Article
Article
Article

Scaling BIM for Resilience: Automated Designs to Retrofit Informal Housing

Share this Article

By 2030 more than 3 billion people will be living in substandard housing conditions. This means that over a third of the global population won’t have access to safe housing. Also, climate change and rapid urbanization are contributing to the increased levels of risk in developing countries. One of the main causes of substandard housing is informal construction, which takes place when low-income families move from rural to urban areas and build their homes without technical guidelines. The result is massive neighborhoods filled with poorly built houses that lack structural components necessary to withstand natural events like earthquakes and windstorms.

view
Panoramic view of one of the informal neighborhoods in Medellin, Colombia.

This article details the results of six years of work focused on preventing deaths from earthquakes in Colombia. In total, the nonprofit Build Change has been working for 15 years in 14 countries saving lives from earthquakes and windstorms. By working together with the ministry of housing, government agencies, and building authorities, Build Change has been an influential leader in the efforts to solve the substandard housing crisis through innovation and technology.

zones
The seismic hazard shown in terms of Ground Peak Acceleration (left). The concentration of buildings in Colombia (right). 

Build Change’s approach for addressing unsafe housing is retrofitting, which essentially is strengthening an existing building that lacks structural integrity. This methodology is the most sustainable and cost efficient because it reduces the social impact of relocation and cuts down costs up to a third of reconstruction. 

Nicolas Abello of the nonprofit Build Change talks about using innovation and technology to help solve the challenge of substandard housing.

National House Improvement Program and Scalability Challenges

How to improve the living conditions of 2 million people?

In response to an imminent seismic risk and to improve lives of over 2 million people, Colombia’s government envisioned a nationwide program to take place on a four-year timeframe. The program “Casa Digna, Vida Digna” aims to improve 600,000 houses from an architectural and structural standpoint. Build Change was appointed as the technical consultant for the Ministry of Housing to design a framework that allows scalability and efficiency of the program. Our support to the national program focused on two areas: structural engineering and process innovation.

First, we had to come up with a structural solution to make poorly-built houses safer, keeping in mind cost efficiency and local construction materials available. Once the engineering was set, we had to solve different challenges involving the bigger picture such as working in spread-out remote locations, lack of qualified labor, and more importantly, the magnitude of the program. In other words, the engineering was not enough to implement “Casa Digna, Vida Digna.” Instead, we had to think of new workflows to ensure the program’s success.

Traditional Workflow of Retrofit Projects

Traditionally, the process of structurally retrofitting a building requires a sequence of steps that can be summarized into four stages: Data Collection, Data Processing, Document Production, and Construction. The workflow starts once a house has been identified as a potential beneficiary and all the requirements for subsidy are met. Once the subsidy procedures are completed, trained staff must visit the house to do an initial assessment and collect data. Then, this data is taken into the office where analysis is performed to define which structural solution should be implemented. Once the retrofit design is defined, engineers and architects assemble a set of construction drawings that must be approved by the building authority to start with the construction activities.

workflow
Traditional retrofitting workflow, from field data collection to construction of the retrofit solution.

To have a better understanding of the whole workflow, each stage is described below:

1. Data Collection

This part of the process takes place in the field, at the house intended to retrofit. It’s done by trained staff, either civil engineers, architects, or professionals instructed in earthquake-resistant construction. In this stage, two types of data are collected: a geometrical survey of the house, which records all the measurements of walls, windows, doors and floors in a hand sketch. Then, the second data type is homeowner information together with seismic site parameters to calculate the vulnerability status.

sketch
An example of a hand sketch recording measurements from an informal house in Bogota, Colombia.

2. Data Processing

This stage includes a vulnerability assessment, followed by a structural analysis which will establish the retrofitting techniques required. They breakdown as follows:

  • Vulnerability Assessment
    The factors that determine the degree of vulnerability of a house include site hazards (such as landslides or floods), seismic parameters intrinsic to the area and the structure configuration.

  • Structural Analysis
    Informal housing lacks a proper design and often are built without fundamental structural elements. Therefore, structural engineers must analyze the structure configuration and the materials used to calculate a seismic demand for the building.

  • Retrofit Proposal
    As a result of combining the vulnerability assessment and the structural analysis of the building, engineers come up with a retrofit proposal. This includes a set of structural elements such as columns, beams, ties, dowels and other solutions to ensure the building won’t collapse during an earthquake.

3. Document Production

The third step of the process is crucial because it wraps everything done until now in a concise package of information known as the Construction Package. In other words, this document portrays a timeline for the house intervention because it shows the initial conditions of the structure, the results of the analysis and what’s needed to make it safer. In detail, this construction package includes:

  • Existing plans of the building, including architectural and structural elements

  • Results from the structural analysis that determine the intervention’s scope

  • Retrofit plans of the building, specifying materials and elements for the intervention

  • Construction details of the retrofit elements

  • Cost estimate or Bill of Quantities (BOQ)

4. Construction

Once the construction package is approved by the local building authority, the project has a green light to begin construction works. The retrofit solution includes the construction of new elements such as columns, beams, or jacketing, and also modification of existing walls, slabs, and existing structural components.

Bottlenecks and Limitations for Scalability

The previous retrofitting workflow has been implemented by Build Change in seven countries. However, it has never been used in a large-scale national development. With this in mind, to effectively implement a nationwide program for retrofitting, this workflow had to be reassessed from a cost and time perspective. The image below shows a map of the workflow, focusing on processing time and information exchange.

mapping
Mapping of the existing workflow, focusing on time and resources spent on each activity.

A systems-based analysis of the traditional workflow revealed several bottlenecks that limited its use for a nationwide implementation. The stages that represented most of the inefficiency were Data Collection, Data Processing, and Document Production. In the current workflow, information was not integrated on a single platform and different data types implied extra work for conversion and processing. The most significant bottlenecks identified are detailed below.

  • Data collection implied using trained resources such as engineers or architects to visit houses to conduct the geometric survey and vulnerability assessment. A large-scale implementation would be extremely costly using this scheme and the scarcity of trained staff could slow down the program.

  • The process of collecting geometric data for the house using a hand sketch was time consuming (it could take up to three hours) and produced inaccuracies down the line. For instance, during the design phase an engineer could find a missing measurement which forced the design process to stop until field staff confirms this missing value.

  • An engineer had to convert the hand sketch into a Revit model that represents the existing conditions. This required interpretation skills from the engineer and often led to errors in the model. Depending on the complexity of the house, this process could take up to two days.

  • The structural analysis was done using Excel spreadsheets that calculated shear and gravity loads. General behavior of the structure was verified through static linear analysis, checking stress concentrations and different failure modes. This engineering methodology is not suitable for a large-scale implementation because it focuses efforts in a case-by-case analysis.

  • Once the analysis defined the retrofit intervention, engineers proceed to add new structural elements to the model. This process involves a lot of Revit adjustments, dealing with phasing, element parameters, and graphics. The production of the Construction Package for one house could take up to nine days, taking into account rework caused by data inaccuracies and retake of measurements in field.

  • As a whole, there wasn’t a platform that integrates data from all stages to manage the project. Progress was tracked using an online spreadsheet but there was no way of incorporating all data types into one platform to have a global understanding of progress, delays and performance.

In summary, the existing methodology for retrofitting houses was not optimal for a large-scale deployment. The workflow heavily relied on qualified labor, which increased the cost considering the number of houses that would be retrofitted simultaneously. Also, the long processing times in design and document production phases, made the overall operation too expensive for scaling it up.

For instance, a typical two-story house would need a team of two trained professionals to assess and take measurements on site (usually civil engineers or architects), plus a structural engineer in the office performing analysis and retrofit design, and a drafter (could also be an engineer or architect) that puts together the set of plans, calculations and cost estimate in a construction package. This whole workflow normally takes from five to nine working days on full schedule, and varies depending on the complexity of the house. Now, considering the magnitude of the National Program we are addressing and the number of houses to deal with, this workflow is nonviable in terms of costs and time.

Proposed Workflow for Large-Scale Implementation

The reassessment of the retrofitting workflow showed key aspects to improve in order to make the national home improvement subsidy program feasible from a technical perspective. Qualified labor reliance, time spent in designs and document production were targeted for a redesign. The goal was to make a smooth workflow that streamlined the production of code-compliant retrofit designs with a focus on cost and time efficiency.

The solution we found to improve our workflow is based on third-party apps integration and BIM-automated tools. By setting our priority on the time spent in each process, we managed to overcome interoperability barriers between different software used. With this in mind, each bottleneck was addressed with a particular solution that, altogether, represented time savings of up to 78% in the workflow. A breakdown of the bottlenecks and their solution is summarized in the table below:

bottleneck
Bottlenecks found in the traditional workflow and tech-based solutions to address each one.

For the most part, automation of BIM tools had the most impact in the overall performance of the workflow, creating the biggest savings in time and effort. On the other hand, use of third-party apps and the platform integration made it possible to keep track of every house during all stages, and kept information organized throughout the process. Each one of these solutions will be discussed in more detail later.

How We Did It: Framework for BIM-Automated Tools

In a nutshell, we reduced the processing time per house by 78% while keeping the thoroughness of structural safety analysis and quality. The keys for this improvement were third-party app integration and automation of our BIM tools. By tweaking our existing workflows and adjusting the engineering methodology, we achieved technical and economic feasibility to implement the large-scale national program.

The new workflow reduced the reliance on a structural engineer in the assessment and design phases, allowing nonspecialized staff to produce code compliant structural designs automatically. In other words, we adjusted our engineering methods to allow for their automation. This streamlined the design production without using costly resources (trained structural engineers) and focusing them at the end of the process for revision and approval.

Nicolas Abello explains how BIM and automation are used to streamline the process of data collection and engineering to retrofit housing.

Data Collection

In the traditional workflow, the information was registered using paper and predefined forms to gather data from the house and homeowners. This caused significant downtimes and delays down the line because of inaccuracies in measurements, missing information, human errors and inaccuracies. The way we tackled this issue was by integrating mobile apps that could be used in smartphones or tablets, even in an offline mode. We divided our data collection in two groups: geometric survey and general information survey. Having our data divided in two categories enabled us to use specific apps to deal with different types, simplifying the overall process.

Magic Plan

This mobile app allows you to draw house floorplans including walls, windows, doors, floors, and other existing elements with your fingertips. Using predefined templates, we created a standardized protocol to draw house floorplans including key elements for the design phase. Also, the app was linked to a laser measure device to speed up the measurement taking. Once the survey is completed and internet connection is available, the plan is uploaded to the cloud where it can be downloaded from the office or any location.

phone
Sample of a house floor plan recorded using Magic Plan.

Fulcrum

The second portion of the data collection happened in Fulcrum. This mobile app is widely used in construction, manufacturing, and logistics for data capture and creation of smart forms. We incorporated this app into our workflow to collect and process information based on location. The form builder allowed us to design mistake-proof surveys that guided the surveyor through the questionnaire with adaptive responses and skip logic which made the process simple and efficient. More importantly, Fulcrum allowed integration with GIS that included seismic and vulnerability parameters from official databases. In this way, detailed information that used to be processed in the office is now preloaded in a digital form and ready to be used in field.

fulcrum
GIS databases of seismic hazard being converted to a grid of points to be linked through GPS coordinates into the form.

The integration of these third-party apps into the system improved data collection, making it more accurate, faster, and intuitive enough to be used by a nontechnical surveyor. Similarly, by integrating GIS information from vulnerability and seismic hazard databases, the assessment is done by the app, removing the need for a structural engineer on site. This improvement was achieved by overlapping location-based data such as peak ground acceleration and soil type with house configuration data (wall lengths, location and inter-story height) to calculate vulnerability status.

In this way, the data collection could now be performed by social mobilizers, students, volunteers, or anyone with a few hours of training. With this we had a massive cost reduction, by allowing anyone with some instruction on how to use the apps to collect data. Just imagine training people remotely on how to take geometric surveys all around Colombia in a few minutes with an app and a smartphone. That’s what scalability is all about.

Once the data is collected using Magic Plan and Fulcrum, both data packages are sent to a web based platform developed specifically for this program by Build Change. Essentially, this platform receives the plan made in Magic Plan and links it with the Fulcrum data using the homeowner name and ID. At this point, information from the house measurements, materials, configuration and vulnerability status are stored in an XML file.

Existing Model Generation

Right after data has been collected and stored in our web based platform, the second step is to model the existing conditions of the house. Traditionally this was done by looking at a hand sketch with measurements and annotations of the house and manually modeling it in Revit. Now, with the data collection digitalized and stored in our web based platform as an XML file, this process improved substantially. To speed up the existing modelling, we designed visual programming scripts in Dynamo that automate the house creation in Revit.

Here’s how we did it. All the information gathered in field is stored in an XML file, including the geometrical position and characteristics of all elements in the house. To extract this information, we used Python Dictionaries to parse the data and arrange it in a way that Dynamo can use it. The Python codes go through the hundreds of lines of code and obtains the required coordinates and element attributes for an automated modeling process. Some of the key info parsed by the script is shown below:

script
XML file with wall location coordinates, element dimensions, and characteristics needed for the automation scripts of the existing house.

A Python script deconstructed the list of values in the XML file and arranged the values needed by Dynamo to model wall, windows, doors, floors and slabs. There’s different values for each element, so they must be organized per type as follows:

  • Walls

             - X and Y coordinates for start and end points

             - Wall height

             - Wall type (thickness and material)

  • Windows and Doors

             - X and Y coordinates of the insertion point

             - Width, Height, Sill Height

             - Window/Door type

  • Slabs and Floors

             - X and Y coordinates of perimeter points

             - Elevation from level zero

             - Floor type (thickness and material)

Next, information is read by the Dynamo scripts separately for each category. For example, to model walls through Dynamo nodes we must obtain all the geometry from the parsed XML file and then organize it into start and end point coordinates. These can be represented as a point and then converted into a line with the “Line by Start Point End Point” node as shown below:

dynamo
Start- and end-point coordinates converted into base lines for walls using Dynamo.

The next input for wall creation are base and top levels. These are obtained from the parsed XML data, where each room created in the Magic Plan floorplan has an elevation. The Dynamo script then gathers this elevation and defines the levels accordingly. Finally, the wall type must be defined to the wall creation node to model the exact wall recorded in Magic Plan. This attribute is stored as a code which is replaced for the name of the wall family in Revit. The steps explained above are represented in the following portion of the script:

geometry
Existing wall creation using base line geometry, levels, and wall type.

Once the walls are modeled, similar scripts for windows, doors and slabs generate the rest of the existing house. Also, once these elements are placed by Dynamo, the “Phase Created” parameter is set to “Existing” to ensure they won’t interfere when the new (retrofit) elements are modeled. The result of the existing model is shown below:

house
Finished existing model of an informal house in Medellin, Colombia.

At this point, we’ve modeled the existing conditions of the house with exact measurements taken in field using Magic Plan, and a vulnerability status that resulted from Fulcrum data processed with seismic and soil parameters. The time spent in the existing house modeling decreased from one or two days to 10 minutes. Now, the house is ready to begin the structural analysis to determine the best retrofit solution.

Nicolas finished his studies in civil engineering in Bogota, Colombia. After working in commercial and infrastructure projects he became aware of how technology could improve productivity in the AEC sector. This encouraged him to question the way the industry works and inspired him to seek continuous improvement. He joined Build Change in 2018 to consolidate the New Frontier Technologies division, which oversees innovation for design and construction in all of the organization’s country programs. Since then Nicolas has worked in Colombia, Philippines, and Nepal leading the development of BIM tools for structural assessment, design and construction of safe houses and schools. Developments done by the New Frontier Technologies team have received international awards and created partnerships with major tech companies.

Noll is a senior international development professional who draws his primary motivation from innovation and from developing concepts that improve efficiency and effectiveness. For the past decade, Noll's focus has been on addressing the issue of substandard housing around the world. Specifically striving to improve houses’ resilience to natural disasters, including developing tech-based solutions to support the Government of Colombia in rolling out a national plan to seismically retrofit hundreds of thousands of houses, and providing homeowner-driven construction and retrofitting technical assistance to 25,000 households in rural Nepal, and to 2,000 families in informal neighborhoods of Port-au-Prince, Haiti. In 2018 Noll was promoted to head Build Change’s recently created New Frontier Technologies division.

Want more? Download the full class handout to read on.

______
icon-svg-close-thick

Cookie preferences

Your privacy is important to us and so is an optimal experience. To help us customize information and build applications, we collect data about your use of this site.

May we collect and use your data?

Learn more about the Third Party Services we use and our Privacy Statement.

Strictly necessary – required for our site to work and to provide services to you

These cookies allow us to record your preferences or login information, respond to your requests or fulfill items in your shopping cart.

Improve your experience – allows us to show you what is relevant to you

These cookies enable us to provide enhanced functionality and personalization. They may be set by us or by third party providers whose services we use to deliver information and experiences tailored to you. If you do not allow these cookies, some or all of these services may not be available for you.

Customize your advertising – permits us to offer targeted advertising to you

These cookies collect data about you based on your activities and interests in order to show you relevant ads and to track effectiveness. By collecting this data, the ads you see will be more tailored to your interests. If you do not allow these cookies, you will experience less targeted advertising.

icon-svg-close-thick

THIRD PARTY SERVICES

Learn more about the Third-Party Services we use in each category, and how we use the data we collect from you online.

icon-svg-hide-thick

icon-svg-show-thick

Strictly necessary – required for our site to work and to provide services to you

Qualtrics
We use Qualtrics to let you give us feedback via surveys or online forms. You may be randomly selected to participate in a survey, or you can actively decide to give us feedback. We collect data to better understand what actions you took before filling out a survey. This helps us troubleshoot issues you may have experienced. Qualtrics Privacy Policy
Akamai mPulse
We use Akamai mPulse to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, and your Autodesk ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. Akamai mPulse Privacy Policy
Digital River
We use Digital River to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, and your Autodesk ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. Digital River Privacy Policy
Dynatrace
We use Dynatrace to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, and your Autodesk ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. Dynatrace Privacy Policy
Khoros
We use Khoros to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, and your Autodesk ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. Khoros Privacy Policy
Launch Darkly
We use Launch Darkly to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, and your Autodesk ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. Launch Darkly Privacy Policy
New Relic
We use New Relic to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, and your Autodesk ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. New Relic Privacy Policy
Salesforce Live Agent
We use Salesforce Live Agent to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, and your Autodesk ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. Salesforce Live Agent Privacy Policy
Wistia
We use Wistia to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, and your Autodesk ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. Wistia Privacy Policy
Tealium
We use Tealium to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. Tealium Privacy Policy
Upsellit
We use Upsellit to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. Upsellit Privacy Policy
CJ Affiliates
We use CJ Affiliates to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. CJ Affiliates Privacy Policy
Commission Factory
We use Commission Factory to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. Commission Factory Privacy Policy
Google Analytics (Strictly Necessary)
We use Google Analytics (Strictly Necessary) to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, and your Autodesk ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. Google Analytics (Strictly Necessary) Privacy Policy
Typepad Stats
We use Typepad Stats to collect data about your behaviour on our sites. This may include pages you’ve visited. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our platform to provide the most relevant content. This allows us to enhance your overall user experience. Typepad Stats Privacy Policy
Geo Targetly
We use Geo Targetly to direct website visitors to the most appropriate web page and/or serve tailored content based on their location. Geo Targetly uses the IP address of a website visitor to determine the approximate location of the visitor’s device. This helps ensure that the visitor views content in their (most likely) local language.Geo Targetly Privacy Policy
SpeedCurve
We use SpeedCurve to monitor and measure the performance of your website experience by measuring web page load times as well as the responsiveness of subsequent elements such as images, scripts, and text.SpeedCurve Privacy Policy
Qualified
Qualified is the Autodesk Live Chat agent platform. This platform provides services to allow our customers to communicate in real-time with Autodesk support. We may collect unique ID for specific browser sessions during a chat. Qualified Privacy Policy

icon-svg-hide-thick

icon-svg-show-thick

Improve your experience – allows us to show you what is relevant to you

Google Optimize
We use Google Optimize to test new features on our sites and customize your experience of these features. To do this, we collect behavioral data while you’re on our sites. This data may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, your Autodesk ID, and others. You may experience a different version of our sites based on feature testing, or view personalized content based on your visitor attributes. Google Optimize Privacy Policy
ClickTale
We use ClickTale to better understand where you may encounter difficulties with our sites. We use session recording to help us see how you interact with our sites, including any elements on our pages. Your Personally Identifiable Information is masked and is not collected. ClickTale Privacy Policy
OneSignal
We use OneSignal to deploy digital advertising on sites supported by OneSignal. Ads are based on both OneSignal data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that OneSignal has collected from you. We use the data that we provide to OneSignal to better customize your digital advertising experience and present you with more relevant ads. OneSignal Privacy Policy
Optimizely
We use Optimizely to test new features on our sites and customize your experience of these features. To do this, we collect behavioral data while you’re on our sites. This data may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, your Autodesk ID, and others. You may experience a different version of our sites based on feature testing, or view personalized content based on your visitor attributes. Optimizely Privacy Policy
Amplitude
We use Amplitude to test new features on our sites and customize your experience of these features. To do this, we collect behavioral data while you’re on our sites. This data may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, your Autodesk ID, and others. You may experience a different version of our sites based on feature testing, or view personalized content based on your visitor attributes. Amplitude Privacy Policy
Snowplow
We use Snowplow to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, and your Autodesk ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. Snowplow Privacy Policy
UserVoice
We use UserVoice to collect data about your behaviour on our sites. This may include pages you’ve visited. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our platform to provide the most relevant content. This allows us to enhance your overall user experience. UserVoice Privacy Policy
Clearbit
Clearbit allows real-time data enrichment to provide a personalized and relevant experience to our customers. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID.Clearbit Privacy Policy
YouTube
YouTube is a video sharing platform which allows users to view and share embedded videos on our websites. YouTube provides viewership metrics on video performance. YouTube Privacy Policy

icon-svg-hide-thick

icon-svg-show-thick

Customize your advertising – permits us to offer targeted advertising to you

Adobe Analytics
We use Adobe Analytics to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, and your Autodesk ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. Adobe Analytics Privacy Policy
Google Analytics (Web Analytics)
We use Google Analytics (Web Analytics) to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. Google Analytics (Web Analytics) Privacy Policy
AdWords
We use AdWords to deploy digital advertising on sites supported by AdWords. Ads are based on both AdWords data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that AdWords has collected from you. We use the data that we provide to AdWords to better customize your digital advertising experience and present you with more relevant ads. AdWords Privacy Policy
Marketo
We use Marketo to send you more timely and relevant email content. To do this, we collect data about your online behavior and your interaction with the emails we send. Data collected may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, email open rates, links clicked, and others. We may combine this data with data collected from other sources to offer you improved sales or customer service experiences, as well as more relevant content based on advanced analytics processing. Marketo Privacy Policy
Doubleclick
We use Doubleclick to deploy digital advertising on sites supported by Doubleclick. Ads are based on both Doubleclick data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that Doubleclick has collected from you. We use the data that we provide to Doubleclick to better customize your digital advertising experience and present you with more relevant ads. Doubleclick Privacy Policy
HubSpot
We use HubSpot to send you more timely and relevant email content. To do this, we collect data about your online behavior and your interaction with the emails we send. Data collected may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, email open rates, links clicked, and others. HubSpot Privacy Policy
Twitter
We use Twitter to deploy digital advertising on sites supported by Twitter. Ads are based on both Twitter data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that Twitter has collected from you. We use the data that we provide to Twitter to better customize your digital advertising experience and present you with more relevant ads. Twitter Privacy Policy
Facebook
We use Facebook to deploy digital advertising on sites supported by Facebook. Ads are based on both Facebook data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that Facebook has collected from you. We use the data that we provide to Facebook to better customize your digital advertising experience and present you with more relevant ads. Facebook Privacy Policy
LinkedIn
We use LinkedIn to deploy digital advertising on sites supported by LinkedIn. Ads are based on both LinkedIn data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that LinkedIn has collected from you. We use the data that we provide to LinkedIn to better customize your digital advertising experience and present you with more relevant ads. LinkedIn Privacy Policy
Yahoo! Japan
We use Yahoo! Japan to deploy digital advertising on sites supported by Yahoo! Japan. Ads are based on both Yahoo! Japan data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that Yahoo! Japan has collected from you. We use the data that we provide to Yahoo! Japan to better customize your digital advertising experience and present you with more relevant ads. Yahoo! Japan Privacy Policy
Naver
We use Naver to deploy digital advertising on sites supported by Naver. Ads are based on both Naver data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that Naver has collected from you. We use the data that we provide to Naver to better customize your digital advertising experience and present you with more relevant ads. Naver Privacy Policy
Quantcast
We use Quantcast to deploy digital advertising on sites supported by Quantcast. Ads are based on both Quantcast data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that Quantcast has collected from you. We use the data that we provide to Quantcast to better customize your digital advertising experience and present you with more relevant ads. Quantcast Privacy Policy
Call Tracking
We use Call Tracking to provide customized phone numbers for our campaigns. This gives you faster access to our agents and helps us more accurately evaluate our performance. We may collect data about your behavior on our sites based on the phone number provided. Call Tracking Privacy Policy
Wunderkind
We use Wunderkind to deploy digital advertising on sites supported by Wunderkind. Ads are based on both Wunderkind data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that Wunderkind has collected from you. We use the data that we provide to Wunderkind to better customize your digital advertising experience and present you with more relevant ads. Wunderkind Privacy Policy
ADC Media
We use ADC Media to deploy digital advertising on sites supported by ADC Media. Ads are based on both ADC Media data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that ADC Media has collected from you. We use the data that we provide to ADC Media to better customize your digital advertising experience and present you with more relevant ads. ADC Media Privacy Policy
AgrantSEM
We use AgrantSEM to deploy digital advertising on sites supported by AgrantSEM. Ads are based on both AgrantSEM data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that AgrantSEM has collected from you. We use the data that we provide to AgrantSEM to better customize your digital advertising experience and present you with more relevant ads. AgrantSEM Privacy Policy
Bidtellect
We use Bidtellect to deploy digital advertising on sites supported by Bidtellect. Ads are based on both Bidtellect data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that Bidtellect has collected from you. We use the data that we provide to Bidtellect to better customize your digital advertising experience and present you with more relevant ads. Bidtellect Privacy Policy
Bing
We use Bing to deploy digital advertising on sites supported by Bing. Ads are based on both Bing data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that Bing has collected from you. We use the data that we provide to Bing to better customize your digital advertising experience and present you with more relevant ads. Bing Privacy Policy
G2Crowd
We use G2Crowd to deploy digital advertising on sites supported by G2Crowd. Ads are based on both G2Crowd data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that G2Crowd has collected from you. We use the data that we provide to G2Crowd to better customize your digital advertising experience and present you with more relevant ads. G2Crowd Privacy Policy
NMPI Display
We use NMPI Display to deploy digital advertising on sites supported by NMPI Display. Ads are based on both NMPI Display data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that NMPI Display has collected from you. We use the data that we provide to NMPI Display to better customize your digital advertising experience and present you with more relevant ads. NMPI Display Privacy Policy
VK
We use VK to deploy digital advertising on sites supported by VK. Ads are based on both VK data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that VK has collected from you. We use the data that we provide to VK to better customize your digital advertising experience and present you with more relevant ads. VK Privacy Policy
Adobe Target
We use Adobe Target to test new features on our sites and customize your experience of these features. To do this, we collect behavioral data while you’re on our sites. This data may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, your Autodesk ID, and others. You may experience a different version of our sites based on feature testing, or view personalized content based on your visitor attributes. Adobe Target Privacy Policy
Google Analytics (Advertising)
We use Google Analytics (Advertising) to deploy digital advertising on sites supported by Google Analytics (Advertising). Ads are based on both Google Analytics (Advertising) data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that Google Analytics (Advertising) has collected from you. We use the data that we provide to Google Analytics (Advertising) to better customize your digital advertising experience and present you with more relevant ads. Google Analytics (Advertising) Privacy Policy
Trendkite
We use Trendkite to deploy digital advertising on sites supported by Trendkite. Ads are based on both Trendkite data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that Trendkite has collected from you. We use the data that we provide to Trendkite to better customize your digital advertising experience and present you with more relevant ads. Trendkite Privacy Policy
Hotjar
We use Hotjar to deploy digital advertising on sites supported by Hotjar. Ads are based on both Hotjar data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that Hotjar has collected from you. We use the data that we provide to Hotjar to better customize your digital advertising experience and present you with more relevant ads. Hotjar Privacy Policy
6 Sense
We use 6 Sense to deploy digital advertising on sites supported by 6 Sense. Ads are based on both 6 Sense data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that 6 Sense has collected from you. We use the data that we provide to 6 Sense to better customize your digital advertising experience and present you with more relevant ads. 6 Sense Privacy Policy
Terminus
We use Terminus to deploy digital advertising on sites supported by Terminus. Ads are based on both Terminus data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that Terminus has collected from you. We use the data that we provide to Terminus to better customize your digital advertising experience and present you with more relevant ads. Terminus Privacy Policy
StackAdapt
We use StackAdapt to deploy digital advertising on sites supported by StackAdapt. Ads are based on both StackAdapt data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that StackAdapt has collected from you. We use the data that we provide to StackAdapt to better customize your digital advertising experience and present you with more relevant ads. StackAdapt Privacy Policy
The Trade Desk
We use The Trade Desk to deploy digital advertising on sites supported by The Trade Desk. Ads are based on both The Trade Desk data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that The Trade Desk has collected from you. We use the data that we provide to The Trade Desk to better customize your digital advertising experience and present you with more relevant ads. The Trade Desk Privacy Policy
RollWorks
We use RollWorks to deploy digital advertising on sites supported by RollWorks. Ads are based on both RollWorks data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that RollWorks has collected from you. We use the data that we provide to RollWorks to better customize your digital advertising experience and present you with more relevant ads. RollWorks Privacy Policy

Are you sure you want a less customized experience?

We can access your data only if you select "yes" for the categories on the previous screen. This lets us tailor our marketing so that it's more relevant for you. You can change your settings at any time by visiting our privacy statement

Your experience. Your choice.

We care about your privacy. The data we collect helps us understand how you use our products, what information you might be interested in, and what we can improve to make your engagement with Autodesk more rewarding.

May we collect and use your data to tailor your experience?

Explore the benefits of a customized experience by managing your privacy settings for this site or visit our Privacy Statement to learn more about your options.