
SUBCASE 1
 LABEL = TRANSIENT VOLUME HEAT ADDITION
 DLOAD = 1
 TSTEPNL = 1
Ś
BEGIN BULK
Ś
$ DEFINE NONLINEAR TRANSIENT SOLUTION PARAMETERS.
Ś
TSTEPNL, 1, 100, 100.
$ DEFINE TIME-DEPENDENT LOADING.
Ś
TLOAD1, 1, 100, , , 10
TABLED1, 10,
, 0., 0., 1000., 1., 2000., 1., 3000., 0.,
, 4000., 0., ENDT
Ś
$ VOLUME HEAT ADDITION.
Ś
QVOL, 100, 0.01, , 1
Ś
$ GEOMETRY DEFINITION (10" BAR DIVIDED INTO 10 ELEMENTS).
$

      GRID,
      1,
      ,
      0.,
      0.,
      0.,

      GRID,
      2,
      ,
      1.,
      0.,
      0.,

      GRID,
      3,
      ,
      2.,
      0.,
      0.,

      GRID,
      3,
      ,
      2.,
      0.,
      0.,

      GRID,
      4,
      ,
      3.,
      0.,
      0.,

      CPID
      5.
      4.,
      0.,
      0.,

      GRID, 4, , 3., 0., 0.,

      GRID, 5, , 4., 0., 0.,

      GRID, 6, , 5., 0., 0.,

      GRID, 7, , 6., 0., 0.,

      GRID, 8, , 7., 0., 0.,

      GRID, 9, , 8., 0., 0.,

      GRID, 10, 9., 0., 0.,

      GRID, 11, , 10., 0., 0.,

Ś
$ CIRCULAR BAR MODELED WITH ROD ELEMENTS.
$
CROD, 1, 10,
CROD, 2, 10,
CROD, 3, 10,
                            1,
                                      2
                           2,
                                       3
                                       4
CROD, 4, 10,
                             4,
                                       5
CROD, 5, 10,
CROD, 6, 10,
                             5,
                                       6
                              6,
                                       7
CROD, 7, 10,
                            7,
                                       8
CROD, 8, 10, 8,
                                      9
CROD, 9, 10, 9, 10
CROD, 10, 10, 10, 11
Ś
$ ROD ELEMENT MATERIAL AND SECTION PROPERTIES (1.0" DIAMETER).
Ś
PROD, 10, 100, 0.7854
```

Listing 18-1. Model Input File for Bar Model with Transient Volumetric Heat Addition. (Continued)

```
$ ELEMENT CONDUCTIVITY, SPECIFIC HEAT, AND DENSITY (MA956).
Ś
MAT4, 100, 1., 1., 0.26
Ś
$ NONLINEAR TEMPERATURE DEPENDENT PROPERTIES.
Ś
MATT4, 100, 20, 30
$
$ TEMPERATURE DEPENDENT CONDUCTIVITY DATA.
Ś
TABLEM2, 20,
   70., 1.466E-4, 200., 1.620E-4, 400., 1.852E-4, 600., 2.083E-4,
800., 2.315E-4, 1000., 2.500E-4, 1200., 2.739E-4, 1400., 2.951E-4,
1600., 3.164E-4, 1800., 3.376E-4, ENDT
,
,
,
$
$ TEMPERATURE DEPENDENT SPECIFIC HEAT DATA.
$
TABLEM2, 30,
    70.,0.1166,200.,0.1214,400.,0.1288,600.,0.1362,800.,0.1435,1000.,0.1509,1200.,0.1583,1400.,0.1657,
,
,
   1600., 0.1731, 1800., 0.1805, ENDT
Ś
$ ELEMENT POWER DENSITY.
Ś
MAT4, 200, , , , , , 1.
Ś
$ NONLINEAR TEMPERATURE DEPENDENT PROPERTIES.
$
MATT4, 200, , , , , , 40
Ś
$ TEMPERATURE DEPENDENT HEAT GENERATION COEFFICIENT.
Ś
TABLEM2, 40,

      70.,
      0.993,
      200.,
      0.980,
      400.,
      0.960,
      600.,
      0.940,

      800.,
      0.920,
      1000.,
      0.900,
      1200.,
      0.880,
      1400.,
      0.860,

      1600.,
      0.840,
      1800.,
      0.820,
      ENDT

,
,
Ś
$ INITIAL TEMPERATURE DISTRIBUTION.
$
TEMPD, 10, 0.
ENDDATA
```


Figure 18-2. Time History from the TABLED1 Entry (top) and Resulting Applied Load (bottom).

Figure 18-3 gives the thermal response at each end of the bar. Since the heat load is applied only to the first element, the unloaded end stays at zero degrees until approximately 1500 seconds, while loaded end continues to increase in temperature reaching 177.3 $^{\circ}$ F at approximately 2200 seconds. At 3000 seconds the applied heat load returns to zero, but the unloaded end continues to increase in temperature reaching a peak value of 63.6 $^{\circ}$ F.

Figure 18-3. Bar End Temperatures Versus Time.

18.3.2 Nonlinear Convection

The next problem is an example of transient cool down with a nonlinear convection boundary condition. The circular bar in Figure 18-4 is initially at 500 $^{\circ}$ F with a constant convection boundary condition over its surface area maintained at 0 $^{\circ}$ F. Listing 18-2 contains the Model Input File.

Figure 18-4. 1-Dimensional Bar Example Problem with Transient Cool Down Using a Constant Convection Boundary Condition.

There are several techniques for specifying temperature boundary conditions or ambient grid point temperatures for transient analysis. If the temperature is to remain constant throughout the analysis, a single point constraint (SPC) may be used to set the boundary condition just as in steady state analysis. The next section discusses transient boundary conditions where the ambient temperature varies with time.

Listing 18-2. Model Input File for Bar Model with Transient Cool Down Using a Constant Convection Boundary Condition.

```
$ NONLINEAR TRANSIENT HEAT TRANSFER SOLUTION.
Ś
SOL NONLINEAR TRANSIENT HEAT TRANSFER
Ś
ANALYSIS = HEAT
Ś
TITLE = INSTALLATION TEST CASE
SUBTITLE = BAR WITH NONLINEAR TEMPERATURE DEPENDENT MATERIAL
Ś
THERMAL = ALL
SPCFORCE = ALL
FLUX = ALL
Ś
IC = 10
SUBCASE 1
 LABEL = TRANSIENT COOL DOWN WITH A CONSTANT CONVECTION BOUNDARY
 TSTEPNL = 1
SPC = 1
Ś
BEGIN BULK
Ś
$ DEFINE NONLINEAR TRANSIENT SOLUTION PARAMETERS.
Ś
TSTEPNL, 1, 100, 100.
Ś
$ GEOMETRY DEFINITION (10" BAR DIVIDED INTO 10 ELEMENTS).
Ś
GRID, 1, , 0., 0., 0.,
GRID, 2, , 1., 0., 0.,
GRID, 3, , 2., 0., 0.,
GRID, 4, , 3., 0., 0.,

      GRID,
      5,
      4.,
      0.,
      0.,

      GRID,
      5,
      ,
      4.,
      0.,
      0.,

      GRID,
      6,
      ,
      5.,
      0.,
      0.,

      GRID,
      7,
      ,
      6.,
      0.,
      0.,

      GRID,
      8,
      ,
      7.,
      0.,
      0.,

GRID, 9, , 8., 0., 0.,
GRID, 10, , 9., 0., 0.,
GRID, 11, , 10., 0., 0.,
CRID, 12
GRID, 12, ,
                   0., 0., 0.,
Ś
$ CIRCULAR BAR MODELED WITH ROD ELEMENTS.
Ś
CROD, 1, 10,
CROD, 2, 10,
CROD, 3, 10,
                       1,
                                2
                                3
                        2,
                       З,
                                4
CROD, 4, 10,
CROD, 5, 10,
CROD, 6, 10,
                       4,
                               5
                       5,
                                6
                        6,
                                7
CROD, 7, 10,
                       7,
                                8
CROD, 8, 10, 8, 9
CROD, 9, 10, 9, 10
CROD, 10, 10, 10, 11
Ś
$ ROD ELEMENT MATERIAL AND SECTION PROPERTIES (1.0" DIAMETER).
Ś
PROD, 10, 100, 0.7854
Ś
$ ELEMENT CONDUCTIVITY, SPECIFIC HEAT, AND DENSITY (MA956).
Ś
MAT4, 100, 1., 1., 0.26
Ś
$ NONLINEAR TEMPERATURE DEPENDENT PROPERTIES.
$
MATT4, 100, 10, 20
```

Listing 18-2. Model Input File for Bar Model with Transient Cool Down Using a Constant Convection Boundary Condition. (Continued)

```
Ś
$ TEMPERATURE DEPENDENT CONDUCTIVITY DATA.
Ś
TABLEM2, 10,
    70., 1.466E-4, 200., 1.620E-4, 400., 1.852E-4, 600., 2.083E-4,
800., 2.315E-4, 1000., 2.508E-4, 1200., 2.739E-4, 1400., 2.951E-4,
1600., 3.164E-4, 1800., 3.376E-4, ENDT
,
,
Ś
$ TEMPERATURE DEPENDENT SPECIFIC HEAT DATA.
Ś
TABLEM2, 20,
    70., 0.1166, 200., 0.1214, 400., 0.1288, 600., 0.1362,
800., 0.1435, 1000., 0.1509, 1200., 0.1583, 1400., 0.1657,
1600., 0.1731, 1800., 0.1805, ENDT
,
,
Ś
$ CONVECTION BOUNDARY DEFINITION.
Ś
CHBDYP, 11, 20, LINE, ,
                                                             2,
                                                   1,
                                              ,
2,
                                                             З,
, , , , , , 0., 1.,
CHBDYP, 13, 20, LINE, ,
                          0., 1., 0.
                                                     3,
                                                             4,
, , , , , 0., 1., 0.
CHBDYP, 14, 20, LINE, , ,
                                                      4,
                                                             5,
CHBDYP, 15, 20, LINE, , , , , , 0., 1., 0.
                                                     5,
                                                           6,
7,
                                                      6,
, , , , , 0., 1., 0.
CHBDYP, 17, 20, LINE, , ,
                                                    7, 8,
, , , , , 0., 1., 0.
CHBDYP, 18, 20, LINE, , ,
                          0., 1., 0.
                                                   8, 9,
                      , 0., 1., 0.
, , , , , , 0., 1., 0.

CHBDYP, 19, 20, LINE, , , 9, 10,

, , , , , 0., 1., 0.

CHBDYP, 20, 20, LINE, , , 10, 11,

, , , , , 0., 1., 0.
                ,
Ś
$ AREA FACTOR TO DEFINE ROD SURFACE AREA
$ AF = PI*DIAMETER = 3.142, AREA = AF*LENGTH
Ś
PHBDY, 20, 3.142
Ś
$ CONVECTION LOAD.
Ś
CONV, 11, 30, , , 12, 12

      CONV, 11, 30, , 12, 12

      CONV, 12, 30, , 12, 12

      CONV, 13, 30, , 12, 12

      CONV, 13, 30, , 12, 12

      CONV, 14, 30, , 12, 12

      CONV, 15, 30, , 12, 12

      CONV, 16, 30, , 12, 12

      CONV, 17, 30, , 12, 12

      CONV, 18, 30, , 12, 12

      CONV, 19, 30, , 12, 12

      CONV, 20, 30, , 12, 12

Ś
$ CONVECTION PROPERTY REFERENCE.
Ś
PCONV, 30, 200
Ś
$ FREE CONVECTION HEAT TRANSFER COEFFICIENT (AIR).
Ś
MAT4, 200, , , , 1.
$
$ NONLINEAR TEMPERATURE DEPENDENT PROPERTIES.
$
MATT4, 200, , , , 30
```

Listing 18-2. Model Input File for Bar Model with Transient Cool Down Using a Constant Convection Boundary Condition. (Continued)

\$ TEMPERATURE DEPENDENT FREE CONVECTION HEAT TRANSFER COEFFICIENT. Ś TABLEM2, 30, 600., 3.877E-6, 800., 3.946E-6, 1000., 3.993E-6, 1200., 4.015E-6, 1400., 4.039E-6, 1600., 4.068E-6, 1800., 4.142E-6, 2000., 4.261E-6, 2200., 4.380E-6, 2400., 4.501E-6, ENDT , , Ś \$ AMBIENT TEMPERATURE DEFINITION. Ś SPC, 1, 12, 1, 0. Ś \$ INITIAL TEMPERATURE DISTRIBUTION. Ś TEMP, 10, 12, 0. TEMPD, 10, 500. ENDDATA

Figure 18-5 gives the thermal response for the bar. As expected the surface temperature approaches the ambient temperature of 0 $^{\circ}$ F.

Figure 18-5. Bar Temperature Versus Time.

The next problem is another example of transient cool down with a nonlinear convection boundary condition. The circular bar in Figure 18-6 is initially at 500 °F with a time-varying convection boundary condition over its surface area varied as shown in Figure 18-7. Listing 18-3 contains the Model Input File.

Figure 18-6. 1-Dimensional Bar Example Problem with Transient Cool Down Using a Time-Varying Convection Boundary Condition.

In the previous example the ambient temperature was constant. If the ambient temperature varies with time, a TEMPBC Bulk Data entry is used. The TEMPBC is treated in the same way as a thermal load for transient analysis with the TEMPBC set identification number specified directly on the TLOADi Bulk Data entry.

Listing 18-3. Model Input File for Bar Model with Transient Cool Down Using a Time-Varying Convection Boundary Condition.

```
$ NONLINEAR TRANSIENT HEAT TRANSFER SOLUTION.
Ś
SOL NONLINEAR TRANSIENT HEAT TRANSFER
Ś
ANALYSIS = HEAT
Ś
TITLE = INSTALLATION TEST CASE
SUBTITLE = BAR WITH NONLINEAR TEMPERATURE DEPENDENT MATERIAL
Ś
THERMAL = ALL
FLUX = ALL
Ś
IC = 10
SUBCASE 1
 LABEL = TRANSIENT COOL DOWN WITH A TRANSIENT CONVECTION BOUNDARY
 DLOAD = 1
 TSTEPNL = 1
Ś
BEGIN BULK
Ś
$ DEFINE NONLINEAR TRANSIENT SOLUTION PARAMETERS.
Ś
TSTEPNL, 1, 100, 100.
Ś
$ DEFINE TIME-DEPENDENT LOADING.
Ś
TLOAD1, 1, 100, , , 10
TABLED1, 10,
, 0., 0., 1000., 1., 2000., 1., 3000., 0.,
, 4000., 0., ENDT
Ś
$ TRANSIENT AMBIENT TEMPERATURE DEFINITION.
TEMPBC, 100, TRAN, 500., 12
Ś
$ GEOMETRY DEFINITION (10" BAR DIVIDED INTO 10 ELEMENTS).
Ś
GRID, 1, ,
                   0., 0., 0.,

      GRID, 1, , 0., 0., 0., 0.,

      GRID, 2, , 1., 0., 0.,

      GRID, 3, , 2., 0., 0.,

      GRID, 4, , 3., 0., 0.,

      GRID, 5, , 4., 0., 0.,

      GRID, 6, , 5., 0., 0.,

      GRID, 7, , 6., 0., 0.,

      GRID, 8, , 7., 0., 0.,

      GRID, 9, , 8., 0., 0.,

GRID, 10, , 9., 0., 0.,
GRID, 11, , 10., 0., 0.,
GRID, 12, , 0., 0., 0.,
Ś
$ CIRCULAR BAR MODELED WITH ROD ELEMENTS.
$
CROD, 1, 10, 1,
CROD, 2, 10, 2,
CROD, 3, 10, 3,
                              2
                               3
                               4
CROD, 4, 10,
                       4,
                               5
CROD, 5, 10,
CROD, 6, 10,
CROD, 7, 10,
                       5,
                               6
                       6,
                               7
                       7,
                               8
CROD, 8, 10, 8,
                              9
CROD,
CROD, 9, 10, 9,
CROD, 10, 10, 10,
                       9,
                             10
                             11
$
$ ROD ELEMENT MATERIAL AND SECTION PROPERTIES (1.0" DIAMETER).
$
PROD, 10, 100, 0.7854
```

Listing 18-3. Model Input File for Bar Model with Transient Cool Down Using a Time-Varying Convection Boundary Condition. (Continued)

```
$ ELEMENT CONDUCTIVITY, SPECIFIC HEAT, AND DENSITY (MA956).
Ś
MAT4, 100, 1., 1., 0.26
Ś
$ NONLINEAR TEMPERATURE DEPENDENT PROPERTIES.
Ś
MATT4, 100, 20, 30
Ś
$ TEMPERATURE DEPENDENT CONDUCTIVITY DATA.
Ś
TABLEM2, 20,
    70., 1.466E-4, 200., 1.620E-4, 400., 1.852E-4, 600., 2.083E-4,
800., 2.315E-4, 1000., 2.508E-4, 1200., 2.739E-4, 1400., 2.951E-4,
1600., 3.164E-4, 1800., 3.376E-4, ENDT
,
Ś
$ TEMPERATURE DEPENDENT SPECIFIC HEAT DATA.
Ś
TABLEM2, 30,
     70.,0.1166,200.,0.1214,400.,0.1288,600.,0.1362,800.,0.1435,1000.,0.1509,1200.,0.1583,1400.,0.1657,
,
    1600., 0.1731, 1800., 0.1805, ENDT
Ś
$ CONVECTION BOUNDARY DEFINITION.
Ś
CHBDYP, 11, 20, LINE, , ,
, , , , , 0., 1., 0.
CHBDYP, 12, 20, LINE, , ,
                                                     1,
                                                               2,
                                                       2,
                                                               з.
                       , 0., 1., 0.
, , , , , 0., 1., 0.
CHBDYP, 13, 20, LINE, , ,
                                                      З,
                                                              4,
, , , , , 0., 1., U.
CHBDYP, 14, 20, LINE, , ,
                           0., 1., 0.
                                                       4,
                                                               5,
CHBDYP, 15, 20, LINE, , , , , , , 0., 1., 0.
                                                      5,
                                                              6,
CHBDYP, 16, 20, LINE, , ,
, , 0., 1., 0.
                                                     6, 7,
, , , , , 0., 1., 0.
CHBDYP, 17, 20, LINE, , ,
                                                     7, 8,
CHBDYP, 18, 20, LINE, , , 8, 9,
, , , , , 0., 1., 0.
CHBDYP, 18, 20, LINE, , , 8, 9,
, , , , , 0., 1., 0.
CHBDYP, 19, 20, LINE, , , 9, 10,
, , , , 0., 1., 0.
CHBDYP, 20, 20, LINE, , , 10, 11,
0 . 1., 0.
                          0., 1., 0.
   , , , , , 0., 1., 0.
$ AREA FACTOR TO DEFINE ROD SURFACE AREA
$ AF = PI*DIAMETER = 3.142, AREA = AF*LENGTH
Ś
PHBDY, 20, 3.142
Ś
$ CONVECTION LOAD.
$

        $

        CONV, 11, 30, , 12, 12

        CONV, 12, 30, , 12, 12

        CONV, 13, 30, , 12, 12

        CONV, 14, 30, , 12, 12

        CONV, 15, 30, , 12, 12

        CONV, 16, 30, , 12, 12

        CONV, 17, 30, , 12, 12

        CONV, 18, 30, , 12, 12

CONV, 19, 30, , , 12, 12
CONV, 20, 30, , , 12, 12
$
$ CONVECTION PROPERTY REFERENCE.
$
PCONV, 30, 200
```

Listing 18-3. Model Input File for Bar Model with Transient Cool Down Using a Time-Varying Convection Boundary Condition. (Continued)

```
$ FREE CONVECTION HEAT TRANSFER COEFFICIENT (AIR).
Ś
MAT4, 200, , , , 1.
Ś
$ NONLINEAR TEMPERATURE DEPENDENT PROPERTIES.
Ś
MATT4, 200, , , , 40
$
$ TEMPERATURE DEPENDENT FREE CONVECTION HEAT TRANSFER COEFFICIENT.
Ś
TABLEM2, 40,
   600., 3.877E-6, 800., 3.946E-6, 1000., 3.993E-6, 1200., 4.015E-6,
1400., 4.039E-6, 1600., 4.068E-6, 1800., 4.142E-6, 2000., 4.261E-6,
2200., 4.380E-6, 2400., 4.501E-6, ENDT
,
,
$
$ INITIAL TEMPERATURE DISTRIBUTION.
$
TEMPD, 10, 0.
ENDDATA
```


Figure 18-7. Time History from the TABLED1 Entry (top) and Resulting Ambient Temperature (bottom).

Figure 18-8 gives the thermal response for both the bar surface and the ambient grid point. As expected the surface temperature approaches the ambient temperature of 0 $^{\circ}$ F.

Figure 18-8. Bar Temperature Versus Time.

19. NONLINEAR PRESTRESS MODAL ANALYSIS

19.1 Introduction

Nonlinear prestress modal analysis is similar to linear prestress modal except that a nonlinear solution is used to form the tangent stiffness matrix. Autodesk Inventor Nastran then determines prestress natural frequency by solving the eigenvalue problem:

$$\left| \begin{bmatrix} \mathcal{K}_t \end{bmatrix} + \lambda \begin{bmatrix} M \end{bmatrix} \right| \begin{bmatrix} \phi \end{bmatrix} = 0$$
$$\lambda_i = \omega_i^2$$
$$f_i = \frac{\omega_i}{2\pi}$$

where,

- $[K_t]$ is the global tangent stiffness matrix
- [M] is the global mass matrix
- λ_i are the eigenvalues that yield the natural frequencies
- ϕ_i are the eigenvectors that represent the natural mode shapes
- ω_i are the circular frequencies (radians per second)
- f_i are the cyclic frequencies (hertz)

19.2 How to Setup a Model Input File for Nonlinear Prestress Modal Analysis

In Autodesk Inventor Nastran you can perform nonlinear prestress modal analysis by setting SOLUTION = NONLINEAR PRESTRESS MODAL in the Model Initialization File or by specifying SOL 185 or SOL NONLINEAR PRESTRESS MODAL above the Case Control Section in the Model Input File. Multiple subcases are allowed to define the nonlinear prestress state.

19.3 Interpreting Results

The cantilever beam in Figure 19-1 is subjected to a shear load at its free end. The beam deflects normally until hitting a rigid support, which is modeled using a gap element (Figure 15-26). After contacting the support, the beam continues to deflect resulting in a reaction force in the gap element. It is desired to find the lowest natural frequency of the beam when fully loaded in its deflected state. Listing 19-1 contains the Model Input File and Listing 19-2 shows the extracted frequencies from the Model Results Output File.

Figure 19-1. 2-D Cantilever Beam Example Problem with Contact.

Listing 19-1. Model Input File for the Cantilever Beam Problem with Contact.

```
$ NONLINEAR PRESTRESS MODAL SOLUTION.
Ś
SOL NONLINEAR PRESTRESS MODAL
TITLE = INSTALLATION TEST CASE
SUBTITLE= VIBRATION OF A SHEAR LOADED CANTILEVER BEAM IN CONTACT
DISPLACEMENT = ALL
Ś
SUBCASE 1
 LABEL = POINT LOAD AT FREE END (SHEAR)
LOAD = 1
NLPARM = 1
 SPC = 1
SUBCASE 2
LABEL = MODAL
METHOD = 1
SPC = 1
Ś
BEGIN BULK
$ CONVERSION FACTOR FOR WEIGHT DENSITY TO MASS DENSITY
$ MASS = (1/g) *WEIGHT, G=32.2FT/SEC2, WTMASS = 1/(32.2*12) = 0.002588
Ś
PARAM, WTMASS, 0.002588
Ś
$ REQUEST DIAGONAL MASS MATRIX FORMULATION.
PARAM, COUPMASS, OFF
$ DEFINE EIGENVALUE EXTRACTION PARAMETERS.
EIGRL, 1, , , 5, , ,
Ś
$ DEFINE NONLINEAR SOLUTION PARAMETERS.
Ś
NLPARM, 1, 10, , , , , , , YES
Ś
$ GEOMETRY DEFINITION (10" BEAM DIVIDED INTO 10 ELEMENTS).
Ś
               0., 0., 0.,
1., 0., 0.,
2., 0., 0.,
GRID, 1, 0,
                                 0
GRID, 2, 0,
GRID, 3, 0,
                                  0
                                 0
                3., 0., 0., 0
GRID, 4, 0,
GRID, 5, 0,
GRID, 6, 0,
GRID, 7, 0,
               4., 0., 0.,
5., 0., 0.,
6., 0., 0.,
                                 0
                                  0
                                  0
GRID, 8, 0,
                7., 0., 0.,
                                 0
GRID, 9, 0, 8., 0., 0.,
GRID, 10, 0, 9., 0., 0.,
GRID, 11, 0, 10., 0., 0.,
                                 0
                                 0
                                  0
GRID, 12, 0, 6., -1.,
                           0.,
                                  0
Ś
$ BEAM MODELED WITH BAR ELEMENTS.
Ś
                        2, 0., 0.,
3, 0., 0.,
CBAR, 1, 10,
CBAR, 2, 10,
                                       1.
                  1,
                  2,
                                       1.
CBAR, 3, 10, 3,
                        4, 0., 0., 1.
CBAR, 4, 10,
CBAR, 5, 10,
CBAR, 6, 10,
                 4, 5, 0., 0., 1.
                  5,
                       6, 0., 0.,
7, 0., 0.,
                                       1.
                                       1.
                  6,
CBAR, 7, 10,
                 7, 8, 0., 0., 1.
CBAR, 8, 10,
CBAR, 9, 10,
                       9, 0., 0., 1.
10, 0., 0., 1.
                 8,
                  9, 10,
CBAR, 10, 10, 10, 11, 0., 0.,
                                       1.
Ś
$ GAP ELEMENT.
Ś
CGAP, 11, 20, 7, 12, 1., 0., 0.
```

Listing 19-1. Model Input File for the Cantilever Beam Problem with Contact. (Continued)

```
$ BAR ELEMENT MATERIAL AND SECTION PROPERTIES (1.0" X 0.2" CROSS-SECTION).
$
PBAR, 10, 100, 0.2, 1.667E-2, 6.667E-4, 2.328E-3,
, -0.5, 0.1, 0.5, 0.1, -0.5, -0.1, 0.5, -0.1
Ś
$ LINEAR ELEMENT MATERIAL PROPERTIES (ALUMINUM).
Ś
MAT1, 100, 1.E+7, , 0.33, 0.1
$ GAP ELEMENT PROPERTIES.
Ś
PGAP, 20, 1., 0., 1.E+7
Ś
$ FIXED AT ONE END, MOVEMENT CONSTRAINED TO X-Y PLANE ONLY.
Ś
SPC1, 1, 123456, 1
SPC1, 1, 345, 2, THRU, 11
SPC1, 1, 123456, 12
Ś
$ POINT LOAD AT FREE END (SHEAR).
FORCE, 1, 11, 0, 1.5E+2, 0., -1., 0.
ENDDATA
```

If the beam in Figure 19-1 was unloaded, it would have natural frequency of 240.0 Hz. The deflected beam has a frequency of 247.6 Hz.

MODAL SUBCASE 2							
	REAL EIGENVALUES						
MODE NUMBER	EIGENVALUE	RADIANS	CYCLES	GENERALIZED MASS	GENERALIZED STIFFNESS	ORTHOGONALITY LOSS	ERROR MEASURE
1	2.420853E+06	1.555909E+03	2.476306E+02	1.000000E+00	2.420853E+06	0.00000E+00	1.371168E-14
2	3.438160E+07	5.863582E+03	9.332181E+02	1.000000E+00	3.438160E+07	2.263169E-14	5.030191E-11
3	1.395707E+08	1.181400E+04	1.880257E+03	1.000000E+00	1.395707E+08	5.438358E-15	4.071945E-13
4	3.174987E+08	1.781849E+04	2.835901E+03	1.000000E+00	3.174987E+08	1.383442E-16	6.524586E-10
5	9.634014E+08	3.103871E+04	4.939964E+03	1.000000E+00	9.634014E+08	1.350482E-15	1.559315E-07

Listing 19-2. Extracted Eigenvectors for the Cantilever Beam Problem with Contact.

20. NONLINEAR PRESTRESS TRANSIENT RESPONSE ANALYSIS

20.1 Introduction

Nonlinear prestress transient response analysis is similar to linear prestress transient response except that a nonlinear solution is used to form the tangent stiffness matrix.

20.2 How to Setup a Model Input File for Nonlinear Prestress Transient Response Analysis

In Autodesk Inventor Nastran you can perform nonlinear prestress transient response analysis by setting SOLUTION = NONLINEAR PRESTRESS TRANSIENT RESPONSE in the Model Initialization File or by specifying SOL 187 or SOL NONLINEAR PRESTRESS TRANSIENT RESPONSE above the Case Control Section in the Model Input File. Multiple subcases are allowed to define the nonlinear prestress state. Like linear prestress transient response, a modal transient response solution is required. Direct transient response is not supported.

21. NONLINEAR PRESTRESS FREQUENCY RESPONSE ANALYSIS

21.1 Introduction

Nonlinear prestress frequency response analysis is similar to linear prestress frequency response except that a nonlinear solution is used to form the tangent stiffness matrix.

21.2 How to Setup a Model Input File for Nonlinear Prestress Frequency Response Analysis

In Autodesk Inventor Nastran you can perform nonlinear prestress frequency response analysis by setting SOLUTION = NONLINEAR PRESTRESS FREQUENCY RESPONSE in the Model Initialization File or by specifying SOL 186 or SOL NONLINEAR PRESTRESS FREQUENCY RESPONSE above the Case Control Section in the Model Input File. Multiple subcases are allowed to define the nonlinear prestress state. Like linear prestress frequency response, a modal frequency response solution is required. Direct frequency response is not supported.

22. NONLINEAR PRESTRESS COMPLEX EIGENVALUE ANALYSIS

22.1 Introduction

Nonlinear prestress complex eigenvalue analysis is similar to linear prestress complex eigenvalue analysis except that a nonlinear solution is used to form the tangent stiffness matrix.

22.2 How to Setup a Model Input File for Nonlinear Prestress Complex Eigenvalue Analysis

In Autodesk Inventor Nastran you can perform nonlinear prestress complex eigenvalue analysis by setting SOLUTION = NONLINEAR PRESTRESS COMPLEX EIGENVALUE in the Model Initialization File or by specifying SOL 189 or SOL NONLINEAR PRESTRESS COMPLEX EIGENVALUE above the Case Control Section in the Model Input File. Multiple subcases can be specified, each requesting a different output set. Each subcase must also reference an EIGC Bulk Data entry via the CMETHOD Case Control command.

23. NONLINEAR BUCKLING ANALYSIS

23.1 Introduction

Nonlinear buckling analysis is similar to linear buckling except that a nonlinear solution is used to form the tangent stiffness matrix.

23.2 How to Setup a Model Input File for Nonlinear Buckling Analysis

In Autodesk Inventor Nastran you can perform nonlinear buckling analysis by setting SOLUTION = NONLINEAR BUCKLING in the Model Initialization File or by specifying SOL 180 or SOL NONLINEAR BUCKLING above the Case Control Section in the Model Input File. Multiple subcases are allowed to define the nonlinear prestress state.

24. SPECIAL TOPICS

24.1 Stress Coordinate Systems

Element and grid point results in Autodesk Inventor Nastran can be output in any coordinate system through the use of the SURFACE and VOLUME Case Control commands. The SURFACE command is used to align shell element normals and define the shell element output coordinate system. The VOLUME command is used to define the solid element output coordinate system. Shell elements must be referenced on a SURFACE and solid elements must be referenced in a VOLUME for results to be output. Element results can be output in the element, basic, material, or a user specified coordinate system. The default for element results output is the element coordinate system. The default for grid point results is the grid or global coordinate system. The global coordinate system is the collection of all displacement coordinate systems defined in field 7 of the GRID Bulk Data entry. The basic coordinate system is the default Cartesian coordinate system.

The following is an example of how to use the SURFACE command. An element patch test case is shown in Figure 24-1. It is desired to find the element normal-x stress and compare it to the theoretical value. The problem is that because the elements are skewed, the normal-x stress in the element coordinate system is not parallel to the basic or model coordinate system. In fact, two of the four elements have element x-directions that are closer to being parallel to the model y-axis. This can actually happen in an irregular or reflected (mirrored) mesh and has been done purposely here to emphasize the importance of stress coordinate systems. Listing 24-1 contains the Model Input File.

Listing 24-1. Element Patch Test Model Input File.

```
$ STATIC SOLUTION.
Ś
SOL STATIC
Ś
TITLE = INSTALLATION TEST CASE
SUBTITLE = ELEMENT PATCH TEST -QUAD4 ELEMENTS -2X2 MESH
DISPLACEMENT = ALL
ELSTRESS = ALL
GPSTRESS = ALL
Ś
SPC = 1
SUBCASE 1
LABEL = 0.01 IN ENFORCED DISPLACEMENT IN X-DIRECTION
LOAD = 1
Ś
$ ELEMENT AND GRID POINT STRESS COORDINATE SYSTEM (BASIC).
Ś
SET 1 = ALL
SURFACE 1, SET 1, SYSTEM BASIC, AXIS X, NORMAL Z
BEGIN BULK
Ś
$ GEOMETRY DEFINITION (4" X 2" RECTANGULAR FLAT PLATE WITH A 2 X 2 MESH).
Ś
                         0.,
GRID, 1, 0, 0.,
                                  Ο.
GRID, 2, 0, 1.75, 0.,
GRID, 3, 0, 4., 0.,
GRID, 4, 0, 0., 1.,
                                   Ο.
                                    Ο.
                                    0.
GRID, 5, 0, 2.25, 1.25, 0.
GRID, 6, 0, 4., 1.,
GRID, 7, 0, 0., 2.,
GRID, 8, 0, 1.75, 2.,
                                    0.
                                    Ο.
                                    0.
                          2.,
GRID, 9, 0, 4.,
                                   0.
$ FLAT PLATE MODELED WITH SHELL ELEMENTS.
$
CQUAD4, 1, 10, 2, 5, 4,
CQUAD4, 2, 10, 2, 3, 6,
CQUAD4, 3, 10, 4, 5, 8,
                                    1
                                     5
                                     7
CQUAD4, 4, 10, 6, 9,
                               8,
                                    5
$ ELEMENT MATERIAL AND THICKNESS (0.1").
PSHELL, 10, 100, 0.1, 100, , 100
$ ELEMENT MATERIAL PROPERTIES (ALUMINUM).
Ś
MAT1, 100, 1.000+7, , 0.30000, 0.1
Ś
$ FIXED AT BOTH ENDS -ONE END FREE TO TRANSLATE IN X-DIR.
Ś
SPC1, 1, 123456, 7
               1345, 1,
SPC1, 1,
                             4
SPC1, 1,
               2345, 9
SPC1, 1,
                345, 3, 6
Ś
$ ENFORCED DISPLACEMENT ON OTHER END (X-DIRECTION).
Ś

        SPCD,
        1,
        3,
        1,
        0.01

        SPCD,
        1,
        6,
        1,
        0.01

        SPCD,
        1,
        9,
        1,
        0.01

ENDDATA
```

The theoretical stress can be found using:

$$\sigma = \frac{\delta E}{\ell}$$

Table 24-1 demonstrates the importance of the SURFACE command. While most users are only concerned with stress and strain invariants, such as von Mises, many applications require knowing the stress or strain in a particular direction. An example of this would be predicting strain to compare with test data recorded from a strain gage oriented in a particular direction.

Element ID	Theoretical (psi)	Normal-X Stress w/out SURFACE (psi)	Normal-X Stress with SURFACE (psi)
1	25000.	9.	25000.
2	25000.	24746.	25000.
3	25000.	24757.	25000.
4	25000.	11.	25000.

Table 24-1. Comparison of Theoretical Versus Predicted Element Normal-X Stress.

24.2 Quad Element Formulation Options

The quad elements in Autodesk Inventor Nastran are designed to give accurate results regardless of shape (skew, taper, aspect ratio, etc.). The quad element has from 20 to 54 total degrees of freedom and the option for either 5 or 6 degrees of freedom per node. The 6th degree of freedom or vertex drill degree of freedom (CQUADR or PARAM, QUADRNODE, ON) should be specified when:

- Curved shells are modeled.
- Beam, bar, or rod elements are used.
- Rigid elements are used with all 6 degrees of freedom made dependent.

The following guidelines should be adhered to when using the CQUADR element:

- At least one grid point in the model must have the drill degree of freedom constrained, which is not the case for the bending degrees of freedom.
- Do not over constrain the drill degree of freedom.
- Use the CTRIAR element (PARAM, TRIRNODE, ON) when using the CQUADR element.

The element formulation option also includes an internal node (PARAM, QUADINODE, ON). This option may be used with either the CQUAD4 or the CQUADR element and generally improves accuracy with a slight penalty in performance. Table 24-2 shows the various element formulations and the degrees of freedom for each.

Element Type	Geometry Processor Parameter Settings	Nodal DOF	Element DOF		
		External ³	Internal ²	External ³	Total
CQUAD4	QUADINODE = OFF	5	0	20	20
CQUAD4	QUADINODE = ON^{1}	5	5	20	25
CQUADR	QUADINODE = OFF	6	24	24	48
CQUADR	QUADINODE = ON^{1}	6	30	24	54

Table 24-2. Quad Element Formulation Options.

Notes:

- 1. Default setting.
- 2. Internal degrees of freedom are generated by static condensation of internal element nodes.
- 3. External degrees of freedom are generated from corner and mid-side nodes, which have grid points associated with them.

Generally, the more degrees of freedom an element has, the more accurate it will be especially when it is irregularly shaped.

24.3 Hex Element Formulation Options

The HEX element has from 24 to 63 total degrees of freedom. The HEXEGRID option can be used to change eight node hex elements, which have 24 to 63 total degrees of freedom to 20 node hex elements, which have 60 to 63 total degrees of freedom. When nodes are automatically added to an element using this option, the corresponding grid points generated will have the same constraints as the adjacent grid points. This insures that the model boundary conditions are correct and that fictitious stress concentrations do not exist at the model boundaries.

The element formulation option also includes an internal node (PARAM, HEXINODE, ON) and/or edge nodes (PARAM, HEXENODE, ON). Both of these options statically condense out the additional nodes. These options generally improve accuracy with a slight penalty in performance. The HEXENODE option is ignored when the HEXEGRID option is set to ON. Table 24-3 shows the various element formulations and the degrees of freedom for each.

Element Geometry Processor Type Parameter Settings		Nodal DOF	Element DOF		
		External ³	Internal ²	External ³	Total
HEXA	HEXINODE = OFF HEXENODE = OFF	3	0	24	24
HEXA	HEXINODE = ON ¹ HEXENODE = OFF	3	3	24	27
HEXA	HEXINODE = OFF HEXENODE = ON	3	36	24	60
HEXA	HEXINODE = ON HEXENODE = ON	3	39	24	63
HEXA	HEXINODE = OFF HEXEGRID = ON	3	0	60	60
HEXA	HEXINODE = ON HEXEGRID = ON	3	3	60	63

Table 24-3. Hex Element Formulation Options.

Notes:

- 1. Default setting.
- 2. Internal degrees of freedom are generated by static condensation of internal element nodes.
- 3. External degrees of freedom are generated from corner and mid-side nodes, which have grid points associated with them.

Generally, the more degrees of freedom an element has, the more accurate it will be especially when it is irregularly shaped.

24.4 2-Dimensional Composite Analysis

The PCOMP Bulk Data entry in Autodesk Inventor Nastran is used to model composite shell and solid element properties. In this section we will discuss the application to shells. Section 24.4 discusses the application to solid elements.

The composite shell is defined as a stacked group of lamina or plies, each having its own material properties (MAT1, MAT2, or MAT8), orientation, and stress limits. Each lamina may be considered as a group of unidirectional fibers. The principal material axes for the lamina are parallel and perpendicular to the fiber directions. The principal directions are referred to as "longitudinal" or the 1-direction of the fiber and as "transverse" or the 2-direction for the perpendicular direction (matrix direction).

A stacked group of lamina is called a laminate. The lamina are bonded together with a thin layer of zero thickness bonding material. Each lamina can be modeled as an isotropic material (MAT1), a 2-dimensional anisotropic material (MAT2), or a 2-dimensional orthotropic material (MAT8). The following assumptions are made in lamination theory:

- Each lamina is in a state of plane stress.
- The bonding is perfect.
- 2-Dimensional plate theory can be used.

The material properties for each of the lamina are used to generate equivalent PSHELL and MAT2 Bulk Data entries. These equivalent properties are output as PSHELL and MAT2 Bulk Data entries which are written to the Bulk Data Output File when TRSLMODLDATA is set to ON in the Model Initialization File or on the Nastran command line. Composite material property data is also written the Model Results Output File when MODLDATAOUT is set to ON in the Model Initialization File or on the Nastran command line.

Composite element output includes:

- Lamina (ply) and interlaminar (bond) stress or strain output.
- Failure index or strength ratio output (use PARAM, STRENGTHRATIO, ON to obtain strength ratio instead of failure index output).
- Equivalent plate stress, strain, or force output (use PARAM, NOCOMPS, ON to obtain equivalent plate instead of individual lamina output).
- Stability index for sandwich laminates.

Failure index and strength ratio output requires that the appropriate stress limits be specified on the lamina material property definition (MAT1, MAT2, or MAT8) and that the failure theory be specified on the PCOMP Bulk Data entry. Stability index will be generated for laminates with a minimum of 3 plies and HCS, FCS, or ACS specified in the LAM field of the PCOMP Bulk Data entry.

2-Dimensional composites are supported in all solutions. Individual ply output is not available in solutions with complex results output such as frequency and random response. For these solutions standard shell element results will be output.

We will now look at two examples of how to use the PCOMP Bulk Data entry. The first example is the cantilevered honeycomb sandwich plate shown in Figure 24-2. Sandwich materials are a form of composite lay-up that can be analyzed effectively using the PCOMP entry.

User's Manual

The section material properties are defined in Table 24-4. The Model Input File is shown in Listing 24-2. Note that the face sheets are not the same thickness. This results in a nonsymmetric plate and a nonblank MID4 field on the generated equivalent PSHELL Bulk Data entry shown in Listing 24-3.

Figure 24-2. Honeycomb Sandwich Cantilever Plate Example Problem.

Table 24-4.	Honeycomb	Sandwich	Material	Properties.
-------------	-----------	----------	----------	-------------

Material	Modulus of Elasticity (msi)	Tensile Limit (ksi)	Compression Limit (ksi)	Shear Limit (ksi)
Aluminum Face Sheets	10.0	35.0	35.0	23.0
Honeycomb Core	0.1	0.1	0.3	0.2
Bonding Material				0.1

Listing 24-2. Honeycomb Sandwich Cantilever Plate Model Input File.

```
$ STATIC SOLUTION.
Ś
SOL STATIC
Ś
TITLE = INSTALLATION TEST CASE
SUBTITLE = 3-D HONEYCOMB SANDWICH CANTILEVER PLATE -QUAD4 ELEMENTS -2X3 MESH
DISPLACEMENT = ALL
STRESS = ALL
Ś
SPC = 1
SUBCASE 1
 LABEL = 10 PSI SURFACE PRESSURE
 LOAD = 1
Ś
BEGIN BULK
Ś
\ Geometry definition (6" x 2" rectangular flat plate with a 3 x 2 Mesh).
Ś
GRID,
           4, , 2., 0., 0.
         5, , 2., 1., 0.
6, , 2., 2., 0.
GRID,
GRID,
          7, , 6., 0., 0.
GRID,
         8, , 6., 1., 0.
9, , 6., 2., 0.
GRID,
GRID,
GRID, 10, , 4., 0., 0.
GRID, 11,
                , 4., 1., 0.
GRID, 12,
GRID, 16,
                , 4., 2., 0.
, 0., 0., 0.
                    4., 2., 0.
GRID, 17, , 0., 1., 0.
GRID, 18, , 0., 2., 0.
$ FLAT PLATE MODELED WITH SHELL ELEMENTS.
Ś

      QUAD4,
      1,
      10,
      16,
      4,
      5,

      CQUAD4,
      2,
      10,
      4,
      10,
      11,

      CQUAD4,
      3,
      10,
      10,
      7,
      8,

      CQUAD4,
      4,
      10,
      17,
      5,
      6,

      CQUAD4,
      5,
      10,
      5,
      11,
      12,

      CQUAD4,
      6,
      10,
      11,
      8,
      9,

                                         5, 17
                                                5
                                7, 8, 11
                                       6, 18
                                                6
                                             12
Ś
$ COMPOSITE LAMINATE PROPERTY DEFINITION.
Ś
PCOMP, 10, , , 100., STRESS, , , HCS,
, 110, 0.1, 0., YES, 120, 0.5, 0., YES
, 110, 0.05, 0., YES
Ś
$ FACE SHEET MATERIAL PROPERTIES (ALUMINUM).
Ś
MAT1, 110, 10.E+6,
                                , 0.33, , 13.E-6,
, 35.E+3, 35.E+3, 23.E+3
Ś
$ CORE MATERIAL PROPERTIES (ALUMINUM).
Ś
MAT1, 120, 0.1E+6, , 0.33, , 0.1E-6, , 0.1E+3, 0.3E+3, 0.2E+3, , 0.03
Ś
$ FIXED BOUNDARY CONDITION AT ONE END.
Ś
SPC1, 1, 123456, 16, 17, 18
Ś
$ SURFACE PRESSURE LOADING.
Ś
PLOAD2, 1, 10.0, 1, THRU, 6
ENDDATA
```
Listing 24-3.	Generated PSHELL and MAT2 Bulk Data Entries Written to the Bulk Data
	Output File.

PSHEL	L 10	121	0.65000	122 1.00000	123 1.00	0000	0.+C	1A
+C	1A-0.32500	0.32500	124					
MAT2	121	0.2676+7	883092.	0.0.2676+7	0. 8964	472.	0.+C	4A
+C	4A0.1258-4	0.1258-4	Ο.	0.	Ο.	Ο.	Ο.	
MAT2	122	0.6014+70	.1984+7	0.0.6014+7	0.0.201	15+7	0.+C	5A
+C	5A0.1289-4	0.1289-4	Ο.	0.	Ο.	Ο.	Ο.	
MAT2	123	45874.0	Ο.	0. 45874.0	Ο.	Ο.	0.+C	6A
+C	6A 0.	Ο.	Ο.	0.	Ο.	Ο.	Ο.	
MAT2	124	328694.	108469.	0. 328694.	0. 1101	113.	0.+C	7A
+C	7A 5.74009	5.74009	Ο.	Ο.	0.	Ο.	Ο.	

The plate is loaded with a 10 psi surface pressure, which results in bending about the model y-axis. Because the plate section is not symmetric, membrane-bending coupling is generated which results in an x-displacement along with the expected z-displacement and y-rotation. The displacements are shown in Listing 24-4. The element stresses are shown in Listing 24-5.

The element failure indexes are shown in Listing 24-6 and the strength ratios in Listing 24-7 (obtained by adding PARAM, STRENGTHRATIO, ON to the Case Control Section of the Model Input File). Note that for the STRESS, and STRAIN failure theories, the strength ratio is the inverse of the failure index. For all failure theories, the strength ratio is directly proportional to the applied loading. For example, if a laminate has a strength ratio of 2.0, the applied loading can be doubled before failure occurs. For more information on strength ratio see Reference 18.

The stability indexes are shown in Listing 24-8. Allowables for face sheet wrinkling modes are given by:

$$\sigma_{wr} = k_1 (E_f E_c G_c)^{1/3}$$

for foam core sandwich materials and

$$\sigma_{wr} = k_2 E_f \sqrt{\frac{E_c t_f}{E_f t_c}}$$

for honeycomb core materials where,

- **k**₁ is given by PARAM, COMPK1
- **k₁ is given by** PARAM, COMPK2
- E_f is Young's Modulus for the face sheet
- E_c is Young's Modulus for the core
- G_c is the transverse shear modulus for the core
- t_f is face sheet thickness
- t_c is core thickness

Allowables for face sheet dimpling of sandwich materials with honeycomb cores is given by:

$$\sigma_{dp} = \frac{2E_f}{(1-\upsilon^2)} \left(\frac{t_f}{s}\right)^2$$

where,

- s is the cell size of the honeycomb core specified on the MATi Bulk Data entry
- v is Poisson's ratio for the face sheet

Allowables for face sheet crimping is given by:

$$\sigma_{cr} = \frac{t_c G_c}{t_{f_1} + t_{f_2}}$$

where,

 t_{f_1} is the bottom face sheet thickness

 t_{f_2} is the top face sheet thickness

For more information on face sheet stability in sandwich structures see Reference 9.

Listing 24-4. Honeycomb Sandwich Plate Displacement	4. Honeycomb Sandwich Plate Displacement
---	--

GRID	COORDINATE	Τ1	Т2	Т3	R1	R2	R3				
ID	ID										
4	0	-1.704834E-04	-1.944323E-05	6.095832E-03	3.307392E-04	-2.170236E-03	-3.815982E-06				
5	0	-1.704490E-04	0.00000E+00	6.255492E-03	0.000000E+00	-2.157586E-03	0.00000E+00				
6	0	-1.704834E-04	1.944323E-05	6.095832E-03	-3.307392E-04	-2.170236E-03	3.815982E-06				
7	0	-2.544360E-04	1.170822E-06	2.106090E-02	1.108142E-06	-3.249578E-03	5.738955E-06				
8	0	-2.597582E-04	0.00000E+00	2.104670E-02	0.000000E+00	-3.244511E-03	0.00000E+00				
9	0	-2.544360E-04	-1.170822E-06	2.106090E-02	-1.108142E-06	-3.249578E-03	-5.738955E-06				
10	0	-2.424810E-04	-7.402531E-06	1.389607E-02	3.828805E-05	-3.050755E-03	5.712113E-06				
11	0	-2.423619E-04	0.00000E+00	1.392396E-02	0.000000E+00	-3.101215E-03	0.00000E+00				
12	0	-2.424810E-04	7.402531E-06	1.389607E-02	-3.828805E-05	-3.050755E-03	-5.712113E-06				

-

Listing 24-5. Honeycomb Sandwich Plate Stresses.

	STRESSES IN COMPOSITES QUAD ELEMENTS ON SURFACE O										
SURFACE (COORDI	NATE ID = ELEN	MENT X-AXIS =	= X NORMAL =	Z						
ELEMENT	PLY	STRESSES IN H	FIBER AND MATH	RIX DIRECTIONS	INTER-LAMINA	AR STRESSES	PRINCIPAL STRESSE	S (ZERO SHEAR)	MAX SHEAR		
ID	ID	NORMAL-1	NORMAL-2	SHEAR-12	SHEAR XZ-MAT	SHEAR YZ-MAT	ANGLE MAJOR	MINOR			
1	1	2.25009E+03	3.84979E+02	6.07343E+01	8.65419E+01	-1.82116E-02	1.86 2.25206E+0	3 3.83004E+02	9.34531E+02		
	2	-1.20873E+01	-2.60321E+00	-2.53857E-01	8.42174E+01	-1.77224E-02	-88.47 -2.59642E+0	0 -1.20940E+01	4.74881E+00		
	3	-4.37931E+03	-8.51846E+02	-1.04329E+02	0.00000E+00	0.00000E+00	-88.31 -8.48763E+0	2 -4.38239E+03	1.76681E+03		
2	1	8.65419E+02	-8.75954E+01	-4.44369E+01	5.19251E+01	-4.56677E-01	-2.66 8.67487E+0	2 -8.96629E+01	4.78575E+02		
	2	-4.64894E+00	2.69420E-01	1.66997E-01	5.05305E+01	-4.44411E-01	88.06 2.75084E-0	1 -4.65461E+00	2.46485E+00		
	3	-1.68435E+03	1.31935E+02	7.27417E+01	0.00000E+00	0.00000E+00	87.71 1.34843E+0	2 -1.68726E+03	9.11050E+02		
3	1	1.73084E+02	3.41064E+01	1.21325E+01	1.73084E+01	3.29923E-01	4.95 1.74135E+0	2 3.30552E+01	7.05399E+01		
	2	-9.29789E-01	5.40003E-02	-2.98213E-02	1.68435E+01	3.21062E-01	-88.27 5.49035E-0	2 -9.30692E-01	4.92798E-01		
	3	-3.36870E+02	-2.09142E+01	-1.68372E+01	0.00000E+00	0.00000E+00	-86.96 -2.00195E+0	1 -3.37764E+02	1.58872E+02		
4	1	2.25009E+03	3.84979E+02	-6.07343E+01	8.65419E+01	1.82116E-02	-1.86 2.25206E+0	3 3.83004E+02	9.34531E+02		
	2	-1.20873E+01	-2.60321E+00	2.53857E-01	8.42174E+01	1.77224E-02	88.47 -2.59642E+0	0 -1.20940E+01	4.74881E+00		
	3	-4.37931E+03	-8.51846E+02	1.04329E+02	0.00000E+00	0.00000E+00	88.31 -8.48763E+0	2 -4.38239E+03	1.76681E+03		
5	1	8.65419E+02	-8.75954E+01	4.44369E+01	5.19251E+01	4.56677E-01	2.66 8.67487E+0	2 -8.96629E+01	4.78575E+02		
	2	-4.64894E+00	2.69420E-01	-1.66997E-01	5.05305E+01	4.44411E-01	-88.06 2.75084E-0	1 -4.65461E+00	2.46485E+00		
	3	-1.68435E+03	1.31935E+02	-7.27417E+01	0.0000E+00	0.00000E+00	-87.71 1.34843E+0	2 -1.68726E+03	9.11050E+02		
6	1	1.73084E+02	3.41064E+01	-1.21325E+01	1.73084E+01	-3.29923E-01	-4.95 1.74135E+0	2 3.30552E+01	7.05399E+01		
	2	-9.29789E-01	5.40003E-02	2.98213E-02	1.68435E+01	-3.21062E-01	88.27 5.49035E-0	2 -9.30692E-01	4.92798E-01		
	3	-3.36870E+02	-2.09142E+01	1.68372E+01	0.00000E+00	0.00000E+00	86.96 -2.00195E+0	1 -3.37764E+02	1.58872E+02		

Listing 24-6. Honeycomb Sandwich Plate Failure Indexes.

FAI	LURE	I N D	EXES FOR	COMPOSITE	QUAD	ELEMENTS	S ON SUR	FACE 0
ELEMENT ID	FAILURE THEORY	PLY ID	MATRIX FAILURE INDEX	FAILURE FIBE MODE	R FAILURE INDEX	FAILURE MODE	BOND FAILURE INDEX	ELEMENT FAILURE INDEX
1	STRESS	1	6.43E-02 1	6.4	3E-02 1		0 654105 01	
		2	4.03E-02 1	4.0	3E-02 1		8.65419E-01	
		3	1.25E-01 1	1.2	5E-01 1		8.421/4E-01	8.65419E-01
2	STRESS	1	2.47E-02 1	2.4	7E-02 1		E 100E15 01	
		2	1.55E-02 1	1.5	5E-02 1		5.19251E-01	
		3	4.81E-02 1	4.8	1E-02 1		5.05305E-01	5.19251E-01
3	STRESS	1	4.95E-03 1	4.9	5E-03 1		1 720045 01	
		2	3.10E-03 1	3.1	0E-03 1		1.73084E-01	
		3	9.62E-03 1	9.6	2E-03 1		1.08435E-01	1.73084E-01
4	STRESS	1	6.43E-02 1	6.4	3E-02 1		0 654105 01	
		2	4.03E-02 1	4.0	3E-02 1		0.42174E.01	
		3	1.25E-01 1	1.2	5E-01 1		0.421/4E-01	8.65419E-01
5	STRESS	1	2.47E-02 1	2.4	7E-02 1			
		2	1.55E-02 1	1.5	5E-02 1		5.19251E-01	
		3	4.81E-02 1	4.8	1E-02 1		5.05305E-01	5.19251E-01
6	STRESS	1	4.95E-03 1	4.9	5E-03 1			
		2	3.10E-03 1	3.1	0E-03 1		1.73084E-01	
		3	9.62E-03 1	9.6	2E-03 1		1.68435E-01	1.73084E-01

Listing 24-7. Honeycomb Sandwich Plate Strength Ratios.

S	TRENGTH	RΑ	TIOS FOR	COMPOSITE	QUAD	ELEMENT	S ON SUR	FACE 0
ELEMEI ID	NT FAILURE THEORY	PLY ID	MATRIX STRENGTH RATIO	FAILURE FIBE MODE	R STRENGTH RATIO	FAILURE MODE	BOND STRENGTH RATIO	ELEMENT STRENGTH RATIO
1	STRESS	1	1.56E+01 1	1.5	6E+01 1		1 155515+00	
		2	2.48E+01 1	2.4	8E+01 1		1.18740E+00	
		3	7.99E+00 1	7.9	9E+00 1		1.10/402100	1.15551E+00
2	STRESS	1	4.04E+01 1	4.0	4E+01 1			
		2	6.45E+01 1	6.4	5E+01 1		1.92585E+00	
		3	2.08E+01 1	2.0	8E+01 1		1.97900E+00	1.92585E+00
3	STRESS	1	2.02E+02 1	2.0	2E+02 1		5.77755E+00	
		2	3.23E+02 1	3.2	3E+02 1		5 93701E+00	
		3	1.04E+02 1	1.0	4E+02 1		0.007012700	5.77755E+00
4	STRESS	1	1.56E+01 1	1.5	6E+01 1		1 155515.00	
		2	2.48E+01 1	2.4	8E+01 1		1.15551E+00	
		3	7.99E+00 1	7.9	9E+00 1		1.18/408+00	1.15551E+00
5	STRESS	1	4.04E+01 1	4.0	4E+01 1			
		2	6.45E+01 1	6.4	5E+01 1		1.92585E+00	
		3	2.08E+01 1	2.0	8E+01 1		1.97900E+00	1.92585E+00
6	STRESS	1	2.02E+02 1	2.0	2E+02 1		5.77755E+00	
		2	3.23E+02 1	3.2	3E+02 1		5.93701E+00	
		3	1.04E+02 1	1.0	4E+02 1			5.77755E+00

Listing 24-8. Honeycomb Sandwich Plate Stability Indexes.

LEMENT	PLY		STRESS LIMITS		ST	ABILITY INDEX	ES	CRITICAL	FAILURE
ID	ID	WRINKLING	DIMPLING	CRIMPING	WRINKLING	DIMPLING	CRIMPING	INDEX	MODE
1	1	2.59307E+05	6.23449E+07	1.25313E+05					STRESS
	3	2.59307E+05	6.23449E+07	1.25313E+05	1.69004E-02	7.02926E-05	3.49718E-02	3.49718E-02	CRIMPING
2	1	2.59307E+05	6.23449E+07	1.25313E+05	3.45779E-04	1.43817E-06	7.15510E-04	7.15510E-04	CRIMPING
	3	2.59307E+05	6.23449E+07	1.25313E+05	6.50680E-03	2.70633E-05	1.34643E-02	1.34643E-02	CRIMPING
3	1	2.59307E+05	6.23449E+07	1.25313E+05					STRESS
	3	2.59307E+05	6.23449E+07	1.25313E+05	1.30257E-03	5.41767E-06	2.69536E-03	2.69536E-03	CRIMPING
4	1	2.59307E+05	6.23449E+07	1.25313E+05					STRESS
	3	2.59307E+05	6.23449E+07	1.25313E+05	1.69004E-02	7.02926E-05	3.49718E-02	3.49718E-02	CRIMPING
5	1	2.59307E+05	6.23449E+07	1.25313E+05	3.45779E-04	1.43817E-06	7.15510E-04	7.15510E-04	CRIMPING
	3	2.59307E+05	6.23449E+07	1.25313E+05	6.50680E-03	2.70633E-05	1.34643E-02	1.34643E-02	CRIMPING
6	1	2.59307E+05	6.23449E+07	1.25313E+05					STRESS
	3	2.59307E+05	6.23449E+07	1.25313E+05	1 30257E-03	5.41767E-06	2.69536E-03	2.69536E-03	CRIMPING

The second example is the cantilevered composite plate shown in Figure 24-3. The lamina and laminate properties are defined in Tables 24-5 and 24-6, respectively. The Model Input File is shown in Listing 24-9.

Figure 24-3. Composite Cantilever Plate Example Problem.

Material ID	E ₁ (msi)	E₂ (msi)	U12	G ₁₂ (msi)	G _{1z} (msi)	G₂z (msi)
110	10.0	10.0	0.1	1.0	1.0	1.0
120	10.0	1.0	0.2	4.0	2.0	2.0
130	10.0	2.0	0.1	3.0	1.5	1.5

Table 24-5a. Individual Lamina Material Properties – Moduli.

 Table 24-5b. Individual Lamina Material Properties – Stress Limits.

Material ID	X _t (ksi)	X _c (ksi)	Y _t (ksi)	Y _c (ksi)	S (ksi)
110	60.0	50.0	60.0	50.0	5.0
120	40.0	80.0	4.0	8.0	5.0
130	20.0	10.0	15.0	10.0	4.0

Ply	Material ID	Thickness (inches)	Orientation (degrees)		
1	110	0.05	0.0		
2	120	0.07	45.0		
3	130	0.06	90.0		
4	120	0.05	60.0		
5	110	0.02	0.0		

Table 24-6. Composite Laminate Material Properties.

Ply orientation is relative to the material axis of the element. The angles given in Table 24-6 are relative to this axis. The default material axis for shell elements is the element edge 1-2 defined by nodes 1 and 2. Since the quad elements in our example are rectangular we can use the default axis. Typically this is not the case and the material orientation must be defined explicitly. See the *Nastran Solver Reference Guide*, Section 4, *Bulk Data*, for more information on CQUAD4, CQUAD8, CTRIA3, CTRIA7, CTRIA6, and PSHELL Bulk Data entries and material axis orientation.

Listing 24-9. 2-Dimensional Composite Cantilever Plate Model Input File.

```
$ STATIC SOLUTION.
Ś
SOL STATIC
Ś
TITLE = INSTALLATION TEST CASE
SUBTITLE = COMPOSITE CANTILEVER BEAM -QUAD4 ELEMENTS -2X3 MESH
DISPLACEMENT = ALL
STRESS = ALL
Ś
SPC = 1
SUBCASE 1
 LABEL = 10 PSI SURFACE PRESSURE
  LOAD = 1
BEGIN BULK
Ś
\ Geometry definition (6" x 2" rectangular flat plate with a 3 x 2 Mesh).
Ś
GRID,
             4, , 2., 0., 0.
            5, , 2., 1.,
6, , 2., 2.,
GRID,
                                        Ο.
GRID,
                                        0.
                  , 6., 0., 0.
GRID,
            7,
            8, , 6., 1.,
GRID,
                                        0.
GRID,
             9,
                        6.,
                                2.,
                                         0.
                   ,
GRID, 10, , 4., 0., 0.
GRID, 11,
                   , 4., 1., 0.
          12,
GRID,
                  , 4., 2., 0.
, 0., 0., 0.
                        4., 2., 0.
GRID, 16,
                   , 0., 1., 0.
GRID, 17,
GRID, 18, , 0., 2., 0.
$ FLAT PLATE MODELED WITH SHELL ELEMENTS.
Ś

        QUAD4,
        1,
        10,
        16,
        4,
        5,

        CQUAD4,
        2,
        10,
        4,
        10,
        11,

        CQUAD4,
        3,
        10,
        10,
        7,
        8,

        CQUAD4,
        3,
        10,
        17,
        5,
        6,

        CQUAD4,
        5,
        10,
        5,
        11,
        12,

        CQUAD4,
        6,
        10,
        11,
        8,
        9,

                                                    17
                                                       5
                                     7, 8, 11
                                             6, 18
                                                       6
                                             9, 12
Ś
$ COMPOSITE LAMINATE PROPERTY DEFINITION.
Ś
PCOMP, 10, , 5.E+3, HILL,
, 110, 0.05, 0., YES, 120, 0.07, 45., YES,
, 130, 0.06, 90., YES, 120, 0.05, 60., YES,
, 110, 0.02, 0., YES
Ś
$ LAMINA MATERIAL PROPERTIES.
Ś
MAT8, 110, 10.E+6, 10.E+6, 0.1, 1.E+6, 1.E+6, 1.E+6,
, , , , 60.E+3, 50.E+3, 60.E+3, 50.E+3, 5.E+3
MAT8, 120, 10.E+6, 1.E+6, 0.2, 4.E+6, 2.E+6, 2.E+6,
, , , 40.E+3, 80.E+3, 4.E+3, 8.E+3, 5.E+3
MAT8, 130, 10.E+6, 2.E+6, 0.1, 3.E+6, 1.5E+6, 1.5E+6,
, , , 20.E+3, 10.E+3, 15.E+3, 10.E+3, 4.E+3
Ś
$ FIXED BOUNDARY CONDITION AT ONE END.
Ś
SPC1, 1, 123456, 16, 17, 18
Ś
$ SURFACE PRESSURE LOADING.
Ś
PLOAD2, 1, 10., 1, THRU, 6
ENDDATA
```

			_							
PSHE	LL	10	131	0.25000	132 1.00000	133 1	1.00000	0.+C	1A	
+C	1A-(0.12500	0.12500	134						
MAT2		1310	.6084+7-	-148614.0	0.1140+70.8911+7	907815.0	.2344+7	0.+C	8A	
+C	8A	Ο.	0.	Ο.	Ο.	Ο.	Ο.	Ο.		
MAT2		1320	.7926+7	283328.	887526.0.9414+7	593185.0	.1771+7	0.+C	9A	
+C	9A	Ο.	Ο.	Ο.	Ο.	Ο.	Ο.	Ο.		
MAT2		1330	.2280+7	Ο.	0.0.1818+7	Ο.	Ο.	0.+C	10A	
+C	10A	Ο.	0.	Ο.	Ο.	Ο.	Ο.	Ο.		
MAT2		134	422536.	39257.3-	-61121.0-59005.7	13113.7-3	101314.	0.+C	11A	
+C	11A	Ο.	0.	0.	Ο.	Ο.	Ο.	Ο.		

Listing 24-10. Generated PSHELL and MAT2 Bulk Data Entries Written to the Bulk Data Output File.

The plate is loaded with a 10 psi surface pressure which results in bending about the model y-axis. Because the composite lay-up is not symmetric, membrane-bending coupling is generated which results in an x-displacement along with the expected z-displacement and y-rotation. The lay-up is also not balanced which results in a slight twisting x-rotation. The displacements are shown in Listing 24-11. The element stresses are shown in Listing 24-12. The element failure indexes are shown in Listing 24-13 and the strength ratios in Listing 24-14 (obtained by adding PARAM, STRENGTHRATIO, ON to the Case Control Section of the Model Input File).

Listing 24-11. 2-Dimensional Composite Plate Displacements.

GRID	COORDINATE	T1	Т2	Т3	R1	R2	R3
ID	ID						
4	0	-5.930695E-04	4.343331E-04	3.138304E-02	-2.249688E-03	-2.903187E-02	1.158399E-04
5	0	-5.633355E-04	3.933851E-04	2.908152E-02	-2.181653E-03	-2.723822E-02	1.102060E-04
6	0	-5.338815E-04	3.539528E-04	2.681530E-02	-2.205097E-03	-2.547819E-02	1.035768E-04
7	0	-8.424426E-04	4.908367E-04	1.809799E-01	-6.204114E-03	-4.057298E-02	5.459421E-05
8	0	-8.482638E-04	4.889086E-04	1.749577E-01	-6.108129E-03	-4.052350E-02	3.334295E-05
9	0	-8.373268E-04	4.870649E-04	1.690166E-01	-6.002523E-03	-4.039096E-02	1.414558E-05
10	0	-8.132125E-04	4.899697E-04	1.008572E-01	-5.262480E-03	-3.915736E-02	-7.165992E-05
11	0	-7.928412E-04	4.896641E-04	9.579562E-02	-5.106808E-03	-3.821157E-02	-4.982979E-05
12	0	-7.830227E-04	4.866978E-04	9.087225E-02	-4.959575E-03	-3.728016E-02	-2.853515E-05

Listing 24-12. 2-Dimensional Composite Plate Stresses.

	S	TRESSES	S IN CO	MPOSITE	S QUAD	ELEMEN	TS O	N SURF	ACE 0	
SURFACE (COORDI	NATE ID = ELEM	MENT X-AXIS =	= X NORMAL = :	Z					
ELEMENT ID	PLY ID	STRESSES IN E NORMAL-1	TIBER AND MATH NORMAL-2	RIX DIRECTIONS SHEAR-12	INTER-LAMINA SHEAR XZ-MAT	AR STRESSES SHEAR YZ-MAT	PRINCI ANGLE	IPAL STRESSES MAJOR	(ZERO SHEAR) MINOR	MAX SHEAR
1	1	1.12722E+04	9.56493E+02	2.13307E+01	2.46547E+02	1.61686E+02	0.12	1.12722E+04	9.56449E+02	5.15788E+03
	2	1.99977E+03	9.64334E+01	-1.17085E+03	2.62642E+02	1.78571E+02	-25.45	2.55693E+03	-4.60728E+02	1.50883E+03
	3	-3.42086E+02	-1.28842E+03	-8.15739E+02	2.30154E+02	1.34206E+02	-29.94	1.27783E+02	-1.75829E+03	9.43036E+02
	4	-2.31106E+03	-1.27838E+03	4.05529E+03	1.91004E+02	9.59349E+01	48.63	2.29331E+03	-5.88275E+03	4.08803E+03
	5	-1.92859E+04	-2.17245E+03	4.52332E+02	2.68667E+01	2.39332E+01	88.49	-2.16050E+03	-1.92979E+04	8.56868E+03
2	1	4.18298E+03	3.23883E+02	-2.22389E+02	1.31625E+02	-3.97567E+01	-3.29	4.19575E+03	3.11110E+02	1.94232E+03
	2	1.70473E+02	7.01896E+01	-4.58916E+02	1.40218E+02	-4.39083E+01	-41.88	5.81978E+02	-3.41316E+02	4.61647E+02
	3	-2.83655E+02	-4.94233E+02	-4.03160E+02	1.22873E+02	-3.29995E+01	-37.68	2.7/382E+01	-8.05626E+02	4.16682E+02
	4	-4.04614E+02	-5.42444E+U2	1.16599E+U3	1.019/3E+02	-2.35892E+UI	43.31	6.9449/E+UZ	-1.64155E+U3	1.168U3E+U3
	S	=/.29650E+03	-1.06455E+03	3.91265E+U2	1.43435E+01	-5.8848/E+00	86.42	-1.04008E+03	-/.32096E+03	3.14044E+03
3	1	7.39111E+02	1.88571E+02	-9.10345E+01	4.15318E+01	-6.24960E+00	-9.15	7.53773E+02	1.73908E+02	2.89932E+02
	2	-5.50317E+01	2.49297E+01	-4.87837E+01	4.42430E+01	-6.90222E+00	-64.67	4.80228E+01	-7.81249E+01	6.30738E+01
	3	-5.16206E+01	-8.99531E+01	-9.56618E+01	3.87703E+01	-5.18740E+00	-39.34	2.67761E+01	-1.68350E+02	9.75629E+01
	4	2.68609E+01	-1.11271E+02	1.20878E+02	3.21754E+01	-3.70813E+00	30.13	9.70128E+01	-1.81423E+02	1.39218E+02
	5	-1.31201E+03	-2.87071E+02	1.20391E+02	4.52580E+00	-9.25080E-01	83.39	-2.73120E+02	-1.32596E+03	5.26420E+02
4	1	1.05204E+04	8.43154E+02	3.89141E+00	1.91809E+02	1.53827E+02	0.02	1.05204E+04	8.43153E+02	4.83861E+03
	2	1.79404E+03	9.09714E+01	-1.09218E+03	2.04330E+02	1.69891E+02	-26.03	2.32741E+03	-4.42402E+02	1.38491E+03
	3	-3.15619E+02	-1.21388E+03	-7.52937E+02	1.79055E+02	1.27682E+02	-29.59	1.11969E+02	-1.64146E+03	8.76716E+02
	4	-2.14485E+03	-1.19982E+03	3.81807E+03	1.48598E+02	9.12715E+01	48.53	2.17487E+03	-5.51953E+03	3.84720E+03
	5	-1.80984E+04	-1.99352E+03	4.28882E+02	2.09018E+01	2.27698E+01	88.48	-1.98210E+03	-1.81098E+04	8.06384E+03
5	1	4.52748E+03	3.02649E+02	-1.99670E+02	1.31388E+02	-3.84315E+01	-2.70	4.53689E+03	2.93234E+02	2.12183E+03
	2	2.91653E+02	6.73834E+01	-5.07260E+02	1.39965E+02	-4.24448E+01	-38.77	6.99025E+02	-3.39988E+02	5.19507E+02
	3	-2.80429E+02	-5.29624E+02	-4.38099E+02	1.22652E+02	-3.18996E+01	-37.06	5.04461E+01	-8.60499E+02	4.55472E+02
	4	-4.58293E+02	-5.76179E+02	1.30557E+03	1.01789E+02	-2.28029E+01	43.71	7.89660E+02	-1.82413E+03	1.30690E+03
	5	-7.85135E+03	-1.06831E+03	3.94939E+02	1.43176E+01	-5.68872E+00	86.68	-1.04539E+03	-7.87427E+03	3.41444E+03
6	1	1.10263E+03	2.12632E+02	-9.40237E+01	4.61395E+01	-5.37137E+00	-5.97	1.11245E+03	2.02807E+02	4.54822E+02
	2	-3.89568E+00	3.03663E+01	-9.65751E+01	4.91515E+01	-5.93228E+00	-50.03	1.11318E+02	-8.48474E+01	9.80827E+01
	3	-6.80561E+01	-1.24009E+02	-1.09070E+02	4.30716E+01	-4.45843E+00	-37.81	1.65687E+01	-2.08633E+02	1.12601E+02
	4	-5.71217E+01	-1.46770E+02	2.39909E+02	3.57451E+01	-3.18704E+00	39.71	1.42115E+02	-3.46007E+02	2.44061E+02
	5	-1.86898E+03	-3.56331E+02	1.30231E+02	5.02791E+00	-7.95082E-01	85.12	-3.45201E+02	-1.88011E+03	7.67456E+02

Listing 24-13. 2-Dimensional Composite Plate Failure Indexes.

LLMENDY FAILURE PX MATRIX PATIONE FAILURE FAILURE FAILURE FAILURE FAILURE MODE PATIONE INDEX 1 MIEX 1 3.25723E-02 3.25723E-02 4.33095E-02 3 5.77958E-02 5.77958E-02 4.53284E-02 4 6.03724E-01 6.03724E-01 3.2008E-02 5 1.42091E-01 1.42091E-01 3.2008E-02 4 6.03724E-01 6.03724E-01 3.2008E-02 5 1.42091E-01 1.42091E-01 3.2008E-02 4 5.03724E-01 6.03724E-03 2.6014E-02 4 5.03724E-03 6.40145E-03 2.60146E-02 3 1.20040E-02 1.20440E-02 2.40146E-03 3 1.20040E-02 1.20440E-02 2.4014E-02 4 5.09703E-02 2.4014E-03 5.03708E-02 3 1.20040E-02 1.20440E-02 2.40146E-03 2 1.34725E-04 6.30708E-04 8.30056E-03 3 6.3076E-04 7.7863E-03 5.87703E-02 3 871L 1 6.51398E-04 6.30708E-04 8.3056E-03 4 7.00239E-04 7.00239E-04 8.3036E-03 4 7.00239E-04 7.00239E-04 8.30368E-03 4 7.00239E-04 7.00239E-04 8.30368E-03 4 7.00239E-04 7.00239E-04 8.30368E-03 4 811L 1 2.44781E-02 2.84781E-02 3.836188-02 4 6.05937E-01 1.15061E-03 8.84859E-03 5 1.15061E-03 1.15061E-03 8.84859E-03 4 811L 1 2.64781E-02 4.03141E-02 3.836188E-02 3 4.73320E-02 4.73320E-02 3.836188E-02 4 6.05937E-01 2.9196E-02 3.83618E-02 5 1.25538E-01 1.25538E-01 2.9196E-02 3 4.73320E-02 4.73320E-02 3.83618E-02 4 6.05937E-01 2.9196E-02 3.83618E-02 5 1.25538E-01 1.25538E-01 2.9196E-02 3.83618E-02 4 7.33590E-02 4.73320E-02 4.73339E-02	FAI	LURE	I N D	EXES FOR	COMPOSITE QUAD	ELEMENT	S O N S U F	FACE 0
1 NILL 1 3.25732-02 3.25732-02 3.20025-02 3.25244-02 2 5.79588-02 5.79588-02 5.25244-02 3.20027-02 3.25724-01 3 5.45248-02 5.453248-02 3.26024-01 3.20027-02 4.63387-02 4 6.837242-01 6.401452-03 3.20027-02 4.637242-01 3.20027-02 4.637242-01 2 NILL 1 6.401452-03 6.401452-03 2.601462-02 3.601462-02 3 1.20408-02 1.20408-02 2.46548-02 2.46548-02 3.697032	ELEMENT ID	FAILURE THEORY	PLY ID	MATRIX FAILURE INDEX	FAILURE FIBER FAILURE MODE INDEX	FAILURE MODE	BOND FAILURE INDEX	ELEMENT FAILURE INDEX
2 5.79582-02 5.79582-02 5.23744-02 3 5.465242-02 5.465242-02 4.603082-02 4 6.837245-01 6.837245-01 3.820092-02 4 6.491452-03 6.401452-03 2.602312-02 2 MILL 1 6.494452-03 2.602312-02 2 8.742752-03 8.742752-03 2.602312-02 2 8.742752-03 8.742752-03 2.602312-02 2 8.742752-03 8.742752-03 2.602312-02 3 1.200402-02 2.47754-03 2.602312-02 5 2.476542-02 2.477542-02 2.47747-02 5 2.476542-02 2.477542-03 3.06362-03 3 MILL 1 4.543992-04 4.543992-04 4 5.30762-04 6.30762-04 7.754052-03 4 7.0602392-04 7.802392-04 6.439062-03 5 1.150612-03 1.150612-03 3.8646896-03 4 7.802392-04 7.802392-04 4.066612-02 5 <td>1</td> <td>HILL</td> <td>1</td> <td>3.25723E-02</td> <td>3.25723E-02</td> <td></td> <td>4 020055-02</td> <td></td>	1	HILL	1	3.25723E-02	3.25723E-02		4 020055-02	
3 5.493248-02 5.493248-01 6.637248-01 4.603088-02 4 6.437248-01 6.637248-01 3.20008-02 6.637248-01 2 HILL 1 6.491452-03 2.632518-02 2.632518-02 3 1.200408-02 1.200408-02 2.632518-02 2.633458-02 3 1.200408-02 1.200408-02 2.632518-02 2.693458-02 3 1.200408-02 1.200408-02 2.632518-02 2.69738-02 4 5.897038-02 2.693458-02 2.693458-02 2.697038-02 5 2.476548-02 2.476548-02 2.697038-02 2.697038-02 4 1.454392-04 4.53392-04 8.3068-03 8.848598-03 4 7.602392-04 7.692392-04 7.59058-03 8.848598-03 5 1.150618-03 1.150618-03 8.848598-03 8.848598-03 4 7.602392-04 7.692392-04 7.59058-03 8.848598-03 5 1.150618-03 1.50518-01 1.50518-02 1.605178-02 6 <td< td=""><td></td><td></td><td>2</td><td>5.77958E-02</td><td>5.77958E-02</td><td></td><td>4.95095E-02</td><td></td></td<>			2	5.77958E-02	5.77958E-02		4.95095E-02	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			3	5.49524E-02	5.49524E-02		4 60300E 02	
5 1.42931E-01 1.42931E-01 1.42931E-01 0.00000-02 6.63324E-01 2 HILL 1 6.49145E-03 6.49145E-03 2.63251E-02 2.80436E-02 3 1.20040E-02 1.20040E-02 2.80436E-02 2.80436E-02 2.80436E-02 3 1.20040E-02 2.47554E-02 2.47575E-03 2.63251E-02 2.89703E-02 4 5.89703E-02 2.47554E-02 2.47554E-02 2.455747E-02 2.89703E-02 3 HILL 1 4.54399E-04 4.54399E-04 8.30636E-03 3.89703E-02 3 HILL 1 4.54399E-04 4.54399E-04 8.30636E-03 3.89703E-02 4 7.80239E-04 1.34725E-04 8.30636E-03 8.84859E-03 8.84859E-03 5 1.15061E-03 1.15061E-03 1.5061E-03 8.84859E-03 8.84859E-03 4 HILL 1 2.84701E-02 2.64701E-02 3.65618-02 3.65018-02 5 1.15061E-03 1.50512-01 2.97196E-02 3.65017E-01 2.97196E-02 2.65917E-01 5 1.25556E-01 1.25556E-01			4	6.83724E-01	6.83724E-01		4.60306E-02	
2 HILL 1 6.49145E-03 2.43251E-02 2 8.74275E-03 8.74275E-03 2.80231E-02 3 1.20040E-02 1.20040E-02 2.65747E-02 4 5.89703E-02 2.03945E-02 2.03945E-02 5 2.47654E-02 2.47654E-02 2.03945E-02 3 HILL 1 4.54398E-04 8.84598E-03 2 1.34725E-04 6.30376E-04 6.844958E-03 3 6.33076E-04 6.33076E-04 6.43508E-03 4 7.80239E-04 7.80239E-04 6.43508E-03 5 1.15061E-03 1.15061E-03 8.84859E-03 6 6.05917E-01 2.97196E-02 3.85618E-02 4 HILL 1 6.05917E-01 2.07196E-02 5 1.25556E-01 1.27196E-02 2.65917E-01 5 1.06172E-02 2.65777E-02 2.65917E-01 6 1.9517E-01 2.05777E-02 2.65906E-02 7.33590E-02 2.73980E-02 2.03578E-02 2.53504E-02 <td></td> <td></td> <td>5</td> <td>1.42091E-01</td> <td>1.42091E-01</td> <td></td> <td>3.02009E-02</td> <td>6.83724E-01</td>			5	1.42091E-01	1.42091E-01		3.02009E-02	6.83724E-01
2 8.742758-03 8.742758-03 2.804362-02 3 1.200408-02 1.200408-02 2.457472-02 4 5.897032-02 2.637032-02 2.039458-02 5 2.476348-02 2.039458-02 2.697032-02 3 HILL 1 4.543998-04 4.543998-04 8.306368-03 2 1.347258-04 1.347258-04 8.306368-03 8.845592-03 3 6.330768-04 6.330768-04 7.754058-03 6.435088-03 4 7.802398-04 6.330768-04 6.435088-03 8.848598-03 4 7.802398-04 6.330768-04 6.435088-03 8.848598-03 4 HILL 1 2.847818-02 2.847818-02 4.4086618-02 3 4.733208-02 4.733208-02 3.581118-02 4.096618-02 3 4.733208-02 1.061728-02 2.627778-02 3.605178-01 5 1.255368-01 1.255368-03 2.627778-02 2.635188-02 4 6.037458-02 2.035786-02 2.055178-02 2.055178-02 5 1.410198-02 1.061728-02 2.6305786-02 <td>2</td> <td>HILL</td> <td>1</td> <td>6.49145E-03</td> <td>6.49145E-03</td> <td></td> <td>2 63251E-02</td> <td></td>	2	HILL	1	6.49145E-03	6.49145E-03		2 63251E-02	
3 1.20040E-02 1.20040E-02 2.45747E-02 4 5.89703E-02 5.89703E-02 2.45747E-02 5 2.47654E-02 2.47654E-02 5.89703E-02 3 HTIL 1 4.54399E-04 4.54399E-04 8.30636E-03 2 1.34725E-04 1.34725E-04 8.30636E-03 4.36439E-02 3 6.33076E-04 6.33076E-04 7.5603E-03 4.45439E-02 4 7.60239E-04 7.80239E-04 7.503E-03 4.45439E-03 4 7.60239E-04 7.80239E-04 7.60239E-04 7.60239E-04 5 1.15061E-03 1.15061E-03 8.64659E-03 4 NILL 1 2.64781E-02 3.83618E-02 3 4.73320E-02 4.73320E-02 4.0661E-02 3 4.73320E-02 4.73320E-02 4.0661E-02 4 6.05917E-01 6.05917E-01 2.62777E-02 5 1.25536E-01 1.25536E-02 2.03798E-02 5 1.41019E-02 1.06172E-02 2.62777E-02 <			2	8.74275E-03	8.74275E-03		2 80436E-02	
4 5.89703E-02 5.89703E-02 2.03945E-02 2.03945E-02 3 HILL 1 4.54399E-04 8.30636E-03 8.84659E-03 3 6.33076E-04 6.33076E-04 8.30636E-03 8.84659E-03 4 7.80239E-04 7.80239E-04 7.74605E-03 6.43508E-03 5 1.15061E-03 1.15061E-03 6.43508E-02 8.84659E-03 4 7.80239E-04 7.80239E-04 6.43508E-03 8.84659E-03 5 1.15061E-03 1.15061E-03 8.84659E-03 8.84659E-03 4 HILL 1 2.84781E-02 4.08661E-02 3.83618E-02 3 4.73320E-02 4.73320E-02 3.58111E-02 3.60517E-01 2.07196E-02 5 1.25536E-01 1.25536E-01 2.5717E-02 2.59196E-02 4.05917E-01 5 1.41019E-02 1.06172E-02 2.652777E-02 2.45504E-02 2.03578E-02 4.53590E-02 4.53590E-02 4.53590E-02 4.53590E-02 4.53590E-02 4.53590E-02 4.53590E-02 4.53590E-02 4.535			3	1.20040E-02	1.20040E-02		2.00430E 02	
5 2.47654E-02 2.47654E-02 5.89703E-02 3 HILL 1 4.54399E-04 8.30636E-03 2 1.34725E-04 1.34725E-04 8.94859E-03 3 6.33076E-04 6.33076E-04 7.75405E-03 4 7.80239E-04 7.80239E-04 6.43508E-03 4 7.80239E-04 7.80239E-04 6.43508E-03 5 1.15061E-03 1.15061E-03 8.84859E-03 4 HILL 1 2.84781E-02 2.84781E-02 3.83618E-02 3 4.73320E-02 4.073320E-02 3.83618E-02 3.83618E-02 3 4.73320E-02 4.035917E-01 2.97196E-02 3.58111E-02 3 4.73320E-02 4.03672E-02 3.58111E-02 3.5917E-01 5 1.25536E-01 1.25536E-01 2.62777E-02 3.5917E-01 5 1.4019E-02 1.06172E-02 2.03578E-02 7.33590E-02 6 HILL 1 6.38769E-04 6.38769E-04 9.22790E-03 6 HILL 1 6.38769E-04 9.83029E-03 7.33590E-02 6 <td></td> <td></td> <td>4</td> <td>5.89703E-02</td> <td>5.89703E-02</td> <td></td> <td>2.13/1/10-02</td> <td></td>			4	5.89703E-02	5.89703E-02		2.13/1/10-02	
3 HILL 1 4.54399E-04 8.30636E-03 8.30636E-03 8.84859E-03 2 1.34725E-04 6.33076E-04 6.33076E-04 7.75405E-03 8.84859E-03 3 6.33076E-04 7.80239E-04 7.80239E-04 7.75405E-03 8.84859E-03 4 7.80239E-04 7.80239E-04 7.80239E-04 6.43008E-03 8.84859E-03 4 1.15061E-03 1.15061E-03 3.83618E-02 3.83618E-02 3.83618E-02 2 5.01411E-02 2.84781E-02 3.83618E-02 3.83618E-02 3.83618E-02 3 4.73208E-02 6.05917E-01 2.97196E-02 3.58111E-02 4.06661E-02 4 6.05917E-01 6.05917E-01 2.97196E-02 3.58111E-02 4.05917E-01 5 1.25536E-01 1.06172E-02 2.62777E-02 2.62777E-02 2.19931E-02 5 1.06172E-02 1.06172E-02 2.03578E-02 7.33590E-02 2.03578E-02 7.33590E-02 6 HILL 1 6.38769E-04 6.38769E-04 9.22790E-03 9.23799E-03 6 HILL 1 6.38769E-04 6.3876			5	2.47654E-02	2.47654E-02		2.039436-02	5.89703E-02
2 1.347252-04 1.347252-04 8.306362-03 3 6.330762-04 6.330762-04 8.848592-03 4 7.802392-04 7.802392-04 7.754052-03 5 1.150612-03 1.150612-03 6.435082-03 4 HILL 1 2.847812-02 2.847812-02 3.836182-02 2 5.014112-02 5.014112-02 4.086612-02 3.581112-02 3 4.733202-02 4.733202-02 3.581112-02 3.581112-02 4 6.059172-01 6.059172-01 2.971962-02 3.581112-02 5 1.255368-01 1.255362-01 2.627772-02 2.627772-02 4 7.335902-02 1.061722-02 2.627772-02 2.627772-02 5 1.410192-02 1.061722-02 2.627772-02 2.635782-02 4 7.335902-02 7.335902-02 2.035782-02 7.335902-02 5 1.410192-02 1.410192-02 2.627772-02 2.627772-02 2.627772-02 5 2.799802-02 2.799802-02 2.035782-02 7.335902-02 7.335902-02 6 HILL 1	3	HILL	1	4.54399E-04	4.54399E-04			
3 6.33076E-04 6.33076E-04 7.75405E-03 4 7.80239E-04 7.80239E-04 6.43508E-03 5 1.15061E-03 1.15061E-03 6.43508E-03 4 HILL 1 2.84781E-02 2.84781E-02 2 5.01411E-02 5.01411E-02 4.08661E-02 3 4.73320E-02 4.73320E-02 3.83618E-02 4 6.05917E-01 6.05917E-01 3.8311E-02 5 1.25536E-01 1.25536E-01 2.62777E-02 5 1.6172E-02 1.06172E-02 2.79931E-02 3 1.41019E-02 1.41019E-02 2.03578E-02 4 7.33590E-02 2.79980E-02 2.03578E-02 5 2.79980E-02 2.79980E-02 7.33590E-02 6 HILL 1 6.38769E-04 9.22790E-03 5 2.79980E-02 2.79980E-02 7.33590E-02 6 HILL 1 6.38769E-04 9.22790E-03 3 8.5922E-04 8.5922E-04 8.61432E-03 4 2.63805E-03 2.63805E-03 8.61432E-03			2	1.34725E-04	1.34725E-04		8.30636E-03	
4 7.80239E-04 7.80239E-04 6.4300E-03 5 1.15061E-03 1.15061E-03 6.4300E-03 4 HILL 1 2.84781E-02 2.84781E-02 2 5.01411E-02 5.01411E-02 4.08661E-02 3 4.73320E-02 4.0302E-02 3.58111E-02 4 6.05917E-01 6.05917E-01 2.97196E-02 5 1.25536E-01 1.25536E-01 2.62777E-02 2 1.06172E-02 1.06172E-02 2.79931E-02 3 1.41019E-02 1.41019E-02 2.03578E-02 4 7.33590E-02 2.79980E-02 2.03578E-02 5 2.79980E-02 2.79980E-02 7.33590E-02 6 HILL 1 6.38769E-04 9.22790E-03 4 3.0722E-04 8.5922E-04 8.61432E-03 3 8.5922E-04 8.5922E-04 8.61432E-03 4 2.63805E-03 2.63805E-03 9.83029E-03 5 1.86004E-03 1.68004E-03 9.83029E-03			3	6.33076E-04	6.33076E-04		8.84859E-03	
5 1.15061E-03 1.15061E-03 6.43508E-03 8.84859E-03 4 HILL 1 2.84781E-02 3.83618E-02 4.08661E-02 2 5.01411E-02 5.01411E-02 3.83618E-02 4.08661E-02 3 4.73320E-02 4.73320E-02 3.58111E-02 4 6.05917E-01 6.05917E-01 2.97196E-02 5 1.25536E-01 1.25536E-01 2.97196E-02 5 1.25536E-01 1.06172E-02 2.62777E-02 2 1.06172E-02 1.06172E-02 2.79931E-02 3 1.41019E-02 1.41019E-02 2.45304E-02 4 7.33590E-02 2.03578E-02 7.33590E-02 6 HILL 1 6.38769E-04 9.22790E-03 6 HILL 1 6.38769E-04 9.22790E-03 3 8.59222E-04 8.59222E-04 9.83029E-03 4 2.63805E-03 2.63805E-03 7.14901E-03 5 1.86004E-03 1.86004E-03 9.83029E-03			4	7.80239E-04	7.80239E-04		7.75405E-03	
4 HILL 1 2.84781E-02 3.83618E-02 3.83618E-02 2 5.01411E-02 4.08661E-02 3.83618E-02 3 4.73320E-02 4.73320E-02 3.58111E-02 4 6.05917E-01 6.05917E-01 2.97196E-02 5 1.25536E-01 1.25536E-01 2.97196E-02 5 HILL 1 6.93346E-03 2.62777E-02 2 1.06172E-02 1.06172E-02 2.79931E-02 3 1.41019E-02 1.41019E-02 2.45304E-02 4 7.33590E-02 7.33590E-02 2.03578E-02 6 HILL 1 6.38769E-04 9.2790E-03 6 HILL 1 6.38769E-04 9.83029E-03 3 8.5922E-04 8.5922E-04 8.61432E-03 4 2.6305E-03 2.6305E-03 7.4301E-03 5 1.86004E-03 1.86004E-03 9.83029E-03			5	1.15061E-03	1.15061E-03		6.43508E-03	8.84859E-03
2 5.01411E-02 5.01411E-02 4.08661E-02 3 4.73320E-02 4.08661E-02 4 6.05917E-01 6.05917E-01 5 1.25536E-01 1.25536E-01 2.97196E-02 5 1.25536E-01 1.25536E-01 2.02777E-02 2 1.06172E-02 1.06172E-02 2.79931E-02 3 1.41019E-02 1.41019E-02 2.45304E-02 3 1.41019E-02 2.45304E-02 2.3578E-02 4 7.33590E-02 7.33590E-02 7.33590E-02 6 HILL 1 6.38769E-04 9.22790E-03 3 8.5922E-04 8.5922E-04 8.61432E-03 3 8.5922E-04 8.5922E-04 8.61432E-03 4 2.63805E-03 2.63805E-03 7.4901E-03	4	HILL	1	2.84781E-02	2.84781E-02		3 83618E-02	
3 4.73320E-02 4.73320E-02 3.58111E-02 4 6.05917E-01 6.05917E-01 2.97196E-02 5 1.25536E-01 1.25536E-01 6.05917E-01 5 HILL 1 6.93346E-03 2.62777E-02 2 1.06172E-02 1.06172E-02 2.79931E-02 3 1.41019E-02 1.41019E-02 2.45304E-02 3 1.41019E-02 2.79980E-02 2.03578E-02 6 HILL 1 6.38769E-04 9.22790E-03 6 HILL 1 6.38769E-04 9.83029E-03 3 8.59222E-04 8.59222E-04 8.61432E-03 4 2.63805E-03 2.63805E-03 7.14901E-03 5 1.86004E-03 1.86004E-03 9.83029E-03			2	5.01411E-02	5.01411E-02		4 08661E=02	
4 6.05917E-01 6.05917E-01 2.97196E-02 5 1.25536E-01 1.25536E-01 2.97196E-02 5 HILL 1 6.93346E-03 2.62777E-02 2 1.06172E-02 1.06172E-02 2.79931E-02 3 1.41019E-02 1.41019E-02 2.45304E-02 4 7.33590E-02 7.33590E-02 2.03578E-02 5 2.79980E-02 2.79980E-02 7.33590E-02 6 HILL 1 6.38769E-04 9.22790E-03 2 4.30722E-04 4.30722E-04 9.83029E-03 3 8.59222E-04 8.59222E-04 8.61432E-03 4 2.63805E-03 2.63805E-03 7.14901E-03 5 1.86004E-03 1.86004E-03 9.83029E-03			3	4.73320E-02	4.73320E-02		2 59111E-02	
5 1.25536E-01 1.25536E-01 6.05917E-01 5 HILL 1 6.059346E-03 2.62777E-02 2 1.06172E-02 1.06172E-02 2.79931E-02 3 1.41019E-02 1.41019E-02 2.45304E-02 4 7.33590E-02 7.33590E-02 2.03578E-02 5 2.79980E-02 2.79980E-02 7.33590E-02 6 HILL 1 6.38769E-04 9.22790E-03 2 4.30722E-04 4.30722E-04 9.83029E-03 3 8.59222E-04 8.59222E-04 8.61432E-03 4 2.63805E-03 2.63805E-03 7.14901E-03 5 1.86004E-03 1.86004E-03 9.83029E-03			4	6.05917E-01	6.05917E-01		3.30111E-02	
5 HILL 1 6.93346E-03 2.62777E-02 2 1.06172E-02 1.06172E-02 2.79931E-02 3 1.41019E-02 1.41019E-02 2.45304E-02 4 7.33590E-02 7.33590E-02 2.03578E-02 5 2.79980E-02 2.79980E-02 7.33590E-02 6 HILL 1 6.38769E-04 9.22790E-03 2 4.30722E-04 4.30722E-04 9.83029E-03 3 8.59222E-04 8.59222E-04 8.61432E-03 4 2.63805E-03 2.63805E-03 7.14901E-03 5 1.86004E-03 1.86004E-03 9.83029E-03			5	1.25536E-01	1.25536E-01		2.9/1905-02	6.05917E-01
2 1.06172E-02 1.06172E-02 2.79931E-02 3 1.41019E-02 1.41019E-02 2.45304E-02 4 7.33590E-02 7.33590E-02 2.03578E-02 5 2.79980E-02 2.79980E-02 7.33590E-02 6 HILL 1 6.38769E-04 9.22790E-03 2 4.30722E-04 4.30722E-04 9.83029E-03 3 8.59222E-04 8.59222E-04 8.61432E-03 4 2.63805E-03 2.63805E-03 7.14901E-03 5 1.86004E-03 1.86004E-03 9.83029E-03	5	HILL	1	6.93346E-03	6.93346E-03		2.62777E-02	
3 1.41019E-02 1.41019E-02 2.45304E-02 4 7.33590E-02 7.33590E-02 2.03578E-02 5 2.79980E-02 2.79980E-02 7.33590E-02 6 HILL 1 6.38769E-04 6.38769E-04 2 4.30722E-04 4.30722E-04 9.83029E-03 3 8.59222E-04 8.59222E-04 8.61432E-03 4 2.63805E-03 7.14901E-03 9.83029E-03 5 1.86004E-03 1.86004E-03 9.83029E-03			2	1.06172E-02	1.06172E-02		2.79931E-02	
4 7.33590E-02 7.33590E-02 2.03578E-02 2.03578E-02 5 2.79980E-02 2.79980E-02 7.33590E-02 7.33590E-02 6 HILL 1 6.38769E-04 9.22790E-03 9.83029E-03 2 4.30722E-04 4.30722E-04 9.83029E-03 4.61432E-03 3 8.59222E-04 8.59222E-04 8.61432E-03 4 2.63805E-03 2.63805E-03 7.14901E-03 5 1.86004E-03 1.86004E-03 9.83029E-03			3	1.41019E-02	1.41019E-02		2.45304E-02	
5 2.79980E-02 2.79980E-02 7.33590E-02 6 HILL 1 6.38769E-04 9.22790E-03 2 4.30722E-04 4.30722E-04 9.83029E-03 3 8.59222E-04 8.59222E-04 8.61432E-03 4 2.63805E-03 2.63805E-03 7.14901E-03 5 1.86004E-03 1.86004E-03 9.83029E-03			4	7.33590E-02	7.33590E-02		2.03578E-02	
6 HILL 1 6.38769E-04 9.22790E-03 2 4.30722E-04 4.30722E-04 9.83029E-03 3 8.59222E-04 8.59222E-04 8.61432E-03 4 2.63805E-03 7.14901E-03 9.83029E-03 5 1.86004E-03 1.86004E-03 9.83029E-03			5	2.79980E-02	2.79980E-02		1.000,01 02	7.33590E-02
2 4.30722E-04 4.30722E-04 3 8.59222E-04 9.83029E-03 4 2.63805E-03 8.61432E-03 5 1.86004E-03 1.86004E-03	6	HILL	1	6.38769E-04	6.38769E-04		9.22790E-03	
3 8.59222E-04 8.61432E-03 4 2.63805E-03 2.63805E-03 5 1.86004E-03 1.86004E-03			2	4.30722E-04	4.30722E-04		9.83029E-03	
4 2.63805E-03 2.63805E-03 7.14901E-03 9.83029E-03			3	8.59222E-04	8.59222E-04		8.61432E-03	
5 1.86004E-03 1.86004E-03 9.83029E-03			4	2.63805E-03	2.63805E-03		7.14901E-03	
			5	1.86004E-03	1.86004E-03			9.83029E-03

Listing 24-14. 2-Dimensional Composite Plate Strength Ratios.

ELEMENT ID	FAILURE THEORY	PLY ID	MATRIX STRENGTH RATIO	FAILURE FIBER STRENGTH MODE RATIO	FAILURE MODE	BOND STRENGTH RATIO	ELEMENT STRENGTH RATIO
1	HILL	1	5.54084E+00	5.54084E+00		2 02801E+01	
		2	4.15960E+00	4.15960E+00		1 90373E+01	
		3	4.26586E+00	4.26586E+00		2 17246E+01	
		4	1.20937E+00	1.20937E+00		2.61774E+01	
		5	2.65287E+00	2.65287E+00		2.01,7,12,01	1.20937E+00
2	HILL	1	1.24116E+01	1.24116E+01		3.79866E+01	
		2	1.06949E+01	1.06949E+01		3 56588E+01	
		3	9.12720E+00	9.12720E+00		4 06923E+01	
		4	4.11797E+00	4.11797E+00		4.00328E+01	
		5	6.35444E+00	6.35444E+00		4.905201101	4.11797E+00
3	HILL	1	4.69117E+01	4.69117E+01			
		2	8.61542E+01	8.61542E+01		1.20390E+02	
		3	3.97440E+01	3.97440E+01		1.13012E+02	
		4	3.58003E+01	3.58003E+01		1.28965E+02	
		5	2.94805E+01	2.94805E+01		1.55398E+02	2.94805E+01
4	HILL	1	5.92577E+00	5.92577E+00		2 606768101	
		2	4.46584E+00	4.46584E+00		2.00070E+01	
		3	4.59645E+00	4.59645E+00		2.44702E+01	
		4	1.28468E+00	1.28468E+00		2.79243E+01	
		5	2.82238E+00	2.82238E+00		3.364/9E+01	1.28468E+00
5	HILL	1	1.20095E+01	1.20095E+01		3 80551E+01	
		2	9.70500E+00	9.70500E+00		3 57231E+01	
		3	8.42096E+00	8.42096E+00		4 076575+01	
		4	3.69210E+00	3.69210E+00		4.01017576+01	
		5	5.97635E+00	5.97635E+00		4.912131+01	3.69210E+00
6	HILL	1	3.95665E+01	3.95665E+01		1.08367E+02	
		2	4.81838E+01	4.81838E+01		1.01726E+02	
		3	3.41152E+01	3.41152E+01		1.16086E+02	
		4	1.94697E+01	1.94697E+01		1 308700+02	
		5	2.31867E+01	2.31867E+01		1.330/95402	1.94697E+01

24.5 3-Dimensional Composite Analysis

The PCOMP Bulk Data entry in Autodesk Inventor Nastran can also be used to model 3-dimensional composite solid element properties (CHEXA and CPENTA elements only). Like the composite shell, the composite solid is defined as a stacked group of lamina or plies, each having its own material properties (MAT1, MAT9, or MAT12), orientation, and stress limits. Each lamina may be considered as a group of unidirectional fibers. The principal material axes for the lamina are parallel and perpendicular to the fiber directions. The principal directions are referred to as "longitudinal" or the 1-direction of the fiber, as "transverse" or the 2-direction for the perpendicular direction (matrix direction), and as "thickness" or the 3-direction for the through thickness direction.

A stacked group of lamina is called a laminate. The lamina are bonded together with a thin layer of zero thickness bonding material. Each lamina can be modeled as an isotropic material (MAT1), a 3-dimensional anisotropic material (MAT9), or a 3-dimensional orthotropic material (MAT12). Each layer is in a state of general stress. The only assumption made is that the bonding is perfect.

Composite element output includes:

- Lamina (ply) and interlaminar (bond) stress or strain output.
- Failure index or strength ratio output (use PARAM, STRENGTHRATIO, ON to obtain strength ratio instead of failure index output).
- Equivalent plate stress, strain, or force output (use PARAM, NOCOMPS, ON to obtain equivalent plate instead of individual lamina output).

Failure index and strength ratio output requires that the appropriate stress limits be specified on the lamina material property definition (MAT1 or MAT12) and that the failure theory be specified on the PCOMP Bulk Data entry.

3-Dimensional composites are supported in all linear solutions. In nonlinear solutions an equivalent anisotropic solid material property (MAT9) will be used. Individual ply output is not available in solutions with complex results output such as frequency and random response. For these solutions standard solid element results will be output.

We will now look at how to use the PCOMP and PSOLID Bulk Data entries for modeling 3-dimensional composites using the cantilevered composite plate example shown in Figure 24-3. The lamina and laminate properties are defined in Tables 24-7 and 24-6, respectively. The Model Input File is shown in Listing 24-15.

The definition of the ply orientation is handled differently for the 3-dimensional composite as compared to the 2-dimensional one. Ply orientation is relative to the projection of the material x-direction on the element surface where the surface normal is defined by the element z-axis. The angles given in Table 24-6 are relative to this axis. The default material coordinate system for solid elements is the element system. Since the hex elements in our example are rectangular we can use the default axis. Typically this is not the case and the material orientation must be defined explicitly on the MCID field of the PSOLID entry. See the *Nastran Solver Reference Guide*, Section 4, *Bulk Data*, for more information on PSOLID Bulk Data entry and material axis orientation.

3-Dimensional composites are enabled when a PCOMP identification number is referenced in the PCPID field of the PSOLID Bulk Data entry. The thicknesses defined on the PCOMP entry are relative to the element z-axis. The thickness total on the PCOMP entry is not required to be equal to the element thickness. Instead these values are converted to percentages at each element integration point to accommodate element taper and twist. The number of integration points in the 3-direction of the ply is controlled using PARAM, NSLDPLYINTPOINT which is defaulted to 3.

Material ID	E₁ (msi)	E₂ (msi)	E₃ (msi)	U12	U 23	U31	G ₁₂ (msi)	G ₂₃ (msi)	G ₃₁ (msi)
110	10.0	10.0	0.1	0.1	0.0	0.0	1.0	1.0	1.0
120	10.0	1.0	0.1	0.2	0.0	0.0	4.0	2.0	2.0
130	10.0	2.0	0.1	0.1	0.0	0.0	3.0	1.5	1.5

	Table 24-7a.	Individual	Lamina	Material	Prop	erties -	- Moduli.
--	--------------	------------	--------	----------	------	----------	-----------

 Table 24-7b. Individual Lamina Material Properties – Stress Limits.

Material ID	X _t (ksi)	X _c (ksi)	Y _t (ksi)	Y _c (ksi)	Z _t (ksi)	Z _c (ksi)	S ₁₂ (ksi)	S ₂₃ (ksi)	S ₃₁ (ksi)
110	60.0	50.0	60.0	50.0	10.0	10.0	5.0	4.0	4.0
120	40.0	80.0	4.0	8.0	1.0	2.0	5.0	4.0	4.0
130	20.0	10.0	15.0	10.0	1.0	1.0	4.0	3.0	3.0

Because 3-dimensional composite analysis uses the PCOMP Bulk Data entry the output will include the generation of equivalent 2-dimensional MAT2 anisotropic material and PSHELL shell properties as well as an equivalent MAT9 anisotropic solid material property. The equivalent anisotropic solid property is only used in solutions which do not support laminated solid elements.

Listing 24-15. 3-Dimensional Composite Cantilever Plate Model Input File.

```
$ STATIC SOLUTION.
Ś
SOL STATIC
Ś
TITLE = INSTALLATION TEST CASE
SUBTITLE = COMPOSITE CANTILEVER BEAM -HEX ELEMENTS -2X3 MESH
DISPLACEMENT = ALL
STRESS = ALL
Ś
SPC = 1
SUBCASE 1
 LABEL = 10 PSI SURFACE PRESSURE
 LOAD = 1
BEGIN BULK
Ś
\ Geometry definition (6" x 2" rectangular flat plate with a 3 x 2 Mesh).
Ś
GRID,
          1, , 2., 0.,
                                        Ο.
            2, , 2., 1.,
3, , 2., 2.,
GRID,
                                         Ο.
GRID,
                                         0.
          4, , 6., 0.,
GRID,
                                        Ο.
          5, , 6., 1.,
6, , 6., 2.,
7, , 4., 0.,
GRID,
                                         0.
GRID,
                                         Ο.
GRID,
                                        0.
GRID, 8, , 4., 1.,
GRID, 9, , 4., 2.,
GRID, 10, , 0., 0.,
                                       0.
                                         Ο.
                                        0.
GRID, 11, , 0., 1.,
                                       Ο.

      GRID,
      12,
      ,
      1...
      0...

      GRID,
      12,
      ,
      0...
      2...
      0...

      GRID,
      13,
      ,
      2...
      0...
      0.25

      GRID,
      14,
      ,
      2...
      1...
      0.25

GRID, 15, , 2., 2., 0.25
GRID, 16, , 6., 0., 0.25
GRID, 17, , 6., 1., 0.25

      GRID,
      18,
      ,
      6.,
      2.,
      0.25

      GRID,
      19,
      ,
      4.,
      0.,
      0.25

      GRID,
      20,
      ,
      4.,
      1.,
      0.25

      GRID,
      21,
      ,
      4.,
      2.,
      0.25

      GRID,
      21,
      ,
      4.,
      2.,
      0.25

GRID, 22, , 0., 0., 0.25
GRID, 23, , 0., 1., 0.25
GRID, 24, , 0., 2., 0.25
Ś
$ FLAT PLATE MODELED WITH SOLID ELEMENTS.
Ś
CHEXA,
           7, 10, 10, 1, 2, 11, 22, 13,
, 14, 23
CHEXA,
            8, 10, 1,
                                   7,
                                          8, 2, 13, 19,
  20, 14
            9, 10, 7,
                                   4, 5, 8, 19, 16,
CHEXA,
, 17,
           20
            10, 10, 11,
CHEXA,
                                    2,
                                          3, 12, 23, 14,
, 15, 24
CHEXA, 11, 10, 2, 8, 9, 3, 14, 20,
, 21, 15
CHEXA, 12, 10, 8, 5, 6, 9, 20, 17,
, 18, 21
Ś
$ SOLID ELEMENT PROPERTY DEFINITION IN ELEMENT COORDINATE SYSTEM.
Ś
PSOLID, 10, 1, , 20
Ś
$ COMPOSITE LAMINATE PROPERTY DEFINITION.
$
PCOMP, 20, , 5.E+3, HILL,
, 110, 0.05, 0., YES, 120, 0.07, 45., YES,
, 130, 0.06, 90., YES, 120, 0.05, 60., YES,
   110, 0.02, 0., YES
```

Listing 24-15. 3-Dimensional Composite Cantilever Plate Model Input File. (Continued)

```
$ LAMINA MATERIAL PROPERTIES.
$
MAT12, 110, 10.E+6, 10.E+6, 1.E+4, 0.1, 0., 0.,
, 1.E+6, 1.E+6, 1.E+6,

      1.1.1.0, 1.1.1.0, 1.1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 1.1.0, 
MAT12, 120, 10.E+6, 1.E+6, 1.E+4, 0.2, 0., 0.,
         4.E+6, 2.E+6, 2.E+6,
 ,
                                             , 40.E+3, 4.E+3, 1.E+3,
, , , , , 40.E+3, 4.E+3, 1.E+3,
, 5.E+3, 4.E+3, 4.E+3, , 80.E+3, 8.E+3, 2.E+3
MAT12, 130, 10.E+6, 2.E+6, 1.E+4, 0.1, 0., 0.,
, 3.E+6, 1.5E+6, 1.5E+6,
           , , , , 20.E+3, 15.E+3, 1.E+3,
4.E+3, 3.E+3, 3.E+3, , 10.E+3, 10.E+3, 1.E+3
Ś
$ FIXED BOUNDARY CONDITION AT ONE END.
 Ś
SPC1, 1, 123456, 10, 11, 12, 22, 23, 24
 Ś
$ SURFACE PRESSURE LOADING.
PLOAD4, 1,
                                                       7, 10.,
                                                                                                                                  10,
                                                                                                                                                  2
                                                                                            ,
                                                                                                        ,
                                                                                                                     ,
PLOAD4, 1, 8, 10., , ,
                                                                                                                                 1, 8
                                                                                                                    ,
                                                                                           , , , 7, 5
, , , 11, 3
PLOAD4, 1, 9, 10., , , ,
PLOAD4, 1, 10, 10., , , ,
PLOAD4, 1, 11, 10., , , ,
                                                                                                                                   2,
                                                                                                                                                   9
                                                                                              , , ,
PLOAD4, 1, 12, 10., , , ,
                                                                                                                                8,
                                                                                                                                                     6
ENDDATA
```

The plate is loaded with a 10 psi surface pressure which results in bending about the model y-axis. The results are similar to the 2-dimensional example in the previous section (Figure 24-3) including the slight twisting x-rotation due to the unbalanced lay-up. The displacements are shown in Listing 24-16. The element stresses are shown in Listing 24-17. The element failure indexes are shown in Listing 24-18 and the strength ratios in Listing 24-19 (obtained by adding PARAM, STRENGTHRATIO, ON to the Case Control Section of the Model Input File). Note that ply 1-direction and 2-direction stress and strain output is taken at the ply center while interlaminar and 3-direction stress and strain output is taken at the ply transition.

Listing 24-16. 3-Dimensional Composite Plate Displacements.

			DISP	LACEMEN	Τ ΥΕСΤΟ	R	
GRID	COORDINATE	Τ1	Т2	Т3	R1	R2	R3
ID	ID						
1	0	2.647045E-03	-7.963247E-05	2.551758E-02	0.00000E+00	0.00000E+00	0.000000E+00
2	0	2.842610E-03	-1.250115E-04	2.758905E-02	0.00000E+00	0.00000E+00	0.000000E+00
3	0	3.037259E-03	-1.726977E-04	2.961260E-02	0.00000E+00	0.00000E+00	0.000000E+00
4	0	4.183717E-03	3.294545E-04	1.658251E-01	0.00000E+00	0.00000E+00	0.000000E+00
5	0	4.226151E-03	3.321596E-04	1.720394E-01	0.00000E+00	0.00000E+00	0.000000E+00
6	0	4.280705E-03	3.352250E-04	1.782917E-01	0.00000E+00	0.00000E+00	0.000000E+00
7	0	3.883498E-03	1.424097E-04	8.831843E-02	0.00000E+00	0.00000E+00	0.000000E+00
8	0	3.984041E-03	1.418669E-04	9.316656E-02	0.00000E+00	0.00000E+00	0.000000E+00
9	0	4.077350E-03	1.453106E-04	9.803680E-02	0.000000E+00	0.00000E+00	0.000000E+00
13	0	-3.694612E-03	-6.092479E-04	2.535928E-02	0.00000E+00	0.00000E+00	0.000000E+00
14	0	-3.968037E-03	-6.423821E-04	2.743004E-02	0.00000E+00	0.00000E+00	0.000000E+00
15	0	-4.246207E-03	-6.767892E-04	2.945430E-02	0.000000E+00	0.00000E+00	0.000000E+00
16	0	-5.848107E-03	-1.218392E-03	1.656952E-01	0.00000E+00	0.00000E+00	0.000000E+00
17	0	-5.924244E-03	-1.224177E-03	1.719098E-01	0.000000E+00	0.00000E+00	0.000000E+00
18	0	-5.986584E-03	-1.231361E-03	1.781617E-01	0.000000E+00	0.00000E+00	0.000000E+00
19	0	-5.439550E-03	-1.066713E-03	8.820406E-02	0.000000E+00	0.00000E+00	0.000000E+00
20	0	-5.570186E-03	-1.071960E-03	9.305112E-02	0.00000E+00	0.00000E+00	0.000000E+00
21	0	-5.710591E-03	-1.075929E-03	9.792051E-02	0.00000E+00	0.00000E+00	0.00000E+00

Listing 24-17. 3-Dimensional Composite Plate Stresses.

EMENT	PLY	STRESSES IN FI	IBER AND MATE	XIX DIRECTIONS	INTE	ER-LAMINAR STR	RESSES	HENCKY
ID	ID	NORMAL-1	NORMAL-2	SHEAR-12	NORMAL-3	SHEAR XZ-MAT	SHEAR YZ-MAT	VON MISES
7	1	1.05192E+04	8.31145E+02	-3.00295E+00	-3.17302E+00	9.15680E+01	-1.23558E+01	1.01323E+04
	2	1.79817E+03	9.18431E+01	1.10030E+03	-3.17302E+00	1.70297E+02	-2.29792E+01	2.60962E+03
	3	-3.10869E+02 -	-1.20708E+03	7.53370E+02	-3.17302E+00	1.19469E+02	-1.61207E+01	1.70968E+03
	4	-2.12105E+03 -	-1.19571E+03	-3.80401E+03	-3.17302E+00	1.50122E+02	-2.02568E+01	6.84590E+03
	5	-1.80386E+04 -	-1.97198E+03	-4.29770E+02	0.00000E+00	0.00000E+00	0.00000E+00	1.71527E+04
8	1	4.53625E+03	2.27785E+02	2.00876E+02	-5.47106E+00	8.21190E+01	-1.14378E+01	4.44578E+03
	2	2.72493E+02	6.56837E+01	5.18110E+02	-5.47106E+00	1.52724E+02	-2.12718E+01	9.71943E+02
	3	-2.60364E+02 -	-5.33756E+02	4.38484E+02	-5.47106E+00	1.07141E+02	-1.49229E+01	9.07621E+02
	4	-4.18219E+02 -	-5.77102E+02	-1.33968E+03	-5.47106E+00	1.34631E+02	-1.87518E+01	2.38837E+03
	5	-7.89350E+03 -	-9.82765E+02	-3.96028E+02	0.00000E+00	0.00000E+00	0.00000E+00	7.48005E+03
9	1	1.04041E+03	1.08255E+02	1.31305E+02	-4.89408E+00	3.42376E+01	4.19288E+00	1.02111E+03
	2	-1.18080E+02	3.36187E+01	1.03295E+02	-4.89408E+00	6.36748E+01	7.79788E+00	2.52898E+02
	3	-4.08855E+01 -	-1.21137E+02	1.23861E+02	-4.89408E+00	4.46701E+01	5.47049E+00	2.51300E+02
	4	1.15620E+02 -	-1.48479E+02	-2.07575E+02	-4.89408E+00	5.61312E+01	6.87407E+00	4.38059E+02
	5	-1.79929E+03 -	-2.32451E+02	-1.65553E+02	0.00000E+00	0.00000E+00	0.0000E+00	1.71694E+03
10	1	1.12656E+04	8.94770E+02	-2.62802E+01	-3.17313E+00	1.80170E+02	-1.02822E+01	1.08526E+04
	2	1.99202E+03	9.28781E+01	1.17421E+03	-3.17313E+00	3.35078E+02	-1.91228E+01	2.88073E+03
	3	-3.28080E+02 -	-1.29486E+03	8.16504E+02	-3.17313E+00	2.35069E+02	-1.34153E+01	1.87946E+03
	4	-2.29524E+03 -	-1.27970E+03	-4.09224E+03	-3.17313E+00	2.95381E+02	-1.68573E+01	7.38074E+03
	5	-1.93370E+04 -	-2.10840E+03	-4.49207E+02	0.00000E+00	0.00000E+00	0.00000E+00	1.83902E+04
11	1	4.16158E+03	1.97879E+02	2.19534E+02	-5.49048E+00	8.09235E+01	-1.04549E+01	4.08949E+03
	2	1.54620E+02	6.71452E+01	4.81680E+02	-5.49048E+00	1.50501E+02	-1.94439E+01	8.88662E+02
	3	-2.52485E+02 -	-4.88705E+02	4.01400E+02	-5.49048E+00	1.05582E+02	-1.36406E+01	8.33612E+02
	4	-3.28405E+02 -	-5.34607E+02	-1.19077E+03	-5.49048E+00	1.32671E+02	-1.71404E+01	2.12702E+03
	5	-7.23316E+03 -	-9.16371E+02	-3.88201E+02	0.00000E+00	0.00000E+00	0.00000E+00	6.85205E+03
12	1	8.55711E+02	1.09286E+02	1.34257E+02	-4.91361E+00	2.01099E+01	3.23881E+00	8.43099E+02
	2	-1.47041E+02	3.26150E+01	7.87817E+01	-4.91361E+00	3.74002E+01	6.02350E+00	2.24049E+02
	3	-3.04946E+01 -	-1.00532E+02	1.18133E+02	-4.91361E+00	2.62376E+01	4.22569E+00	2.26903E+02
	4	1.72737E+02 -	-1.29511E+02	-1.32619E+02	-4.91361E+00	3.29694E+01	5.30989E+00	3.54309E+02
	5	-1 48767E+03 -	-2 01001E+02	-1 64394E+02	0 00000E+00	0.00000E+00	0 00000E+00	1 42414E+03

Listing 24-18. 3-Dimensional Composite Plate Failure Indexes.

LEMENT ID	FAILURE THEORY	PLY ID	MATRIX FAILURE INDEX	FAILURE FIBER FAILURE MODE INDEX	FAILURE MODE	BOND FAILURE INDEX	ELEMENT FAILURE INDEX
7	HILL	1	1.14396E-01	1.14396E-01		1 83136E-02	
		2	5.27927E-02	5.27927E-02		3 40595E-02	
		3	2.76366E-02	2.76366E-02		2 38939E-02	
		4	6.05851E-01	6.05851E-01		3 00244E=02	
		5	4.66360E-01	4.66360E-01		0.002112 02	6.05851E-01
8	HILL	1	1.77938E-02	1.77938E-02		1 64240E-02	
		2	1.24333E-02	1.24333E-02		3 054528-02	
		3	9.79860E-03	9.79860E-03		2 14285E-02	
		4	7.53143E-02	7.53143E-02		2.1420JE-02	
		5	1.02951E-01	1.02951E-01		2.092031-02	1.02951E-01
9	HILL	1	2.18811E-03	2.18811E-03			
		2	6.48890E-04	6.48890E-04		6.84733E-03	
		3	7.84648E-04	7.84648E-04		1.27346E-02	
		4	1.77434E-03	1.77434E-03		8.93377E-03	
		5	6.26075E-03	6.26075E-03		1.12259E-02	1.27346E-02
10	HILL	1	1.33126E-01	1.33126E-01		3 603308-02	
		2	6.51094E-02	6.51094E-02		6 70155E-02	
		3	3.47027E-02	3.47027E-02		4 70137E-02	
		4	7.04999E-01	7.04999E-01		4.70137E-02	
		5	5.34503E-01	5.34503E-01		5.90702E-02	7.04999E-01
11	HILL	1	1.51828E-02	1.51828E-02		1.61845E-02	
		2	1.08383E-02	1.08383E-02		3.00998E-02	
		3	8.36903E-03	8.36903E-03		2.11160E-02	
		4	5.95614E-02	5.95614E-02		2.65339E-02	
		5	8.82715E-02	8.82715E-02		2.0000002 02	8.82715E-02
12	HILL	1	1.88451E-03	1.88451E-03		4.02217E-03	
		2	2.96709E-04	2.96709E-04		7.48039E-03	
		3	6.28783E-04	6.28783E-04		5.24775E-03	
		4	5.81843E-04	5.81843E-04			

Listing 24-19. 3-Dimensional Composite Plate Strength Ratios.

LEMENT ID	FAILURE THEORY	PLY ID	MATRIX STRENGTH RATIO	FAILURE FIBER STRENGTH MODE RATIO	FAILURE MODE	BOND STRENGTH RATIO	ELEMENT STRENGTH RATIO
7	HILL	1	2.95661E+00	2.95661E+00		5 46042E+01	
		2	4.35224E+00	4.35224E+00		2 93604E+01	
		3	6.01531E+00	6.01531E+00		4 18517E+01	
		4	1.28474E+00	1.28474E+00		3 33062E+01	
		5	1.46433E+00	1.46433E+00			1.28474E+00
8	HILL	1	7.49663E+00	7.49663E+00		6 08865E+01	
		2	8.96823E+00	8.96823E+00		3 2738/F+01	
		3	1.01022E+01	1.01022E+01		4 66669F±01	
		4	3.64386E+00	3.64386E+00		3 713010+01	
		5	3.11662E+00	3.11662E+00		J./IJOIETUI	3.11662E+00
9	HILL	1	2.13779E+01	2.13779E+01		1 46042E+02	
		2	3.92568E+01	3.92568E+01		7 85262E+01	
		3	3.56995E+01	3.56995E+01		1 11935E+02	
		4	2.37400E+01	2.37400E+01		8 90794E+01	
		5	1.26383E+01	1.26383E+01		0.907941101	1.26383E+01
10	HILL	1	2.74074E+00	2.74074E+00		2.77516E+01	
		2	3.91903E+00	3.91903E+00		1 49219E+01	
		3	5.36807E+00	5.36807E+00		2 12704E+01	
		4	1.19098E+00	1.19098E+00		1 69273E+01	
		5	1.36781E+00	1.36781E+00		1.002/01/01	1.19098E+00
11	HILL	1	8.11566E+00	8.11566E+00		6.17875E+01	
		2	9.60549E+00	9.60549E+00		3.32228E+01	
		3	1.09311E+01	1.09311E+01		4.73573E+01	
		4	4.09749E+00	4.09749E+00		3.76877E+01	
		5	3.36581E+00	3.36581E+00		0.1007/11/01	3.36581E+00
12	HILL	1	2.30357E+01	2.30357E+01		2.48622E+02	
		2	5.80543E+01	5.80543E+01		1.33683E+02	
		3	3.98795E+01	3.98795E+01		1.90558E+02	
		4	4.14569E+01	4.14569E+01		1.51649E+02	
		5	1.45348E+01	1.45348E+01		1.010190102	1.45348E+01

24.6 Using Rigid and Interpolation Elements

Autodesk Inventor Nastran contains a wide variety of rigid and interpolation elements. The rigid elements are referenced using the RROD, RBAR, RTRPLT, and RBE2 Bulk Data entries. The interpolation elements are referenced using the RBE3 and RSPLINE Bulk Data entries. The general form of the rigid element is the RBE2, which provides a rigid connection between independent degrees of freedom at a single grid point and corresponding dependent degrees of freedom at multiple grid points. The RBE3 element is a linear interpolation element often used to distribute loading or mass at a single reference point to several non-collinear averaged points. The RSPLINE element uses beam equations to interpolate displacements along a curve and is normally used to model mesh transitions.

All rigid and interpolation elements are reduced to multipoint constraint equations (MPC). The simplest description of an MPC equation is that used to describe the motion of one (dependent) degree of freedom in a model as the linear combination of the motions of one or more (dependent) degrees of freedom.

We will now look at two examples comparing the differences between the RBE2 and RBE3 entry. For each example we will use the cantilever beam shown in Figure 24-4.

Figure 24-4. Cantilever Beam Example Problem.

In the first example the beam is point loaded at the free end through a rigid connection from a single point. For the RBE2 element only one point can be defined as independent. This point is the grid where the load is applied (grid point 19). The dependent grid points are chosen to be the three nodes at the end of the beam (grid points 1, 2, and 3). Component numbers for the independent degrees of freedom must also be specified. Since in this example we are only concerned with motion in the xy-plane, components 1, 2, 6 (x-translation, y-translation, and z-rotation) are chosen. The Model Input File is shown in Listing 24-20.

Listing 24-20. Model Input File for the Rigid Element Example Problem.

```
$ STATIC SOLUTION.
Ś
SOL STATIC
TITLE = INSTALLATION TEST CASE
SUBTITLE = 2-D CANTILEVER BEAM -QUADR ELEMENTS -2X5 MESH
DISPLACEMENT = ALL
ELSTRESS = ALL
MPCFORCES = ALL
Ś
SPC = 1
SUBCASE 1
 LABEL = 60 LB POINT LOAD IN Y-DIRECTION AT RIGID ELEMENT INDEPENDENT GRID POINT
 LOAD = 2
BEGIN BULK
Ś
$ GEOMETRY DEFINITION (10" X 2" RECTANGULAR FLAT PLATE WITH A 5 X 2 MESH).
Ś
             , 10., 0., 0.
, 10., 1., 0.
GRID,
         1,
GRID,
         2,
        З,
             , 10., 2., 0.
GRID,
                 2., 0., 0.
2., 1., 0.
        4, ,
GRID,
         5, ,
6, ,
GRID,
                 2., 2., 0.
GRID,
                 6., 0., 0.
6., 1., 0.
6., 2., 0.
         7,
GRID,
             '
        8,
GRID,
             ,
GRID,
         9,
              ,
GRID, 10, ,
                 4., 0., 0.

      GRID, 11, , 4., 1., 0.

      GRID, 12, , 4., 2., 0.

      GRID, 13, , 8., 0., 0.

GRID, 14, ,
                 8., 1., 0.
GRID, 15, ,
GRID, 16, ,
                  8., 2., 0.
0., 0., 0.
              ,
GRID, 17,
                 0., 1., 0.
             ,
GRID, 18,
                  0., 2.,
                              0.
             ,
GRID,
       19,
                 11.,
                        1.,
                              0.
             ,
Ś
$ FLAT PLATE MODELED WITH SHELL ELEMENTS.
CQUADR, 1, 10, 16, 4, 5,
CQUADR, 2, 10, 4, 10, 11,
CQUADR, 3, 10, 10, 7, 8,
CQUADR, 4, 10, 7, 13, 14,
CQUADR, 5, 10, 13, 1, 2,
CQUADR, 5, 10, 13, 1, 2,
                                   5, 17
                                        5
                                  8, 11
                                         8
                                  2, 14
                            5,
CQUADR,
           6, 10, 17,
                                  6, 18
          7, 10, 5, 11, 12, 6
8, 10, 11, 8, 9, 12
9, 10, 8, 14, 15, 9
CQUADR,
CQUADR,
CQUADR,
CQUADR, 10, 10, 14,
                            2,
                                  3, 15
Ś
$ RIGID ELEMENT CONNECTION.
Ś
RBE2, 11, 19, 126, 1, 2, 3
$ ELEMENT MATERIAL AND THICKNESS (0.1").
Ś
PSHELL, 10, 100, 0.1, 100, , 100
$ ELEMENT MATERIAL PROPERTIES (ALUMINUM).
Ś
MAT1, 100, 1.E+7, , 0.33, 0.1
$ FIXED BOUNDARY CONDITION AT ONE END.
SPC1, 1, 123456, 16, 17, 18
$ POINT LOAD ON FREE END (Y-DIRECTION) AT INDEPENDENT GRID POINT.
Ś
FORCE, 2, 19, 0, 60., 0., 1., 0.
ENDDATA
```

The RBE2 element generates MPC equations for the motion of the independent grid points as a function of the motion of the dependent grid point. The equivalent MPC equations used are written to the Model Output File and the Bulk Data File (Listing 24-21).

MPC		0	1	1 1.00000	19	1-1.00000	+C	3A
+C	3A		19	6-1.00000				
MPC		0	1	2 1.00000	19	2-1.00000	+C	4A
+C	4A		19	6 1.00000				
MPC		0	1	6 1.00000	19	6-1.00000		
MPC		0	2	1 1.00000	19	1-1.00000		
MPC		0	2	2 1.00000	19	2-1.00000	+C	5A
+C	5A		19	6 1.00000				
MPC		0	2	6 1.00000	19	6-1.00000		
MPC		0	3	1 1.00000	19	1-1.00000	+C	6A
+C	6A		19	6 1.00000				
MPC		0	3	2 1.00000	19	2-1.00000	+C	7A
+C	7A		19	6 1.00000				
MPC		0	3	6 1.00000	19	6-1.00000		

Listing 24-21. Generated MPC Bulk Data Entries Written to the Bulk Data Output File.

In this example the beam is subjected to a 60 pound point load at the independent grid point resulting in deflections in the x and y directions. Note that because the RBE2 element creates a rigid connection, stiffness is added to the model and all nodes move as a rigid body. The rigid element displacements from the Model Output File are shown in Listing 24-22 and as expected display rigid body motion.

Listing 24-22. Rigid Element Displacements.

	DISPLACEMENT VECTOR								
GRID	COORDINATE	Т1	Т2	тЗ	R1	R2	R3		
ID	ID								
1	0	5.359975E-03	3.479293E-02	0.000000E+00	0.000000E+00	0.000000E+00	5.359975E-03		
2	0	0.00000E+00	3.479293E-02	0.000000E+00	0.000000E+00	0.000000E+00	5.359975E-03		
3	0	-5.359975E-03	3.479293E-02	0.000000E+00	0.000000E+00	0.000000E+00	5.359975E-03		
19	0	0.00000E+00	4.015290E-02	0.000000E+00	0.000000E+00	0.000000E+00	5.359975E-03		

The forces of multipoint constraint from the Model Output File are shown in Listing 24-23. These are the internal forces generated to enforce rigid body motion. Note that these forces are in equilibrium.

Listing 24-23. Rigid Element Forces of Multipoint Constraint.

		FOR	CES OF	MULTIPO	INT CON	STRAINT	
GRID	COORDINATE	Т1	т2	тЗ	Rl	R2	R3
ID	ID						
1	0	2.488690E+01	2.285701E+01	0.000000E+00	0.000000E+00	0.000000E+00	-6.327615E+00
2	0	-7.389644E-13	1.428599E+01	0.000000E+00	0.000000E+00	0.00000E+00	2.288144E+01
3	0	-2.488690E+01	2.285701E+01	0.00000E+00	0.00000E+00	0.000000E+00	-6.327615E+00
19	0	0.000000E+00	-6.000000E+01	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00

Interpolation elements behave differently than rigid elements and do not add stiffness to the model or force rigid body motion. As an example we replace the RBE2 rigid element with an RBE3 interpolation element. The RBE3 element is very versatile and has many uses. The most common use is to transmit forces and moments from a reference point to several averaged points. In our example the load is applied to the single reference point (grid point 19) and the grid points to be averaged are the three at the beam end (1, 2, and 3). Component numbers for the reference degrees of freedom must also be specified. Since in this example we are only concerned with motion in the xy-plane, components 1, 2, 6 (x-translation, y-translation, and z-rotation) are chosen. Additionally, we must specify weighting factors and components for the averaged grid points. Normally the weighting factors should be set to 1.0. The component numbers determine in what directions the averaged points can react loads. Since our problem is limited to the xy-plane, components 1 and 2 are chosen. The Model Input File is shown in Listing 24-24.

Listing 24-24. Model Input File for the Interpolation Element Example Problem.

```
$ STATIC SOLUTION.
Ś
SOL STATIC
Ś
TITLE = INSTALLATION TEST CASE
SUBTITLE = 2-D CANTILEVER BEAM -QUADR ELEMENTS -2X5 MESH
DISPLACEMENT = ALL
ELSTRESS = ALL
MPCFORCES = ALL
Ś
SPC = 1
SUBCASE 1
 LABEL = 60 LB POINT LOAD IN Y-DIRECTION AT INTERPOLATION ELEMENT REFERENCE GRID POINT
 LOAD = 2
BEGIN BULK
Ś
$ GEOMETRY DEFINITION (10" X 2" RECTANGULAR FLAT PLATE WITH A 5 X 2 MESH).
Ś
                , 10., 0., 0.
, 10., 1., 0.
GRID,
           1,
GRID,
           2,
         3, , 10., 2., 0.
GRID,
         4, , 2., 0., 0.
5, , 2., 1., 0.
6, , 2., 2., 0.
GRID,
GRID,
GRID,
                    6., 0., 0.
6., 1., 0.
6., 2., 0.
          7, ,
GRID,
         8, ,
9, ,
GRID,
GRID,
GRID, 10, , 4., 0., 0.

      GRID,
      11,
      ,
      1.,
      1.,
      0.

      GRID,
      11,
      ,
      4.,
      1.,
      0.

      GRID,
      12,
      ,
      4.,
      2.,
      0.

      GRID,
      13,
      ,
      8.,
      0.,
      0.

GRID, 14, , 8., 1., 0.
GRID, 15, , 8., 2., 0.
GRID, 16, , 0., 0., 0.
GRID, 17, , 0., 1., 0.
GRID, 18, , 0.,
GRID, 19, , 11.,
                     0., 2., 0.
                             1.,
                                     0.
Ś
$ FLAT PLATE MODELED WITH SHELL ELEMENTS.
Ś
CQUADR, 1, 10, 16, 4, 5,
CQUADR, 2, 10, 4, 10, 11,
CQUADR, 3, 10, 10, 7, 8,
CQUADR, 4, 10, 7, 13, 14,
CQUADR, 5, 10, 13, 1, 2,
CQUADR, 5, 10, 13, 1, 2,
                                           5, 17
                                                5
                                         8, 11
                                                 8
                                         2, 14
CQUADR, 6, 10, 17,
                                 5,
                                         6, 18
CQUADR, 7, 10, 5, 11, 12, 6
CQUADR, 8, 10, 11, 8, 9, 12
CQUADR, 9, 10, 8, 14, 15, 9
                                  2,
CQUADR, 10, 10, 14,
                                               15
                                         з.
Ś
$ INTERPOLATION ELEMENT CONNECTION.
Ś
RBE3, 11, , 19, 126, 1., 12, 1, 2,
    3
Ś
$ ELEMENT MATERIAL AND THICKNESS (0.1").
PSHELL, 10, 100, 0.1, 100, , 100
Ś
$ ELEMENT MATERIAL PROPERTIES (ALUMINUM).
Ś
MAT1, 100, 1.E+7, , 0.33, 0.1
```

Listing 24-24. Model Input File for the Interpolation Element Example Problem. (Continued)

```
$ FIXED BOUNDARY CONDITION AT ONE END.
$
SPC1, 1, 123456, 16, 17, 18
$
$ POINT LOAD ON FREE END (Y-DIRECTION) AT REFERENCE GRID POINT.
$
FORCE, 2, 19, 0, 60., 0., 1., 0.
ENDDATA
```

The RBE3 element generates MPC equations for the motion of one or more grid points as a function of the motion of other connected points. The equivalent MPC equations used are written to the Model Output File and the Bulk Data File (Listing 24-25).

Listir	ng 24-25.	Gene	erated N	APC Bulk Data	Entries	Written to the E	Bulk Dat	a Output File.
MPC		0	19	1 1.00000	1	1-0.33333	+C	ЗA
+C	ЗA		2	1-0.33333	3	1-0.33333		
MPC		0	19	2 1.00000	1	1-0.50000	+C	4A
+C	4A		1	2-0.33333	2	2-0.33333	+C	5A
+C	5A		3	1 0.50000	3	2-0.33333		
MPC		0	19	6 1.00000	1	1-0.50000	+C	6A
+C	6A		3	1 0.50000				

As with the previous example the beam is subjected to a 60 pound point load at the reference grid point resulting in deflections in the x and y directions. Note that the RBE3 element does not force rigid body motion and stiffness is not added to the model. The interpolation element displacements are shown in Listing 24-26. As expected the RBE3 element rotations about the z-direction differ, unlike the RBE2 example where they were all the same (rigid body motion).

Listing 24-26. Interpolation Element Displacements.

	DISPLACEMENT VECTOR								
GRID	COORDINATE	Τ1	Т2	Т3	R1	R2	R3		
ID	ID								
1	0	5.454999E-03	3.499772E-02	0.000000E+00	0.000000E+00	0.000000E+00	5.341274E-03		
2	0	0.000000E+00	3.489725E-02	0.000000E+00	0.000000E+00	0.000000E+00	4.668649E-03		
3	0	-5.454999E-03	3.499772E-02	0.000000E+00	0.000000E+00	0.000000E+00	5.341274E-03		
19	0	0.00000E+00	4.041923E-02	0.000000E+00	0.000000E+00	0.00000E+00	5.454999E-03		

The forces of multipoint constraint from the Model Output File are shown in Listing 24-27. These are the internal forces generated at the connected grid points that are in equilibrium with the load(s) applied at the reference point. Unlike rigid elements, they are a direct result of the magnitude and direction of the applied loads and the interpolation element geometry, not the adjoining stiffness. Note the difference between these forces and those in Listing 24-23.

		FOR	CES OF	Μυιτιρο	INT CON	STRAINT	
GRID ID	COORDINATE ID	T1	Τ2	ТЗ	R1	R2	R3
1	0	3.000000E+01	2.000000E+01	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00
2	0	3.410605E-12	2.000000E+01	0.000000E+00	0.000000E+00	0.000000E+00	0.00000E+00
3	0	-3.000000E+01	2.000000E+01	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00
19	0	0.00000E+00	-6.00000E+01	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00

Listing 24-27. Interpolation Element Forces of Multipoint Constraint.

Last, a discussion of common errors using rigid and interpolation elements is necessary. The most common error is the application of additional constraints through either single point or multipoint constraints or other rigid or interpolation elements. A dependent degree of freedom assigned by one element cannot be assigned dependent by another or by an MPC. For example, you cannot specify a reference degree of freedom on a RBE3 as the dependent degree of freedom on an RBE2. Additionally, you cannot reference dependent degrees of freedom on RBE2 or RBE3 entries on single point constraint entries. This error occurs most often when using symmetric boundary conditions and rigid elements together. The solution is to specify the boundary conditions on the independent degrees of freedom and not the dependent ones.

24.7 Sparse Solver Operation

Operation of the sparse direct and iterative solvers is discussed in Table 24-8. If configured correctly, these solvers can dramatically increase performance over the older blocked profile solvers. The sparse direct solver requires more physical memory for large models than the blocked profile solvers did. It is recommended that if you intend to run large, complex models, you upgrade your computers physical memory to the maximum allowed. Table 24-9 shows which solvers are available in each solution.

Solver	DECOMPMETHOD Directive Setting	Associated Directives and Parameters	Remarks
Parallel Sparse Iterative	PCGLSS	MAXSPARSEITER, MINSPARSEITER, SPARSEITERTOL, SPARSEITERMODE, SPARSEITERMETHOD, NPROCESSORS	This is a parallel, multi-mode solver which uses either an iterative (Preconditioned Conjugate Gradient) or direct solution technique. Its advanced preconditioner is optimized for all element types and is available in all linear and nonlinear static solutions. The iterative solver mode requires less physical memory and disk storage than the direct mode and other direct solvers (VSS). It is especially effective for large models comprised mainly of parabolic tetrahedron elements (CTETRA). The MAXSPARSEITER model parameter controls the maximum number of iterations permitted. The MINSPARSEITER model parameter controls the minimum number of iterations that will be performed regardless of convergence. The SPARSEITERTOL parameter controls the convergence tolerance. Solution accuracy and performance can be controlled with these parameters. Note the RAM directive setting has no effect on performance for this solver in the iterative mode. The direct solver requires more memory but is less sensitive to element initial distortion and may provide a faster solution when sufficient memory is available. Like the VSS solver it has an out of core mode that is controlled by the RAM directive. Both modes support multiple processors using the NPROCESSORS directive. If the PCGLSS solver will be used. This solver is recommended for large problems and will generally be faster than the VSS solver.
Sparse Direct	VSS	SPARSEMETHOD, RAM, RESEQGRIDMETHOD	This solver is optimized for all element types and solutions. Performance is dependent on available physical memory and can be adversely affected by the RAM directive setting. The solver has two modes of operation: in core and out of core. If the factored stiffness matrix size, as determined by the solver, exceeds the available system memory, as set by the RAM directive, an out of core solution will be used. An in core solution is usually faster than an out of core solution, even if some virtual memory is used. To force an in core solution, increase the RAM directive value. If an out of core solution is performed, the solver will state "OUT OF CORE SOLUTION USED". Significant performance degradation can occur if physical memory is limited regardless of which mode is used. The PCGLSS solver will usually be faster for these types of problems since it requires less memory.

Table 24-8 Sparse Solver Operation.

Solver	DECOMPMETHOD	Associated	Remarks
	Directive Setting	Directives and Parameters	
Sparse Iterative	VIS	MAXSPARSEITER, SPARSEITERTOL	This solver uses an iterative solution technique (Preconditioned Conjugate Gradient) which requires less physical memory and disk storage than the direct solvers. It is optimized for models consisting of mostly solid elements running non-eigenvalue solutions or all element types in heat transfer solutions. It is not recommended for nonlinear solutions where material nonlinearity is specified or for models with shell and/or line element types. If the VIS solver is used for these types of problems, convergence may be slow or the solution may diverge. The MAXSPARSEITER model parameter controls the maximum number of iterations permitted. The SPARSEITERTOL parameter controls the convergence tolerance. Solution accuracy and performance can be controlled with these parameters. This solver can be very useful when other solvers fail because it does not require the matrix to be nonsingular or positive definite. For ill-conditioned problems it is recommended that MAXSPARSEITER be set to 500-1000 and that the solution error measure, epsilon, be checked. Note the RAM directive setting has no effect of performance for this solver.
Parallel Sparse Direct	PSS	RAM, RESEQGRIDMETHOD, NPROCESSORS	This is a parallel solver and is optimized for all element types and solutions. Performance is dependent on available physical memory and can be adversely affected by the RAM directive setting. The solver has two modes of operation: in core and out of core. If the factored stiffness matrix size, as determined by the solver, exceeds the available system memory, as set by the RAM directive, an out of core solution will be used. An in core solution is usually faster than an out of core solution, even if some virtual memory is used. To force an in core solution, increase the RAM directive value. If an out of core solution is performed, the solver will state "OUT OF CORE SOLUTION USED". Significant performance degradation can occur if physical memory is limited regardless of which mode is used. The PCGLSS solver may be faster for these types of problems since it requires less memory.

Table 24-8 Sparse Solver Operation. (Continued)

Solution	Solver				
Label	Number	PCGLSS	VSS	VIS	PSS
LINEAR STATIC or STEADY STATE HEAT TRANSFER	101	✓	\checkmark	✓	✓
MODAL	103	✓	\checkmark		✓
LINEAR BUCKLING	105	✓	✓	✓	✓
NONLINEAR STATIC	106	✓	\checkmark	✓	✓
DIRECT FREQUENCY RESPONSE	108		\checkmark	✓	✓
DIRECT TRANSIENT RESPONSE	109		\checkmark	~	~
MODAL COMPLEX EIGENVALUE	110	✓	✓		~
MODAL FREQUENCY RESPONSE	111	✓	\checkmark		✓
MODAL TRANSIENT RESPONSE	112	✓	\checkmark		✓
NONLINEAR TRANSIENT RESPONSE	129		✓	✓	✓
NONLINEAR STEADY STATE HEAT TRANSFER	153	✓	✓	~	~
NONLINEAR TRANSIENT HEAT TRANSFER	159		\checkmark	✓	✓
NONLINEAR BUCKLING	180	✓	✓	~	~
PRESTRESS STATIC	181	✓	\checkmark	~	✓
LINEAR PRESTRESS MODAL	182	✓	\checkmark	~	✓
LINEAR PRESTRESS FREQUENCY RESPONSE	183	✓	\checkmark	✓	✓
LINEAR PRESTRESS TRANSIENT RESPONSE	184	✓	\checkmark	~	~
NONLINEAR PRESTRESS MODAL	185	✓	\checkmark	~	✓
NONLINEAR PRESTRESS FREQUENCY RESPONSE	186	✓	\checkmark	✓	✓
NONLINEAR PRESTRESS TRANSIENT RESPONSE	187	✓	✓	~	~
LINEAR PRESTRESS COMPLEX EIGENVALUE	188	✓	✓	~	✓
NONLINEAR PRESTRESS COMPLEX EIGENVALUE	189	\checkmark	\checkmark	✓	✓

Table 24-9 Solution/Solver Applicability Matrix.

24.8 Optimal Parameter Settings

A single model parameter (OPTIMIZESETTINGS) can be used to force certain model parameters and directives to optimize a solution for speed, accuracy, or a combination of both. Table 24-10 shows which parameters and directives are modified and the values set for the four different OPTIMIZESETTINGS options.

OPTIMIZESETTINGS	NONE	ACCURACY	SPEED	BOTH
ALIGNEDGENODE	OFF	ON	OFF	ON
AUTOFIXRIGIDELEM	OFF	ON	ON	ON
BAREQVLOAD	ON	ON	ON	ON
BISECT	ON	ON	OFF	ON
COUPMASS	AUTO	ON	OFF	AUTO
DECOMPMETHOD	AUTO	AUTO	AUTO	AUTO
ELEMGEOMCHECKS	ON	ON	OFF	ON
ENHCQUADRSLT	OFF	ON	OFF	ON
EXTRACTMETHOD	AUTO	AUTO	LANCZOS	AUTO
FREQRESPRSLTOUT	ON	ON	OFF	ON
HEXINODE	AUTO	ON	AUTO	OFF
MAXSPARSEITER	AUTO	AUTO	1000	AUTO
MODLDATAOUT	ON	ON	OFF	ON
NBEAMINTNODE	2	4	2	2
NLAYERS	6	12	6	9
NLINSOLACCEL	4	4	4	4
NLINSOLTOL	2	1	3	2
QUADEQVLOAD	OFF	ON	OFF	OFF
QUADINODE	AUTO	ON	AUTO	ON
QUADRNODE	OFF	ON	OFF	ON
QUADSECT	OFF	ON	OFF	ON
RANDRESPRSLTOUT	ON	ON	OFF	ON
SLINEMAXACTDIST	1.0E+30	1.0E+30	AUTO	1.0E+30
SPARSEITERMETHOD	AUTO	AUTO	AUTO	AUTO
SPARSEITERMODE	AUTO	AUTO	3	AUTO
SPARSEITERTOL	1.0E-05	1.0E-06	1.0E-04	1.0E-05
TRIEQVLOAD	OFF	ON	OFF	OFF
TRIRNODE	OFF	ON	ON	ON

 Table 24-10 OPTIMIZESETTINGS Parameter Matrix.

APPENDIX A - OUTPUT FORMATS

Examples of most of the Model Results Output File formats that are available are contained in this section. Each example is annotated with comments and identified by page number and title. A summary of these figures is shown in the listing below, Listing A-1.

Listing A-1. List of Figures for Output Formats.

Figure A-1.	Database Subcase Constraint and Load Set Definition.	A-6
Figure A-2.	Database Rectangular Coordinate System Definition	A-7
Figure A-3.	Database Cylindrical Coordinate System Definition.	A-8
Figure A-4.	Database Spherical Coordinate System Definition.	A-9
Figure A-5.	Database Grid Point Definition.	.A-10
Figure A-6.	Database Concentrated Mass Element Definition	.A-11
Figure A-7.	Database Gap Element Definition	.A-12
Figure A-8.	Database Spring Element Definition.	.A-13
Figure A-9.	Database Rod Element Definition	.A-14
Figure A-10	. Database Bar Element Definition	.A-15
Figure A-11	. Database Beam Element Definition	.A-16
Figure A-12	. Database Quad Element Definition.	.A-17
Figure A-13	. Database Tri Element Definition	A-18
Figure A-14	. Database Shear Element Definition	A-19
Figure A-15	. Database Hex Element Definition.	A-20
Figure A-16	. Database Pent Element Definition	. A-21
Figure A-17	. Database Tet Element Definition.	A-22
Figure A-18	. Database Gap Element Property Definition.	A-23
Figure A-19	. Database Spring Element Property Definition	.A-24
Figure A-20	. Database Rod Element Property Definition.	A-25
Figure A-21	. Database Bar Element Property Definition.	A-26
Figure A-22	. Database Beam Element Property Definition.	A-27
Figure A-23	. Database Composite Shell Element Property Definition.	A-28
Figure A-24	. Database Shell Element Property Definition	A-29
Figure A-25	. Database Shear Element Property Definition.	A-30
Figure A-26	. Database Solid Element Material Property Definition.	. A- 31
Figure A-27	. Database Isotropic Material Definition	A-32
Figure A-28	. Database Anisotropic Shell Element Material Definition.	A-33
Figure A-29	. Database Isotropic Material Definition (Heat Transfer Analysis)	.A-34
Figure A-30	. Database Anisotropic Element Material Definition (Heat Transfer Analysis)	A-35
Figure A-31	. Database Orthotropic Material Definition.	A-36
Figure A-32	. Database Anisotropic Solid Element Material Definition.	A-37
Figure A-33	. Database Nonlinear Material Definition	A-38

Figure A-34.	Database Isotropic Material Table Definition	.A-39
Figure A-35.	Database Anisotropic Shell Element Material Table Definition.	.A-40
Figure A-36.	Database Isotropic Material Table Definition (Heat Transfer Analysis).	.A-41
Figure A-37.	Database Orthotropic Material Table Definition (Heat Transfer Analysis)	.A-42
Figure A-38.	Database Orthotropic Shell Element Material Table Definition.	.A-43
Figure A-39.	Database Anisotropic Solid Element Material Table Definition	.A-44
Figure A-40.	Database Material Property Table Definition.	.A-45
Figure A-41.	Database Dynamic Load Table Definition	.A-46
Figure A-42.	Database Modal Damping Table Definition	.A-47
Figure A-43.	Database Single Point Constraint Definition.	.A-48
Figure A-44.	Database Single Point Constraint Addition Definition	A-49
Figure A-45.	Database Multipoint Constraint Definition	.A-50
Figure A-46.	Database Multipoint Constraint Addition Definition.	.A-51
Figure A-47.	Database Grid Point Force Vector Definition	.A-52
Figure A-48.	Database Grid Point Moment Vector Definition	.A-53
Figure A-49.	Database Gravity Load Vector Definition	.A-54
Figure A-50.	Database Centrifugal Load Vector Definition.	.A-55
Figure A-51.	Database Grid Point Temperature Definition	.A-56
Figure A-52.	Database Dynamic Load Scale Factor Definition.	.A-57
Figure A-53.	Database Dynamic Load Time Delay Definition.	.A-58
Figure A-54.	Database Dynamic Load Phase Lead Definition.	A-59
Figure A-55.	Database Transient Time Step Definition.	.A-60
Figure A-56.	Database Frequency List Definition.	A-6 1
Figure A-57.	Database Frequency List Generation Definition.	A-62
Figure A-58.	Database Element Initial Deformation Definition.	A-6 3
Figure A-59.	Database Bar Element Pressure Definition	.A-64
Figure A-60.	Database Shell Element Pressure Definition.	.A-65
Figure A-61.	Database Solid Element Pressure Definition	.A-66
Figure A-62.	Database Bar Element Thermal Definition	.A-67
Figure A-63.	Database Shell Element Thermal Definition.	.A-68
Figure A-64.	Database Static Load Addition Definition.	.A-69
Figure A-65.	Database Transient Response Dynamic Load Definition.	.A-70
Figure A-66.	Database Frequency Response Dynamic Load Definition.	.A-71
Figure A-67.	Database Power Spectral Density Definition.	.A-72
Figure A-68.	Database Power Spectral Density Definition.	.A-73
Figure A-69.	Database Static Load Sequence Definition	.A-74
Figure A-70.	Database Grid Point Scalar Load Definition.	.A-75
Figure A-71.	Database Line and Point Grid Point Boundary Heat Flux Definition	.A-76
Figure A-72.	Database Surface Grid Point Boundary Heat Flux Definition.	.A-77
Figure A-73.	Database Element Boundary Heat Flux Definition.	.A-78
Figure A-74.	Database Element Volume Heat Addition Definition	.A-79
Figure A-75.	Database Element Boundary Convection Definition.	.A-80
Figure A-76.	Database Subcase Vector Output Set Definition	A- 81

Figure A-77. Database Subcase Vector Output Set Definition (Heat Transfer Analysis)	A-82
Figure A-78. Database Subcase Element Output Set Definition.	A-83
Figure A-79. Database Subcase Element Output Set Definition (Heat Transfer Analysis)	A-84
Figure A-80. Database Subcase Grid Output Set Definition.	A-85
Figure A-81. Database Set Definition	A-86
Figure A-82. Database Volume Definition.	A-87
Figure A-83. Database Surface Definition.	A-88
Figure A-84. Database Spring Element Stress Recovery Property Definition	A-89
Figure A-85. Database Rod Element Stress Recovery Property Definition.	A-90
Figure A-86. Database Bar Element Axis Output Location Definition	A-91
Figure A-87. Database Bar Element Stress Recovery Property Definition.	A-92
Figure A-88. Database Beam Element Stress Recovery Property Definition	A-93
Figure A-89. Database Shell Element Stress Recovery Property Definition	A-94
Figure A-90. Database Result Limits Definition.	A-95
Figure A-91. Database Model Parameter Definition	A-96
Figure A-92. Model Database Size	A-97
Figure A-93. Grid Point Resequencer Output.	A-98
Figure A-94. Element Geometry Statistics.	A-99
Figure A-95. Global Stiffness Matrix Assembly Statistics	A-100
Figure A-96. Global Mass Matrix Assembly Statistics	A-101
Figure A-97. Global Stiffness Matrix Factorization Statistics.	A-102
Figure A-98. Eigenvalue Extraction Statistics	A-103
Figure A-99. Real Eigenvalue Output.	A-104
Figure A-100. Modal Participation Factor Output.	A-105
Figure A-101. Rigid-Body Eigenvalue Output.	A-106
Figure A-102. Modal Effective Mass Output	A-107
Figure A-103. Real Eigenvector Output	A-108
Figure A-104. Grid Point Weight Output	A-109
Figure A-105. Part Definition Output.	A-110
Figure A-106. Part Mass Properties Output.	A-111
Figure A-107. Part Element Geometry Summary	A-112
Figure A-108. Grid Point Singularity Table	A-113
Figure A-109. Mass Matrix Singularity Table	A-114
Figure A-110. Load Vector Output.	A-115
Figure A-111. Load Vector Output (Heat Transfer Analysis)	A-116
Figure A-112. Displacement Vector Output	A-117
Figure A-113. Complex Displacement Vector Output	A-118
Figure A-114. Displacement Vector Power Spectral Density Output.	A-119
Figure A-115. Displacement Vector RMS Output	A-120
Figure A-116. Displacement Vector Number of Positive Crossings Output.	A-121
Figure A-117. Temperature Vector Output.	A-122
Figure A-118. Single Point Constraint Force Vector Output	A-123
Figure A-119. Single Point Constraint Heat Flow Vector Output.	A-124

Figure A-120.	Multipoint Constraint Force Vector Output	A-125
Figure A-121.	Multipoint Constraint Heat Flow Vector Output	A-126
Figure A-122.	Load Vector Resultant	A-127
Figure A-123.	Single Point Constraint Force Vector Resultant	A-128
Figure A-124.	Maximum Applied Loads	A-129
Figure A-125.	Maximum Displacements	A-130
Figure A-126.	Maximum Single Point Constraint Forces.	A-131
Figure A-127.	Nonlinear Forces in Gap Elements	A-132
Figure A-128.	Forces in Spring Elements	A-133
Figure A-129.	Stresses in Spring Elements	A-134
Figure A-130.	Forces in Rod Elements	A-135
Figure A-131.	Stresses in Rod Elements	A-136
Figure A-132.	Forces in Bar Elements	A-137
Figure A-133.	Stresses in Bar Elements	A-138
Figure A-134.	Thermal Gradients and Heat Fluxes in Bar Elements	A-139
Figure A-135.	Forces in Shear Elements	A-140
Figure A-136.	Stresses in Shear Elements	A-141
Figure A-137.	Heat Flow Into Hbdy Elements	A-142
Figure A-138.	Forces in Quad Elements (Without Corner Option)	A-143
Figure A-139.	Forces in Quad Elements (With Corner Option)	A-144
Figure A-140.	Stresses in Quad Elements (With Corner Option)	A-145
Figure A-141.	Stresses in Quad Elements (Without Corner Option).	A-146
Figure A-142.	Strains in Quad Elements.	A-147
Figure A-143.	Strain Energy in Quad Elements	A-148
Figure A-144.	Thermal Gradients and Heat Fluxes in Quad Elements.	A-149
Figure A-145.	Surface Grid Point Stresses	A-150
Figure A-146.	Surface Grid Point Thermal Gradients and Heat Fluxes.	A-151
Figure A-147.	Stresses in Composite Quad Elements.	A-152
Figure A-148.	Failure Indexes in Composite Quad Elements.	A-153
Figure A-149.	Strength Ratios in Composite Quad Elements	A-154
Figure A-150.	Stresses in Composite Hex Elements	A-155
Figure A-151.	Nonlinear Stresses in Quad Elements.	A-156
Figure A-152.	Stresses in Hex Elements (Without Corner Option).	A-157
Figure A-153.	Strains in Hex Elements (Without Corner Option)	A-158
Figure A-154.	Strain Energy in Hex Elements	A-159
Figure A-155.	Thermal Gradients and Heat Fluxes in Hex Elements	A-160
Figure A-156.	Volume Grid Point Stresses	A-161
Figure A-157.	Volume Grid Point Thermal Gradients and Heat Fluxes.	A-162
Figure A-158.	Nonlinear Stresses in Hex Elements	A-163
Figure A-159.	Complex Stresses in Hex Elements.	A-164
Figure A-160.	Element Result Limits (Subcase Search)	A-165
Figure A-161.	Element Result Limits (Global Search).	A-166
Figure A-162.	Grid Point Result Limits (Subcase Search).	A-167

Figure A-163.	Grid Point Result Limits (Global Search).	A-168
Figure A-164.	Execution Summary.	A-169

SUBCASE	LABEL	CONSTRAIN	CONSTRAINT SET IDS			LOAD SET IDS	
ID		SPC	MPC	LOAD	DEFORM	TEMPERATURE	
100	ENFORCED DISPLACEMENT	10	NONE	NONE	NONE	NONE	
101	POINT LOADS	1	NONE	10	NONE	NONE	
102	PRESSURE LOADS	1	22	4	NONE	NONE	
103	GRAVITY LOADS	1	NONE	50	NONE	NONE	
104	ELEMENT INITIAL DEFORMATIONS	1	NONE	NONE	5	NONE	
105	GRAV LOAD	1	NONE	6	NONE	NONE	
106	TEMPERATURES	1	NONE	NONE	NONE	3	
107	SCALED TEMPERATURES	1	45	NONE	NONE	300	
108	GENERATED THERMAL GRADIENT IN Z-DIR	1	NONE	NONE	NONE	60	

SUBCASE CONSTRAINT AND LOAD SET DEFINITION

Remarks:

- 1. See SPC, LOAD, DEFORM, and TEMPERATURE in the Nastran Solver Reference Guide, Section 3, Case Control, for command format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 5 in the Model Initialization File or on the Nastran command line.

Figure A-1. Database Subcase Constraint and Load Set Definition.
RECTANGULAR COORDINATE SYSTEM DEFINITION

COORDINA	ATE ORIG	IN COORDINA	ATES	X-AXIS	DIRECTION	COSINES	Y-AXIS	DIRECTION	COSINES	Z-AXIS	DIRECTION	COSINES
ID	Xl	X2	XЗ	Vl	V2	V3	V1	V2	V3	Vl	V2	V3
1	0.500E+00	0.500E+00	0.200E+01	0.000E+00	0-0.100E+01	0.000E+00-	-0.100E+01	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0-0.100E+01
4	0.000E+00	0.000E+00	0.000E+00	0.100E+01	0.000E+00	0.000E+00	0.000E+00	0.100E+01	0.000E+00	0.000E+00	0.000E+00	0.100E+01

Remarks:

- 1. See CORD1R and CORD2R in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 3 in the Model Initialization File or on the Nastran command line.

Figure A-2. Database Rectangular Coordinate System Definition.

CYLINDRICAL COORDINATE SYSTEM DEFINITION

COORDIN	NATE ORI	GIN COORDIN	IATES	R-AXIS	DIRECTION	COSINES	T-AXIS	DIRECTION	COSINES	Z-AXIS	DIRECTION	COSINES
ID	Xl	X2	X3	V1	V2	V3	V1	V2	V3	V1	V2	V3
2	0.500E+00	0.500E+00	0.000E+00	-0.100E+01	0.000E+00	0.000E+00	0.000E+00	0.100E+01	0.000E+00	0.000E+00	0.000E+0	0-0.100E+01
5	0.000E+00	0.000E+00	0.000E+00	0.100E+01	0.000E+00	0.000E+00	0.000E+00	0.100E+01	0.000E+00	0.000E+00	0.000E+00	0.100E+01

Remarks:

- 1. See CORD1C and CORD2C in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 3 in the Model Initialization File or on the Nastran command line.

Figure A-3. Database Cylindrical Coordinate System Definition.

SPHERICAL COORDINATE SYSTEM DEFINITION

COORDINA	ATE ORIGI	IN COORDIN	ATES	R-AXIS	DIRECTION	COSINES	P-AXIS	DIRECTION	COSINES	T-AXIS	DIRECTION	COSINES
ID	Xl	X2	X3	V1	V2	V3	Vl	V2	V3	Vl	V2	V3
3	0.5000E+00	0.500E+00	0.100E+01	-0.100E+01	0.000E+00	0.000E+00	0.000E+00	0.100E+01	0.000E+00	0.000E+00	0.000E+00	-0.100E+01
6	0.0000E+00	0.000E+00	0.000E+00	0.100E+01	0.000E+00	0.000E+00	0.000E+00	0.100E+01	0.000E+00	0.000E+00	0.000E+00	0.100E+01

Remarks:

- 1. See CORD1S and CORD2S in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 3 in the Model Initialization File or on the Nastran command line.

Figure A-4. Database Spherical Coordinate System Definition.

GRID POINT DEFINITION

GRID	COORDINATE		COORDINATES	
ID	ID	X1	X2	XЗ
1	0	0.000E+00	0.000E+00	0.000E+00
2	1	-0.119E-06	-0.500E+00	0.300E+01
3	1	0.500E+00	-0.500E+00	0.300E+01
4	1	-0.500E+00	-0.500E+00	0.350E+01
5	1	-0.119E-06	-0.500E+00	0.350E+01
6	1	0.500E+00	-0.500E+00	0.350E+01
7	1	-0.500E+00	-0.500E+00	0.400E+01
8	1	-0.119E-06	-0.500E+00	0.400E+01
9	1	0.500E+00	-0.500E+00	0.400E+01
10	1	0.500E+00	0.500E+00	0.300E+01

Remarks:

- 1. See GRID in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 in the Model Initialization File or on the Nastran command line.

Figure A-5. Database Grid Point Definition.

CONCENTRATED MASS ELEMENT DEFINITION

ELEMENT	GRID	COORDINATE		MASS MATRIX					OFFSET VECTOR		
ID	ID	ID							V1	V2	V3
4000	84	3 1	0.110E+03						0.140E+00	0.990E+00	0.000E+00
		2	0.000E+00	0.110E+03							
		3	0.000E+00	0.000E+00	0.110E+03						
		4	0.000E+00	0.000E+00	0.000E+00	0.000E+00					
		5	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00				
		6	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00			
4001	86	3 1	0.110E+03						0.140E+00	0.990E+00	0.000E+00
		2	0.000E+00	0.110E+03							
		3	0.000E+00	0.000E+00	0.110E+03						
		4	0.000E+00	0.000E+00	0.000E+00	0.000E+00					
		5	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00				
		6	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00			

Remarks:

- 1. See CONM1 and CONM2 in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 in the Model Initialization File or on the Nastran command line.

Figure A-6. Database Concentrated Mass Element Definition.

GAP ELEMENT DEFINITION

ELEMENT	PROPERTY	GRID-1	GRID-2	X-	Y PLANE VECTO	R
ID	ID	ID	ID	V1	V2	V3
20	20	5	19	0.000E+00	1.000E+00	0.000E+00
21	21	4	20	1.000E+00	0.000E+00	0.000E+00

Remarks:

- 1. See CGAP in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 in the Model Initialization File or on the Nastran command line.

Figure A-7. Database Gap Element Definition.

ELEMENT	PROPERTY	GRID-1	COMPONENT	GRID-2	COMPONENT
ID	ID	ID	NUMBER	ID	NUMBER
1136	70	119	1	115	1
2136	70	119	2	115	2
3136	70	119	3	115	3
1134	71	210	1	117	1
1135	72	211	1	119	1
2134	73	210	2	117	2
2135	74	211	2	119	2

SPRING ELEMENT DEFINITION

Remarks:

- 1. See CELAS1 and CELAS2 in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 in the Model Initialization File or on the Nastran command line.

Figure A-8. Database Spring Element Definition.

ROD ELEMENT DEFINITION

ELEMENT	PROPERTY	GRID-1	GRID-2
ID	ID	ID	ID
45	70	59	64
46	70	64	69
47	70	69	58
48	70	58	59
49	70	58	84
50	70	59	86
51	70	69	88
52	70	64	90
53	70	86	90

Remarks:

- 1. See CROD in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 in the Model Initialization File or on the Nastran command line.

Figure A-9. Database Rod Element Definition.

ELEMENT	PROPERTY	GRID-1	GRID-2	X-Y	PLANE VE	CTOR	END-A	OFFSET VE	CTOR	END-B	OFFSET VE	CTOR
ID	ID	ID	ID	V1	V2	V3	V1	V2	V3	V1	V2	V3
61	80	115	86	0.707E+00	0.707E+0	0-0.233E-05	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
62	80	117	90	0.727E+00	0.294E+0	0-0.619E+00	0.500E+00	0.000E+00	0.000E+00	0.500E+00	0.000E+00	0.000E+00
63	80	119	88	-0.656E-01	0.969E+0	0-0.235E+00	0.200E+00	0.200E+00	0.000E+00	0.200E+00	0.200E+00	0.000E+00
64	80	121	84	0.000E+00-	-0.100E+0	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
65	80	121	115	-0.990E-01-	-0.990E-0	1-0.990E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
66	80	119	121	0.000E+00	0.000E+0	0-0.100E+01	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
67	80	117	119	-0.990E-01-	-0.990E-0	1-0.990E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
68	80	115	117	-0.192E+00-	-0.192E+0	0-0.962E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00

BAR ELEMENT DEFINITION

Remarks:

- 1. See CBAR in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 in the Model Initialization File or on the Nastran command line.

Figure A-10. Database Bar Element Definition.

ELEMENT	PROPERTY	GRID-1	GRID-2	Х-Х	PLANE VEC	TOR	END-A	OFFSET VE	CTOR	END-B	OFFSET VE	CTOR
ID	ID	ID	ID	V1	V2	V3	V1	V2	V3	V1	V2	V3
11	10	11	12	0.000E+00	0.100E+01	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
12	10	11	14	0.000E+00	0.100E+01	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
23	80	119	88	-0.656E-01	0.970E+00	-0.236E+00	0.200E+00	0.200E+00	0.000E+00	0.200E+00	0.200E+00	0.000E+00
24	80	121	84	-0.100E+01	0.000E+00	0.330E-05	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
26	30	211	111	0.000E+00	0.100E+01	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
27	40	121	111	0.000E+00	0.100E+01	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
28	40	117	190	0.727E+00	0.294E+00	-0.619E+00	0.500E+00	0.000E+00	0.000E+00	0.500E+00	0.000E+00	0.000E+00
29	40	127	200	0.727E+00	0.294E+00	-0.619E+00	0.500E+00	0.000E+00	0.000E+00	0.500E+00	0.000E+00	0.000E+00

BEAM ELEMENT DEFINITION

Remarks:

- 1. See CBEAM in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 in the Model Initialization File or on the Nastran command line.

Figure A-11. Database Beam Element Definition.

ELEMENT	PROPERTY	GRID-1	GRID-2	GRID-3	GRID-4	MATERIAL	ORIENTATION	OFFSET
ID	ID	ID	ID	ID	ID	COORDINATE ID	ANGLE	
1	40	1	2	5	4	1	0.00	0.000E+00
2	50	2	3	6	5	1	0.00	0.000E+00
5	50	10	11	14	13	2	0.00	0.600E+00
6	40	11	12	15	14	2	0.00	0.600E+00
7	40	13	14	17	16	2	0.00	0.600E+00
8	40	14	15	18	17	ELEMENT	45.00	0.000E+00
25	40	12	38	41	15	ELEMENT	45.00	0.000E+00
26	40	38	1	4	41	ELEMENT	60.00	0.000E+00

QUAD ELEMENT DEFINITION

Remarks:

- 1. See CQUAD4 and CQUADR in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 in the Model Initialization File or on the Nastran command line.

Figure A-12. Database Quad Element Definition.

ELEMENT ID	PROPERTY ID	GRID-1 ID	GRID-2 ID	GRID-3 ID	MATERIAL COORDINATE ID	ORIENTATION ANGLE	OFFSET
33	50	18	44	58	1	-90.00	0.000E+00
34	50	59	58	44	1	90.00	0.000E+00
35	50	44	7	59	1	-90.00	0.000E+00
36	50	7	8	59	1	0.00	0.000E+00
37	50	64	59	8	1	0.00	0.000E+00
38	50	8	9	64	1	0.00	0.000E+00
39	50	9	53	64	ELEMENT	90.00	0.000E+00
40	50	69	64	53	ELEMENT	-90.00	0.000E+00

TRI ELEMENT DEFINITION

Remarks:

- 1. See CTRIA3 and CTRIAR in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 in the Model Initialization File or on the Nastran command line.

Figure A-13. Database Tri Element Definition.

SHEAR ELEMENT DEFINITIO	S	НΕА	r e	LE	ΜЕ	ΝΊ	r d	ΕF	Ι	ΝΙ	T I	ΙΟ	Ν
-------------------------	---	-----	-----	----	----	----	-----	----	---	----	-----	----	---

ELEMENT	PROPERTY	GRID-1	GRID-2	GRID-3	GRID-4
ID	ID	ID	ID	ID	ID
57	60	59	64	90	86
58	60	64	69	88	90
59	60	69	58	84	88
60	60	58	59	86	84
1157	60	59	64	90	86
1158	60	64	69	88	90

Remarks:

- 1. See CSHEAR in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 in the Model Initialization File or on the Nastran command line.

Figure A-14. Database Shear Element Definition.

ELEMENT	PROPERTY	GRID-1	GRID-2	GRID-3	GRID-4	GRID-5	GRID-6	GRID-7	GRID-8
ID	ID	ID	ID	ID	ID	ID	ID	ID	ID
69	10	131	132	135	134	140	141	144	143
70	10	132	133	136	135	141	142	145	144
71	10	134	135	138	137	143	144	147	146
72	10	135	136	139	138	144	145	148	147
73	10	140	141	144	143	149	150	153	152
74	10	141	142	145	144	150	151	154	153
75	10	143	144	147	146	152	153	156	155
76	10	144	145	148	147	153	154	157	156

HEX ELEMENT DEFINITION

Remarks:

- 1. See CHEXA in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. Only the grid points for the corner nodes are displayed.
- 3. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 in the Model Initialization File or on the Nastran command line.

Figure A-15. Database Hex Element Definition.

		CDID 1	CDID 0	CDID 2	CDID 4	CDID F	CDID (
ELEMENT	PROPERTY	GRID=1	GRID-Z	GRID-3	GRID=4	GRID-5	GRID-6
ID	ID	ID	ID	ID	ID	ID	ID
77	20	158	159	161	167	168	170
78	20	162	161	159	171	170	168
79	20	132	162	159	135	171	168
80	20	159	131	132	168	134	135
81	20	161	162	164	170	171	173
82	20	165	164	162	174	173	171
83	20	133	165	162	136	174	171
84	20	162	132	133	171	135	136
85	20	167	168	170	176	177	179

PENT ELEMENT DEFINITION

Remarks:

- 1. See CPENTA in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. Only the grid points for the corner nodes are displayed.
- 3. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 in the Model Initialization File or on the Nastran command line.

Figure A-16. Database Pent Element Definition.

ELEMENT	PROPERTY	GRID-1	GRID-2	GRID-3	GRID-4	
ID	ID	ID	ID	ID	ID	
93	30	167	170	158	195	
94	30	198	195	197	170	
95	30	161	158	170	197	
96	30	194	197	195	158	
97	30	158	195	170	197	
98	30	167	176	170	195	
99	30	196	195	199	176	
100	30	179	170	176	199	

TET ELEMENT DEFINITION

Remarks:

- 1. See CTETRA in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. Only the grid points for the corner nodes are displayed.
- 3. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 in the Model Initialization File or on the Nastran command line.

Figure A-17. Database Tet Element Definition.

GAP ELEMENT PROPERTY DEFINITION

PROPERTY	INITIAL	PRELOAD	AXIAL SI	IFFNESS	TRANSVERSE	MU-X	MU-Y	MAXIMUM
ID	OPENING		CLOSED	OPEN	STIFFNESS			PENETRATION
20	2.000E-02	0.000E+00	1.000E+08	1.000E+02	0.000E+00	0.000E+00	0.000E+00	0.000E+00
21	0.000E+00	0.000E+00	1.000E+08	1.000E+02	1.000E+07	1.000E-01	1.000E-01	0.000E+00

Remarks:

- 1. See PGAP in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 4 or 6 7 in the Model Initialization File or on the Nastran command line.

Figure A-18. Database Gap Element Property Definition.

SPRING ELEMENT PROPERTY DEFINITION

PROPERTY	K	DEPE	NDENT TABLE	IDS
ID		K-FREQ	GE-FREQ	K-FORCE
10	1.000E+04	10	20	
20	2.000E+04	10	20	
30	5.000E+03			30

Remarks:

- 1. See PELAS in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 4 or 6 7 in the Model Initialization File or on the Nastran command line.

Figure A-19. Database Spring Element Property Definition.

ROD ELEMENT PROPERTY DEFINITION

PROPERTY	MATERIAL	AREA	J	NSM
ID	ID			
70	100	0.900E-01	0.608E-02	0.000E+00
85	145	0.500E-01	0.308E-02	0.100E+00

Remarks:

- 1. See PROD in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 4 or 6 7 in the Model Initialization File or on the Nastran command line.

Figure A-20. Database Rod Element Property Definition.

BAR ELEMENT PROPERTY DEFINITION

PROPERTY	MATERIAL	AREA	I1	I2	I12	J	K1	K2	NSM
ID	ID								
80	100	0.900E-01	0.608E-02	0.750E-04	0.000E+00	0.267E-03	0.000E+00	0.000E+00	0.000E+00
90	140	0.400E-01	0.408E-02	0.350E-04	0.000E+00	0.567E-03	0.000E+00	0.000E+00	0.100E+00

Remarks:

- 1. See PBAR in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 4 or 6 7 in the Model Initialization File or on the Nastran command line.

Figure A-21. Database Bar Element Property Definition.

BEAM ELEMENT PROPERTY DEFINITION

PROPERTY TD	MATERIAL TD	DISTANCE	AREA	I1	12	I12	J	К1	K2	NSM
11	1	0.0000	0.500E+01	0.104E+02	0.417E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
		0.2222	0.456E+01 0.411E+01	0.788E+01 0.579E+01	0.380E+00 0.343E+00	0.000E+00 0.000E+00	0.000E+00 0.000E+00			
		0.3333 0.4444	0.367E+01 0.322E+01	0.411E+01 0.279E+01	0.306E+00 0.269E+00	0.000E+00 0.000E+00	0.000E+00 0.000E+00			
		0.5555	0.278E+01 0.233E+01	0.179E+01 0.106E+01	0.232E+00 0.194E+00	0.000E+00 0.000E+00	0.000E+00 0.000E+00			
		0.7777	0.189E+01	0.562E+00	0.157E+00	0.000E+00	0.000E+00			
		1.0000	0.144E+01 0.100E+01	0.251E+00 0.833E-01	0.120E+00 0.833E-01	0.000E+00 0.000E+00	0.000E+00 0.000E+00			

Remarks:

- 1. See PBEAM in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 4 or 6 7 in the Model Initialization File or on the Nastran command line.

Figure A-22. Database Beam Element Property Definition.

PROPERTY	ZO	NSM	T-REF	PLY	PLY	MATERIAL	THICKNESS	ORIENTATION	SHEAR	FAILURE	PLY
ID				NUMBER	ID	ID		ANGLE	ALLOWABLE	THEORY	OUTPUT
10	-1.000E-01	2.000E+00	7.000E+01	1	1	100	4.000E-02	0.00	1.000E+03	TSAI-WU	ON
				2	2	105	2.000E-02	45.00	1.000E+03	TSAI-WU	ON
				3	3	105	2.000E-02	60.00	1.000E+03	TSAI-WU	ON
				4	4	105	2.000E-02	90.00	1.000E+03	TSAI-WU	ON
				5	5	105	2.000E-02	90.00	1.000E+03	TSAI-WU	ON
				6	6	105	2.000E-02	60.00	1.000E+03	TSAI-WU	ON
				7	7	105	4.000E-02	45.00	1.000E+03	TSAI-WU	ON
				8	8	100	2.000E-02	0.00	1.000E+03	TSAI-WU	ON
11	-7.000E-02	3.000E+00	7.000E+01	1	1	100	1.000E-02	0.00	5.000E+02	LARC02	ON
				2	2	105	2.000E-02	45.00	5.000E+02	LARC02	ON
				3	3	105	2.000E-02	60.00	5.000E+02	LARC02	ON
				4	4	105	2.000E-02	90.00	5.000E+02	LARC02	ON
				5	5	105	2.000E-02	90.00	5.000E+02	LARC02	ON
				6	6	105	2.000E-02	60.00	5.000E+02	LARC02	ON
				7	7	105	2.000E-02	45.00	5.000E+02	LARC02	ON
				8	8	100	1.000E-02	0.00	5.000E+02	LARC02	ON

COMPOSITE SHELL ELEMENT PROPERTY DEFINITION

Remarks:

- 1. See PCOMP in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 4 or 6 7 in the Model Initialization File or on the Nastran command line.

Figure A-23. Database Composite Shell Element Property Definition.

PROPERTY		MATER	IAL IDS		THICKNESS	TS/T	12I/T3	NSM	
ID	MEMBRANE	BENDING	TRANSVERSE	COUPLING					
40	500	500	500		0.150E+00	0.833E+00	0.150E+01	0.000E+00	
50	100	100	100		0.200E+00	0.833E+00	0.100E+01	0.000E+00	
90	511	512	513		0.280E+00	0.100E+01	0.100E+01	0.000E+00	
150	471	472	473	474	0.100E+00	0.100E+01	0.100E+01	0.000E+00	

SHELL ELEMENT PROPERTY DEFINITION

Remarks:

- 1. See PSHELL in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 4 or 6 7 in the Model Initialization File or on the Nastran command line.

Figure A-24. Database Shell Element Property Definition.

SHEAR ELEMENT PROPERTY DEFINITION

PROPERTY	MATERIAL	THICKNESS	NSM	EFFECTIVENE	SS FACTORS
ID	ID			X-DIRECTION	Y-DIRECTION
60	100	0.500E-01	0.000E+00	0.500E+00	1.200E+00
70	120	0.700E-01	0.100E+00	0.700E+00	0.500E+00

Remarks:

- 1. See PSHEAR in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 4 or 6 7 in the Model Initialization File or on the Nastran command line.

Figure A-25. Database Shear Element Property Definition.

SOLID ELEMENT PROPERTY DEFINITION

PROPERTY	MATERIAL	MATERIAL
ID	ID	COORDINATE ID
10	100	ELEMENT
20	100	2
30	400	1

Remarks:

- 1. See **PSOLID** in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 4 or 6 7 in the Model Initialization File or on the Nastran command line.

Figure A-26. Database Solid Element Material Property Definition.

ISOTROPIC MATERIAL DEFINITION

MATERIAL	E	G	NU	RHO	ALPHA	T-REF
ID						
100	0.100E+08	0.385E+07	0.300E+00	0.100E+00	0.200E-05	0.120E+03
120	0.300E+08	0.113E+08	0.330E+00	0.320E+00	0.700E-05	0.120E+03

Remarks:

- 1. See MAT1 in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 8 in the Model Initialization File or on the Nastran command line.

Figure A-27. Database Isotropic Material Definition.

MATERIAL		MATER	IAL PROPERTY M	IATRIX	ALPHA	T-REF	RHO
ID		1	2	3			
200	1	0.914E+07			0.152E-05	0.000E+00	0.700E-01
	2	0.535E+06	0.111E+08		0.140E-05		
	3	0.787E+05	-0.787E+05	0.423E+07	-0.350E-06		
220	1	0.103E+07			0.150E-05	0.110E+03	0.150E+00
	2	0.135E+07	0.217E+07		0.250E-05		
	3	0.121E+07	0.224E+07	0.311E+07	0.330E-05		
511	1	0.914E+07			0.152E-05	0.000E+00	0.700E-01
	2	0.535E+06	0.111E+08		0.140E-05		
	3	0.787E+05	-0.787E+05	0.423E+07	-0.350E-06		
512	1	0.124E+08			0.147E-05	0.000E+00	0.700E-01
	2	0.573E+06	0.943E+07		0.142E-05		
	3	0.607E+05	-0.607E+05	0.458E+07	-0.386E-06		

ANISOTROPIC SHELL ELEMENT MATERIAL DEFINITION

Remarks:

- 1. See MAT2 in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 8 in the Model Initialization File or on the Nastran command line.

Figure A-28. Database Anisotropic Shell Element Material Definition.

ISOTROPIC MATERIAL DEFINITION

MATERIAL	K	CP	RHO	Н	MU	H-GEN
ID						
10	0.000E+00	0.000E+00	0.000E+00	1.500E-06	0.000E+00	1.000E+00
20	0.000E+00	0.000E+00	0.000E+00	2.500E-06	0.000E+00	1.000E+00
200	1.167E-03	4.637E+01	4.145E-04	0.000E+00	0.000E+00	1.000E+00
300	5.556E-04	4.053E+01	7.331E-04	0.000E+00	0.000E+00	1.000E+00

Remarks:

- 1. See MAT4 in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 8 in the Model Initialization File or on the Nastran command line.

Figure A-29. Database Isotropic Material Definition (Heat Transfer Analysis).

ANISOTROPIC ELEMENT MATERIAL DEFINITION

MATERIAL		MATER	IAL PROPERTY I	MATRIX	CP	RHO	H-GEN
ID		1	2	3			
3	1	2.060E-03			0.000E+00	0.000E+00	1.000E+00
	2	1.200E-03	3.120E-03				
	3	-5.800E-04	-2.400E-04	6.100E-03			
4	1	1.060E-03			0.000E+00	0.000E+00	1.000E+00
	2	2.200E-03	2.120E-03				
	3	-5.400E-04	-3.500E-04	4.500E-03			
5	1	4.060E-03			0.000E+00	0.000E+00	1.000E+00
	2	3.100E-03	3.420E-03				
	3	-5.750E-04	-1.400E-04	5.400E-03			
6	1	2.070E-03			0.000E+00	0.000E+00	1.000E+00
	2	3.500E-03	1.420E-03				
	3	-1.300E-04	-3.570E-04	2.670E-03			

Remarks:

- 1. See MAT5 in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 8 in the Model Initialization File or on the Nastran command line.

Figure A-30. Database Anisotropic Element Material Definition (Heat Transfer Analysis).

ORTHOTROPIC SHELL ELEMENT MATERIAL DEFINITION

MATERIAL	E1	E2	NU12	G12	G1Z	G2Z	RHO	Al	A2	T-REF
1D 500	0.140E+08	0.140E+08	0.100E+00	0.700E+07	0.130E+07	0.170E+07	0.750E-01	0.120E-05	0.170E-05	0.700E+01
510	0.100E+08	0.100E+07	0.200E+00	0.200E+07	0.100E+07	0.170E+07	0.650E-01	0.140E-05	0.190E-05	0.000E+00

Remarks:

- 1. See MAT8 in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 8 in the Model Initialization File or on the Nastran command line.

Figure A-31. Database Orthotropic Material Definition.

MATERIAL MATERIAL PROPERTY MATRIX ALPHA T-REF RHO 2 5 ID 1 3 4 6 400 1 0.107E+08 0.100E-02 0.100E+03 0.100E+00 2 0.691E+07 0.190E+08 0.244E-02 3 0.689E+07 0.690E+07 0.143E+08 0.344E-02 4 0.125E+07 0.127E+07 0.123E+07 0.527E+07 0.403E-02 5 -0.900E+05 -0.120E+06 -0.150E+06 0.210E+06 0.234E-02 0.463E+07 0.860E+06 0.820E+06 -0.110E+06 0.502E-02 6 0.830E+06 0.520E+06 0.572E+07 470 0.120E+03 1 0.117E+08 0.100E-02 0.130E+00 2 0.631E+07 0.193E+08 0.600E-02 3 0.699E+07 0.790E+07 0.350E-02 0.143E+08 0.327E+07 4 0.135E+07 0.177E+07 0.143E+07 0.440E-02 5 -0.140E+06 -0.620E+06 -0.450E+06 0.310E+06 0.433E+07 0.530E-02 0.850E+06 0.530E+06 0.420E+06 -0.310E+06 0.530E+06 0.420E-02

ANISOTROPIC SOLID ELEMENT MATERIAL DEFINITION

Remarks:

6

- See MAT9 in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format. 1.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 - 8 in the Model Initialization File or on the Nastran command line.

Figure A-32. Database Anisotropic Solid Element Material Definition.

0.573E+07

NONLINEAR MATERIAL DEFINITION

MATERIAL	NONLINEARITY TYPE	TABLE	HARDENING	YIELD	HARDENING	YIELD	FRICTION
ID		ID	SLOPE	FUNCTION	RULE	POINT	ANGLE
100	PLASTIC	0	5.000E+06	VON MISES	ISOTROPIC	3.000E+03	
110	PLASTIC	0	1.000E+06	VON MISES	ISOTROPIC	1.500E+03	
120	NONLINEAR ELASTIC	10					
130	NONLINEAR ELASTIC	20					

Remarks:

- 1. See MATS1 in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 8 in the Model Initialization File or on the Nastran command line.

Figure A-33. Database Nonlinear Material Definition.

ISOTROPIC MATERIAL TABLE DEFINITION

MATERIAL	E	G	NU	RHO	ALPHA
ID					
100	101	102	103	104	
200	108	108		106	107

Remarks:

- 1. See MATT1 in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 8 in the Model Initialization File or on the Nastran command line.

Figure A-34. Database Isotropic Material Table Definition.

ANISOTROPIC SHELL ELEMENT MATERIAL TABLE DEFINITION

MATERIAL		MATERIAL	PROPERTY MA	TRIX	ALPHA	RHO
ID		1	2	3		
200	1	101			108	107
	2	102	104		108	
	3	103	105	106	109	

Remarks:

1. See MATT2 in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.

2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 - 8 in the Model Initialization File or on the Nastran command line.

Figure A-35. Database Anisotropic Shell Element Material Table Definition.

ISOTROPIC MATERIAL TABLE DEFINITION

MATERIAL	K	CP	RHO	Н	MU	H-GEN
ID						
100	10					
200						30
300	20					

Remarks:

- 1. See MATT4 in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 8 in the Model Initialization File or on the Nastran command line.

Figure A-36. Database Isotropic Material Table Definition (Heat Transfer Analysis).

		-					
MATERIAL		MATERIA	AL PROPERTY N	MATRIX	CP	RHO	H-GEN
ID		1	2	3			
3	1	10					90
	2	20	10				
	3	30	20	10			
4	1	50					
	2	120	110				
	3	130	20	110			

ANISOTROPIC ELEMENT MATERIAL TABLE DEFINITION

Remarks:

- 1. See MATT5 in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 8 in the Model Initialization File or on the Nastran command line.

Figure A-37. Database Orthotropic Material Table Definition (Heat Transfer Analysis).
MATERIAL E1 E2 NU12 G12 G1Z G2Z RHO A1 A2 ID 300 101 102 103 104 107 108 106 500 24 45 5 356 107 106		ORT	НОТКОР	IC SHE	LL ELE	ΜΕΝΤ	TABLE	DEFINIT	ION	
1D 1D 102 103 104 107 108 106 300 24 45 356 107 106	MATERIAL	E1	E2	NU12	G12	G1Z	G2Z	RHO	A1	A2
	300 500	101 24	102 45	103		104	356	107 107	108	106 106

Remarks:

- 1. See MATT8 in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 8 in the Model Initialization File or on the Nastran command line.

Figure A-38. Database Orthotropic Shell Element Material Table Definition.

		ANISOTR	OPIC S	OLID EL	EMENT N	IATERIAI	L TABLE	DEFINI	ITION
MATERIAL				MATERIAL PRO	PERTY MATRIX			ALPHA	RHO
ID		1	2	3	4	5	6		
400	1	101							
	2	102						102	
	3	103	105						
	4	104	106	107					
	5							103	
	6			108		109			

Remarks:

- 1. See MATT9 in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 8 in the Model Initialization File or on the Nastran command line.

Figure A-39. Database Anisotropic Solid Element Material Table Definition.

MATERIAL PROPERTY TABLE DEFINITION

TABLE	X-VALUE	Y-VALUE
ID		
101	-0.500E+03	0.400E+00
	0.000E+00	0.900E+00
	0.100E+04	0.118E+01
	0.100E+05	0.130E+01
	0.200E+05	0.179E+01
102	-0.500E+03	0.580E+00
	0.000E+00	0.880E+00
	0.100E+04	0.116E+01
	0.100E+05	0.179E+01
	0.200E+05	0.200E+01
103	-0.500E+03	0.580E+00
	0.000E+00	0.880E+00
	0.100E+04	0.116E+01
	0.100E+05	0.179E+01
	0.200E+05	0.200E+01
201	-0.500E+03	0.880E+00
	0.000E+00	0.980E+00
	0.100E+04	0.118E+01
	0.100E+05	0.130E+01
	0.200E+05	0.140E+01

Remarks:

- 1. See TABLEM1, TABLEM2, TABLEM3, and TABLEM4 in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. For the specified table x value the calculated y value is shown.
- 3. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 6 in the Model Initialization File or on the Nastran command line.

Figure A-40. Database Material Property Table Definition.

DYNAMIC LOAD TABLE DEFINITION

TABLE	X-VALUE	Y-VALUE
ID		
11	0.000E+00	0.000E+00
	0.100E-02	0.100E+01
	0.100E+03	0.100E+01
12	0.000E+00	0.000E+00
	0.300E-01	0.000E+00
	0.310E-01	0.100E+01
	0.100E+03	0.100E+01

Remarks:

- 1. See TABLED1, TABLED2, TABLED3, and TABLED4 in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. For the specified table x value the calculated y value is shown.
- 3. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 6 in the Model Initialization File or on the Nastran command line.

Figure A-41. Database Dynamic Load Table Definition.

MODAL DAMPING TABLE DEFINITION

TABLE	X-VALUE	Y-VALUE
ID		
20	0.100E+01	0.500E-01
	0.100E+05	0.500E-01
30	0.100E+01	0.250E-01
	0.100E+05	0.250E-01

Remarks:

- 1. See TABDMP1 in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. For the specified table x value the calculated y value is shown.
- 3. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 6 in the Model Initialization File or on the Nastran command line.

Figure A-42. Database Modal Damping Table Definition.

SINGLE POINT CONSTRAINT DEFINITION

SET	GRID	COMPONENT	ENFORCED
ID	ID	NUMBERS	DISPLACEMENT
2	119	1	0.100E+00
2	121	1	0.100E+00
1	149	123456	0.000E+00
1	150	123456	0.000E+00
1	153	123456	0.000E+00
1	154	123456	0.000E+00

Remarks:

- 1. See SPC, SPC1, and SPCD in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 2 in the Model Initialization File or on the Nastran command line.

Figure A-43. Database Single Point Constraint Definition.

	SINGL	E POIN	T CONS	TRAINT	ADDITION	DEFINITION
SET S	PC SET IDS					
ID						
10	1	2				
20	3	4	5			

Remarks:

- 1. See SPCADD in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 2 in the Model Initialization File or on the Nastran command line.

Figure A-44. Database Single Point Constraint Addition Definition.

	DEPEN	DENT DEGREES	OF FREEDOM			INDEPENDENT DEG	REES OF FREI	EDOM	
SET	GRID	COMPONENT	COEFFICIENT	GRID	COMPONENT	COEFFICIENT	GRID	COMPONENT	COEFFICIENT
ID	ID	NUMBER		ID	NUMBER		ID	NUMBER	
1	15	1	0.100E+01	14	1	-0.100E+01			
	15	2	0.100E+01	14	2	-0.100E+01	14	6	0.500E+00
	15	3	0.100E+01	14	3	-0.100E+01	14	5	-0.500E+00
	15	2	0.100E+01	14	2	-0.100E+01	14	6	0.500E+00
	15	3	0.100E+01	14	3	-0.100E+01	14	5	-0.500E+00
	15	4	0.100E+01	14	4	-0.100E+01			
	15	5	0.100E+01	14	5	-0.100E+01			
	15	6	0.100E+01	14	6	-0.100E+01			
2	161	1	0.100E+01	11	1	-0.100E+01	11	5	0.100E+01
				11	6	-0.500E+00			
	161	2	0.100E+01	11	2	-0.100E+01	11	5	-0.500E+00
				11	6	-0.100E+01			
	161	3	0.100E+01	11	3	-0.100E+01	11	4	0.500E+00
				11	5	0.500E+00			
	164	1	0.100E+01	11	1	-0.100E+01	11	5	0.100E+01
				11	6	-0.100E+01			
	164	2	0.100E+01	11	2	-0.100E+01	11	5	-0.500E+00
				11	6	-0.100E+01			
	164	3	0.100E+01	11	3	-0.100E+01	11	4	0.100E+01
				11	5	0.500E+00			

MULTIPOINT CONSTRAINT DEFINITION

Remarks:

- 1. See MPC in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 2 in the Model Initialization File or on the Nastran command line.

Figure A-45. Database Multipoint Constraint Definition.

MULTIPOINT CONSTRAINT ADDITION DEFINITION

SET	MPC SET	IDS	
ID			
10	1	2	
20	3	4	5

Remarks:

- 1. See MPCADD in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 2 in the Model Initialization File or on the Nastran command line.

Figure A-46. Database Multipoint Constraint Addition Definition.

GRID POINT FORCE VECTOR DEFINITION

SET	GRID	COORDINATE		FORCE VECTOR	
ID	ID	ID	V1	V2	V3
1	11	1	0.000E+00	0.000E+00	-0.100E+02
1	84	3	0.990E-01	0.700E+00	0.707E+00
1	86	3	0.990E-01	0.700E+00	-0.707E+00
2	5	1	0.000E+00	0.000E+00	-0.100E+02

Remarks:

- 1. See FORCE and FORCE1 in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 2 in the Model Initialization File or on the Nastran command line.

Figure A-47. Database Grid Point Force Vector Definition.

GRID POINT MOMENT VECTOR DEFINITION

SET	GRID	COORDINATE	M	OMENT VECTOR	
ID	ID	ID	V1	V2	V3
2	115	2	0.707E+00	0.707E+00	0.000E+00
2	121	2	-0.707E+00	0.707E+00	0.000E+00

Remarks:

- 1. See MOMENT and MOMENT1 in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 2 in the Model Initialization File or on the Nastran command line.

Figure A-48. Database Grid Point Moment Vector Definition.

GRAVITY LOAD VECTOR DEFINITION

SET	COORDINATE	G	RAVITY VECTOR	
ID	ID	V1	V2	V3
6	0	0.000E+00	0.100E+02	0.000E+00
9	0	0.150E+02	0.150E+03	0.000E+00

Remarks:

- 1. See GRAV in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 2 in the Model Initialization File or on the Nastran command line.

Figure A-49. Database Gravity Load Vector Definition.

CENTRIFUGAL LOAD VECTOR DEFINITION

SET	GRID	COORDINATE	OMEGA	ALPHA	ROTATION VECTOR		
ID	ID	ID			V1	V2	V3
7	1	1	0.300E+02	0.500E+01	0.000E+00	0.000E+00	0.100E+01
7	5	1	0.600E+02	0.700E+01	0.000E+00	0.000E+00	0.100E+01

Remarks:

- 1. See RFORCE in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 2 in the Model Initialization File or on the Nastran command line.

Figure A-50. Database Centrifugal Load Vector Definition.

Output Formats

GRID POINT TEMPERATURE DEFINITION

SET	GRID	TEMPERATURE
ID	ID	
3	1	0.100E+02
3	2	0.150E+04
3	3	0.150E+04
3	4	0.100E+02
7	5	0.250E+04
7	6	0.250E+04
7	7	0.250E+04
7	8	0.250E+04

Remarks:

- 1. See TEMP, TEMPD, TEMPP1, and TEMPRB in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 2 in the Model Initialization File or on the Nastran command line.

Figure A-51. Database Grid Point Temperature Definition.

DYNAMIC LOAD SCALE FACTOR DEFINITION

SET	GRID	COMPONENT	AREA SCALE
ID	ID	NUMBER	FACTOR
100	1	3	0.100E+01
200	5	6	0.100E+01

Remarks:

- 1. See DAREA in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 2 in the Model Initialization File or on the Nastran command line.

Figure A-52. Database Dynamic Load Scale Factor Definition.

DYNAMIC LOAD TIME DELAY DEFINITION

SET	GRID	COMPONENT	DELAY
ID	ID	NUMBER	
30	5	3	0.300E-01
40	15	3	0.600E-01

Remarks:

- 1. See DELAY in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 2 in the Model Initialization File or on the Nastran command line.

Figure A-53. Database Dynamic Load Time Delay Definition.

DYNAMIC LOAD PHASE LEAD DEFINITION

SET	GRID	COMPONENT	PHASE
ID	ID	NUMBER	LEAD
45	6	2	4.500E+01
55	3	1	1.300E+00

Remarks:

- 1. See DPHASE in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 2 in the Model Initialization File or on the Nastran command line.

Figure A-54. Database Dynamic Load Phase Lead Definition.

TRANSIENT TIME STEP DEFINITION

SET	TIME	TIME	SKIP
ID	STEPS	INCREMENT	FACTOR
25	600	0.100E-03	1
30	300	0.200E-03	5

Remarks:

- 1. See TSTEP in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 2 in the Model Initialization File or on the Nastran command line.

Figure A-55. Database Transient Time Step Definition.

FREQUENCY LIST DEFINITION

SET FREQUENCY ID 25 0.000E+00 1.000E+00 2.000E+00 3.000E+00 4.000E+00 5.000E+00 6.000E+00 7.000E+00 8.000E+00 9.000E+00 1.000E+01

Remarks:

- 1. See FREQ, FREQ1, FREQ2 in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 2 in the Model Initialization File or on the Nastran command line.

Figure A-56. Database Frequency List Definition.

FREQUENCY LIST GENERATION DEFINITION

SET	MODAL FREQU	JENCY RANGE	INTERPOLATION	SUBRANGE	CLUSTER
ID	LOWER	UPPER	TYPE	FREQUENCIES	
25	1.000E+00	1.000E+02	LINEAR	20	1.000E+00

Remarks:

- 1. See FREQ3 and FREQ4 in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 2 in the Model Initialization File or on the Nastran command line.

Figure A-57. Database Frequency List Generation Definition.

ELEMENT INITIAL DEFORMATION DEFINITION

SET	ELEMENT	DEFORMATION
ID	ID	
5	66	0.100E+00
5	68	0.100E+00
5	133	0.100E+00
25	66	0.300E+00
25	68	0.140E+00
25	133	0.160E+00

Remarks:

- 1. See DEFORM in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 2 in the Model Initialization File or on the Nastran command line.

Figure A-58. Database Element Initial Deformation Definition.

SET	ELEMENT	LOAD	COORDINATE	POIN	IT-1	POIN	T-2
ID	ID	TYPE	ID	DISTANCE	PRESSURE	DISTANCE	PRESSURE
4	61	FORCE-Z	0	0.000E+00	0.700E+02	0.100E+01	0.350E+02
4	61	MOMENT-Z	0	0.000E+00	0.700E+02	0.100E+01	0.350E+02
4	62	FORCE-X	0	0.170E+00	0.500E+02	0.848E+00	0.500E+02
6	62	MOMENT-X	0	0.170E+00	0.500E+02	0.848E+00	0.500E+02
6	63	FORCE-Y	0	0.000E+00	0.000E+00	0.585E+00	0.600E+02
6	63	MOMENT-Y	0	0.000E+00	0.000E+00	0.585E+00	0.600E+02

BEAM ELEMENT PRESSURE DEFINITION

Remarks:

- 1. See PLOAD1 in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 2 in the Model Initialization File or on the Nastran command line.

Figure A-59. Database Bar Element Pressure Definition.

SET	ELEMENT	PRESSURE MAGNITUDE	COORDINATE	ORIEN	TATION VEC	CTOR
ID	ID	GRID-1 GRID-2 GRID-3 GRID-4	ID	V1	V2	V3
4	1	-0.100E+01-0.100E+01-0.100E+01-0.100E+01	NORMAL	0.000E+00	0.000E+00	0.100E+01
4	2	-0.100E+01-0.100E+01-0.100E+01-0.100E+01	NORMAL	0.000E+00	0.000E+00	0.100E+01
4	3	-0.100E+01-0.100E+01-0.100E+01-0.100E+01	NORMAL	0.000E+00	0.000E+00	0.100E+01
8	4	-0.100E+01-0.100E+01-0.100E+01-0.100E+01	NORMAL	0.000E+00	0.000E+00	0.100E+01
8	36	-0.100E+01-0.100E+01-0.100E+01	NORMAL	0.000E+00	0.000E+00	0.100E+01
8	37	-0.100E+01-0.100E+01-0.100E+01	NORMAL	0.000E+00	0.000E+00	0.100E+01

SHELL ELEMENT PRESSURE DEFINITION

Remarks:

- 1. See PLOAD2 and PLOAD4 in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 2 in the Model Initialization File or on the Nastran command line.

Figure A-60. Database Shell Element Pressure Definition.

SET	ELEMENT	FACE GRID-1	FACE GRID-2		PRESSURE N	MAGNITUDE		COORDINATE	ORIEN	TATION VE	CTOR
ID	ID	ID	ID	GRID-1	GRID-2	GRID-3	GRID-4	ID	V1	V2	V3
4	69	131	132	0.100E+03	0.120E+03	0.140E+03	0.160E+03	NORMAL	0.000E+00	0.000E+00	0.100E+01
4	70	132	133	0.100E+03	0.120E+03	0.140E+03	0.160E+03	NORMAL	0.000E+00	0.000E+00	0.100E+01
8	69	131	132	0.200E+03	0.120E+03	0.140E+03	0.160E+03	NORMAL	0.000E+00	0.100E+00	0.000E+01
8	70	132	133	0.200E+03	0.120E+03	0.140E+03	0.160E+03	NORMAL	0.000E+00	0.100E+00	0.000E+01

SOLID ELEMENT PRESSURE DEFINITION

Remarks:

- 1. See PLOAD4 in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 2 in the Model Initialization File or on the Nastran command line.

Figure A-61. Database Solid Element Pressure Definition.

SET	ELEMENT	TEMPER	ATURE	GRADIENT D	IRECTION-1	GRADIENT	DIRECTION-2
ID	ID	END-A	END-B	END-A	END-B	END-A	END-B
3	64	0.200E+02	0.200E+02	0.000E+00	0.000E+00	0.000E+00	0.000E+00
3	64	0.250E+02	0.100E+02	0.000E+00	0.000E+00	0.000E+00	0.000E+00
6	65	0.200E+02	0.200E+02	0.000E+00	0.100E+00	0.000E+00	0.200E+00
12	65	0.250E+02	0.100E+02	0.000E+00	0.100E+00	0.000E+00	0.200E+00

BEAM ELEMENT THERMAL DEFINITION

Remarks:

- 1. See TEMPRB in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 2 in the Model Initialization File or on the Nastran command line.

Figure A-62. Database Bar Element Thermal Definition.

SHELL ELEMENT THERMAL DEFINITION

SET	ELEMENT	TEMPERATURE	GRADIENT
ID	ID		
3	25	0.100E+02	0.500E+00
3	26	0.100E+02	0.500E+00
15	25	0.150E+02	0.600E+00
15	26	0.150E+02	0.600E+00

Remarks:

- 1. See TEMPP1 in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 2 in the Model Initialization File or on the Nastran command line.

Figure A-63. Database Shell Element Thermal Definition.

STATIC LOAD ADDITION DEFINITION

SET	SET SCALE	LOAD SCALE	LOAD SET	LOAD SCALE	LOAD SET
ID	FACTOR	FACTOR	ID	FACTOR	ID
10	0.100E+01	0.200E+01	1	0.300E+01	2
30	0.100E+01	0.800E+01	2		
50	0.200E+01	0.100E+01	7		

Remarks:

- 1. See LOAD in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 2 in the Model Initialization File or on the Nastran command line.

Figure A-64. Database Static Load Addition Definition.

TRANSIENT RESPONSE DYNAMIC LOAD DEFINITION

SET	AREA SET	DELAY SET	EXCITATION	TABLE	TIME-1	TIME-2	FREQUENCY	PHASE	EXPONENTIAL	GROWTH
ID	ID	ID	TYPE	ID	CONSTANT	CONSTANT		ANGLE	COEFFICIENT	COEFFICIENT
12	200	12	FORCE/MOMENT	2						
11	100		FORCE/MOMENT		0.000E+00	0.100E+00	0.318E+03	0.000E+00	0.000E+00	0.000E+00

Remarks:

- 1. See TLOAD1 and TLOAD2 in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 2 in the Model Initialization File or on the Nastran command line.

Figure A-65. Database Transient Response Dynamic Load Definition.

FREQUENCY RESPONSE DYNAMIC LOAD DEFINITION

SET	AREA SET	DELAY SET	PHASE SET	TABLE-1	TABLE-2
ID	ID	ID	ID	ID	ID
101	101	5		3	
102	102		10	3	

Remarks:

- 1. See RLOAD1 and RLOAD2 in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 2 in the Model Initialization File or on the Nastran command line.

Figure A-66. Database Frequency Response Dynamic Load Definition.

POWER SPECTRAL DENSITY DEFINITION

SET	SUBCAS	SE ID	COMPLEX CO	DEFFICIENT	TABLE
ID	EXCITED	APPLIED	REAL	IMAGINARY	ID
200	1	1	1.000E+00	0.000E+00	40
200	2	2	1.000E+00	0.000E+00	50
200	1	2	1.000E+00	0.000E+00	60

Remarks:

- 1. See RANDPS in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 2 in the Model Initialization File or on the Nastran command line.

Figure A-67. Database Power Spectral Density Definition.

POWER SPECTRAL DENSITY TABLE DEFINITION

TABLE	FREQUENCY	DENSITY	
ID			
40	0.000E+00	0.000E+00	
	9.990E+00	0.000E+00	
	1.000E+01	1.000E+00	
	9.000E+01	1.000E+00	
	9.001E+01	0.000E+00	
	1.000E+02	0.000E+00	

Remarks:

- 1. See TABRND1 in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 2 in the Model Initialization File or on the Nastran command line.

Figure A-68. Database Power Spectral Density Definition.

STATIC LOAD SEQUENCE DEFINITION

SET	AREA SET	LOAD SET	IDS
ID	ID	STATIC	THERMAL
10	100	1	0
10	200	2	0
20	100	1	10
20	200	2	10

Remarks:

- 1. See LSEQ in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 2 in the Model Initialization File or on the Nastran command line.

Figure A-69. Database Static Load Sequence Definition.

GRID POINT SCALAR LOAD DEFINITION

SET	GRID	LOAD
ID	ID	
1	18	6.500E-01
1	18	7.500E-01
1	19	6.400E-01
2	42	8.100E-01
2	48	6.500E-01
2	54	6.500E-01

Remarks:

- 1. See SLOAD in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 2 in the Model Initialization File or on the Nastran command line.

Figure A-70. Database Grid Point Scalar Load Definition.

	LINE AN	D POIN	TGRID	POINT	BOUNDARY	НЕАТ	FLUX	DEFINITION
SET	SURFACE	HEAT	AREA	GRID-1	GRID-2			
ID	TYPE	FLUX	FACTOR	ID	ID			
1	LINE	4.000E-02	1.500E-01	27	77			
1	LINE	5.000E-02	1.000E-01	34	89			
1	LINE	5.000E-02	2.000E-01	36	98			
1	LINE	5.000E-02	1.000E-01	25	45			
1	POINT	5.000E-02	4.500E-01	32				
1	POINT	1.000E-02	1.000E-01	33				
2	POINT	2.000E-02	2.750E-01	31				
2	POINT	3.000E-02	1.000E-02	24				

Remarks:

- See QHBDY in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format. 1.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 - 2 in the Model Initialization File or on the Nastran command line.

Figure A-71. Database Line and Point Grid Point Boundary Heat Flux Definition.

	5 6 10 1								0 11	
SET	SURFACE	HEAT	GRID-1	GRID-2	GRID-3	GRID-4	GRID-5	GRID-6	GRID-7	GRID-8
ID	TYPE	FLUX	ID							
1	AREA3	1.000E+02	11	12	25					
1	AREA3	1.000E+02	15	23	21					
1	AREA4	2.500E+02	45	22	30	66				
5	AREA4	2.500E+02	51	32	20	54				
5	AREA6	4.000E+02	67	49	24	69	93	87		
5	AREA6	4.000E+02	121	94	78	99	143	111		

SURFACE GRID POINT BOUNDARY HEAT FLUX DEFINITION

Remarks:

- 1. See QHBDY in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 2 in the Model Initialization File or on the Nastran command line.

Figure A-72. Database Surface Grid Point Boundary Heat Flux Definition.

ELEMENT BOUNDARY HEAT FLUX DEFINITION

SET	ELEMENT	HEAT FLUX MAGNITUDE								
ID	ID	GRID-1	GRID-2	GRID-3	GRID-4	GRID-5	GRID-6	GRID-7	GRID-8	
10	30	3.400E-03	1.400E-03	1.400E-03	3.400E-03	3.400E-03	1.400E-03	1.400E-03	3.400E-03	
10	24	4.000E-03	3.000E-03	2.000E-03	1.000E-03	4.000E-03	3.000E-03	2.000E-03	1.000E-03	
10	29	1.200E-02	1.200E-02	1.000E-02	1.000E-02	1.000E-02	1.000E-02			
20	34	4.500E-02	4.500E-02	4.500E-02	4.500E-02	4.500E-02	4.500E-02			
20	22	4.500E-02	4.500E-02	4.500E-02	4.500E-02					
20	23	5.500E-02	5.500E-02	5.500E-02	5.500E-02					

Remarks:

- 1. See QBDY1 and QBDY2 in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 2 in the Model Initialization File or on the Nastran command line.

Figure A-73. Database Element Boundary Heat Flux Definition.
ELEMENT VOLUME HEAT ADDITION DEFINITION

SET	ELEMENT	POWER
ID	ID	DENSITY
5	9	1.000E-01
5	4	1.000E-01
5	10	1.000E-01
10	19	5.000E-02
10	20	5.000E-02
10	15	2.500E-02

Remarks:

- 1. See QVOL in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 2 in the Model Initialization File or on the Nastran command line.

Figure A-74. Database Element Volume Heat Addition Definition.

				DARI	CONVEC		DEFINI	IION		
ELEMENT	MATERIAL	FILM	AMBIENT-1	AMBIENT-2	AMBIENT-3	AMBIENT-4	AMBIENT-5	AMBIENT-6	AMBIENT-7	AMBIENT-8
ID	ID	GRID ID	GRID ID	GRID ID	GRID ID	GRID ID	GRID ID	GRID ID	GRID ID	GRID ID
21	1	18	101	101	101	101	101	101	101	101
22	1	27	101	101	101	101	101	101	101	101
23	1		101	101	101	101				
25	2		100	110	120	130				
27	2		140	150	160	170				
28	2		102	102	102	102				

ELEMENT BOUNDARY CONVECTION DEFINITION

Remarks:

- 1. See CONV and PCONV in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 2 in the Model Initialization File or on the Nastran command line.

Figure A-75. Database Element Boundary Convection Definition.

SUBCASE VECTOR OUTPUT SET DEFINITION

SUBCASE	LOAD	DISPLACEMENT	VELOCITY	ACCELERATION	SPC FORCE	MPC FORCE
ID	VECTOR	VECTOR	VECTOR	VECTOR	VECTOR	VECTOR
101	ALL	ALL	ALL	102	ALL	ALL
105	234	238	NONE	ALL	ALL	NONE
110	ALL	ALL	NONE	NONE	ALL	NONE

Remarks:

1. See OLOAD, DISPLACEMENT, VELOCITY, ACCELERATION, SPCFORCES, and MPCFORCES in the Nastran Solver Reference Guide, Section 3, Case Control, for command format.

2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 - 5 in the Model Initialization File or on the Nastran command line.

Figure A-76. Database Subcase Vector Output Set Definition.

SUBCASE VECTOR OUTPUT SET DEFINITION

LOAD	TEMPERATURE	SPC FORCE	MPC FORCE
VECTOR	VECTOR	VECTOR	VECTOR
ALL	ALL	ALL	NONE
ALL	ALL	ALL	NONE
NONE	ALL	ALL	NONE
	LOAD VECTOR ALL ALL NONE	LOAD TEMPERATURE VECTOR VECTOR ALL ALL ALL ALL NONE ALL	LOADTEMPERATURESPC FORCEVECTORVECTORVECTORALLALLALLALLALLALLNONEALLALL

Remarks:

- 1. See OLOAD, THERMAL, SPCFORCES, and MPCFORCES in the Nastran Solver Reference Guide, Section 3, Case Control, for command format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 5 in the Model Initialization File or on the Nastran command line.

Figure A-77. Database Subcase Vector Output Set Definition (Heat Transfer Analysis).

SUBCASE ELEMENT OUTPUT SET DEFINITION

SUBCASE	ELEMENT	ELEMENT	ELEMENT	ELEMENT
ID	FORCE	STRESS	STRAIN	STRAIN ENERGY
101	ALL	ALL	NONE	ALL
104	ALL	ALL	NONE	123
107	334	456	NONE	ALL

Remarks:

- 1. See FORCE, STRESS, STRAIN, and ESE in the Nastran Solver Reference Guide, Section 3, Case Control, for command format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 5 in the Model Initialization File or on the Nastran command line.

Figure A-78. Database Subcase Element Output Set Definition.

SUBCASE ELEMENT OUTPUT SET DEFINITION

SUBCASE	ELEMENT	ELEMENT
ID	FLUX	GRADIENT
10	ALL	ALL
20	105	105
30	ALL	ALL

Remarks:

- 1. See FLUX in the Nastran Solver Reference Guide, Section 3, Case Control, for command format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 5 in the Model Initialization File or on the Nastran command line.

Figure A-79. Database Subcase Element Output Set Definition (Heat Transfer Analysis).

SUBCASE GRID OUTPUT SET DEFINITION

SUBCASE	GRID POINT	GRID POINT	GRID POINT	GRID POINT STRESS
ID	FORCE	STRESS	STRAIN	DISCONTINUITY
101	ALL	ALL	NONE	ALL
104	20	NONE	NONE	34
107	ALL	ALL	NONE	ALL

Remarks:

- 1. See GPFORCE, GPSTRESS, GPSTRAIN, AND GPDISCONT in the Nastran Solver Reference Guide, Section 3, Case Control, for command format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 5 in the Model Initialization File or on the Nastran command line.

Figure A-80. Database Subcase Grid Output Set Definition.

SET DEFINITION

SET				ELEMEN'	F/GRID IDS				
ID									
1	ALL								
5	1	THRU	44						
6	101	104	107						
2	1	3	4	6	THRU	18	38	41	44
	47	50	53	58	59	64	69	84	86
	88	90	115	117	119	121	131	THRU	159
	161	162	164	165	167	168	170	171	173
	174	176	177	179	180	182	183		
3	79	83	87	91					

Remarks:

- 1. See SET in the Nastran Solver Reference Guide, Section 3, Case Control, for command format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 5 in the Model Initialization File or on the Nastran command line.

Figure A-81. Database Set Definition.

VOLUME DEFINITION

VOLUME	ELEMENT SET	COORDINATE
ID	ID	ID
20	2	2
30	5	MATERIAL
40	9	GRID

Remarks:

- 1. See VOLUME in the Nastran Solver Reference Guide, Section 3, Case Control, for command format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 5 in the Model Initialization File or on the Nastran command line.

Figure A-82. Database Volume Definition.

SURFACE DEFINITION

SURFACE	ELEMENT SET	COORDINATE	X-AXIS	NORMAL
ID	ID	ID		
10	5	0	Х	Z
20	7	30	R	Z
30	6	GRID	Z	Х

Remarks:

- 1. See SURFACE in the Nastran Solver Reference Guide, Section 3, Case Control, for command format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 5 in the Model Initialization File or on the Nastran command line.

Figure A-83. Database Surface Definition.

 SPRING
 ELEMENT
 STRESS
 RECOVERY
 PROPERTY
 DEFINITION

 PROPERTY
 S
 ID
 Remarks:

- 1. See CELAS1 and CELAS2 in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 4 or 6 7 in the Model Initialization File or on the Nastran command line.

Figure A-84. Database Spring Element Stress Recovery Property Definition.

 ROD
 ELEMENT
 STRESS
 RECOVERY
 PROPERTY
 DEFINITION

 PROPERTY
 C
 ID
 <td

Remarks:

- 1. See PROD in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 4 or 6 7 in the Model Initialization File or on the Nastran command line.

Figure A-85. Database Rod Element Stress Recovery Property Definition.

BAR ELEMENT AXIS OUTPUT LOCATION DEFINITION

ELEMENT	Xl	X2	X3	X4	X5	Хб	X7	X8	Х9
ID									
61	0.1000E+00	0.2000E+00	0.3000E+00	0.4000E+00	0.5000E+00	0.6000E+00	0.7000E+00	0.8000E+00	0.9000E+00
62	0.2000E+00	0.4000E+00	0.6000E+00	0.8000E+00					

Remarks:

- 1. See CBARAO in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 4 or 6 7 in the Model Initialization File or on the Nastran command line.

Figure A-86. Database Bar Element Axis Output Location Definition.

	BARB	ELEMENT	STRESS	S RECOV	ERY PRO	OPERTY	DEFINII	ION
PROPERTY	C1	C2	D1	D2	E1	E2	F1	F2
ID								
30	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
40	0.100E+00	0.200E+00	0.000E+00	-0.100E+00	0.100E+00	-0.300E+00	0.600E+00	0.200E+00
50	0.200E+00	0.400E+00	0.000E+00	-0.200E+00	0.200E+00	-0.400E+00	0.800E+00	0.300E+00
60	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00

Remarks:

- 1. See PBAR in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 4 or 6 7 in the Model Initialization File or on the Nastran command line.

Figure A-87. Database Bar Element Stress Recovery Property Definition.

BEAM ELEMENT STRESS RECOVERY PROPERTY DEFINITION

PROPERTY ID	DISTANCE	C1	C2	D1	D2	E1	E2	Fl	F2	S1	S2
11	0.0000	-0.250E+01	0.500E+00	-0.250E+01	-0.500E+00	0.250E+01	-0.500E+00	0.250E+01	0.500E+00	0.000E+00	0.000E+00
	1.0000	-0.250E+01	0.500E+00	-0.250E+01	-0.500E+00	0.250E+01	0.500E+00	0.250E+01	-0.500E+00		
12	0.0000	-0.250E+01	0.500E+00	-0.250E+01	-0.500E+00	0.250E+01	-0.500E+00	0.250E+01	0.500E+00	0.100E+00	0.200E+00
	1.0000	-0.250E+01	0.500E+00	-0.250E+01	-0.500E+00	0.250E+01	0.500E+00	0.250E+01	-0.500E+00		

Remarks:

- 1. See PBEAM in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 4 or 6 7 in the Model Initialization File or on the Nastran command line.

Figure A-88. Database Beam Element Stress Recovery Property Definition.

 SHELL
 ELEMENT
 STRESS
 RECOVERY
 PROPERTY
 DEFINITION

 PROPERTY
 Z1
 Z2
 ID
 ID</td

Remarks:

- 1. See PSHELL in the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 4 or 6 7 in the Model Initialization File or on the Nastran command line.

Figure A-89. Database Shell Element Stress Recovery Property Definition.

T	SUBCASE SET	ELEMENT	OUTPUT SET	OUTPUT SET	RESULT
D	ID	TYPE	ID	TYPE	NUMBER
1	1	SHELL	5	ELEMENT	4
2	1	SHELL	5	ELEMENT	5
3	1	SHELL	5	ELEMENT	6
7	6	SHELL	5	GRID	4
8	6	SHELL	5	GRID	5
12	6	SHELL	5	GRID	15

RESULT LIMITS DEFINITION

Remarks:

SET ID

- 1. See RESULTLIMITS in the Nastran Solver Reference Guide, Section 3, Case Control, for command format.
- 2. This output is requested by specifying MODLDATAOUT = ON and MODLDATAFORMAT = 1 4 or 6 7 in the Model Initialization File or on the Nastran command line.

Figure A-90. Database Result Limits Definition.

MODEL PARAMETER DEFINITION

ELEMENT STIFFNESS MATRIX FORMULATION PARAMETERS

HEX ELEMENT EDGE NODE	=	OFF
HEX ELEMENT INTERNAL NODE	=	ON
HEX ELEMENT REDUCED ORDER INTEGRATION	=	ON
QUAD ELEMENT VERTEX ROTATION	=	OFF
QUAD ELEMENT INTERNAL NODE	=	ON
QUAD ELEMENT MEMBRANE REDUCED ORDER INTEGRATION	=	ON
QUAD ELEMENT BENDING REDUCED ORDER INTEGRATION	=	ON
TRI ELEMENT VERTEX ROTATION	=	OFF
TRI ELEMENT MEMBRANE REDUCED ORDER INTEGRATION	=	ON
TRI ELEMENT BENDING REDUCED ORDER INTEGRATION	=	ON

ELEMENT LOAD VECTOR FORMULATION PARAMETERS

QUAI) ELEMENT	F EQUIVALENT	LOAI	VECTOR	R FORMULATION	=	ON
TRI	ELEMENT	EQUIVALENT	LOAD	VECTOR	FORMULATION	=	ON
BAR	ELEMENT	EQUIVALENT	LOAD	VECTOR	FORMULATION	=	ON

MODEL SOLUTION SEQUENCE PARAMETERS

STIFFNESS MATRIX AUTOMATIC SINGLE POINT CONSTRAINT	= ON
STIFFNESS MATRIX DIAGONAL RATIO TOLERANCE FOR AUTOMATIC SINGLE POINT CONSTRAINT	= 0.10000E - 07
STIFFNESS MATRIX FACTOR DIAGONAL RATIO TOLERANCE FOR MECHANISM DETECTION	= 0.100000E+06
FLOATING POINT PRECISION CONSTANT FOR STIFFNESS MATRIX FACTORIZATION	= 0.222045E-15
MODEL RESULTS FLOATING POINT ZERO TOLERANCE	= 0.222045E-15

Remarks:

- 1. See the Nastran Solver Reference Guide, Section 5, Parameters, for a detailed description of each parameter.
- 2. This output is requested by specifying MODLDATAOUT = ON in the Model Initialization File or on the Nastran command line.

Figure A-91. Database Model Parameter Definition.

MODEL DATABASE SIZE

MODEL DATABASE SIZE

SUBCASES	=	2
COORDINATE SYSTEM	=	6
GRID POINTS	=	93
ELEMENTS	=	148
ELEMENT PROPERTIES	=	19
MATERIAL PROPERTIES	=	12
TABLES	=	8
SINGLE POINT CONSTRAINTS	=	13
MULTIPOINT CONSTRAINTS	=	104
GRID POINT FORCES	=	6
GRAVITY LOADS	=	2
GRID POINT TEMPERATURES	=	287
ELEMENT PRESSURES	=	15
ELEMENT TEMPERATURES	=	6
ELEMENT INITIAL DEFORMATIONS	=	6
SETS	=	6
SURFACES	=	1
VOLUMES	=	1

Figure A-92. Model Database Size.

INITIAL PERFORMANCE DATA

MODEL SIZE=405 DEGREES OF FREEDOMMATRIX SIZE=82215 WORDS0.63 MEGA BYTESSEMIBANDWIDTH=405 WORDSPROFILE DENSITY=11.01 PERCENT

RESEQUENCED PERFORMANCE DATA

MODEL SIZE=405 DEGREES OF FREEDOMMATRIX SIZE=27405 WORDS0.21 MEGA BYTESSEMIBANDWIDTH=90 WORDSPROFILE DENSITY=65.01 PERCENTMAXIMUM CONNECTIVITY=26 AT GRID 50MINIMUM CONNECTIVITY=1 AT GRID 93AVERAGE CONNECTIVITY=9.81

Remarks:

- 1. See RESEQGRID, UNRESEQGRID, RESEQSTARTGRID, and RESEQGRIDMETHOD in the Nastran Solver Reference Guide, Section 5, Parameters.
- 2. Model size is based on three degrees of freedom for solid elements and six degrees of freedom for all other elements.
- 3. Matrix size is an upper limit and does not account for sparse matrix storage. In other words, this value <u>includes</u> zero terms that are removed when the matrix is stored on disk.
- 4. One word equals eight bytes on 32-bit operating systems.
- 5. This output is not applicable to sparse solutions which do not perform grid point resequencing.

Figure A-93. Grid Point Resequencer Output.

ELEMENT GEOMETRY STATISTICS

MAXIMUM HEX ELEMENT FACE WARPING ANGLE = 0.00 DEGREES ON ELEMENT 28 MAXIMUM HEX ELEMENT FACE SKEW ANGLE = 0.00 DEGREES ON ELEMENT 28 MAXIMUM HEX ELEMENT FACE INTERIOR ANGLE = 90.00 DEGREES ON ELEMENT 28 MINIMUM HEX ELEMENT FACE INTERIOR ANGLE = 90.00 DEGREES ON ELEMENT 28 MAXIMUM HEX ELEMENT FACE TAPER RATIO = 0.00 ON ELEMENT 28 MAXIMUM HEX ELEMENT ASPECT RATIO = 2.00 ON ELEMENT 28 MAXIMUM PENT ELEMENT FACE WARPING ANGLE = 0.00 DEGREES ON ELEMENT 30 MAXIMUM PENT ELEMENT FACE SKEW ANGLE = 45.00 DEGREES ON ELEMENT 30 MAXIMUM PENT ELEMENT FACE INTERIOR ANGLE = 90.00 DEGREES ON ELEMENT 30 MINIMUM PENT ELEMENT FACE INTERIOR ANGLE = 26.57 DEGREES ON ELEMENT 30 MAXIMUM PENT ELEMENT FACE TAPER RATIO = 0.00 ON ELEMENT 30 MAXIMUM PENT ELEMENT ASPECT RATIO = 1.15 ON ELEMENT 30 MAXIMUM TET ELEMENT FACE SKEW ANGLE = 45.00 DEGREES ON ELEMENT 129 MAXIMUM TET ELEMENT FACE INTERIOR ANGLE = 90.00 DEGREES ON ELEMENT 129 MINIMUM TET ELEMENT FACE INTERIOR ANGLE = 26.57 DEGREES ON ELEMENT 129 MAXIMUM TET ELEMENT ASPECT RATIO = 1.61 ON ELEMENT 129 MAXIMUM QUAD ELEMENT WARPING ANGLE = 0.00 DEGREES ON ELEMENT 20 MAXIMUM QUAD ELEMENT SKEW ANGLE = 0.00 DEGREES ON ELEMENT 20 MAXIMUM QUAD ELEMENT INTERIOR ANGLE = 90.00 DEGREES ON ELEMENT 134 MINIMUM QUAD ELEMENT INTERIOR ANGLE = 90.00 DEGREES ON ELEMENT 134 MAXIMUM QUAD ELEMENT TAPER RATIO = 0.00 ON ELEMENT 20 MAXIMUM QUAD ELEMENT ASPECT RATIO = 1.00 ON ELEMENT 20

Figure A-94. Element Geometry Statistics.

GLOBAL STIFFNESS MATRIX ASSEMBLY STATISTICS

SPARSE MATRIX SIZE =667276 WORDS7.6 MEGABYTESMEMORY ALLOCATED =1039263 WORDS7.9 MEGABYTESMAXIMUM GLOBAL STIFFNESS MATRIX TERM ZEROED =9.9494E-16MINIMUM GLOBAL STIFFNESS MATRIX TERM ZEROED =0.0000E+00REDUCTION IN GLOBAL STIFFNESS MATRIX SIZE =29.79 PERCENT

ASSEMBLY TIME FOR 4180 ELEMENTS = 9.2 SECONDS

Remarks:

- 1. The output timing format can be changed to hours/minutes/seconds by setting the Model Initialization directive, SECONDS, to OFF. See the Nastran Solver Reference Guide, Section 2, Initialization, for more information.
- 2. One word equals eight bytes on 32-bit operating systems.

Figure A-95. Global Stiffness Matrix Assembly Statistics.

DIAGONAL MASS MATRIX FORMULATION USED

ASSEMBLY TIME FOR 64816 ELEMENTS = 62.2 SECONDS

Remarks:

- 1. The output timing format can be changed to hours/minutes/seconds by setting the Model Initialization directive, SECONDS, to OFF. See the Nastran Solver Reference Guide, Section 2, Initialization, for more information.
- 2. The mass matrix formulation method can be controlled using PARAM, COUPMASS. See the Nastran Solver Reference Guide, Section 5, Parameters, for more information.

Figure A-96. Global Mass Matrix Assembly Statistics.

THE FOLLOWING DEGREES OR HAVE NEGATIVE TERMS	OF FREEDOM HAVE FA S ON THE FACTOR DIA	ACTOR DIAGONAL AGONAL	RATIOS GREATER	THAN	0.10000E+06			
GRID ID 54	COMPONENT 3	FACTOR D: 0.44	IAGONAL RATIO 4705E+07		MATRIX DIAGONAL 0.22335E+08			
GLOBAL STIFFNESS MATR	IX FACTORIZATION ST	TATISTICS						
NUMBER OF NEGATIVE TERMS ON FACTOR DIAGONAL = 0 MAXIMUM MATRIX FACTOR DIAGONAL RATIO = 3.322E+02 AT GRID 1903 COMPONENT 1								
FACTORED SPARSE MATRIX ADDITIONAL MEMORY ALLO	X SIZE = 5304489 DCATED = 710877	WORDS 4 7 WORDS 5	40.5 MEGABYTES 54.2 MEGABYTES					
FACTORIZATION TIME FOR	R 5304489 WORDS = 3	16.4 SECONDS						

Remarks:

- 1. Excessive factor diagonal ratios are output during stiffness matrix factorization (decomposition). A value greater than 1.0E+5 indicates a possible mechanism at that degree of freedom and should be investigated.
- 2. Only factor diagonal ratios greater than the parameter FACTRATIOTOL/MAXRATIO (default 1.0E+5) are output. See FACTRATIOTOL or MAXRATIO in the Nastran Solver Reference Guide, Section 5, Parameters.
- 3. For STATIC solutions, singularities and negative factor diagonal terms detected during decomposition will result in program termination unless PARAM, SOLUTIONERROR, ON is specified in the Model Input File. Singularities and negative factor diagonal terms indicate a problem with the model, possibly a lack of constraint. See SOLUTIONERROR and FACTDIAG in the Nastran Solver Reference Guide, Section 5, Parameters.
- 4. The output timing format can be changed to hours/minutes/seconds by setting the Model Initialization directive, SECONDS, to OFF. See the Nastran Solver Reference Guide, Section 2, Initialization, for more information.

Figure A-97. Global Stiffness Matrix Factorization Statistics.

User's Manual

```
EXTRACTION TIME FOR 20 MODES = 0.8 SECONDS
GLOBAL STIFFNESS MATRIX FACTORIZATION STATISTICS
NUMBER OF NEGATIVE TERMS ON FACTOR DIAGONAL = 20
MAXIMUM MATRIX FACTOR DIAGONAL RATIO = 4.434E+01 AT GRID 33 COMPONENT 3
REORDERING METHOD REQUESTED = AUTO
REORDERING METHOD USED
                        = VRM1
FACTORED SPARSE MATRIX SIZE =117589 WORDS0.9 MEGABYTESADDITIONAL MEMORY ALLOCATED =290889 WORDS2.2 MEGABYTES
STURM SEQUENCE DATA FOR EIGENVALUE EXTRACTION
TRIAL EIGENVALUE = 1.400684E+10, CYCLES = 1.883606E+04
NUMBER OF EIGENVALUES BELOW THIS VALUE = 20
FACTORIZATION TIME FOR 117589 WORDS = 0.0 SECONDS
REAL EIGENVALUE EXTRACTION STATISTICS
NUMBER OF ITERATION VECTORS USED = 33
NUMBER OF FACTORIZATIONS = 3
NUMBER OF SUBSPACE ITERATIONS = 22
NUMBER OF SOLVES
                               = 726
```

= 20

Remarks:

- 1. A valid solution is indicated by a minimum orthogonality loss less than 1.0E-6, a minimum error norm less than 1.0E-3, and no missed eigenvalues (Sturm sequence check).
- 2. Eigenvalue extraction is controlled using the EIGRL Bulk Data entry. See the Nastran Solver Reference Guide, Section 4, Bulk Data, for more information.
- 3. The output timing format can be changed to hours/minutes/seconds by setting the Model Initialization directive, SECONDS, to OFF. See the Nastran Solver Reference Guide, Section 2, Initialization, for more information.

Figure A-98. Eigenvalue Extraction Statistics.

NUMBER OF ROOTS FOUND

MODE	EIGENVALUE	RADIANS	CYCLES	GENERALIZED	GENERALIZED	ORTHOGONALITY	ERROR
NOMBER	0 0406077 11	0 45550 (7 0 (1 5040045 06	MASS	STIFFNESS	LUSS	MEASURE
l	8.94069/E-II	9.455526E-06	1.504894E-06	1.000000E+00	8.94069/E-08	0.00000E+00	5.203658E-15
2	1.087785E-09	3.298158E-05	5.249182E-06	1.000000E+00	1.087785E-06	7.400298E-17	4.724788E-15
3	1.475215E-09	3.840853E-05	6.112907E-06	1.000000E+00	1.475215E-06	2.020404E-16	2.324607E-15
4	3.531575E-09	5.942706E-05	9.458110E-06	1.000000E+00	3.531575E-06	2.655955E-19	1.034285E-14
5	3.717840E-09	6.097409E-05	9.704328E-06	1.000000E+00	3.717840E-06	1.490616E-17	7.200536E-15
6	5.058944E-09	7.112626E-05	1.132010E-05	1.000000E+00	5.058944E-06	5.076275E-17	1.295316E-14
7	6.343320E+07	7.964496E+03	1.267589E+03	1.000000E+00	6.343320E+07	2.044111E-16	2.402007E-14
8	1.548321E+08	1.244315E+04	1.980389E+03	1.00000E+00	1.548321E+08	4.394504E-16	1.309097E-14
9	4.729638E+08	2.174773E+04	3.461259E+03	1.00000E+00	4.729638E+08	6.144550E-17	2.282439E-15
10	1.123340E+09	3.351626E+04	5.334279E+03	1.00000E+00	1.123340E+09	1.295926E-16	2.694635E-15
	1 1000/05						
MAXIMUM EIGENVA	ALUE = 1.123340E	+09, CYCLES = 5	0.3342/9E+03 FOR	MODE IU			
MINIMUM EIGENVA	ALUE = 8.940697E	-11, CYCLES = 1	.504894E-06 FOR	MODE 1			

REAL EIGENVALUES

FIRST FLEXIBLE EIGENVALUE = 6.343320E+07, CYCLES = 1.267589E+03 AT MODE 7

MAXIMUM EIGENVECTOR ORTHOGONALITY LOSS = 4.394504E-16 FOR MODE 8 MINIMUM EIGENVECTOR ORTHOGONALITY LOSS = 2.655955E-19 FOR MODE 4

MAXIMUM EIGENVECTOR ERROR MEASURE = 2.402007E-14 FOR MODE 7 MINIMUM EIGENVECTOR ERROR MEASURE = 2.282439E-15 FOR MODE 9

Remarks:

- 1. An extracted eigenvalue can be considered accurate if its orthogonality loss is less than 1.0E-6 and its error measure is less than 1.0E-3.
- 2. Eigenvalue extraction is controlled using the EIGRL Bulk Data entry. See the Nastran Solver Reference Guide, Section 4, Bulk Data, for more information.

Figure A-99. Real Eigenvalue Output.

MODAL PARTICIPATION FACTO	R S
---------------------------	-----

MODE	Τ1	Т2	Т3	R1	R2	R3
NUMBER						
1	0.00000E+00	0.178305E-01	0.000000E+00	0.00000E+00	0.000000E+00	0.129354E+00
2	0.00000E+00	0.988843E-02	0.00000E+00	0.00000E+00	0.000000E+00	0.205835E-01
3	0.406708E-14	-0.582044E-02	0.00000E+00	0.00000E+00	0.00000E+00	-0.731480E-02
4	0.713336E-12	0.417804E-02	0.00000E+00	0.00000E+00	0.00000E+00	0.370213E-02
5	-0.207000E-09	-0.326132E-02	0.00000E+00	0.00000E+00	0.00000E+00	-0.221196E-02

Remarks:

1. The modal participation factor for a given mode in a given direction indicates how strongly motion in that direction is represented in the eigenvector.

Figure A-100. Modal Participation Factor Output.

RIGID-BODY EIGENVALUES

MODE	EIGENVALUE	RIGID-BODY	NORMALIZED
NUMBER		STRAIN ENERGY	EIGENVALUE
1	8.940697E-11	5.761098E-15	1.409466E-18
2	1.087785E-09	2.614572E-15	1.714851E-17
3	1.475215E-09	8.321064E-17	2.325620E-17
4	3.531575E-09	4.633129E-16	5.567393E-17
5	3.717840E-09	6.075889E-19	5.861031E-17
6	5.058944E-09	3.894088E-14	7.975231E-17

Remarks:

1. Normalized rigid-body eigenvalues are normalized to the first flexible mode.

Figure A-101. Rigid-Body Eigenvalue Output.

					V E 11 11 0 0		
MODE NUMBER	T1	Т2	ТЗ	R1	R2	R3	
1	0.00000E+00	0.317925E-03	0.000000E+00	0.000000E+00	0.000000E+00	0.167324E-01	
2	0.00000E+00	0.977810E-04	0.000000E+00	0.000000E+00	0.000000E+00	0.423680E-03	
3	0.00000E+00	0.338775E-04	0.000000E+00	0.00000E+00	0.000000E+00	0.535063E-04	
4	0.00000E+00	0.174560E-04	0.000000E+00	0.00000E+00	0.000000E+00	0.137057E-04	
5	0.00000E+00	0.106362E-04	0.000000E+00	0.000000E+00	0.000000E+00	0.489275E-05	
TOTAL	0.000000E+00	0.477676E-03	0.000000E+00	0.000000E+00	0.000000E+00	0.172282E-01	

MODAL EFFECTIVE MASS

Remarks:

1. If the modal effective masses of all modes are added in any particular direction, the sum should give the total mass of the model, except for mass at restrained degrees of freedom. If the sum is significantly less than the model's total mass, modes with significant participation in excitation in that direction may not have been extracted.

Figure A-102. Modal Effective Mass Output.

			-				
GRID	COORDINATE	т1	Т2	тЗ	R1	R2	R3
ID	ID						
2	0	0.00000E+00	0.147644E+01	0.00000E+00	0.00000E+00	0.00000E+00	0.288181E+01
3	0	0.000000E+00	0.562172E+01	0.00000E+00	0.00000E+00	0.000000E+00	0.533804E+01
4	0	0.000000E+00	0.120121E+02	0.00000E+00	0.00000E+00	0.000000E+00	0.737320E+01
5	0	0.000000E+00	0.202313E+02	0.00000E+00	0.00000E+00	0.000000E+00	0.899831E+01
6	0	0.000000E+00	0.298786E+02	0.00000E+00	0.00000E+00	0.000000E+00	0.102334E+02
7	0	0.000000E+00	0.405784E+02	0.000000E+00	0.00000E+00	0.00000E+00	0.111096E+02
8	0	0.000000E+00	0.519925E+02	0.00000E+00	0.00000E+00	0.000000E+00	0.116705E+02
9	0	0.000000E+00	0.638333E+02	0.000000E+00	0.000000E+00	0.000000E+00	0.119736E+02
10	0	0.000000E+00	0.758774E+02	0.00000E+00	0.00000E+00	0.000000E+00	0.120904E+02
11	0	0.000000E+00	0.879808E+02	0.00000E+00	0.00000E+00	0.000000E+00	0.121077E+02
XIMUM DIS	PLACEMENT MAGN	ITUDE = 0.8798	08E+02 AT GRI	D 11			
XIMUM ROT	ATION MAGNITUD	E = 0.1210	77E+02 AT GRI	D 11			

REAL EIGENVECTOR NUMBER 1

Remarks:

- 1. This output is requested using the DISPLACEMENT Case Control command when running MODAL and BUCKLING solutions. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 2. The displacement or global coordinate system for the grid point is indicated in the Coordinate ID column.
- 3. Components T1, T2, and T3 are translations and R1, R2, and R3 are rotations in the specified coordinate system.

Figure A-103. Real Eigenvector Output.

GRID POINT WEIGHT OUTPUT

REFERENCE POINT = 1

0.200000E+00 0.000000E+00 0.0000 0.000000E+00 0.200000E+00 0.0000 0.000000E+00 0.000000E+00 0.2000 0.000000E+00 0.000000E+00 0.2000 0.000000E+00 0.000000E+00 0.2000 0.000000E+00 0.000000E+00 0.2000 0.000000E+00 0.000000E+00 0.1000 -0.200000E+00 -0.100000E+01 0.00000	M O 00E+00 0.00000E+00 0.00000E+00 -0.200000E+00 00E+00 0.200000E+00 0.100000E+01 0.000000E+01 00E+00 0.266833E+00 0.100000E+01 0.000000E+00 00E+01 0.100000E+01 0.666683E+01 0.000000E+00 00E+00 0.000000E+00 0.693333E+01	Rigid body mass matrix (MO) relative to the reference point in the basic coordinate system.
0.100000E+01 0.000000E+00 0.000000E+00	S 0.000000E+00 0.000000E+00 0.100000E+01 0.000000E+00 0.000000E+00 0.100000E+01	Transformation matrix from the basic coordinate system to the principal mass axes.
DIRECTION MASS AXIS SYSTEM (S) MASS X 0.200000E+00 Y 0.200000E+00 Z 0.200000E+00	CENTER OF MASS X Y Z 0.00000E+00 0.10000E+01 0.00000E+00 -0.50000E+01 0.00000E+00 0.00000E+00 -0.50000E+01 0.10000E+01 0.00000E+00	Principal masses and associated center of mass.
0.668333E-01 0.000000E+00	I(S) 0.000000E+00 0.000000E+00 0.166683E+01 0.000000E+00	Inertia matrix I(S) about the center of mass relative to the principal mass axes.
0.000000E+00 0.668333E-01	I (Q) 0.166683E+01	Inertia matrix I(Q) about the center of mass relative to the principal inertia axes.
0.100000E+01	0.173333E+01 Q 0.000000E+00 0.00000E+00	Transformation matrix [Q] between the S-axes and Q-axes.
0.00000E+00 0.00000E+00	0.100000E+01 0.000000E+00 0.000000E+00 0.100000E+01	

Figure A-104. Grid Point Weight Output.

PROPERTY	MATERIAL	PROPERTY	BOUN	DING DIMENSI	ONS	MASS	VOLUME	GRID	ELEMENTS
ID	ID	TYPE	D1	D2	D3			POINTS	
1	1	ROD	4.1900E+02	1.2300E+02	1.0422E+02	3.8330E-01	5.2100E+02	2460	1250
2	2	ROD	3.8000E+02	1.0900E+02	1.0422E+02	0.0000E+00	1.5135E+01	76	38
3	1	BAR	4.1850E+02	1.2300E+02	1.0422E+02	1.8817E+00	2.5577E+03	2432	1237
4	1	BAR	4.1900E+02	1.1181E+02	1.0350E+02	2.6032E+00	3.5384E+03	570	318
5	3	BEAM	3.8400E+02	1.1800E+02	1.0422E+02	6.2279E+00	8.4653E+03	1428	1394
6	3	BEAM	4.1850E+02	0.0000E+00	1.0300E+02	8.3522E-01	1.1353E+03	237	236
7	3	BEAM	3.3600E+02	0.0000E+00	8.8000E+01	2.1555E+00	2.9299E+03	170	168
8	5	BEAM	2.8400E+02	0.0000E+00	1.0000E+02	6.0881E+00	8.2752E+03	369	380
9	5	BEAM	0.0000E+00	1.1800E+02	1.0300E+02	3.6288E-01	4.9324E+02	84	82
10	5	BEAM	4.0400E+02	3.5000E+01	1.0000E+02	2.8093E+00	3.8185E+03	219	209
11	5	BEAM	3.7200E+02	3.3000E+01	1.0000E+02	1.5244E+00	2.0720E+03	294	280
12	8	BEAM	4.1700E+02	8.6000E+01	9.8000E+01	9.2676E+00	1.2597E+04	432	412
13	8	BEAM	3.8422E+02	9.4812E+01	9.5260E+01	2.3988E+00	3.2606E+03	156	154
14	8	BEAM	3.1200E+02	1.3800E+02	1.0350E+02	2.5100E+00	3.4117E+03	376	368
15	8	BEAM	0.0000E+00	7.2000E+01	1.0000E+02	6.6507E-01	9.0400E+02	108	104
16	8	BEAM	3.8400E+02	1.4000E+01	1.0422E+02	2.0857E-01	2.8350E+02	108	90
17	9	SHELL	4.1700E+02	1.2000E+02	1.0000E+02	2.0614E+01	2.8020E+04	10105	9828
18	9	SHELL	4.1700E+02	1.2000E+02	1.0000E+02	1.3990E+01	1.9017E+04	3477	3228
TOTAL			4.1900E+02	1.3800E+02	1.0422E+02	7.4526E+01	1.0132E+05	23101	19776

PART DEFINITION

Remarks:

- 1. Part definition output is controlled using PARAM, PARTGEOMOUT. See the Nastran Solver Reference Guide, Section 5, Parameters, for more information.
- 2. Bounding dimensions are in the basic coordinate system.

Figure A-105. Part Definition Output.

PROPERTY	MATERIAL	PROPERTY	MASS	CENTER OF MASS			MOM	MOMENTS OF INERTIA		
ID	ID	TYPE		Х	Y	Z	I1	I2	I3	
1	1	ROD	3.8330E-01	2.1777E+02	5.2844E+01	-5.0382E+01	1.4329E+03	7.0680E+03	6.9394E+03	
2	2	ROD	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	
3	1	BAR	1.8817E+00	2.0635E+02	5.0770E+01	-4.9921E+01	8.3015E+03	3.2565E+04	3.2006E+04	
4	1	BAR	2.6032E+00	1.8845E+02	9.5549E+00	-5.0000E+01	6.2008E+03	3.9415E+04	3.4699E+04	
5	3	BEAM	6.2279E+00	1.9200E+02	6.1000E+01	-5.0000E+01	2.4149E+04	1.0301E+05	9.3331E+04	
6	3	BEAM	8.3522E-01	2.3183E+02	1.2000E+02	-5.0000E+01	2.0532E+03	1.6450E+04	1.4397E+04	
7	3	BEAM	2.1555E+00	1.6800E+02	6.0000E+00	-5.0000E+01	4.1731E+03	2.4458E+04	2.0285E+04	
8	5	BEAM	6.0881E+00	2.1282E+02	1.1700E+02	-5.0000E+01	3.9630E+03	5.0216E+04	4.6253E+04	
9	5	BEAM	3.6288E-01	3.9600E+02	6.1000E+01	-5.0000E+01	1.3840E+03	9.6244E+02	4.2159E+02	
10	5	BEAM	2.8093E+00	1.4082E+02	1.0045E+02	-4.9854E+01	3.1996E+03	5.6223E+04	5.4744E+04	
11	5	BEAM	1.5244E+00	2.4857E+02	6.1786E+01	-5.0000E+01	1.6578E+03	2.1265E+04	2.0370E+04	
12	8	BEAM	9.2676E+00	1.9420E+02	1.2389E+01	-4.9105E+01	1.6590E+04	1.4836E+05	1.5191E+05	
13	8	BEAM	2.3988E+00	1.9893E+02	3.5945E+01	-5.0000E+01	7.6179E+03	3.5160E+04	3.1894E+04	
14	8	BEAM	2.5100E+00	2.2800E+02	5.1008E+01	-5.0000E+01	1.0710E+04	4.2143E+04	3.9410E+04	
15	8	BEAM	6.6507E-01	4.1900E+02	5.9000E+01	-5.0000E+01	1.0348E+03	5.5595E+02	4.7885E+02	
16	8	BEAM	2.0857E-01	1.9200E+02	1.3000E+01	-5.0000E+01	5.7010E+02	3.7701E+03	3.2073E+03	
17	9	SHELL	2.0614E+01	2.3082E+02	6.0000E+01	-5.0000E+01	7.2630E+04	4.0032E+05	3.7723E+05	
18	9	SHELL	1.3990E+01	2.3782E+02	1.8492E+00	-5.0000E+01	1.3021E+04	2.3921E+05	2.2857E+05	
TOTAL			7.4526E+01	2.1712E+02	4.5330E+01	-4.9883E+01	2.7351E+05	1.3055E+06	1.3353E+06	

PART MASS PROPERTIES

Remarks:

- Part mass properties output is controlled using PARAM, PARTMASSOUT. See the Nastran Solver Reference Guide, Section 5, Parameters, for 1. more information.
- 2. Center of gravity coordinates are in the basic coordinate system.
- 3. Moments of inertia are about the center of gravity relative to the principal mass axes.

Figure A-106. Part Mass Properties Output.

PROPERTY	PROPERTY	ASPECT	RECOMMENDED	TAPER	RECOMMENDED	SKEW	RECOMMENDED	WARPING	RECOMMENDED
ID	TYPE	RATIO	LIMIT	RATIO	LIMIT	ANGLE	LIMIT	ANGLE	LIMIT
20	QUAD	1.520	100.000	0.500	0.750	0.130	65.000	1.550	45.000
20	TRI	2.173	100.000	0.770	0.750	1.155	65.000	0.890	45.000
10	HEX	2.230	100.000	0.000	0.750	0.000	65.000	0.000	45.000
10	PENT	1.318	100.000	0.130	0.750	36.870	65.000	0.000	45.000
10	TET	1.412	100.000	0.000	0.750	1.414	80.000	0.000	45.000

PART ELEMENT GEOMETRY SUMMARY

Remarks:

1. Part element geometry output is controlled using PARAM, ELEMGEOMOUT. Individual element geometry statistics are also listed by element type and are sorted based on the ELEMGEOMOUT setting. See the *Nastran Solver Reference Guide*, Section 5, *Parameters*, for more information.

Figure A-107. Part Element Geometry Summary.

GRID	STRONGEST	DIRE	CTION OF SINGUL	ARITY	STIFFNESS
ID	COMPONENT	T1/R1	T2/R2	T3/R3	RATIO
1	2	0.00000E+00	1.000000E+00	0.000000E+00	0.00000E+00
1	3	0.00000E+00	0.00000E+00	1.000000E+00	0.00000E+00
1	4	1.00000E+00	0.00000E+00	0.000000E+00	0.00000E+00
1	5	0.00000E+00	1.000000E+00	0.00000E+00	0.00000E+00
1	6	0.00000E+00	0.00000E+00	1.000000E+00	0.00000E+00
2	2	0.00000E+00	1.00000E+00	0.00000E+00	0.00000E+00
2	3	0.00000E+00	0.00000E+00	1.00000E+00	0.00000E+00
2	4	1.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
2	5	0.00000E+00	1.000000E+00	0.00000E+00	0.00000E+00
2	6	0.00000E+00	0.00000E+00	1.000000E+00	0.00000E+00

GRID POINT SINGULARITY TABLE

MAXIMUM	STIFFNESS	MATRIX	DIAGONAL =	1.0000E+04	AT	GRID	2	COMPONENT	1
MINIMUM	STIFFNESS	MATRIX	DIAGONAL =	0.0000E+00	AT	GRID	2	COMPONENT	6

Remarks:

- 1. This output will be included anytime a stiffness ratio is less than the parameter STIFFRATIOTOL/EPZERO (default 1.0E-8). See STIFFRATIOTOL or EPZERO in the Nastran Solver Reference Guide, Section 5, Parameters.
- 2. Automatic stiffness matrix singularity correction can be suppressed by including PARAM, AUTOSPC, OFF in the Model Input File. See AUTOSPC in the Nastran Solver Reference Guide, Section 5, Parameters.

Figure A-108. Grid Point Singularity Table.

MASS MATRIX SINGULARITY TABLE

GRID	FAILED	MASS
ID	DIRECTIO	N RATIO
1	6	0.00000E+00
2	6	0.00000E+00
3	6	0.00000E+00
4	6	0.00000E+00
5	6	0.00000E+00
6	6	0.00000E+00
7	6	0.00000E+00
8	6	0.00000E+00
9	6	0.00000E+00
10	6	0.00000E+00
XIMUM MASS	MATRIX DIAGONAL =	0.8889E-02 AT GRID 15 COMPO

MAXIMUM MASS MATRIX DIAGONAL = 0.8889E-02 AT GRID 15 COMPONENT 3 MINIMUM MASS MATRIX DIAGONAL = 0.0000E+00 AT GRID 18 COMPONENT 6

Remarks:

- 1. This output will be included anytime a mass ratio is less than the parameter STIFFRATIOTOL/EPZERO (default 1.0E-8). See STIFFRATIOTOL or EPZERO in the Nastran Solver Reference Guide, Section 5, Parameters.
- 2. Automatic mass matrix singularity correction is enabled by including PARAM, AUTOBPD, ON in the Model Input File. See AUTOBPD and BPDEFDIAG in the Nastran Solver Reference Guide, Section 5, Parameters.

Figure A-109. Mass Matrix Singularity Table.
LOAD VECTOR

GRID	COORDINATE	Τ1	Т2	Т3	R1	R2	R3
ID	ID						
5	1	0.000000E+00	0.00000E+00	-0.300000E+02	0.000000E+00	0.00000E+00	0.00000E+00
11	1	0.00000E+00	0.000000E+00	-0.200000E+02	0.00000E+00	0.00000E+00	0.00000E+00
84	3	0.198030E+00	0.140028E+01	0.141422E+01	0.00000E+00	0.00000E+00	0.00000E+00
86	3	0.198030E+00	0.140028E+01	-0.141422E+01	0.00000E+00	0.00000E+00	0.00000E+00
115	2	0.000000E+00	0.00000E+00	0.00000E+00	0.212133E+01	0.212133E+01	0.000000E+00
121	2	0.00000E+00	0.00000E+00	0.00000E+00	-0.212133E+01	0.212133E+01	0.00000E+00

MAXIMUM	APPLIED	FORCE	MAGNITUDE	=	0.300000E+02	AT	GRID	5
MAXIMUM	APPLIED	MOMENT	MAGNITUDE	=	0.300001E+01	AT	GRID	121

Remarks:

- 1. This output is requested using the OLOAD Case Control command. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 2. The displacement or global coordinate system for the grid point is indicated in the Coordinate ID column.
- 3. Components T1, T2, and T3 are translations and R1, R2, and R3 are rotations in the specified coordinate system.

Figure A-110. Load Vector Output.

User's Manual

Output Formats

LOAD VECTOR

 GRID
 HEAT

 ID
 FLOW

 36
 3.333338-02

 38
 1.666667E-01

 40
 6.666667E-02

 42
 1.666667E-01

 44
 3.333333E-02

 46
 3.33333E-01

MAXIMUM APPLIED HEAT FLOW = 3.333333E-01 AT GRID 46

Remarks:

1. This output is requested using the OLOAD Case Control command. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.

Figure A-111. Load Vector Output (Heat Transfer Analysis).

DISPLACEMENT VECTOR

GRID	COORDINATE	Т1	Т2	тЗ	R1	R2	R3
ID	ID						
1	1	-0.111078E-04	-0.103480E-05	-0.134126E-04	-0.316660E-05	0.168036E-05	-0.306985E-06
2	1	-0.111078E-04	-0.118830E-05	-0.142527E-04	-0.316660E-05	0.168036E-05	-0.306985E-06
10	1	-0.111787E-04	-0.965582E-06	-0.632860E-05	0.249217E-06	-0.468702E-05	-0.697569E-06
12	1	-0.954637E-05	-0.106435E-05	-0.116879E-04	-0.138968E-05	-0.898107E-05	0.308261E-05
69	2	-0.262390E-04	0.678990E-05	-0.172376E-05	0.644182E-05	-0.195493E-04	-0.417000E-05
86	3	-0.784467E-05	0.378310E-04	-0.691947E-05	-0.291616E-05	-0.668634E-05	-0.382609E-04
88	3	-0.490422E-05	-0.363420E-04	0.636692E-05	-0.932648E-05	0.682732E-05	0.286673E-04
115	2	-0.271177E-06	-0.200039E-05	-0.954861E-05	0.497369E-04	0.494026E-04	-0.152797E-03

MAXIMUM DISPLACEMENT MAGNITUDE = 0.392506E-04 AT GRID 86 MAXIMUM ROTATION MAGNITUDE = 0.168111E-03 AT GRID 115

EPSILON = 0.811677E-14 STRAIN ENERGY = 0.507373E-03

SOLUTION TIME FOR 405 DEGREES OF FREEDOM = 0.2 SECONDS

Remarks:

- 1. This output is requested using the DISPLACEMENT Case Control command. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 2. The displacement or global coordinate system for the grid point is indicated in the Coordinate ID column.
- 3. Components T1, T2, and T3 are translations and R1, R2, and R3 are rotations in the specified coordinate system.
- 4. Epsilon is a measure of solution accuracy. A solution with an epsilon less than 1.0E-6 can be considered accurate. Values greater than 0.001 indicate excessive numerical ill-conditioning possibly due to a modeling error. Check the model for mechanisms, unconstrained rigid body motion, or unreasonably stiff elements.
- 5. Strain energy is the work performed by the applied loading.

Figure A-112. Displacement Vector Output.

			(MAGNITUDE/PHASE)								
GRID	COORDINATE	Т1	Т2	ТЗ	R1	R2	R3				
ID	ID										
6	0	1.337207E-07	1.001223E+00	0.00000E+00	0.000000E+00	0.000000E+00	4.050266E-04				
		1.799997E+02	3.599994E+02	0.00000E+00	0.000000E+00	0.000000E+00	3.594554E+02				
7	0	1.529925E-07	1.001642E+00	0.00000E+00	0.000000E+00	0.00000E+00	4.322463E-04				
		1.799997E+02	3.599991E+02	0.00000E+00	0.00000E+00	0.00000E+00	3.594475E+02				
8	0	1.684971E-07	1.002083E+00	0.00000E+00	0.00000E+00	0.00000E+00	4.479169E-04				
		1.799997E+02	3.599989E+02	0.00000E+00	0.00000E+00	0.00000E+00	3.594411E+02				
9	0	1.798528E-07	1.002535E+00	0.00000E+00	0.000000E+00	0.000000E+00	4.554922E-04				
		1.799997E+02	3.599986E+02	0.00000E+00	0.000000E+00	0.000000E+00	3.594369E+02				
10	0	1.867800E-07	1.002993E+00	0.00000E+00	0.00000E+00	0.00000E+00	4.581617E-04				
		1.799997E+02	3.599984E+02	0.00000E+00	0.000000E+00	0.00000E+00	3.594351E+02				
11	0	1.891082E-07	1.003451E+00	0.00000E+00	0.00000E+00	0.00000E+00	4.585366E-04				
		1.799997E+02	3.599981E+02	0.00000E+00	0.000000E+00	0.000000E+00	3.594348E+02				

COMPLEX DISPLACEMENT VECTOR

MAXIMUM DISPLACEMENT MAGNITUDE = 1.003451E+00 AT GRID 11 MAXIMUM ROTATION MAGNITUDE = 4.585366E-04 AT GRID 11

EPSILON = 0.811677E-14STRAIN ENERGY = 0.507373E-03

```
SOLUTION TIME FOR 405 DEGREES OF FREEDOM = 0.2 SECONDS
```

Remarks:

- This output is requested using the DISPLACEMENT Case Control command in frequency response solutions. See the Nastran Solver 1. Reference Guide, Section 3, Case Control, for more information.
- The REAL or IMAG option requests complex output in rectangular format (real and imaginary). The PHASE option requests complex output in 2. polar format (magnitude and phase) as shown. Phase output is in degrees.
- Maximums magnitudes reported are determined using MAGNITUDE/PHASE results. 3.

Figure A-113. Complex Displacement Vector Output.

DISPLACEMENT VECTOR POWER SPECTRAL DENSITY

GRID	COORDINATE	Τ1	Т2	ΤЗ	R1	R2	R3
ID	ID						
1	0	0.00000E+00	9.999961E-05	0.000000E+00	0.00000E+00	0.00000E+00	0.00000E+00
2	0	0.00000E+00	1.047097E-04	0.000000E+00	0.000000E+00	0.00000E+00	2.180307E-07
3	0	0.00000E+00	1.184294E-04	0.000000E+00	0.00000E+00	0.00000E+00	7.340857E-07
4	0	0.00000E+00	1.410860E-04	0.000000E+00	0.00000E+00	0.00000E+00	1.371883E-06
5	0	0.00000E+00	1.729179E-04	0.000000E+00	0.000000E+00	0.00000E+00	2.000010E-06
6	0	0.00000E+00	2.141029E-04	0.000000E+00	0.000000E+00	0.00000E+00	2.533815E-06
7	0	0.00000E+00	2.645599E-04	0.000000E+00	0.000000E+00	0.00000E+00	2.932218E-06
8	0	0.00000E+00	3.239046E-04	0.000000E+00	0.000000E+00	0.00000E+00	3.189857E-06
9	0	0.00000E+00	3.915265E-04	0.000000E+00	0.000000E+00	0.00000E+00	3.326730E-06
10	0	0.00000E+00	4.667437E-04	0.000000E+00	0.000000E+00	0.00000E+00	3.377880E-06
11	0	0.00000E+00	5.489987E-04	0.00000E+00	0.00000E+00	0.00000E+00	3.385214E-06

MAXIMUM DISPLACEMENT MAGNITUDE = 5.489987E-04 AT GRID 11 MAXIMUM ROTATION MAGNITUDE = 3.385214E-06 AT GRID 11

Remarks:

- 1. This output is requested using the DISPLACEMENT Case Control command in random response solutions. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 2. The PSDF option requests power spectral density function, RMS, and number of positive crossings output. The ATOC option requests autocorrelation function output. RALL requests both PSDF and ATOC output.

Figure A-114. Displacement Vector Power Spectral Density Output.

DISPLACEMENT VECTOR RESPONSE RMS VALUES

GRID	COORDINATE	Τ1	Т2	ΤЗ	R1	R2	R3
ID	ID						
1	0	0.00000E+00	8.983649E-02	0.000000E+00	0.00000E+00	0.00000E+00	0.000000E+00
2	0	0.00000E+00	8.968070E-02	0.000000E+00	0.00000E+00	0.00000E+00	1.287919E-02
3	0	0.00000E+00	9.173900E-02	0.000000E+00	0.00000E+00	0.00000E+00	2.389674E-02
4	0	0.00000E+00	1.015759E-01	0.000000E+00	0.00000E+00	0.00000E+00	3.307752E-02
5	0	0.000000E+00	1.230964E-01	0.000000E+00	0.00000E+00	0.00000E+00	4.046820E-02
6	0	0.00000E+00	1.558505E-01	0.000000E+00	0.00000E+00	0.00000E+00	4.614519E-02
7	0	0.000000E+00	1.970648E-01	0.000000E+00	0.000000E+00	0.00000E+00	5.022410E-02
8	0	0.00000E+00	2.439397E-01	0.000000E+00	0.00000E+00	0.00000E+00	5.287220E-02
9	0	0.00000E+00	2.942950E-01	0.000000E+00	0.00000E+00	0.00000E+00	5.432289E-02
10	0	0.00000E+00	3.465664E-01	0.000000E+00	0.00000E+00	0.00000E+00	5.488942E-02
11	0	0.00000E+00	3.997500E-01	0.000000E+00	0.00000E+00	0.00000E+00	5.497369E-02

MAXIMUM DISPLACEMENT MAGNITUDE = 3.997500E-01 AT GRID 11 MAXIMUM ROTATION MAGNITUDE = 5.497370E-02 AT GRID 11

Remarks:

- 1. This output is requested using the DISPLACEMENT Case Control command in random response solutions. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 2. The PSDF option requests power spectral density function, RMS, and number of positive crossings output. The ATOC option requests autocorrelation function output. RALL requests both PSDF and ATOC output.

Figure A-115. Displacement Vector RMS Output.

DISPLACEMENT VECTOR NUMBER OF POSITIVE CROSSINGS

GRID	COORDINATE	Τ1	Т2	тЗ	R1	R2	R3
ID	ID						
1	0	0.00000E+00	5.502793E+01	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
2	0	5.096015E-14	5.400281E+01	0.00000E+00	0.00000E+00	0.00000E+00	6.612009E+01
3	0	1.988516E-13	5.189819E+01	0.00000E+00	0.00000E+00	0.00000E+00	6.632348E+01
4	0	4.291960E-13	5.143856E+01	0.00000E+00	0.00000E+00	0.00000E+00	6.654465E+01
5	0	7.194435E-13	5.381554E+01	0.00000E+00	0.00000E+00	0.00000E+00	6.677165E+01
6	0	1.041181E-12	5.698809E+01	0.00000E+00	0.00000E+00	0.00000E+00	6.698858E+01
7	0	1.362914E-12	5.953698E+01	0.00000E+00	0.00000E+00	0.00000E+00	6.717817E+01
8	0	1.653150E-12	6.132775E+01	0.00000E+00	0.00000E+00	0.00000E+00	6.732498E+01
9	0	1.883479E-12	6.256434E+01	0.00000E+00	0.00000E+00	0.00000E+00	6.741924E+01
10	0	2.031359E-12	6.343286E+01	0.00000E+00	0.00000E+00	0.00000E+00	6.746150E+01
11	0	2.082314E-12	6.405878E+01	0.00000E+00	0.00000E+00	0.00000E+00	6.746840E+01

Remarks:

- 1. This output is requested using the DISPLACEMENT Case Control command in random response solutions. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 2. The PSDF option requests power spectral density function, RMS, and number of positive crossings output. The ATOC option requests autocorrelation function output. RALL requests both PSDF and ATOC will be output.

Figure A-116. Displacement Vector Number of Positive Crossings Output.

User's Manual

TEMPERATURE VECTOR

GRID	TEMPERATURE
ID	
1	2.250000E+02
2	2.250000E+02
19	2.250000E+02
20	2.250000E+02
79	2.062500E+02
80	1.125000E+02

MAXIMUM TEMPERATURE = 2.250000E+02 AT GRID 19

```
EPSILON = 1.629364E-16
STRAIN ENERGY = 4.517442E+09
```

SOLUTION TIME FOR 18 DEGREES OF FREEDOM = 0.8 SECONDS

Remarks:

- 1. This output is requested using the THERMAL Case Control command. See the *Nastran Solver Reference Guide*, Section 3, *Case Control*, for more information.
- 2. Epsilon is a measure of solution accuracy. A solution with an epsilon less than 1.0E-6 can be considered accurate. Values greater than 0.001 indicate excessive numerical ill-conditioning possibly due to a modeling error. Check the model for mechanisms, unconstrained rigid body motion, or unreasonably stiff elements.
- 3. Strain energy is the work performed by the applied loading.

Figure A-117. Temperature Vector Output.

FORCES OF SINGLE-POINT CONSTRAINT

GRID	COORDINATE	Τ1	Т2	Т3	Rl	R2	R3
ID	ID						
149	1	-0.619070E+00	-0.458939E+00	0.193836E+01	0.00000E+00	0.00000E+00	0.000000E+00
152	1	-0.184517E+00	-0.129463E+01	0.464866E+01	0.00000E+00	0.00000E+00	0.000000E+00
153	1	-0.217605E+00	0.227765E+00	0.939635E+01	0.00000E+00	0.00000E+00	0.000000E+00
156	1	0.208149E+01	0.665902E-01	0.672048E+01	0.00000E+00	0.00000E+00	0.000000E+00
157	1	0.116390E+01	0.123305E+01	0.415750E+01	0.00000E+00	0.000000E+00	0.00000E+00
211	1	0.213363E+01	-0.133050E+01	0.608575E+01	0.00000E+00	0.00000E+00	0.00000E+00

MAXIMUM	SINGLE	POINT	CONSTRAINT	FORCE	MAGNITUDE	=	0.940163E+01	AT	GRID	153
MAXIMUM	SINGLE	POINT	CONSTRAINT	MOMENT	MAGNITUDE	=	0.00000E+00	AT	GRID	211

Remarks:

- 1. This output is requested using the SPCFORCES Case Control command. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 2. The displacement or global coordinate system for the grid point is indicated in the Coordinate ID column.
- 3. Components T1, T2, and T3 are translations and R1, R2, and R3 are rotations in the specified coordinate system.

Figure A-118. Single Point Constraint Force Vector Output.

HEAT FLOWS OF SINGLE-POINT CONSTRAINT

GRID	HEAT
ID	FLOW
1	-1.462241E-01
2	-2.966635E-01
3	-1.297938E-01
37	-1.419115E-01
43	-2.853445E-01
49	-1.633632E-01

MAXIMUM SINGLE POINT CONSTRAINT HEAT FLOW = 2.966635E-01 AT GRID 2

Remarks:

1. This output is requested using the SPCFORCES Case Control command. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.

Figure A-119. Single Point Constraint Heat Flow Vector Output.

FORCES OF MULTIPOINT CONSTRAINT

GRID	COORDINATE	Τ1	Т2	ΤЗ	R1	R2	R3
ID	ID						
1	0	5.820766E-11	2.762431E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
2	0	2.910383E-11	-5.524862E+00	0.000000E+00	0.00000E+00	0.00000E+00	0.00000E+00
3	0	-1.455192E-10	2.762431E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00

MAXIMUM MULTIPOINT CONSTRAINT FORCE MAGNITUDE = 5.524862E+00 AT GRID 2 MAXIMUM MULTIPOINT CONSTRAINT MOMENT MAGNITUDE = 0.000000E+00 AT GRID 18

Remarks:

- 1. This output is requested using the MPCFORCES Case Control command. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 2. The displacement or global coordinate system for the grid point is indicated in the Coordinate ID column.
- 3. Components T1, T2, and T3 are translations and R1, R2, and R3 are rotations in the specified coordinate system.

Figure A-120. Multipoint Constraint Force Vector Output.

HEAT FLOWS OF MULTIPOINT CONSTRAINT

 GRID
 HEAT

 ID
 FLOW

 10
 -1.962511E+01

 11
 3.925023E+01

 12
 -1.962511E+01

MAXIMUM MULTIPOINT CONSTRAINT HEAT FLOW = 3.925023E+01 AT GRID 11

Remarks:

1. This output is requested using the MPCFORCES Case Control command. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.

Figure A-121. Multipoint Constraint Heat Flow Vector Output.

LOAD VECTOR RESULTANT

SUBCASE	Τ1	т2	Т3	R1	R2	R3
ID						
101	-0.582077E-09	0.400001E+01	0.500000E+02	-0.626186E+04	0.185852E+05	0.988000E+05
102	0.948285E+01	0.533385E+01	0.882526E+02	-0.621339E+04	0.185289E+05	0.988574E+05
103	-0.797546E+03	-0.424002E+03	-0.505244E-07	0.277984E+02	0.319797E+04	0.483753E+03
104	-0.831220E-06	0.278032E-02	0.128755E-04	-0.720179E+04	0.237968E+04	0.606118E+03

Remarks:

- 1. Resultant of the applied loads about the reference point specified using PARAM, GRDPNT (default is the origin of the basic coordinate system).
- 2. Components T1, T2, and T3 are translations and R1, R2, and R3 are rotations in the basic coordinate system.
- 3. One line is output for each subcase.

Figure A-122. Load Vector Resultant.

SINGLE POINT CONTRAINT VECTOR RESULTANT

SUBCASE	Τ1	Т2	тЗ	R1	R2	R3
ID						
101	-0.581845E-09	-0.298959E-05	-0.499629E-07	-0.629791E+04	0.185957E+05	0.987999E+05
102	-0.579865E-09	-0.299413E-05	-0.501999E-07	-0.626033E+04	0.185031E+05	0.988513E+05
103	-0.831205E-06	0.278032E-02	0.128755E-04	-0.720179E+07	0.237968E+04	0.606118E+03
104	-0.831043E-06	0.278027E-02	0.128616E-04	-0.720364E+07	0.237962E+04	0.608919E+03

Remarks:

- 1. Resultant of the single point constraint forces about the reference point specified using PARAM, GRDPNT (default is the origin of the basic coordinate system).
- 2. Components T1, T2, and T3 are translations and R1, R2, and R3 are rotations in the basic coordinate system.
- 3. One line is output for each subcase.

Figure A-123. Single Point Constraint Force Vector Resultant.

MAXIMUM APPLIED LOADS

SUBCASE	T1	Т2	Т3	R1	R2	R3
ID						
101	0.198030E+00	0.140028E+01	0.300000E+02	0.212133E+01	0.212133E+01	0.00000E+00
102	0.231861E+02	0.337671E+02	0.197449E+02	0.519829E+02	0.115759E+02	0.197422E+02
103	0.773470E+06	0.546926E+04	0.553346E+04	0.683066E-01	0.749143E+02	0.773214E+02
104	0.106066E+06	0.636393E+05	0.299999E+05	0.00000E+00	0.00000E+00	0.00000E+00

Remarks:

- 1. The largest magnitude of applied grid point loads transformed into the basic coordinate system is output. The maximum shown for one component may not be at the same grid point as another component for the same subcase.
- 2. Components T1, T2, and T3 are translations and R1, R2, and R3 are rotations in the basic coordinate system.
- 3. One line is output for each subcase.

Figure A-124. Maximum Applied Loads.

SUBCASE	Τ1	Т2	ΤЗ	R1	R2	R3
ID						
101	0.262390E-04	0.378310E-04	0.371446E-04	0.497369E-04	0.494026E-04	0.152797E-03
102	0.117592E-03	0.280954E-03	0.285502E-03	0.360148E-02	0.626240E-03	0.134828E-02
103	0.430951E-01	0.623623E-01	0.685955E-01	0.259675E-01	0.595437E-01	0.615254E-01
104	0.823080E-01	0.789537E-01	0.120970E-01	0.106439E-01	0.566643E-01	0.662530E-01

Remarks:

- 1. The largest magnitude of grid point displacements transformed into the basic coordinate system is output. The maximum shown for one component may not be at the same grid point as another component for the same subcase.
- 2. Components T1, T2, and T3 are translations and R1, R2, and R3 are rotations in the basic coordinate system.
- 3. One line is output for each subcase.

Figure A-125. Maximum Displacements.

MAXIMUM FORCES OF SINGLE POINT CONSTRAINT

SUBCASE	Τ1	Т2	TЗ	R1	R2	R3
ID						
101	0.213363E+01	0.205637E+01	0.939635E+01	0.00000E+00	0.00000E+00	0.00000E+00
102	0.139293E+02	0.781034E+01	0.408182E+02	0.00000E+00	0.000000E+00	0.000000E+00
103	0.117108E+05	0.217001E+05	0.312012E+05	0.00000E+00	0.00000E+00	0.00000E+00
104	0.276169E+05	0.524756E+03	0.441806E+04	0.00000E+00	0.00000E+00	0.00000E+00

Remarks:

- 1. The largest magnitude of single point constraint forces transformed into the basic coordinate system is output. The maximum shown for one component may not be at the same grid point as another component for the same subcase.
- 2. Components T1, T2, and T3 are translations and R1, R2, and R3 are rotations in the basic coordinate system.
- 3. One line is output for each subcase.

Figure A-126. Maximum Single Point Constraint Forces.

NONLINEAR FORCES IN GAP ELEMENTS

ELEMEN	FORCES I	N ELEMENT CO	OORDINATE SYS	ГЕМ	DISPLACEMENTS IN ELEMENT COORDINATE SYSTEM					
ID	AXIAL-X	SHEAR-	-Y SHEAR	-Z AXIAL-	U SHEAR-	-V SHEAR-W	SLIP-V	SLIP-W		
20	1.52049E-	02 0.00000	E+00 0.00000	E+00 1.52049E	-04 -4.02023E	C-04 0.00000E+	00 -4.02023E-04	0.00000E+00	OPEN	
21	2.00007E+	02 9.98480	E+00 0.00000	E+00 2.00008E	-06 9.98480E	C-07 0.00000E+	00 0.00000E+00	0.00000E+00	STICK	
MAXIMUM GA	AP ELEMENT AXIA	L FORCE = 2	2.000075E+02	AT ELEMENT 21						
MINIMUM GA	AP ELEMENT AXIA	L FORCE = 1	1.520487E-02	AT ELEMENT 20						
MAXIMUM GA	AP ELEMENT SHEA	AR FORCE =	9.984796E+00	AT ELEMENT 21						
MINIMUM GA	AP ELEMENT SHEA	AR FORCE = (0.000000E+00	AT ELEMENT 20						

Remarks:

- 1. This output is requested using the STRESS Case Control command. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 2. Positive axial force is compression. See CGAP in the Nastran Solver Reference Guide, Section 4, Bulk Data, for the definition of positive shear.

Figure A-127. Nonlinear Forces in Gap Elements.

FORCES IN SPRING ELEMENTS

ELEMENT	FORCE
ID	
1134	-0.166204E+04
1135	-0.113493E+03
1136	-0.104514E+02
2134	-0.407497E+02
2135	-0.169350E+03
2136	-0.377195E+03

Remarks:

- 1. This output is requested using the FORCE Case Control command. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 2. Positive element force acts in the negative direction on the first defined degree of freedom.
- 3. This output is typical of all spring elements (CELAS1 and CELAS2).
- 4. Prestress results can be excluded from the above output by including PARAM, ADDPRESTRESS, OFF in the Model Input File (PRESTRESS STATIC and PRESTRESS MODAL solutions only). See ADDPRESTRESS in the Nastran Solver Reference Guide, Section 5, Parameters.

Figure A-128. Forces in Spring Elements.

STRESSES IN SPRING ELEMENTS

ELEMENT	STRESS
ID	
1135	-0.113493E+06
1136	-0.104514E+05
2134	-0.814994E+05
2135	-0.338699E+06
2136	-0.377195E+05
3135	0.770380E+04

MAXIMUM SPRING ELEMENT STRESS = 0.770380E+04 AT ELEMENT 3135 MINIMUM SPRING ELEMENT STRESS = -0.338699E+06 AT ELEMENT 2135

Remarks:

- 1. This output is requested using the STRESS Case Control command. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 2. Stress output is obtained by multiplying the force in the spring by the stress coefficient (field 9 of the CELAS2 entry or fields 5 and 9 of the PELAS entry). See the Nastran Solver Reference Guide, Section 4, Bulk Data, for entry format.
- 3. This output is typical of all spring elements (CELAS1 and CELAS2).
- 4. Prestress results can be excluded from the above output by including PARAM, ADDPRESTRESS, OFF in the Model Input File (PRESTRESS STATIC and PRESTRESS MODAL solutions only). See ADDPRESTRESS in the Nastran Solver Reference Guide, Section 5, Parameters.

Figure A-129. Stresses in Spring Elements.

FORCES IN ROD ELEMENTS

ELEMENT	AXIAL	TORQUE
ID	FORCE	
45	-0.555411E+03	0.305070E+02
46	-0.158292E+03	0.00000E+00
47	0.268081E+03	0.340150E+01
48	0.104133E+03	0.00000E+00
49	-0.200040E+04	0.203403E+01
50	0.183684E+03	0.00000E+00

Remarks:

- 1. This output is requested using the FORCE Case Control command. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 2. Positive axial force is tension. See CROD in the Nastran Solver Reference Guide, Section 4, Bulk Data, for the definition of positive torque.
- 3. Prestress results can be excluded from the above output by including PARAM, ADDPRESTRESS, OFF in the Model Input File (PRESTRESS STATIC and PRESTRESS MODAL solutions only). See ADDPRESTRESS in the Nastran Solver Reference Guide, Section 5, Parameters.

Figure A-130. Forces in Rod Elements.

STRESSES IN ROD ELEMENTS

ELEMENT	AXIAL	TORSIONAL	
ID	STRESS	STRESS	
52	0.132790E+05	0.435050E+03	
53	-0.910854E+04	0.00000E+00	
54	0.172799E+05	0.503250E+01	
55	0.371227E+04	0.00000E+00	
56	-0.250064E+05	0.372707E+05	
133	0.794536E+05	0.113493E+06	

MAXIMUM ROD ELEMENT AXIAL STRESS = 0.794536E+05 AT ELEMENT 133 MINIMUM ROD ELEMENT AXIAL STRESS = -0.250064E+05 AT ELEMENT 56

Remarks:

- 1. This output is requested using the STRESS Case Control command. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 2. Positive stress is tension. See CROD in the Nastran Solver Reference Guide, Section 4, Bulk Data, for the definition of positive torque.
- 3. Prestress results can be excluded from the above output by including PARAM, ADDPRESTRESS, OFF in the Model Input File (PRESTRESS STATIC and PRESTRESS MODAL solutions only). See ADDPRESTRESS in the Nastran Solver Reference Guide, Section 5, Parameters.

Figure A-131. Stresses in Rod Elements.

ELEMENT	DISTANCE	E BENDING	5 MOMENT	SHEAR	FORCE	AXIAL	TORQUE
ID		PLANE 1	PLANE 2	PLANE 1	PLANE 2	FORCE	
62	0.0000	-0.402176E+04	-0.133193E+03	-0.494325E+04	-0.417755E+03	-0.154780E+04	0.990432E+02
	0.2000	-0.467744E+04	-0.188604E+03	-0.494325E+04	-0.417755E+03	-0.154780E+04	0.990432E+02
	0.4000	-0.533312E+04	-0.244016E+03	-0.494325E+04	-0.417755E+03	-0.154780E+04	0.990432E+02
	0.6000	-0.598880E+04	-0.299427E+03	-0.494325E+04	-0.417755E+03	-0.154780E+04	0.990432E+02
	0.8000	-0.664448E+04	-0.354839E+03	-0.494325E+04	-0.417755E+03	-0.154780E+04	0.990432E+02
	1.0000	-0.743365E+03	0.143865E+03	-0.494325E+04	-0.417755E+03	-0.154780E+04	0.990432E+02
63	0.0000	0.394935E+04	-0.357347E+03	0.416739E+04	-0.681014E+03	0.434080E+04	0.640372E+02
	1.0000	0.389847E+03	0.224329E+03	0.416739E+04	-0.681014E+03	0.434080E+04	0.640372E+02

FORCES IN BAR ELEMENTS

Remarks:

- 1. This output is requested using the FORCE Case Control command. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 2. Positive axial force is tension. See CBAR in the Nastran Solver Reference Guide, Section 4, Bulk Data, for the definition of planes 1 and 2 and for the positive directions of bending moments, shears, axial force and torque.
- 3. Distance is measured from end-A as a fraction of the elements length (i.e., end-A is at a distance of 0.0 and end-B at a distance of 1.0).
- 4. Intermediate output points are defined using the CBARAO Bulk Data entry. See CBARAO in the Nastran Solver Reference Guide, Section 4, Bulk Data.
- 5. Prestress results can be excluded from the above output by including PARAM, ADDPRESTRESS, OFF in the Model Input File (PRESTRESS STATIC and PRESTRESS MODAL solutions only). See ADDPRESTRESS in the Nastran Solver Reference Guide, Section 5, Parameters.

Figure A-132. Forces in Bar Elements.

S	Т	R	Ε	S	S	Е	S	I N	BAR	E	L	Е	М	Е	Ν	Т	S
---	---	---	---	---	---	---	---	-----	-----	---	---	---	---	---	---	---	---

ELEMENT ID	DISTANCE	SX-C	SX-D	SX-E	SX-F	AXIAL	SX-MAX	SX-MIN
62	0.0000	0.243792E+07	0.243792E+07	0.487584E+07	0.243792E+07	-0.171977E+05	0.485864E+07	0.242072E+07
	0.2000	0.328467E+07	0.328467E+07	0.656935E+07	0.328467E+07	-0.171977E+05	0.655215E+07	0.326748E+07
	0.4000	0.411143E+07	0.411143E+07	0.826285E+07	0.411143E+07	-0.171977E+05	0.824565E+07	0.411423E+07
	0.6000	0.497818E+07	0.497818E+07	0.995635E+07	0.497818E+07	-0.171977E+05	0.993916E+07	0.496098E+07
	0.8000	0.582493E+07	0.582493E+07	0.116499E+08	0.582493E+07	-0.171977E+05	0.116327E+08	0.580773E+07
	0.5000	0.455480E+07	0.455480E+07	0.910960E+07	0.455480E+07	-0.171977E+05	0.909240E+07	0.453760E+07
	0.6000	0.497818E+07	0.497818E+07	0.995635E+07	0.497818E+07	-0.171977E+05	0.993916E+07	0.496098E+07
	1.0000	-0.179584E+07	-0.179584E+07	-0.359168E+07	-0.179584E+07	-0.171977E+05	-0.181104E+07	-0.360888E+07
64	0.0000	-0.566230E+07	-0.566230E+07	-0.113246E+08	-0.566230E+07	-0.216618E+05	-0.568396E+07	-0.113463E+08
	1.0000	0.482402E+07	0.482402E+07	0.964805E+07	0.482402E+07	-0.216618E+05	0.962639E+07	0.480236E+07
		CEDECC - 0.17						
MAXIMUM BAR	ELEMENT TOTAL	STRESS = 0.1	L032/E+U8 AT E	STEMENI. QS				

MAXIMUM BAR ELEMENT TOTAL STRESS = 0.11032/2+08 AT ELEMENT 62 MINIMUM BAR ELEMENT TOTAL STRESS = -0.113463E+08 AT ELEMENT 64

Remarks:

- 1. This output is requested using the STRESS Case Control command. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 2. Positive stress is tension.
- 3. Distance is measured from end-A as a fraction of the elements length (i.e., end-A is at a distance of 0.0 and end-B at a distance of 1.0).
- 4. Intermediate output points are defined using the CBARAO Bulk Data entry. See CBARAO in the Nastran Solver Reference Guide, Section 4, Bulk Data.
- 5. Prestress results can be excluded from the above output by including PARAM, ADDPRESTRESS, OFF in the Model Input File (PRESTRESS STATIC and PRESTRESS MODAL solutions only). See ADDPRESTRESS in the Nastran Solver Reference Guide, Section 5, Parameters.

Figure A-133. Stresses in Bar Elements.

THERMAL GRADIENTS AND HEAT FLUXES IN BAR ELEMENTS

ELEMENT	GRADIENT	FLUX	
ID			
1	5.257847E+01	-1.050446E-02	
2	5.219163E+01	-1.074296E-02	
3	5.706667E+01	-1.210745E-02	
4	6.554758E+01	-1.437293E-02	
5	7.770808E+01	-1.768509E-02	
6	9.405507E+01	-2.224681E-02	
7	1.148997E+02	-2.833560E-02	
8	1.393850E+02	-3.630588E-02	
9	1.675567E+02	-4.655468E-02	
10	1.790111E+02	-5.302624E-02	
VININ DAD D	TEMENE BUEDNAT CD	NACHITRIDE -	1 7001117

MAXIMUM BAR ELEMENT THERMAL GRADIENT MAGNITUDE1.790111E+02AT ELEMENT 10MINIMUM BAR ELEMENT THERMAL GRADIENT MAGNITUDE5.219163E+01AT ELEMENT 2MAXIMUM BAR ELEMENT HEAT FLUX MAGNITUDE= -1.050446E-02AT ELEMENT 1MINIMUM BAR ELEMENT HEAT FLUX MAGNITUDE= -5.302624E-02AT ELEMENT 10

Remarks:

- 1. This output is requested using the FLUX Case Control command. See the *Nastran Solver Reference Guide*, Section 3, *Case Control*, for more information.
- 2. This output is typical of line elements (CROD, CBAR, and CBEAM).

Figure A-134. Thermal Gradients and Heat Fluxes in Bar Elements.

FORCES IN SHEAR ELEMENTS

ELEMENT	SHEAR-12	SHEAR-23	SHEAR-34	SHEAR-41	KICK-1	KICK-2	KICK-3	KICK-4
ID								
57	0.568432E-11	-0.617109E-03	-0.625278E-12	0.617109E-03	0.264411E+03	0.264411E+03	-0.264411E+03	-0.264411E+03
58	-0.290539E+03	0.678092E-03	-0.290540E+03	0.678092E-03	-0.568434E-11	-0.568434E-11	0.00000E+00	0.000000E+00
59	0.852647E-11	0.105424E-02	-0.625278E-12	-0.105424E-02	-0.451708E+03	-0.451708E+03	0.451708E+03	0.451708E+03
60	-0.472039E+03	0.110170E-02	-0.472041E+03	0.110170E-02	0.454747E-12	-0.227374E-12	0.511591E-12	-0.170530E-12
1157	0.568432E-11	-0.617109E-03	-0.625278E-12	0.617109E-03	0.264411E+03	0.264411E+03	-0.264411E+03	-0.264411E+03
1158	-0.290539E+03	0.678092E-03	-0.290540E+03	0.678092E-03	-0.568434E-11	-0.568434E-11	0.00000E+00	0.00000E+00

Remarks:

- 1. This output is requested using the FORCE Case Control command. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 2. See CSHEAR in the Nastran Solver Reference Guide, Section 4, Bulk Data, for the definition of element coordinate system and force components.

Figure A-135. Forces in Shear Elements.

STRESSES IN SHEAR ELEMENTS

ELEMENT	AVERAGE	MINIMUM	MAXIMUM
ID	SHEAR	SHEAR	SHEAR
57	-0.284217E-11	-0.123422E-01	0.123422E-01
58	-0.290539E+04	-0.581080E+04	0.115618E-01
59	-0.270006E-11	-0.210848E-01	0.210848E-01
60	-0.472039E+04	-0.944082E+04	0.220339E-01
1157	-0.284217E-11	-0.123422E-01	0.123422E-01
1460	-0.472039E+04	-0.944082E+04	0.220339E-01

MAXIMUM SHEAR ELEMENT SHEAR STRESS = 0.220339E-01 AT ELEMENT 1460 MINIMUM SHEAR ELEMENT SHEAR STRESS = -0.944082E+04 AT ELEMENT 1460

Remarks:

- 1. This output is requested using the STRESS Case Control command. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 2. Shear stresses are calculated along the element edges. Average shear is the average of all four edge shear stresses. Minimum shear is the maximum edge shear stress.

Figure A-136. Stresses in Shear Elements.

HEAT FLOW INTO HBDY ELEMENTS

ELEMENT	APPLIED	CONVECTION	RADIATION	TOTAL
ID				
12	1.00000E+01	0.00000E+00	-1.000159E+01	-1.585793E-03
13	1.00000E+01	0.00000E+00	-1.000159E+01	-1.585793E-03
22	9.123600E-03	-2.518653E-02	0.00000E+00	-1.606293E-02
23	8.02000E-04	-2.511956E-02	0.00000E+00	-2.433756E-02
26	0.00000E+00	-0.373852E-01	0.00000E+00	-0.373852E-01
27	0.00000E+00	-0.348658E-01	0.00000E+00	-0.348658E-01
32	9.126400E-03	0.00000E+00	0.00000E+00	9.126400E-03
33	1.125000E-03	0.00000E+00	0.00000E+00	1.125000E-03

MAXIMUM HBDY ELEMENT HEAT FLOW = 9.126400E-03 AT ELEMENT 32 MINIMUM HBDY ELEMENT HEAT FLOW = -0.373852E-01 AT ELEMENT 25

Remarks:

- 1. This output is requested using the FLUX Case Control command. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 2. Applied heat flow is the result of heat flux loads (QBDY1 and QBDY2) applied to hbdy elements (CHBDYP and CHBDYG). Convection heat flow is the result of free convection loads (CONV) applied to hbdy elements. Radiation heat flow is the result of surface radiation loads (RADBC) applied to hbdy elements.

Figure A-137. Heat Flow Into Hbdy Elements.

FORCES IN QUAD ELEMENTS ON SURFACE 1

SURFACE COORDINATE ID = GRID X-AXIS = X NORMAL = Z

ELEMENT	GRID	ME	MBRANE FORCE	S	BI	ENDING MOMENT	ſS	TRANSVERSE S	SHEAR FORCES
ID	ID	FX	FY	FXY	MX	MY	MXY	QX	QY
1	CENTER	0.43733E+04	0.33983E+02	0.19833E+04	-0.60301E+02	-0.53516E+02	-0.51218E+02	0.95923E+02	0.99433E+02
2	CENTER	0.28545E+04	0.65454E+03	0.12097E+04	-0.36872E+02	0.28229E+02	0.24996E+02	0.15178E+02	-0.27760E+03
3	CENTER	0.56781E+04	-0.98814E+02	0.16930E+04	-0.14418E+03	-0.10332E+03	-0.40701E+02	0.39510E+03	0.33240E+03
4	CENTER	0.57292E+04	0.89260E+03	-0.79976E+03	-0.77539E+02	0.43797E+02	-0.12523E+02	0.52993E+03	-0.68043E+03
5	CENTER	-0.15600E+04	0.23426E+03	-0.56919E+03	-0.71223E+02	-0.33979E+02	0.59102E+02	-0.73129E+03	0.33729E+03
6	CENTER	-0.27352E+04	-0.18546E+04	0.27665E+04	-0.77953E+02	0.79705E+01	0.32214E+02	-0.17223E+04	-0.24726E+02

Remarks:

- 1. This output is requested using the FORCE Case Control command. Corner force output is requested by using the FORCE (CORNER) Case Control command. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 2. Positive force is tension. Forces may be output in any SURFACE coordinate system (ELEMENT, GRID, BASIC, MATERIAL, or user defined). In the above example, forces are output in the GRID or displacement coordinate system (field 7 on the GRID Bulk Data entry). See SURFACE in the Nastran Solver Reference Guide, Section 3, Case Control, for more information. See CQUAD4 and CQUADR in the Nastran Solver Reference Guide, Section 4, Bulk Data, for the definition of element coordinate system and force components.
- 3. This output is typical of all shell elements (CQUAD4, CQUADR, CTRIA3, and CTRIAR).
- 4. Prestress results can be excluded from the above output by including PARAM, ADDPRESTRESS, OFF in the Model Input File (PRESTRESS STATIC and PRESTRESS MODAL solutions only). See ADDPRESTRESS in the Nastran Solver Reference Guide, Section 5, Parameters.

Figure A-138. Forces in Quad Elements (Without Corner Option).

FORCES IN QUAD ELEMENTS ON SURFACE 1

SURFACE COORDINATE ID = GRID X-AXIS = X NORMAL = Z

ELEMENT	GRID	ME	EMBRANE FORCE	S	BI	ENDING MOMENT	ſS	TRANSVERSE S	SHEAR FORCES
ID	ID	FX	FΥ	FXY	MX	MY	MXY	QX	QY
1	CENTER	0.43733E+04	0.33983E+02	0.19833E+04	-0.60301E+02	-0.53516E+02	-0.51218E+02	0.95923E+02	0.99433E+02
	1	0.87432E+04	0.43733E+03	0.19833E+04	-0.14227E+03	0.24104E+02	-0.49262E+02	0.43850E+03	-0.21187E+03
	2	0.33983E+01	0.43733E+03	0.19833E+04	-0.39003E+02	-0.42231E+02	-0.36555E+02	-0.24665E+03	-0.21187E+03
	5	0.33983E+01	-0.36936E+03	0.19833E+04	0.21666E+02	-0.11114E+03	-0.53174E+02	-0.24665E+03	0.41274E+03
	4	0.87432E+04	-0.36936E+03	0.19833E+04	-0.81599E+02	-0.64802E+02	-0.65880E+02	0.43850E+03	0.41274E+03
2	CENTER	0.28545E+04	0.65454E+03	0.12097E+04	-0.36872E+02	0.28229E+02	0.24996E+02	0.15178E+02	-0.27760E+03
	2	0.65454E+02	-0.52374E+03	0.12097E+04	-0.31639E+01	-0.38089E+02	0.39670E+02	0.25723E+02	0.16734E+03
	3	0.56436E+04	-0.52374E+03	0.12097E+04	-0.70881E+02	0.78649E+02	0.32381E+02	0.46327E+01	0.16734E+03
	6	0.56436E+04	0.18328E+04	0.12097E+04	-0.70581E+02	0.94547E+02	0.10321E+02	0.46327E+01	-0.72253E+03
	5	0.65454E+02	0.18328E+04	0.12097E+04	-0.28642E+01	-0.22191E+02	0.17610E+02	0.25723E+02	-0.72253E+03
3	CENTER	0.56781E+04	-0.98814E+02	0.16930E+04	-0.14418E+03	-0.10332E+03	-0.40701E+02	0.39510E+03	0.33240E+03
	4	0.47731E+04	-0.23889E+03	0.16930E+04	-0.16336E+03	-0.72489E+02	-0.45942E+02	-0.50748E+03	0.63098E+03
	5	0.65831E+04	-0.23889E+03	0.16930E+04	-0.25348E+03	-0.15914E+03	-0.11501E+03	0.12977E+04	0.63098E+03
	8	0.65831E+04	0.41257E+02	0.16930E+04	-0.12500E+03	-0.11414E+03	-0.35461E+02	0.12977E+04	0.33815E+02
	7	0.47731E+04	0.41257E+02	0.16930E+04	-0.34876E+02	-0.47491E+02	0.33607E+02	-0.50748E+03	0.33815E+02
4	CENTER	0.57292E+04	0.89260E+03	-0.79976E+03	-0.77539E+02	0.43797E+02	-0.12523E+02	0.52993E+03	-0.68043E+03
	5	0.66822E+04	0.21203E+04	-0.79976E+03	-0.26388E+03	-0.62307E+02	0.11908E+03	0.12543E+04	-0.99386E+03
	6	0.47762E+04	0.21203E+04	-0.79976E+03	-0.61186E+02	0.10948E+03	0.24303E+02	-0.19448E+03	-0.99386E+03
	9	0.47762E+04	-0.33509E+03	-0.79976E+03	0.10880E+03	0.14990E+03	-0.14412E+03	-0.19448E+03	-0.36700E+03
	8	0.66822E+04	-0.33509E+03	-0.79976E+03	-0.93692E+02	-0.21887E+02	-0.49350E+02	0.12543E+04	-0.36700E+03

Remarks:

- 1. This output is requested using the FORCE (CORNER) Case Control command. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 2. Positive force is tension. Forces may be output in any SURFACE coordinate system (ELEMENT, GRID, BASIC, MATERIAL, or user defined). In the above example, forces are output in the GRID or displacement coordinate system (field 7 on the GRID Bulk Data entry). See SURFACE in the Nastran Solver Reference Guide, Section 3, Case Control, for more information. See CQUAD4 and CQUADR in the Nastran Solver Reference Guide, Section 4, Bulk Data, for the definition of element coordinate system and force components.
- 3. This output is typical of all shell elements (CQUAD4, CQUADR, CTRIA3, and CTRIAR).
- 4. Prestress results can be excluded from the above output by including PARAM, ADDPRESTRESS, OFF in the Model Input File (PRESTRESS STATIC and PRESTRESS MODAL solutions only). See ADDPRESTRESS in the Nastran Solver Reference Guide, Section 5, Parameters.

Figure A-139. Forces in Quad Elements (With Corner Option).

STRESSES IN QUAD ELEMENTS ON SURFACE 55

SURFACE COORDINATE ID = 0 X-AXIS = X NORMAL = Z

ELEMENT	GRID	FIBER	STRESSES IN SURFACE CO	OORDINATE SYSTEM	PRINCIE	AL STRESSES (2	ZERO SHEAR)	HENCKY
ID	ID	DISTANCE	NORMAL-X NORMAL-Y	Y SHEAR-XY	ANGLE	MAJOR	MINOR	VON MISES
3	CENTER	-0.50000E-01	0.20766E+05 -0.12904E-	+05 0.64626E+04	10.5004	0.21964E+05	-0.14101E+05	0.31480E+05
		0.15000E+00	0.89118E+05 0.36076E+	+05 0.25758E+05	22.0818	0.99568E+05	0.25626E+05	0.89548E+05
	4	-0.50000E-01	0.12459E+05 -0.10184E-	+05 0.58415E+04	11.6458	0.11878E+05	-0.11602E+05	0.22095E+05
		0.15000E+00	0.89904E+05 0.24181E+	+05 0.27621E+05	20.0241	0.99971E+05	0.14115E+05	0.93714E+05
	5	-0.50000E-01	0.11845E+05 -0.20454E-	+05 -0.23443E+04	-3.8921	0.14004E+05	-0.20611E+05	0.30161E+05
		0.15000E+00	0.11402E+06 0.54991E+	+05 0.52179E+05	26.4326	0.15995E+06	0.29052E+05	0.14759E+06
	8	-0.50000E-01	0.29073E+05 -0.15623E-	+05 0.70837E+04	8.7936	0.30168E+05	-0.16719E+05	0.41159E+05
		0.15000E+00	0.88332E+05 0.47970E-	+05 0.23895E+05	24.9082	0.99427E+05	0.36874E+05	0.87059E+05
	7	-0.50000E-01	0.27687E+05 -0.53535E-	+04 0.15269E+05	21.3733	0.33663E+05	-0.11329E+05	0.40533E+05
		0.15000E+00	0.44221E+05 0.17161E-	+05 -0.66266E+03	-1.4020	0.44237E+05	0.17144E+05	0.38632E+05

MAXIMUM QUAD ELEMENT PRINCIPAL STRESS = 0.995677E+05 AT ELEMENT 3 MINIMUM QUAD ELEMENT PRINCIPAL STRESS = -0.815991E+05 AT ELEMENT 27 MAXIMUM QUAD ELEMENT SHEAR STRESS = 0.423755E+05 AT ELEMENT 26 MAXIMUM QUAD ELEMENT VON MISES STRESS = 0.895483E+05 AT ELEMENT 3

Remarks:

- 1. This output is requested using the STRESS (CORNER) Case Control command. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 2. This output is typical of all shell elements (CQUAD4, CQUADR, CTRIA3, and CTRIAR).
- 3. Stresses may be output in any SURFACE coordinate system (ELEMENT, GRID, BASIC, MATERIAL, or user defined). In the above example, stresses are output in the basic coordinate system (SURFACE COORDINATE ID = 0). See SURFACE in the Nastran Solver Reference Guide, Section 3, Case Control, for more information. See CQUAD4 and CQUADR in the Nastran Solver Reference Guide, Section 4, Bulk Data, for the definition of element coordinate system and stress components.
- 4. The angle of principal stress is in the surface coordinate system.
- 5. Prestress results can be excluded from the above output by including PARAM, ADDPRESTRESS, OFF in the Model Input File (PRESTRESS STATIC and PRESTRESS MODAL solutions only). See ADDPRESTRESS in the Nastran Solver Reference Guide, Section 5, Parameters.

Figure A-140. Stresses in Quad Elements (With Corner Option).

STRESSES IN QUAD ELEMENTS ON SURFACE 55

SURFACE COORDINATE ID = 1 X-AXIS = X NORMAL = Z

ELEMENT ID	GRID ID	FIBER DISTANCE	STRESSES IN NORMAL-X	SURFACE COORI NORMAL-Y	DINATE SYSTEM SHEAR-XY	PRINCIE ANGLE	PAL STRESSES (2 MAJOR	LERO SHEAR) MINOR	HENCKY VON MISES
3	CENTER	-0.50000E-01 0.15000E+00	0.20766E+05 0.89118E+05	-0.12904E+05 0.36076E+05	0.64626E+04 0.25758E+05	10.5004 22.0818	0.21964E+05 0.99568E+05	-0.14101E+05 0.25626E+05	0.31480E+05 0.89548E+05
6	CENTER	-0.50000E-01 0.15000E+00	0.94820E+04 -0.27474E+05	-0.15198E+05 -0.11419E+05	0.69895E+04 0.22261E+05	14.7640 54.9145	0.11324E+05 0.42179E+04	-0.17040E+05 -0.43111E+05	0.24729E+05 0.45367E+05
26	CENTER	-0.50000E-01 0.15000E+00	0.36784E+04 0.15550E+05	0.21454E+05 0.19719E+05	-0.10957E+05 -0.42324E+05	-64.5234 -46.4100	0.26675E+05 0.60010E+05	-0.15424E+04 -0.24741E+05	0.27479E+05 0.75485E+05
27	CENTER	-0.50000E-01 0.15000E+00	0.92164E+04 -0.32980E+05	-0.30582E+05 -0.57552E+05	-0.10629E+05 -0.34193E+05	-14.0549 -35.1177	0.11877E+05 -0.89327E+04	-0.33243E+05 -0.81599E+05	0.40509E+05 0.77520E+05

MAXIMUM QUAD ELEMENT PRINCIPAL STRESS = 0.995677E+05 AT ELEMENT 3 MINIMUM QUAD ELEMENT PRINCIPAL STRESS = -0.815991E+05 AT ELEMENT 27 MAXIMUM QUAD ELEMENT SHEAR STRESS = 0.423755E+05 AT ELEMENT 26 MAXIMUM QUAD ELEMENT VON MISES STRESS = 0.895483E+05 AT ELEMENT 3

Remarks:

- 1. This output is requested using the STRESS (CENTER) or STRESS Case Control command. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 2. The default for the last output column can be changed to maximum shear stress by specifying the STRESS (SHEAR) Case Control command. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 3. This output is typical of all shell elements (CQUAD4, CQUADR, CTRIA3, and CTRIAR).
- 4. Element stresses may be output in any SURFACE coordinate system (ELEMENT, GRID, BASIC, MATERIAL, or user defined). In the above example, stresses are output in ELEMENT coordinate system. See SURFACE in the Nastran Solver Reference Guide, Section 3, Case Control, for more information. See CQUAD4 and CQUADR in the Nastran Solver Reference Guide, Section 4, Bulk Data, for the definition of element coordinate system and stress components.
- 5. The angle of principal stress is in the surface coordinate system.
- 6. Prestress results can be excluded from the above output by including PARAM, ADDPRESTRESS, OFF in the Model Input File (PRESTRESS STATIC and PRESTRESS MODAL solutions only). See ADDPRESTRESS in the Nastran Solver Reference Guide, Section 5, Parameters.

Figure A-141. Stresses in Quad Elements (Without Corner Option).

STRAINS IN QUAD ELEMENTS ON SURFACE 1

SURFACE COORDINATE ID = MATERIAL X-AXIS = Z NORMAL = R

ELEMENT	GRID	FIBER	STRAINS IN S	SURFACE COORDI	INATE SYSTEM	PRINCIE	AL STRAINS (ZE	RO SHEAR)	HENCKY
ID	ID	DISTANCE	NORMAL-X	NORMAL-Y	SHEAR-XY	ANGLE	MAJOR	MINOR	VON MISES
3	CENTER	-0.50000E-01	0.15755E-02	-0.10700E-02	0.92322E-03	9.6191	0.16537E-02	-0.11482E-02	0.16264E-02
		0.15000E+00	0.61079E-02	0.19403E-02	0.36797E-02	20.7211	0.68039E-02	0.12443E-02	0.41833E-02
7	CENTER	-0.50000E-01	-0.12195E-02	0.14501E-02	-0.20897E-02	-70.9733	0.18104E-02	-0.15798E-02	0.19589E-02
		0.15000E+00	-0.79077E-03	0.31047E-03	0.16344E-02	61.9860	0.74524E-03	-0.12255E-02	0.11490E-02
26	CENTER	-0.50000E-01	0.19100E-03	0.14247E-02	-0.16278E-02	-63.5792	0.18291E-02	-0.21138E-03	0.12964E-02
		0.15000E+00	0.11119E-02	0.11554E-02	-0.64869E-02	-45.1919	0.43772E-02	-0.21099E-02	0.38208E-02
27	CENTER	-0.50000E-01	0.80303E-03	-0.21765E-02	-0.17555E-02	-15.2528	0.10424E-02	-0.24159E-02	0.20484E-02
		0.15000E+00	-0.19047E-02	-0.39152E-02	-0.53270E-02	-34.6610	-0.63034E-04	-0.57569E-02	0.38171E-02

MAXIMUM QUAD ELEMENT PRINCIPAL STRAIN = 0.680389E-02 AT ELEMENT 3 MINIMUM QUAD ELEMENT PRINCIPAL STRAIN = -0.575687E-02 AT ELEMENT 27 MAXIMUM QUAD ELEMENT SHEAR STRAIN = 0.648704E-02 AT ELEMENT 26 MAXIMUM QUAD ELEMENT VON MISES STRAIN = 0.418331E-02 AT ELEMENT 3

Remarks:

- 1. This output is requested using the STRAIN (CENTER) or STRAIN Case Control command. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 2. The default for the last output column can be changed to maximum shear strain by specifying the STRAIN(SHEAR) Case Control command. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 3. This output is typical of all shell elements (CQUAD4, CQUADR, CTRIA3, and CTRIAR).
- 4. Element strains may be output in any SURFACE coordinate system (ELEMENT, GRID, BASIC, MATERIAL, or user defined). In the above example, strains are output in MATERIAL coordinate system. See SURFACE in the Nastran Solver Reference Guide, Section 3, Case Control, for more information. See CQUAD4 and CQUADR in the Nastran Solver Reference Guide, Section 4, Bulk Data, for the definition of element coordinate system and strain components.
- 5. The angle of principal strain is in the surface coordinate system.
- 6. Prestress results can be excluded from the above output by including PARAM, ADDPRESTRESS, OFF in the Model Input File (PRESTRESS STATIC and PRESTRESS MODAL solutions only). See ADDPRESTRESS in the Nastran Solver Reference Guide, Section 5, Parameters.

Figure A-142. Strains in Quad Elements.

STRAIN ENERGY IN QUAD ELEMENTS ON SURFACE 1

ELEMENT	STRAIN ENERGY	PERCENT	STRAIN ENERGY
ID		TOTAL	DENSITY
1	0.233628E+01	0.0154	0.623008E+02
2	0.106848E+01	0.0071	0.284927E+02
3	0.340972E+01	0.0225	0.909259E+02
4	0.319828E+01	0.0211	0.852875E+02
5	0.182172E+01	0.0120	0.485792E+02
6	0.442268E+01	0.0292	0.117938E+03
7	0.218740E+01	0.0145	0.583307E+02
8	0.489503E+01	0.0324	0.110534E+03
25	0.426861E+01	0.0282	0.113830E+03
26	0.258918E+01	0.0171	0.690449E+02
27	0.348669E+01	0.0231	0.929783E+02
SUBTOTAL	0.398987E+02	0.2638	

MAXIMUM QUAD ELEMENT STRAIN ENERGY DENSITY = 0.110534E+03 AT ELEMENT 8 MINIMUM QUAD ELEMENT STRAIN ENERGY DENSITY = 0.821887E+01 AT ELEMENT 30

Remarks:

- 1. This output is requested using the ESE Case Control command. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 2. This output is typical of all shell elements (CQUAD4, CQUADR, CTRIA3, and CTRIAR).
- 3. Percentages are based on the entire model not the individual surface.
- 4. Prestress results can be excluded from the above output by including PARAM, ADDPRESTRESS, OFF in the Model Input File (PRESTRESS STATIC and PRESTRESS MODAL solutions only). See ADDPRESTRESS in the Nastran Solver Reference Guide, Section 5, Parameters.

Figure A-143. Strain Energy in Quad Elements.

THERMAL GRADIENTS AND HEAT FLUXES IN QUAD ELEMENTS ON SURFACE 1

SURFACE COORDINATE ID = ELEMENT X-AXIS = X NORMAL = Z

ELEMENT	GRID	X-GRADIENT	Y-GRADIENT	X-FLUX	Y-FLUX
ID	ID				
11	CENTER	-7.37064E+02	-3.18014E+03	1.51835E+00	6.55109E+00
12	CENTER	6.10143E+02	-3.20875E+03	-1.25690E+00	6.61003E+00
11	CENTER	1.07172E+02	-1.80983E+03	-5.95445E-02	1.00554E+00
14	CENTER	-2.04972E+02	-1.76666E+03	1.11883E-01	9.81555E-01
15	CENTER	-1.02514E+02	1.71191E+03	1.19634E-01	-1.99780E+00
16	CENTER	9.86067E+01	1.71568E+03	-1.15074E-01	-2.00220E+00
17	CENTER	5.89261E-01	2.28650E+02	-1.21188E-03	-4.71020E-01
18	CENTER	-8.63659E+00	2.22806E+02	1.77914E-02	-4.58980E-01
19	CENTER	-1.26669E+02	5.11178E+02	1.47822E-01	-5.96545E-01
20	CENTER	1.18774E+02	5.17099E+02	-1.38610E-01	-6.03455E-01
	ET EMENT	TUEDMAT CDADTEN	MACNITTIDE -	3 2662400+03 75	

MAAIMOM	QUAD	다 다 다 나 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다	INCRM	AL GI	RADIENI	MAGNIIUDE	_	3.2002406+03	AI	토나타메타N I	ΤZ
MINIMUM	QUAD	ELEMENT	THERMA	AL GI	RADIENT	MAGNITUDE	=	2.229733E+02	AT	ELEMENT	18
MAXIMUM	QUAD	ELEMENT	HEAT E	FLUX	MAGNITU	JDE	=	6.728470E+00	AT	ELEMENT	12
MINIMUM	QUAD	ELEMENT	HEAT E	FLUX	MAGNITU	JDE	=	4.593251E-01	AT	ELEMENT	18

Remarks:

- 1. This output is requested using the FLUX Case Control command. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 2. This output is typical of all shell elements (CQUAD4, CQUADR, CTRIA3, and CTRIAR).
- 3. Element stresses may be output in any SURFACE coordinate system (ELEMENT, GRID, BASIC, MATERIAL, or user defined). In the above example, thermal gradients and heat fluxes are output in ELEMENT coordinate system. See SURFACE in the Nastran Solver Reference Guide, Section 3, Case Control, for more information. See CQUAD4 and CQUADR in the Nastran Solver Reference Guide, Section 4, Bulk Data, for the definition of element coordinate system.

Figure A-144. Thermal Gradients and Heat Fluxes in Quad Elements.

GRID POINT STRESSES ON SURFACE 2

SURFACE COORDINATE ID = 0 X-AXIS = X NORMAL = Z

GRID	FIBER	STRESSES IN	SURFACE COORI	DINATE SYSTEM	PRINCIP	AL STRESSES (2	ZERO SHEAR)	HENCKY
ID	DISTANCE	NORMAL-X	NORMAL-Y	SHEAR-XY	ANGLE	MAJOR	MINOR	VON MISES
1	-0.50000E-01	0.24805E+05	0.31087E+05	-0.27967E+03	-87.4559	0.31099E+05	0.24793E+05	0.28475E+05
	0.15000E+00	0.66722E+05	0.36196E+05	-0.10315E+05	-17.0261	0.69881E+05	0.33037E+05	0.60549E+05
12	-0.50000E-01	-0.39380E+05	-0.56639E+05	-0.30871E+05	-37.1910	-0.15955E+05	-0.80064E+05	0.73399E+05
	0.15000E+00	0.60103E+04	-0.51155E+05	0.16150E+05	14.7335	0.10257E+05	-0.55402E+05	0.61179E+05
38	-0.50000E-01	0.49723E+04	-0.17208E+05	-0.63254E+04	-14.8491	0.66493E+04	-0.18885E+05	0.22945E+05
	0.15000E+00	0.20812E+05	-0.30507E+05	-0.41495E+05	-29.1143	0.43940E+05	-0.53635E+05	0.84642E+05
41	-0.14000E+00	0.33959E+04	-0.53072E+04	-0.74702E+04	-29.8892	0.76895E+04	-0.96009E+04	0.15004E+05
	0.14000E+00	-0.17352E+05	-0.32984E+05	-0.31119E+05	-37.9506	0.69176E+04	-0.57254E+05	0.61008E+05

MAXIMUM SHELL ELEMENT PRINCIPAL STRESS = 0.698811E+05 AT GRID 1 MINIMUM SHELL ELEMENT PRINCIPAL STRESS = -0.800640E+05 AT GRID 12 MAXIMUM SHELL ELEMENT SHEAR STRESS = 0.487878E+05 AT GRID 38 MAXIMUM SHELL ELEMENT VON MISES STRESS = 0.846418E+05 AT GRID 38

Remarks:

- 1. This output is requested using the GPSTRESS Case Control command. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 2. Grid point stresses may be output in any SURFACE coordinate system (GRID, BASIC, MATERIAL, or user defined) except ELEMENT. In the above example, stresses are output in the basic coordinate system (SURFACE COORDINATE ID = 0). See SURFACE in the Nastran Solver Reference Guide, Section 3, Case Control, for more information. See CQUAD4 and CQUADR in the Nastran Solver Reference Guide, Section 4, Bulk Data, for the definition of element coordinate system and stress components.
- 3. The direction cosines of the principal stresses are with respect to the SURFACE coordinate system.
- 4. Prestress results can be excluded from the above output by including PARAM, ADDPRESTRESS, OFF in the Model Input File (PRESTRESS STATIC and PRESTRESS MODAL solutions only). See ADDPRESTRESS in the Nastran Solver Reference Guide, Section 5, Parameters.

Figure A-145. Surface Grid Point Stresses.
GRID POINT THERMAL GRADIENTS AND HEAT FLUXES ON SURFACE 1

SURFACE COORDINATE ID = GRID X-AXIS = X NORMAL = Z

GRID	X-GRADIENT	Y-GRADIENT	X-FLUX	Y-FLUX
ID				
18	-3.79837E+03	-1.78938E+03	7.82465E+00	3.68612E+00
19	-3.74115E+03	1.85907E+03	7.70676E+00	-3.82969E+00
20	-2.61914E+03	3.48481E+01	5.39542E+00	-7.17872E-02
22	-2.70604E+03	-3.84946E+02	4.31757E+00	5.03433E-01
23	-2.28393E+03	9.20729E+01	3.23906E+00	-1.20411E-01
24	-2.69148E+03	5.69092E+02	4.35252E+00	-7.44259E-01
25	3.46077E+00	1.70603E+02	-5.14846E-01	-1.46940E-01
26	-1.01182E+02	5.72799E+00	-4.77410E-01	-4.93352E-03
27	5.04075E+01	-1.59147E+02	-5.43237E-01	1.37073E-01
28	9.44504E+02	3.44250E+01	-1.19651E+00	-5.55447E-02
31	4.01729E+02	-3.56035E+01	-5.63093E-01	5.74463E-02
32	3.38100E+02	9.86796E+00	-5.04472E-01	-1.59219E-02

MAXIMUM SHELL ELEMENT THERMAL GRADIENT MAGNITUDE4.198750E+03AT GRID 18MINIMUM SHELL ELEMENT THERMAL GRADIENT MAGNITUDE1.015437E+02AT GRID 26MAXIMUM SHELL ELEMENT HEAT FLUX MAGNITUDE8.649425E+00AT GRID 18MINIMUM SHELL ELEMENT HEAT FLUX MAGNITUDE4.774356E-01AT GRID 26

Remarks:

- 1. This output is requested using the GPFLUX Case Control command. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 2. Thermal gradients and heat fluxes may be output in any SURFACE coordinate system (GRID, BASIC, MATERIAL, or user defined) except ELEMENT. In the above example, thermal gradients and heat fluxes are output in the GRID or displacement coordinate system (field 7 on the GRID Bulk Data entry). See SURFACE in the Nastran Solver Reference Guide, Section 3, Case Control, for more information. See CQUAD4 and CQUADR in the Nastran Solver Reference Guide, Section 4, Bulk Data, for the definition of element coordinate system.

Figure A-146. Surface Grid Point Thermal Gradients and Heat Fluxes.

STRESSES IN COMPOSITE QUAD ELEMENTS ON SURFACE 0

SURFACE COORDINATE ID = MATERIAL X-AXIS = X NORMAL = Z

ELEMENT	PLY	STRESSES IN H	FIBER AND MATF	RIX DIRECTIONS	INTER-LAMINA	AR STRESSES	PRINC	IPAL STRESSES	(ZERO SHEAR)	HENCKY
ID	ID	NORMAL-1	NORMAL-2	SHEAR-12	SHEAR XZ-MAT	SHEAR YZ-MAT	ANGLE	MAJOR	MINOR	VON MISES
1	1	1.12722E+04	9.56493E+02	2.13307E+01	2.46547E+02	1.61686E+02	0.12	1.12722E+04	9.56449E+02	1.08257E+04
	2	1.99977E+03	9.64334E+01	-1.17085E+03	2.62642E+02	1.78571E+02	-25.45	2.55693E+03	-4.60728E+02	2.81571E+03
	3	-3.42086E+02	-1.28842E+03	-8.15739E+02	2.30154E+02	1.34206E+02	-29.94	1.27783E+02	-1.75829E+03	1.82554E+03
	4	-2.31106E+03	-1.27838E+03	4.05529E+03	1.91004E+02	9.59349E+01	48.63	2.29331E+03	-5.88275E+03	7.30459E+03
	5	-1.92859E+04	-2.17245E+03	4.52332E+02	2.68667E+01	2.39332E+01	88.49	-2.16050E+03	-1.92979E+04	1.83134E+04
2	1	4.18298E+03	3.23883E+02	-2.22389E+02	1.31625E+02	-3.97567E+01	-3.29	4.19575E+03	3.11110E+02	4.04917E+03
	2	1.70473E+02	7.01896E+01	-4.58916E+02	1.40218E+02	-4.39083E+01	-41.88	5.81978E+02	-3.41316E+02	8.08600E+02
	3	-2.83655E+02	-4.94233E+02	-4.03160E+02	1.22873E+02	-3.29995E+01	-37.68	2.77382E+01	-8.05626E+02	8.19847E+02
	4	-4.04614E+02	-5.42444E+02	1.16599E+03	1.01973E+02	-2.35892E+01	43.31	6.94497E+02	-1.64155E+03	2.07776E+03
	5	-7.29650E+03	-1.06455E+03	3.91265E+02	1.43435E+01	-5.88487E+00	86.42	-1.04008E+03	-7.32096E+03	6.86031E+03

MAXIMUM QUAD ELEMENT PRINCIPAL STRESS=1.127220E+04AT ELEMENT 1MINIMUM QUAD ELEMENT PRINCIPAL STRESS=-1.929786E+04AT ELEMENT 1MAXIMUM QUAD ELEMENT INTERLAMINAR SHEAR STRESS=2.626419E+02AT ELEMENT 1MINIMUM QUAD ELEMENT INTERLAMINAR SHEAR STRESS=-4.390831E+01AT ELEMENT 2

Remarks:

- 1. This output is requested using the STRESS Case Control command. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 2. This output is typical of all composite shell elements (CQUAD4, CQUADR, CQUAD8, CTRIA3, CTRIAR, and CTRIA6).
- 3. Direct inplane stresses are always output in the ply coordinate system (fiber and matrix direction). Interlaminar stresses are always output in the material coordinate system. The angle of principal stress is in the ply coordinate system.
- 4. Prestress results can be excluded from the above output by including PARAM, ADDPRESTRESS, OFF in the Model Input File (PRESTRESS STATIC and PRESTRESS MODAL solutions only). See ADDPRESTRESS in the Nastran Solver Reference Guide, Section 5, Parameters.

Figure A-147. Stresses in Composite Quad Elements.

F.	AILURE	LN.	DEXES FO	R COMP	OSITE Q	UAD ELE	MENTS OF	I SURI	YACE I	
ELEMEN ID	IT FAILURE THEORY	PLY ID	MATRIX FAILURE INDEX	E FAILURE MODE	FIBER FAILURE INDEX	FAILURE MODE	BOND FAILURE INDEX 1.38941E-01	FAILURE MODE	ELEMENT FAILURI INDEX	Ξ
1	MCT	1	2.61597E-04	FILL	3.42999E-04	FILL	1.000112 01			
	МСТ	2	2.35525E-04	FILL	3.04525E-04	FILL	1.48204E-01			
	MCT	3	6.36116E-04	FILL	3.40863E-04	FILL	1.30941E-01			
	MCT	4	1.74382E-03	WARP	1.28142E-03	FILL	6.48393E-02		1.48204E-01	
2	LARC02	1	5.13293E+03	TENSION	2.29915E+00	TENSION				
	LARC02	2	1.25951E+02	TENSION	2.36968E+00	TENSION	9.20752E-01			
	LARC02	3	3.02465E+01	COMPRESSION	1.85447E+00	COMPRESSION	1.35193E+00			
	LARC02	4	3.45537E+02	COMPRESSION	0.00000E+00		9.20752E-01		5.13293E+03	FAILED
MAXIMUM Ç MAXIMUM C	QUAD ELEMENT DUAD ELEMENT	PLY FA	ILURE INDEX = AILURE INDEX =	5.132932E+0 1.351931E+0	3 AT ELEMENT 0 AT ELEMENT	2 2				

Remarks:

- 1. This output is available when composite stress/strain is output and allowable stresses/strains are supplied on the material property (MAT1, MAT2, or MAT8) and PCOMP entries that were used to define the laminate. See the *Nastran Solver Reference Guide*, Section 4, *Bulk Data*, for more information.
- 2. This output is typical of all composite shell elements (CQUAD4, CQUADR, CQUAD8, CTRIA3, CTRIAR, and CTRIA6).
- 3. Indexes greater than 1.0 indicate a failure in that ply using the failure criteria specified for the laminate (field 6 on the PCOMP Bulk Data entry).

Figure A-148. Failure Indexes in Composite Quad Elements.

ELEME	ENT	FAILURE	PLY	MATRIX STRENGTH	FAILURE	FIBER STRENGTH	FAILURE	BOND STRENGTH	FAILURE	ELEMENT STRENGTH	I
ID		INLORI	ΤD	RAIIO	MODE	RAIIO	MODE	RAIIO	MODE	KAIIO	
1	L	MCT	1	2.34561E+00	WARP	4.16259E+00	FILL				
								1.81011E+00			
		MCT	2	4.32664E+00	FILL	1.11014E+01	WARP	4 40004-00			
		MOR	2	4 540000.00		0 (41400.00		1.63026E+00			
		MCT	3	4.549298+00	F.TTT	8.64142E+00	WARP	1 010110+00			
		мст	Д	2 47623E+00	WARP	2 922975+00	FTT.T.	1.010116+00		2 609458+00	
		1101	Т	2.4/0250100	WAIL	2.922971100	гтпп			2.000400100	
2	2	LARC02	1	3.49234E-02	TENSION	7.21478E-01	TENSION				
								0.81011E+00			
		LARC02	2	2.22249E-01	TENSION	1.09530E+00	TENSION				
								0.63026E+00			
		LARC02	3	3.47694E-01	COMPRESSION	1.00000E+10					
			4	1 051405 01		1 000007.10		0.79011E+00		0 400045 00	
		LARC02	4	1.25142E-01	COMPRESSION	1.00000E+10				3.49234E-02	FAILED
ИТИТИЦИ	OUAD	ELEMENT	PLY STI	RENGTH RATIO =	3.492343E-02	2 AT ELEMENT 2					
		FLEMENT	BOND ST	TRENCTH RATIO =	0 790112E+00) AT ELEMENT 2					

Remarks:

- 1. This output is available when composite stress/strain is output, allowable stresses/strains are supplied on the material property (MAT1, MAT2, or MAT8) and PCOMP entries that were used to define the laminate, and PARAM, STRENGTHRATIO is set to ON. See the Nastran Solver Reference Guide, Section 4, Bulk Data, for more information.
- 2. This output is typical of all composite shell elements (CQUAD4, CQUADR, CQUAD8, CTRIA3, CTRIAR, and CTRIA6).
- 3. Strength ratios less than 1.0 indicate a failure in that ply using the failure criteria specified for the laminate (field 6 on the PCOMP Bulk Data entry).

Figure A-149. Strength Ratios in Composite Quad Elements.

STRESSES IN COMPOSITE HEX ELEMENTS IN VOLUME O

VOLUME COORDINATE ID = MATERIAL

ELEMENT	PLY	STRESSES IN FIBER AND MATR	IX DIRECTIONS	INTE	ER-LAMINAR STRESSES	HENCKY
ID	ID	NORMAL-1 NORMAL-2	SHEAR-12	NORMAL-3	SHEAR XZ-MAT SHEAR YZ-MAT	VON MISES
7	1	1.05192E+04 8.31146E+02	-3.00309E+00	-3.17737E+00	9.15680E+01 -1.23555E+01	1.01323E+04
	2	1.79817E+03 9.18431E+01	1.10030E+03	-3.17737E+00	1.70297E+02 -2.29786E+01	2.60962E+03
	3	-3.10869E+02 -1.20708E+03	7.53370E+02	-3.17737E+00	1.19470E+02 -1.61203E+01	1.70968E+03
	4	-2.12105E+03 -1.19571E+03	-3.80401E+03	-3.17737E+00	1.50122E+02 -2.02563E+01	6.84590E+03
	5	-1.80386E+04 -1.97198E+03	-4.29770E+02	0.00000E+00	0.00000E+00 0.00000E+00	1.71527E+04
10	1	1.12656E+04 8.94771E+02	-2.62804E+01	-3.16878E+00	1.80170E+02 -1.02792E+01	1.08526E+04
	2	1.99202E+03 9.28781E+01	1.17421E+03	-3.16878E+00	3.35078E+02 -1.91171E+01	2.88072E+03
	3	-3.28080E+02 -1.29486E+03	8.16504E+02	-3.16878E+00	2.35069E+02 -1.34113E+01	1.87946E+03
	4	-2.29524E+03 -1.27970E+03	-4.09224E+03	-3.16878E+00	2.95381E+02 -1.68523E+01	7.38074E+03
	5	-1.93370E+04 -2.10840E+03	-4.49207E+02	0.00000E+00	0.00000E+00 0.00000E+00	1.83902E+04

```
MAXIMUM HEX ELEMENT PRINCIPAL STRESS= 1.126871E+04AT ELEMENT 10MINIMUM HEX ELEMENT PRINCIPAL STRESS= -1.934984E+04AT ELEMENT 10MAXIMUM HEX ELEMENT INTERLAMINAR SHEAR STRESS= 3.350775E+02AT ELEMENT 10MINIMUM HEX ELEMENT INTERLAMINAR SHEAR STRESS= -2.297857E+01AT ELEMENT 7
```

Remarks:

- 1. This output is requested using the STRESS Case Control command. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 2. This output is typical of all composite solid elements (CHEX and CPENT).
- 3. Direct inplane stresses are always output in the ply coordinate system (fiber and matrix direction). Interlaminar stresses are always output in the material coordinate system. The angle of principal stress is in the ply coordinate system.
- 4. Prestress results can be excluded from the above output by including PARAM, ADDPRESTRESS, OFF in the Model Input File (PRESTRESS STATIC and PRESTRESS MODAL solutions only). See ADDPRESTRESS in the Nastran Solver Reference Guide, Section 5, Parameters.

Figure A-150. Stresses in Composite Hex Elements.

NONLINEAR STRESSES IN QUAD ELEMENTS

ELEMENT	FIBER	STRESSES/STRAINS	IN ELEMENT	COORDINATE SYSTEM	EQUIVALENT	EFF. STRAIN
ID	DISTANCE	NORMAL-X	NORMAL-Y	SHEAR-XY	STRESS	PLASTIC/NLELAST
6	-2.50000E-02	3.56575E+03	1.57291E+02	1.63680E-02	3.48977E+03	3.12880E-05
		2.80718E-04	-5.26699E-09	1.78774E-09		
	2.50000E-02	-3.56417E+03	-1.54222E+02	-4.78810E-02	3.48961E+03	3.12544E-05
		-2.80832E-04	-5.26699E-09	-8.49647E-09		
8	-2.50000E-02	2.06319E+03	5.04709E-03	5.11093E-02	2.06321E+03	0.00000E+00
		1.47378E-04	5.04709E-10	7.04141E-09		
	2.50000E-02	-2.06268E+03	5.04709E-03	-6.14061E-02	2.06266E+03	0.00000E+00
		-1.47327E-04	5.04709E-10	-9.06078E-09		
9	-2.50000E-02	1.23783E+03	7.16163E-03	2.45897E-02	1.23786E+03	0.00000E+00
		8.84251E-05	7.16163E-10	2.93989E-09		
	2.50000E-02	-1.23722E+03	7.16160E-03	-4.46422E-02	1.23719E+03	0.00000E+00
		-8.83640E-05	7.16161E-10	-6.95039E-09		
10	-2.50000E-02	4.12795E+02	-4.92269E-03	1.44631E-01	4.12835E+02	0.00000E+00
		2.94948E-05	-4.92270E-10	2.25656E-08		
	2.50000E-02	-4.12113E+02	-4.92271E-03	-7.79897E-02	4.12094E+02	0.00000E+00
		-2.94286E-05	-4.92271E-10	-9.23736E-09		
MAXIMUM QUAD	ELEMENT EQUIV	VALENT STRESS =	3.489773E+03	AT ELEMENT 6		
MINIMUM QUAD	ELEMENT EQUIV	VALENT STRESS =	4.120938E+02	AT ELEMENT 10		
MAXIMUM QUAD	ELEMENT EFFE	CTIVE STRAIN =	3.128798E-05	AT ELEMENT 6		
MINIMUM OUAD	ELEMENT EFFE	CTIVE STRAIN =	0.00000E+00	AT ELEMENT 10		

Remarks:

- 1. This output is requested using the STRESS Case Control command. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 2. This output is typical of all shell elements (CQUAD4, CQUADR, CTRIA3, and CTRIAR).

Figure A-151. Nonlinear Stresses in Quad Elements.

STRESSES IN HEX ELEMENTS IN VOLUME 1

VOLUME COORDINATE ID = 2

ELEMENT	GRID	STRESSES IN VOLUME (COORDINATE SYSTEM	PRINCI	PAL STRESSES	MEAN	HENCKY	
ID	ID	NORMAL	SHEAR	MAGNITUDE	DIRECTION COSINES	PRESSURE	VON MISES	
73	CENTER	X-0.11770E+04	XY-0.34153E+03	A-0.78385E+04	LX 0.39 -0.58 0.71	0.29557E+04	0.77686E+04	
		Z-0.56417E+04	ZX-0.30439E+04	C 0.98096E+03	LI-0.31 -0.81 -0.49 LZ 0.87 -0.03 -0.50			
74	CENTER	X 0.40723E+04	KY-0.92118E+02	A 0.30633E+04	LX 0.97 -0.11 0.22	-0.10455E+05	0.19976E+05	
		Y 0.46117E+04 Y Z 0.22678E+05 Z	YZ 0.12483E+04 ZX-0.43955E+04	B 0.45563E+04 C 0.23744E+05	LY-0.12 -0.99 -0.06 LZ 0.22 0.04 -0.97			
75	CENTER	X-0.32919E+04 Y-0.34114E+04	XY 0.24347E+03 YZ-0.96393E+03	A-0.18187E+05 B-0.35516E+04	LX 0.23 -0.38 0.89 LY 0.06 0.92 0.38	0.79953E+04	0.15329E+05	
		Z-0.1/281E+05 2	2X-0.35591E+04	C-0.224//E+04	LZ 0.97 0.04 -0.24			
76	CENTER	X 0.21270E+04 X Y 0.29855E+04 X Z 0.11175E+05 Z	KY-0.72932E+02 YZ 0.12527E+04 ZX-0.37197E+04	A 0.73529E+03 B 0.28944E+04 C 0.12658E+05	LX 0.92 -0.20 0.33 LY-0.16 -0.98 -0.12 LZ 0.35 0.06 -0.94	-0.54293E+04	0.11003E+05	

MAXIMUM HEX ELEMENT PRINCIPAL STRESS = 0.237443E+05 AT ELEMENT 74 MINIMUM HEX ELEMENT PRINCIPAL STRESS = -0.181867E+05 AT ELEMENT 75 MAXIMUM HEX ELEMENT SHEAR STRESS = 0.941695E+04 AT ELEMENT 74 MAXIMUM HEX ELEMENT VON MISES STRESS = 0.199764E+05 AT ELEMENT 74

Remarks:

- 1. This output is requested using the STRESS Case Control command. Corner stress output is requested by using the STRESS (CORNER) Case Control command. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 2. This output is typical of all solid elements (CHEXA, CPENTA, and CTETRA).
- 3. Stresses may be output in any VOLUME coordinate system (ELEMENT, GRID, BASIC, MATERIAL, or user defined). In the above example, stresses are output in the basic coordinate system (VOLUME COORDINATE ID = 2). See VOLUME in the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 4. The direction cosines of the principal stress are with respect to the VOLUME coordinate system.
- 5. Prestress results can be excluded from the above output by including PARAM, ADDPRESTRESS, OFF in the Model Input File (PRESTRESS STATIC and PRESTRESS MODAL solutions only). See ADDPRESTRESS in the Nastran Solver Reference Guide, Section 5, Parameters.

Figure A-152. Stresses in Hex Elements (Without Corner Option).

STRAINS IN HEX ELEMENTS IN VOLUME 1

VOLUME COORDINATE ID = 0

ELEMENT	GRID	STRAINS IN VOLUME	COORDINATE SYSTEM PRINCI		PAL STRAINS	MEAN	HENCKY
ID	ID	NORMAL	SHEAR	MAGNITUDE	DIRECTION COSINES	PRESSURE	VON MISES
73	CENTER	X 0.87006E-04	XY-0.88799E-04	A-0.11968E-02	LX 0.47 -0.60 0.65	0.11823E-03	0.67328E-03
		Y 0.25711E-04	YZ 0.59677E-03	B-0.37454E-04	LY-0.36 -0.80 -0.48		
		Z-0.46740E-03	ZX-0.79143E-03	C 0.87959E-03	LZ 0.81 0.00 -0.59		
74	CENTER	X-0.41152E-03	XY-0.23956E-04	A-0.88462E-03	LX 0.91 -0.21 0.36	-0.41819E-03	0.17311E-02
		Y-0.34114E-03	YZ 0.32456E-03	B-0.35660E-03	LY-0.19 -0.98 -0.11		
		Z 0.20072E-02	ZX-0.11428E-02	C 0.24958E-02	LZ 0.38 0.03 -0.92		
75	CENTER	X 0.29164E-03	XY 0.63303E-04	A-0.19344E-02	LX 0.38 -0.34 0.86	0.31981E-03	0.11285E-02
		Y 0.27584E-03	YZ-0.25062E-03	B 0.24071E-03	LY 0.09 0.94 0.33		
		Z-0.15269E-02	ZX-0.92536E-03	C 0.73423E-03	LZ 0.92 0.05 -0.39		
76	CENTER	X-0.21211E-03	XY-0.18962E-04	A-0.78744E-03	LX 0.84 -0.27 0.47	-0.21717E-03	0.95363E-03
		Y-0.10052E-03	YZ 0.32571E-03	B-0.12104E-03	LY-0.22 -0.96 -0.17		
		Z 0.96417E-03	ZX-0.96711E-03	C 0.15600E-02	LZ 0.50 0.04 -0.86		

```
MAXIMUM HEX ELEMENT PRINCIPAL STRAIN = 0.249578E-02 AT ELEMENT 74
MINIMUM HEX ELEMENT PRINCIPAL STRAIN = -0.193438E-02 AT ELEMENT 75
MAXIMUM HEX ELEMENT SHEAR STRAIN = 0.122420E-02 AT ELEMENT 74
MAXIMUM HEX ELEMENT VON MISES STRAIN = 0.173129E-02 AT ELEMENT 74
```

Remarks:

- 1. This output is requested using the STRAIN Case Control command. Corner stress output is requested by using the STRAIN (CORNER) Case Control command. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 2. This output is typical of all solid elements (CHEXA, CPENTA, and CTETRA).
- 3. Strains may be output in any VOLUME coordinate system (ELEMENT, GRID, BASIC, MATERIAL, or user defined). In the above example, strains are output in the basic coordinate system (VOLUME COORDINATE ID = 0). See VOLUME in the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 4. The direction cosines of the principal strains are with respect to the VOLUME coordinate system.
- 5. Prestress results can be excluded from the above output by including PARAM, ADDPRESTRESS, OFF in the Model Input File (PRESTRESS STATIC and PRESTRESS MODAL solutions only). See ADDPRESTRESS in the Nastran Solver Reference Guide, Section 5, Parameters.

Figure A-153. Strains in Hex Elements (Without Corner Option).

STRAIN ENERGY IN HEX ELEMENTS IN VOLUME 200

ELEMENT	STRAIN ENERGY	PERCENT	STRAIN ENERGY	
ID		TOTAL	DENSITY	
69	0.597955E+00	0.0040	0.478363E+01	
70	0.261125E+01	0.0173	0.208899E+02	
71	0.153824E+01	0.0102	0.123059E+02	
72	0.598673E+00	0.0040	0.478937E+01	
73	0.779929E+00	0.0052	0.623943E+01	
74	0.347546E+01	0.0230	0.278037E+02	
75	0.220775E+01	0.0146	0.176620E+02	
76	0.129356E+01	0.0086	0.103485E+02	
SUBTOTAL	0.111028E+02	0.0866		

MAXIMUM HEX ELEMENT STRAIN ENERGY DENSITY = 0.278037E+02 AT ELEMENT 74 MINIMUM HEX ELEMENT STRAIN ENERGY DENSITY = 0.478363E+01 AT ELEMENT 69

Remarks:

- 1. This output is requested using the ESE Case Control command. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 2. This output is typical of all solid elements (CHEXA, CPENTA, and CTETRA).
- 3. Percentages are based on the entire model not the individual volume.
- 4. Prestress results can be excluded from the above output by including PARAM, ADDPRESTRESS, OFF in the Model Input File (PRESTRESS STATIC and PRESTRESS MODAL solutions only). See ADDPRESTRESS in the Nastran Solver Reference Guide, Section 5, Parameters.

Figure A-154. Strain Energy in Hex Elements.

THERMAL GRADIENTS AND HEAT FLUXES IN HEX ELEMENTS IN VOLUME 1

VOLUME	COORDINATE	ID =	ELEMENT
--------	------------	------	---------

ELEMENT	GRID	X-GRADIENT	Y-GRADIENT	Z-GRADIENT	X-FLUX	Y-FLUX	Z-FLUX
ID	ID						
1	CENTER	2.76897E+04	-1.79641E+01	3.97245E+01	-5.76777E+00	3.74192E-03	-8.27462E-03
2	CENTER	2.79017E+04	-1.18061E+02	-5.92445E+01	-5.81191E+00	2.45920E-02	1.23406E-02
3	CENTER	2.84411E+04	-1.55285E+02	1.97697E+02	-5.92432E+00	3.23458E-02	-4.11804E-02
4	CENTER	2.78650E+04	2.58710E+02	-7.33032E+02	-5.80429E+00	-5.38893E-02	1.52691E-01
5	CENTER	2.67981E+04	-1.11993E+03	2.73993E+03	-5.58204E+00	2.33281E-01	-5.70728E-01
6	CENTER	2.76716E+04	1.97119E+01	-4.91855E+01	-5.76400E+00	-4.10599E-03	1.02453E-02
7	CENTER	2.77816E+04	-1.56552E+02	-2.27186E+01	-5.78691E+00	3.26098E-02	4.73229E-03
8	CENTER	2.85712E+04	-9.94829E+01	1.40234E+02	-5.95119E+00	2.07223E-02	-2.92107E-02
9	CENTER	2.78649E+04	-2.53870E+02	-5.39261E+02	-5.80425E+00	5.28812E-02	1.12328E-01
10	CENTER	2.67305E+04	9.89251E+02	2.02086E+03	-5.56796E+00	-2.06061E-01	-4.20945E-01

MAXIMUM	HEX	ELEMENT	THERMAL	GRADIENT	MAGNITUDE	=	2.857176E+04	AT	ELEMENT	8
MINIMUM	HEX	ELEMENT	THERMAL	GRADIENT	MAGNITUDE	=	2.682501E+04	AT	ELEMENT	10
MAXIMUM	HEX	ELEMENT	HEAT FL	UX MAGNIT	UDE	=	5.951498E+00	AT	ELEMENT	8
MINIMUM	HEX	ELEMENT	HEAT FL	JX MAGNIT	UDE	=	5.587649E+00	AT	ELEMENT	10

Remarks:

- 1. This output is requested using the FLUX Case Control command. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 2. This output is typical of all solid elements (CHEXA, CPENTA, and CTETRA).
- 3. Element stresses may be output in any VOLUME coordinate system (ELEMENT, GRID, BASIC, MATERIAL, or user defined). In the above example, thermal gradients and heat fluxes are output in ELEMENT coordinate system. See VOLUME in the Nastran Solver Reference Guide, Section 3, Case Control, for more information. See CHEXA in the Nastran Solver Reference Guide, Section 4, Bulk Data, for the definition of element coordinate system.

Figure A-155. Thermal Gradients and Heat Fluxes in Hex Elements.

GRID POINT STRESSES IN VOLUME 14

VOLUME COORDINATE ID = 10

GRID	STRESSES IN VOLUM	E COORDINATE SYSTEM	PRINCI	PAL STRESS		MEAN	HENCKY	
ID	NORMAL	SHEAR	MAGNITUDE	DIRECTI	ON COS	INES	PRESSURE	VON MISES
2	X 1.29593E+04	XY 1.91679E-08	A-4.97633E+00	LX 0.02	0.00	1.00	-4.31977E+03	1.29668E+04
	Y 0.00000E+00	YZ-9.64888E-11	в 5.09317Е-11	LY 0.00	1.00	0.00		
	Z 8.22112E-10	ZX 2.53997E+02	C 1.29643E+04	LZ-1.00	0.00	0.02		
3	X 1.29593E+04	XY 1.99081E-08	A-4.97633E+00	LX 0.02	0.00	1.00	-4.31977E+03	1.29668E+04
	Y 0.00000E+00	YZ 8.30516E-09	B-1.81899E-10	LY 0.00	0.00	0.00		
	Z-1.21144E-10	ZX 2.53997E+02	C 1.29643E+04	LZ-1.00	1.00	0.02		
49	X-1.29593E+04	XY-2.06680E-08	A-1.29643E+04	LX 1.00	0.00	0.02	4.31977E+03	1.29668E+04
	Y 0.00000E+00	YZ 8.31785E-09	B-1.63709E-10	LY 0.00	0.00	0.00		
	Z-1.63469E-10	ZX 2.53997E+02	C 4.97633E+00	LZ-0.02	1.00	1.00		
50	X-2.51948E+03	XY-6.15041E-08	A-2.53146E+03	LX 1.00	0.00	0.07	8.41605E+02	2.53479E+03
	Y 3.29563E-09	YZ 2.78953E-09	в 3.28487Е-09	LY 0.00	1.00	0.00		
	Z-5.33971E+00	ZX 1.73997E+02	C 6.64506E+00	LZ-0.07	0.00	1.00		

MAXIMUM SOLID ELEMENT PRINCIPAL STRESS =1.296428E+04AT GRID 3MINIMUM SOLID ELEMENT PRINCIPAL STRESS =-1.296428E+04AT GRID 49MAXIMUM SOLID ELEMENT SHEAR STRESS =6.112592E+03AT GRID 49MAXIMUM SOLID ELEMENT VON MISES STRESS =1.296677E+04AT GRID 49

Remarks:

- 1. This output is requested using the GPSTRESS Case Control command. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 2. Grid point stresses may be output in any VOLUME coordinate system (GRID, BASIC, MATERIAL, or user defined) except ELEMENT. In the above example stresses are output in a user defined VOLUME coordinate system (VOLUME COORDINATE ID = 10). See VOLUME in the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 3. The direction cosines of the principal stresses are with respect to the VOLUME coordinate system.
- 4. Prestress results can be excluded from the above output by including PARAM, ADDPRESTRESS, OFF in the Model Input File (PRESTRESS STATIC and PRESTRESS MODAL solutions only). See ADDPRESTRESS in the Nastran Solver Reference Guide, Section 5, Parameters.

Figure A-156. Volume Grid Point Stresses.

GRID POINT THERMAL GRADIENTS AND HEAT FLUXES IN VOLUME 1

VOLUME COORDINATE ID = GRID

GRID	X-GRADIENT	Y-GRADIENT	Z-GRADIENT	X-FLUX	Y-FLUX	Z-FLUX
ID						
40	2.79953E+04	-1.78471E+02	1.25428E+03	-5.83143E+00	3.71754E-02	-2.61266E-01
41	2.78796E+04	8.92464E+02	-4.68607E+03	-5.80732E+00	-1.85900E-01	9.76108E-01
42	2.82252E+04	-3.86822E+03	1.75250E+04	-5.87931E+00	8.05751E-01	-3.65046E+00
43	2.76755E+04	7.50000E+00	2.20000E+02	-5.76480E+00	-1.56225E-03	-4.58260E-02
44	2.77687E+04	-1.46432E+01	-7.09963E+01	-5.78423E+00	3.05017E-03	1.47885E-02
45	2.81607E+04	-2.56317E+02	6.45286E+01	-5.86587E+00	5.33908E-02	-1.34411E-02
46	2.82644E+04	-4.19699E+00	-1.87611E+02	-5.88748E+00	8.74233E-04	3.90795E-02
47	2.69572E+04	2.84141E+01	6.87277E+02	-5.61517E+00	-5.91865E-03	-1.43160E-01
48	2.58449E+04	-2.30997E+02	-2.56648E+03	-5.38348E+00	4.81166E-02	5.34597E-01
49	2.76798E+04	3.00000E+00	-5.60000E+02	-5.76571E+00	-6.24900E-04	1.16648E-01
50	2.76858E+04	1.16864E+01	2.14254E+02	-5.76695E+00	-2.43427E-03	-4.46292E-02
51	2.82003E+04	-3.28687E+02	-2.98661E+02	-5.87412E+00	6.84656E-02	6.22111E-02

MAXIMUM	SOLID	ELEMENT	THERMAI	L GI	RADIENT	MAGNITUDE	=	3.344773E+04	AT	GRID	42
MINIMUM	SOLID	ELEMENT	THERMAI	L GI	RADIENT	MAGNITUDE	=	2.597300E+04	AT	GRID	48
MAXIMUM	SOLID	ELEMENT	HEAT FI	LUX	MAGNITU	JDE	=	6.967163E+00	AT	GRID	42
MINIMUM	SOLID	ELEMENT	HEAT FI	LUX	MAGNITU	JDE	=	5.410176E+00	AT	GRID	48

Remarks:

- 1. This output is requested using the GPFLUX Case Control command. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 2. Thermal gradients and heat fluxes may be output in any VOLUME coordinate system (GRID, BASIC, MATERIAL, or user defined) except ELEMENT. In the above example, thermal gradients and heat fluxes are output in the GRID or displacement coordinate system (field 7 on the GRID Bulk Data entry). See VOLUME in the Nastran Solver Reference Guide, Section 3, Case Control, for more information. See CHEXA in the Nastran Solver Reference Guide, Section 4, Bulk Data, for the definition of element coordinate system.

Figure A-157. Volume Grid Point Thermal Gradients and Heat Fluxes.

NONLINEAR STRESSES IN HEX ELEMENTS

ELEMENT		STRESSES/		EQUIVALENT EFF. STRAIN				
ID	NORMAL-X	NORMAL-Y	NORMAL-Z	SHEAR-XY	SHEAR-YZ	SHEAR-ZX	STRESS	PLASTIC/NLELAST
31	4.85653E+01	4.85773E+01	-1.84711E+03	4.85990E+01	-1.99415E+02	-1.99431E+02	1.89217E+03	5.46869E-03
	1.40362E-04	1.40396E-04	-5.33844E-03	2.80918E-04	-1.15268E-03	-1.15278E-03		
32	4.85653E+01	4.85773E+01	-1.84711E+03	4.85990E+01	-1.99415E+02	-1.99431E+02	1.89217E+03	5.46869E-03
	1.40362E-04	1.40396E-04	-5.33844E-03	2.80918E-04	-1.15268E-03	-1.15278E-03		

MAXIMUM HEX ELEMENT EQUIVALENT STRESS = 1.892174E+03 AT ELEMENT 32 MINIMUM HEX ELEMENT EQUIVALENT STRESS = 1.892174E+03 AT ELEMENT 32 MAXIMUM HEX ELEMENT EFFECTIVE STRAIN = 5.468695E-03 AT ELEMENT 32 MINIMUM HEX ELEMENT EFFECTIVE STRAIN = 5.468695E-03 AT ELEMENT 32

Remarks:

- 1. This output is requested using the STRESS Case Control command. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 2. This output is typical of all solid elements (CHEXA, CPENTA, and CTETRA).

Figure A-158. Nonlinear Stresses in Hex Elements.

COMPLEX STRESSES IN HEX ELEMENTS IN VOLUME 0 (MAGNITUDE/PHASE)

VOLUME COORDINATE ID = ELEMENT

ELEMENT	GRID		STRES	SES IN VOLUME	COORDINATE S	YSTEM	
ID	ID	NORMAL-X	NORMAL-Y	NORMAL-Z	SHEAR-XY	SHEAR-YZ	SHEAR-ZX
20	CENTED	1 176075+02	1 100525-01	6 521525+00	1 000205+02	7 009605-03	2 62761 - 01
59	CENTER	3.59145E+02	5.77118E+01	3.44029E+00	4.99829E+02 3.58664E+02	1.78626E+02	3.59109E+02
40	CENTER	3.57107E+02	4.53223E+01	4.67287E+01	2.95935E+02	2.04734E-02	1.65107E-01
		3.59350E+02	1./9239E+02	1./9182E+02	3.591226+02	1./91836+02	1./8814E+02
41	CENTER	8.18110E+03	1.11817E+03	1.95108E+02	5.82602E+02	4.65842E+01	7.82209E+00
		1.77772E+02	1.77734E+02	1.77610E+02	3.57170E+02	3.57760E+02	1.77737E+02
42	CENTER	7 11986E+03	3 15651E+02	6 39725E+01	5 90102E+02	1 24033E+01	5 44894E+00
12		1.77844E+02	3.57731E+02	3.57622E+02	3.57214E+02	1.77760E+02	3.57768E+02

MAXIMUM HEX ELEMENT PRINCIPAL STRESS = 8.285501E+03 AT ELEMENT 41 MINIMUM HEX ELEMENT PRINCIPAL STRESS = -8.233173E+03 AT ELEMENT 41 MAXIMUM HEX ELEMENT SHEAR STRESS = 6.743822E+03 AT ELEMENT 41 MAXIMUM HEX ELEMENT VON MISES STRESS = 1.430581E+04 AT ELEMENT 41

Remarks:

- 1. This output is requested using the STRESS Case Control command in frequency response solutions. See the *Nastran Solver Reference Guide*, Section 3, *Case Control*, for more information.
- 2. This output is typical of all solid elements (CHEXA, CPENTA, and CTETRA).
- 3. The REAL or IMAG option requests complex output in rectangular format (real and imaginary). The PHASE option requests complex output in polar format (magnitude and phase) as shown. Phase output is in degrees.
- 4. Maximums results reported are determined using MAGNITUDE/PHASE results.

Figure A-159. Complex Stresses in Hex Elements.

SET ID	OUTPUT SET ID	RESULT NUMBER	SUBCASE ID	STEP ID	ELEMENT TYPE	ELEMENT ID	LIMIT TYPE	RESULT TYPE	RESULT
1	1	2.2	1	0		ECAA	N#3 37 T N#138#	MAN MON MECHO 1/2	1 1001000.00
Ţ	T	22	1	0	SHELL	5644	MAXIMUM	MAX VON MISES-1/2	1.100129E+03
			2	0	SHELL	4316	MINIMUM	MAX VON MISES-1/2	1.8/538/E-03
			1	0	SHELL	5644	MAXIMUM ABSOLUTE	MAX VON MISES-1/2	1.100129E+03
			2	0	SHELL	4316	MINIMUM ABSOLUTE	MAX VON MISES-1/2	1.875387E-03
2	1	23	1	0	SHELL	5644	MAXIMUM	MAX SHEAR-1/2	5.777335E+02
			2	0	SHELL	4315	MINIMUM	MAX SHEAR-1/2	9.067865E-04
			1	0	SHELL	5644	MAXIMUM ABSOLUTE	MAX SHEAR-1/2	5.777335E+02
			2	0	SHELL	4315	MINIMUM ABSOLUTE	MAX SHEAR-1/2	9.067865E-04
3	1	2.4	1	0	SHELL	13871	MAXIMUM	MAX PRINCIPAL-1/2	5.938117E+02
			1	0	SHELL	5900	MINIMUM	MAX PRINCIPAL-1/2	-2.230217E-01
			1	0	SHELL	13871	MAXIMUM ABSOLUTE	MAX PRINCIPAL-1/2	5.938117E+02
			2	0	SHELL	4307	MINIMUM ABSOLUTE	MAX PRINCIPAL-1/2	-1.294128E-04
4	1	25	2	0	SHELL	7860	MAXIMUM	MIN PRINCIPAL-1/2	3.737456E+01
			1	0	SHELL	5644	MINIMUM	MIN PRINCIPAL-1/2	-1.034851E+03
			1	0	SHELL	5644	MAXIMUM ABSOLUTE	MIN PRINCIPAL-1/2	-1.034851E+03
			2	0	SHELL	4343	MINIMUM ABSOLUTE	MIN PRINCIPAL-1/2	-1.425817E-06

ELEMENT RESULT LIMITS (SUBCASE SEARCH)

Remarks:

- 1. This output is requested using the RESULTLIMITS Case Control command. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 2. For <u>each</u> result limits set the subcase search identifies limits in all specified subcases for all specified elements. Only subcases and elements identified on the RESULTLIMITS Case Control command will be included in the search.
- 3. RESULT TYPE and RESULT NUMBER are defined in the Nastran Solver Reference Guide, Appendix A, Results Neutral File Format.

Figure A-160. Element Result Limits (Subcase Search).

RESULT	SET	SUBCASE	STEP	ELEMENT	ELEMENT	LIMIT	RESULT	RESULT
NUMBER	ID	ID	ID	TYPE	ID	TYPE	TYPE	
22	1	1	0	SHELL	5644	MAXIMUM	MAX VON MISES-1/2	1.100129E+03
	1	2	0	SHELL	4316	MINIMUM	MAX VON MISES-1/2	1.875387E-03
	1	1	0	SHELL	5644	MAXIMUM ABSOLUTE	MAX VON MISES-1/2	1.100129E+03
	1	2	0	SHELL	4316	MINIMUM ABSOLUTE	MAX VON MISES-1/2	1.875387E-03
23	2	1	0	SHELL	5644	MAXIMUM	MAX SHEAR-1/2	5.777335E+02
	2	2	0	SHELL	4315	MINIMUM	MAX SHEAR-1/2	9.067865E-04
	2	1	0	SHELL	5644	MAXIMUM ABSOLUTE	MAX SHEAR-1/2	5.777335E+02
	2	2	0	SHELL	4315	MINIMUM ABSOLUTE	MAX SHEAR-1/2	9.067865E-04
24	3	1	0	SHELL	13871	MAXIMUM	MAX PRINCIPAL-1/2	5.938117E+02
	3	1	0	SHELL	5900	MINIMUM	MAX PRINCIPAL-1/2	-2.230217E-01
	3	1	0	SHELL	13871	MAXIMUM ABSOLUTE	MAX PRINCIPAL-1/2	5.938117E+02
	3	2	0	SHELL	4307	MINIMUM ABSOLUTE	MAX PRINCIPAL-1/2	-1.294128E-04
25	4	2	0	SHELL	7860	MAXIMUM	MIN PRINCIPAL-1/2	3.737456E+01
	4	1	0	SHELL	5644	MINIMUM	MIN PRINCIPAL-1/2	-1.034851E+03
	4	1	0	SHELL	5644	MAXIMUM ABSOLUTE	MIN PRINCIPAL-1/2	-1.034851E+03
	4	2	0	SHELL	4343	MINIMUM ABSOLUTE	MIN PRINCIPAL-1/2	-1.425817E-06

ELEMENT RESULT LIMITS (GLOBAL SEARCH)

Remarks:

- 1. This output is requested using the RESULTLIMITS Case Control command. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 2. For <u>all</u> result limits sets the global search identifies limits for each RESULT NUMBER specified.
- 3. RESULT TYPE and RESULT NUMBER are defined in the Nastran Solver Reference Guide, Appendix A, Results Neutral File Format.

Figure A-161. Element Result Limits (Global Search).

		GRID	ΡΟΙΝΤ	RESI	ULT LIM	ITS	(SUBCASE SE	ARCH)	
SET ID	OUTPUT SET ID	RESULT NUMBER	SUBCASE ID	STEP ID	ELEMENT TYPE	GRID ID	LIMIT TYPE	RESULT TYPE	RESULT
5	1	2.2	1	0	QUELI	21.2	N 7 57 T N 1 T N 1	MAN MON MICEC 1/2	1 064701E+02
5	Ţ	22	1	0	SHELL	313	MAXIMUM	MAX VON MISES-1/2	1.004/01E+03
			2	0	SHELL	88	MINIMUM	MAX VON MISES-1/2	2.498522E-03
			1	0	SHELL	313	MAXIMUM ABSOLUTE	MAX VON MISES-1/2	1.064/01E+03
			2	0	SHELL	88	MINIMUM ABSOLUTE	MAX VON MISES-1/2	2.498522E-03
6	1	23	1	0	SHELL	313	MAXIMUM	MAX SHEAR-1/2	5.405927E+02
			2	0	SHELL	136	MINIMUM	MAX SHEAR-1/2	6.349614E-04
			1	0	SHELL	313	MAXIMUM ABSOLUTE	MAX SHEAR-1/2	5.405927E+02
			2	0	SHELL	136	MINIMUM ABSOLUTE	MAX SHEAR-1/2	6.349614E-04
7	1	24	1	0	SHELL	753	MAXIMUM	MAX PRINCIPAL-1/2	6.182511E+02
			1	0	SHELL	308	MINIMUM	MAX PRINCIPAL-1/2	-8.994402E+01
			1	0	SHELL	753	MAXIMIM ABSOLUTE	MAX PRINCIPAL-1/2	6 182511E+02
			2	0	SHELL	178	MINIMUM ABSOLUTE	MAX PRINCIPAL-1/2	-6.550865E-05
8	1	25	2	0	SHELL	984	MAXIMUM	MIN PRINCIPAL-1/2	9.573911E+01
			1	0	SHELL	313	MINIMUM	MIN PRINCIPAL-1/2	-1.047412E+03
			1	0	SHELL	313	MAXIMUM ABSOLUTE	MIN PRINCIPAL-1/2	-1.047412E+03
			2	0	SHELL	3	MINIMUM ABSOLUTE	MIN PRINCIPAL-1/2	-2.633753E-06

Remarks:

- 1. This output is requested using the RESULTLIMITS Case Control command. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 2. The subcase search identifies limits for each result limits set in all specified subcases for all specified grid points. Only subcases and grid points identified on the RESULTLIMITS Case Control command will be included in the search.
- 3. RESULT TYPE and RESULT NUMBER are defined in the *Nastran Solver Reference Guide*, Appendix A, *Results Neutral File Format*.

Figure A-162. Grid Point Result Limits (Subcase Search).

RESULT	SET	SUBCASE	STEP	ELEMENT	GRID	LIMIT	RESULT	RESULT
NUMBER	ID	ID	ID	TYPE	ID	TYPE	TYPE	
22	5	1	0	SHELL	313	MAXIMUM	MAX VON MISES-1/2	1.064701E+03
	5	2	0	SHELL	88	MINIMUM	MAX VON MISES-1/2	2.498522E-03
	5	1	0	SHELL	313	MAXIMUM ABSOLUTE	MAX VON MISES-1/2	1.064701E+03
	5	2	0	SHELL	88	MINIMUM ABSOLUTE	MAX VON MISES-1/2	2.498522E-03
23	6	1	0	SHELL	313	MAXIMUM	MAX SHEAR-1/2	5.405927E+02
	6	2	0	SHELL	136	MINIMUM	MAX SHEAR-1/2	6.349614E-04
	6	1	0	SHELL	313	MAXIMUM ABSOLUTE	MAX SHEAR-1/2	5.405927E+02
	6	2	0	SHELL	136	MINIMUM ABSOLUTE	MAX SHEAR-1/2	6.349614E-04
24	7	1	0	SHELL	753	MAXIMUM	MAX PRINCIPAL-1/2	6.182511E+02
	7	1	0	SHELL	308	MINIMUM	MAX PRINCIPAL-1/2	-8.994402E+01
	7	1	0	SHELL	753	MAXIMUM ABSOLUTE	MAX PRINCIPAL-1/2	6.182511E+02
	7	2	0	SHELL	178	MINIMUM ABSOLUTE	MAX PRINCIPAL-1/2	-6.550865E-05
25	8	2	0	SHELL	984	MAXIMUM	MIN PRINCIPAL-1/2	9.573911E+01
	8	1	0	SHELL	313	MINIMUM	MIN PRINCIPAL-1/2	-1.047412E+03
	8	1	0	SHELL	313	MAXIMUM ABSOLUTE	MIN PRINCIPAL-1/2	-1.047412E+03
	8	2	0	SHELL	3	MINIMUM ABSOLUTE	MIN PRINCIPAL-1/2	-2.633753E-06

GRID POINT RESULT LIMITS (GLOBAL SEARCH)

Remarks:

- 1. This output is requested using the RESULTLIMITS Case Control command. See the Nastran Solver Reference Guide, Section 3, Case Control, for more information.
- 2. The global search identifies limits for <u>all</u> result limits sets for each RESULT NUMBER specified.
- 3. RESULT TYPE and RESULT NUMBER are defined in the Nastran Solver Reference Guide, Appendix A, Results Neutral File Format.

Figure A-163. Grid Point Result Limits (Global Search).

MODEL ANALYSIS TIME SUMMARY

TOTAL CPU TIME = 0.9 SECONDS WALLCLOCK TIME = 1.0 SECONDS

EXECUTION TERMINATED NORMALLY

TOTAL WARNINGS = 0TOTAL FATAL ERRORS = 0

Remarks:

- 1. Always check the Model Results Output File when a warning or fatal error is encountered. System errors such as I/O or memory management errors are written to the System File (see Section 7, *Error Messages,* for more information).
- 2. The output timing format can be changed to hours/minutes/seconds by setting the Model Initialization directive, SECONDS, to OFF. See the Nastran Solver Reference Guide, Section 2, Initialization, for more information.

Figure A-164. Execution Summary.

User's Manual

APPENDIX B - LIMITS

Models in Autodesk Inventor Nastran are generally only limited by available disk space. There is, however, one limit that may affect your ability to run very large models. It is the maximum global matrix size (stored non-zero matrix terms) and it cannot be greater than 2,147,483,647. For very large models which may exceed this limit the following settings are recommended:

```
DECOMPMETHOD = PCGLSS
EXTRACTMETHOD = LANCZOS
SPARSEITERMODE = 3
```

These settings will avoid assembling global matrixes and will handle most operations at the element level. The following table lists other size limitations:

Description	Limit	Entry/Command
Output Sets	1000	SET Command
DDAM Data	20	DDAMDAT Entry
X-Y Plot	10,000	XYDATA Command
Modal Sets	100	MODESET Command
Viscoelastic Material Coefficients	120	TABVE Entry (number of series terms)
2-D Layered Shell Element Plies	1000	PCOMP Entry (number of plies)
3-D Layered Solid Element Plies	500	PCOMP Entry (number of plies)
Superelements	10,000	N/A

User's Manual

APPENDIX C - REFERENCES

- 1. Bathe, Klas-Jürgen, *Finite Element Procedures in Engineering Analysis*. Prentice-Hall Inc., 1982.
- 2. Belsheim, R. O. and O'Hara, G. J., *Shock Design of Shipboard Equipment, Part I, Dynamic Design Analysis Method*, NAVSHIPS 250-430, May 1962.
- 3. Cifuentes, Arturo O., Using MSC/NASTRAN: Statics and Dynamics. New York, NY: Springer-Verlag, Inc., 1989.
- 4. Cook, Robert D., Malkus, David S., and Plesha, Michael E., *Concepts and Applications of Finite Element Analysis*. New York, NY: John Wiley and Sons, 1989.
- 5. Dávila, Carlos G., Jaunky, Navin, and Goswami, Sanjib, *Failure Criteria for FRP Laminates in Plane Stress*, NASA Langley Research Center, December 2001.
- 6. Hurty, Walter C. and Rubenstein, Moshe F., *Dynamics of Structures*. Prentice-Hall Inc., 1964.
- 7. Incropera, Frank P. and DeWitt, David P., *Fundamentals of Heat and Mass Transfer, Second Edition.* John Wiley & Sons, Inc., 1985.
- 8. Jones, R. T., *Mechanics of Composite Materials*. McGraw-Hill, 1975.
- 9. Ley, Robert P., Weichuan, Lin, and Mbanefo, Uy, *Facesheet Wrinkling in Sandwich Structures*, NASA-CR-1999-208994, 1999.
- 10. MacNeal, Richard H., *Finite Elements: Their Design and Performance*. New York, NY: Marcel Dekker, Inc., 1994.
- 11. MacNeal, R. H. (ed), The NASTRAN Theoretical manual. December 1972.
- 12. Puck, A. and Schürmann, H., *Failure Analysis of FRP Laminates by Means of Physically Based Phenomenological Models*, Composites Science and Technology, Volume 58, Issue 7, July 1998.
- 13. Puck, A., Kopp, J., and Knops, M., *Guidelines for the Determination of the Parameters in Puck's Action Plane Strength Criterion*, Composites Science and Technology, Volume 62, Issue 3, February 2002.
- 14. Roark, R. J. and Young, W. C., Formulas for Stress and Strain, McGraw-Hill, Fifth Edition, 1975.
- 15. Schaeffer, Harry G., *MSC/NASTRAN Primer: Static and Normal Modes Analysis*. Milford, NH: Wallace Press, Inc., 1984.
- 16. Shock Design Criteria for Surface Ships, Naval Sea Command, NAVSEA 0908-LP-000-3010 Revision 1, September 1995.
- 17. Timoshenko, S., Young, D. H., Weaver, W. Jr., *Vibration Problems in Engineering*, Fourth Edition, John Wiley & Sons Inc., 1974.
- 18. Timoshenko, S., Theory of Elastic Stability, McGraw-Hill, 1936.
- 19. Tsai, Stephen W., *Theory of Composites Design*, Think Composites, Ohio, 1992.
- 20. Mayes J.S. and Hansen A.C., *Multicontinuum Failure Analysis of Composite Structural Laminates*, Mechanics of Composite Materials and Structures, 2001; 8(4):249-262.

- 21. Mayes J.S. and Hansen A.C., *Composite Laminate Failure Analysis Using Multicontinuum Theory*, Composites Science and Technology, 2004; 64(3-4):379-394.
- 22. Hansen A.C., Kenik D.J., and Nelson E.E., *Multicontinuum Failure Analysis of Composites*, Proceedings of the 17th International Conference of Composites Materials (ICCM-17), Edinburgh, Scotland, 2009.
- 23. Soden P.D., Hinton M.J., Kaddour A.S., Lamina Properties, Lay-Up Configurations and Loading Conditions for A Range of Fibre-Reinforced Composite Laminates, Composites Science and Technology, 1998; 58:7 1011.