AU Class
AU Class
class - AU

Digital Building Logbook: How the AEC Data Model Is Revolutionizing Digital Tracking of Building Information in the EU

共享此课程

说明

One Team leads the development of the Digital Building Logbook (DBL) in the context of Horizon Europe's BuildON project. Serving as a centralized repository, it aids the architecture, engineering, and construction (AEC) industry's journey toward climate neutrality and a more circular economy. The DBL captures diverse building data, from general details, administrative records, construction data, and energy performance metrics to operational information and smart building data—collected throughout the building's lifespan. This effort aims to streamline the organization of diverse data types and address challenges related to disconnected data. Using the AEC Data Model API, the DBL will enable efficient data queries and powerful search capabilities to extract rich data from models without the need of authoring tools, effectively mitigating disconnected data issues common in the AEC industry. The DBL enhances user experience by breaking down data for various user personas across the building's lifecycle.

主要学习内容

  • Discover how to support the construction industry toward climate neutrality and build a more circular economy.
  • Discover how the AEC Data Model API enables connected data in the AEC industry.
  • Learn how to design efficient queries for building information data extraction using the AEC Data model API.

讲师

  • Giovanni Coviello
    Giovanni Coviello is a qualified architect in Italy and the UK with seven years of experience in the AEC sector. He began his career in England, embracing BIM early on, and later earned a European Master's in BIM from Politecnico di Milano and the University of Minho. At One Team, Giovanni started as a BIM consultant, supporting training and implementation for clients in both the private and public sectors. He now leverages his BIM expertise in Research & Innovation projects funded by the European Commission, focusing on digitalisation initiatives such as Digital Twins, Digital Building Logbooks, and AR applications. Passionate about technology's transformative potential, Giovanni is dedicated to creating innovative solutions that enhance building efficiency and contribute to Europe's sustainability goals.
  • Jacopo Chiappetti
    I am a Senior Analyst and Developer, based in Italy, with over 30 years of experience in the AEC/MFG industries. In One Team, I focus on project management and development of major Italian and European projects regarding Digital Twins, Digital Building Logbooks, European Sustainability Goals and BIM applications. In my free time I am a cyclist and trekker with a passion for mountains and climbs: during the year I also do some "gran fondo" to challenge myself.
Video Player is loading.
Current Time 0:00
Duration 30:56
Loaded: 0%
Stream Type LIVE
Remaining Time 30:56
 
1x
  • Chapters
  • descriptions off, selected
  • en (Main), selected
    Transcript

    GIOVANNI COVIELLO: Welcome, everyone. The topic of this presentation is Digital Building Logbook-- How the AEC Data Model is Revolutionizing the Digital Tracking of Building Information in EU. Let me introduce first myself and my colleague. I'm Giovanni Coviello, AEC application engineer. And my colleague with me is Jacopo Chiapetti, senior analyst and developer. Together, we work in One Team.

    One Team is a platinum partner Autodesk company in Europe and, for the last 25 years, has been transforming technologies and skills into value. By offering consulting services and IT solutions for the IC sector and the mechanical sector. These are few numbers of the company. It counts almost 100 employees, 42 millions revenue, 11,000 customer, and 60,000 managed users.

    In the recent years, One Team decided to use its experience within the IC sector as a technology partner to push its boundaries. By doing what? Research and innovation project for Europe in collaboration with other companies. So, currently, the company has six European project in its portfolio and all of them share a common mission-- promoting energy efficiency and sustainability.

    In this presentation, we will talk in particular about one of these project, which is built on a 6-plus million project budget started in April 2023. Here, there is the project team involved in the BuildON development. And now let's jump into the agenda for the presentation.

    We will introduce the European building sector and explain the importance of the Horizon Europe research and innovation project. We are going after more in detail on the BuildON project and explaining the concept of the digital building logbook and, at the end, why we decided to implement the AEC data model within the building logbook.

    If we look at the EU building sector, buildings in Europe are responsible right now for approximately 40% of the energy total consumption and 36% of the greenhouse gas emission. This is making the building sector one of the most energy-intensive sector in the EU. For this reason, in April 2024, EU decided to adopt an energy performance of building directive.

    This directive has long-term and short-term goals. The long term is to achieve that, by 2050, All the buildings in the EU should be a zero-emission building. But if we look at the EU building, more than four-fifths were built before 2000. For example, me and my colleague are from Italy where most of the building assets in our city were constructed well before the year 2000, even before the year 1000. And all of these will require renovation because of their pure energy performance.

    If we are going to look more in details about the directive, we see that there are goals even for the middle term. For example, residential building must reduce their average primary energy by 20%-22% before 2035. And if we consider no residential building, they have to renovate the 26% of the worst-performing building by 2033.

    These are the considerations made for the existing building. For the all-new building, there are rules that are going to be implemented. After 2030, all the new buildings must have zero on-site emissions. For this reason, to achieve these sustainability goals, and following the timeline, Europe is using its research and innovation program called Horizon Europe in order to boost the AEC sector towards a sustainability transition.

    Horizon Europe is the EU largest funding program for research and innovation. It's supporting a project that drives sustainability, enables collaboration between the companies in Europe and research institutions, and is going to boost the economic growth and industrial competitiveness. For the period 2021--2027, Europe is investing around 93 billion in this research program, Horizon Europe. And, in the following video, we will have an introduction of one of these Horizon projects that is the protagonist of this class of today, which is BuildON.

    [VIDEO PLAYBACK]

    - Welcome to BuildON, a new project revolutionizing the future of smart buildings. BuildON is an EU-funded project leading the way towards a new era of affordable and digital solutions for the next generation of smart EU buildings. In a world facing the challenges of decarbonization and digitalization, BuildON is at the forefront of change.

    Over 42 months, we'll be combining cutting-edge technologies to optimize the energy performance of buildings, our mission-- to redefine buildings as flexible building as a service entities, no longer static structures but dynamic, adaptable, at the service of people. Enter the smart transformer toolbox, a system of three components for efficient management of smart buildings. An IoT edge or cloud interoperability framework.

    A MAPO system of analytics and optimisation services. A digital twins virtual simulation. The toolbox will provide affordable, adaptive, and easily accessible services supported by a set of user-empowerment tools to guide in the smartness, upgrade, and facilitate human smart assets interaction.

    [END PLAYBACK]

    GIOVANNI COVIELLO: BuildON is a European project, focuses on the transition towards the decarbonization and digitalization of the buildings. But how this transition will happen? It will happen by the development of technological solutions for the energy efficiency.

    Here on the side is indicated also the website. So please subscribe to this newsletter to get more updates because the project started in April 2023. And, right now, we are around month 18.

    The project is 42 months in total and is going to test the technological solution developed into different five pilots across the continent. We choose five different buildings around Europe. Considering different climate zone, as you can see from the map, there are two residential building, one in Spain and one in Finland.

    One office building in France, one kindergarten in Poland, and one commercial building in Greece. We choose so different climate zone in order to verify the effectiveness of the digital solution for the energy optimisation in the various climate zone but also in different typology of buildings. So we have residential building, offices, or commercial spaces and public buildings.

    The idea is to moving from a static perspective of the building to a flexible building as a service approach. The project is considering the participation of a consortium of 20 companies, coming from different areas of Europe and different expertise that are research institutions, private companies, or universities.

    If we focus in One Team in particular as a technology partner, it's responsible during the project of the development of two main digital tool, a digital building logbook and a digital twin. You might be familiar already with the concept of digital twin within the AEC sector. But let's now go more in detail about the concept of the digital building logbook and why could be essential for the next years for the energy transition.

    If we look already at the European building directive, the digital building logbook is already part of the main scheme. It's considered as a pivotal element for the data exchange within the building sector. For this reason, we decided to implement inside the building BuildON project as a technology solution.

    I'm going now to give more details and the concept of the digital building logbook. The building logbook can be considered as a flight recorder of the building asset. If we think about a flight recorder, it is a black box that is recording all the action and activities happening during a flight from the departure till the landing. This is the same for a digital building logbook.

    It's going to record everything that is happening during the building life cycle. For this reason, the digital building logbook is going to be a centralized repository and, during the entire life cycle, promoting and contributing to improve inside the AEC sector different aspects. For example, the data quality and the reliability of the data and their standardization is going to help to improve the regulatory compliance to make informed decision-making.

    It will also foster the interoperability. And it will promote the transparency and accountability because, inside the construction sector, it is going to represent and provide a level playing field. And this will support also a new business model.

    The digital building logbook will store different type of data that span from static data but also to dynamic and interactive data. For this reason, we decided to classify and organize the different data types that are going to be collected within the digital building logbook into five main categories that I'm now going to explain. The first categories are the documentation related and the data related to the general and administrative information.

    These data are, for example, documents related to the ownership document, property tax, insurance, or regulatory certification for health and safety, especially for public building. These are the minimum documents that every owner of an apartment or of a building has at home but not in a digital tool. The concept is to move these documentation within a common environment in a digital platform.

    The second type of category are the building construction information. These are the information like the plan of the building, the hierarchy of the technical building system, so how the equipment are connected to each other, or which mechanical or electrical system are installed within the building and their characteristic or their documentation and instruction.

    The third category are the building energy performance. These information are like energy certificate such EPC or LEED or BREEAM certificate, monthly and annual energy metered consumption or also the utility bills for the electricity and water. And there will be also the energy production that is happening in the building by the renewable sources.

    A fourth category are the building operation and use data. These are information related to the maintenance of the building, so during the operation phase. We have the operational manual for the building system. We will have the operator schedule like when the cleaning is happening in communal area or the waste management. And, also, there will be integrated alert and event logs.

    And, finally, the fifth category, the building logic behaviors. In this category, we are going to collect these smart building data system and automation, considering also the energy forecasting and benchmark and analytic and predictive maintenance report.

    Let's now go into deep dive about the main challenge that we are facing for the development of the digital building logbook and how we decided to solve. We say that the logbook is going to collect data generated through the BIM processes, including as-built model, building specification, and construction documentation. But, currently, we are facing a challenge because we know that in the AEC sector it is difficult right now to move data from one phase to the other during the building lifecycle.

    We have what is called the handover gap. So this is one of the first challenges-- collect all the data during the different phase of the construction, but also during the phase of the operation of the building. Together with a second challenge that is provide a universal access to this platform. We are not talking about for the digital building logbook for a platform restricted only to architect or engineering.

    The platform will be accessible to different typology of users persona. We created four main groups of user profile that might be willing to use the platform. First of all, the building owner and tenants, which are looking for a common data environment to store all the building-related information to have the energy consumption, all the history for the renovation and the maintenance records.

    The second category are the public authorities and the administration. Depending on the European level, national level, regional level, all of them will have access to the logbook in different way. And it will support them for decision-making or to transmit and store building permits data, for example.

    A third category are the technician and the construction stakeholders. So all the people involved within the AEC sector as a architect, engineer, contractor, which are looking for specific information of the building, how was constructed, how the system are functioning, and all the data necessary for a possible renovation in order to improve the energy efficiency.

    And, finally, our fourth category of user persona which are the utilities companies and financial companies. Utilities will share the information metadata, the collected of the annual consumption, for example, for the building. And the financial companies, they will look for investment analysis and loan feasibility.

    For this reason, our challenge was how to find a way to deliver tailored data to address each user specific needs and requirements. And, for this, we think that the solution is the transition from a traditional file storage system to a metadata-driven access system. Now my colleague Jacopo is going to explain the technical solution in order to solve this challenge.

    JACOPO CHIAPATTI: So why I see data models for DBL? In the past, we did other projects that use BIM data. And, to do that, we have to load models with external libraries, example for IFC, with Revit, with design automation, check for different version, trap errors, pass models, and write data into a large relational database that need maintenance over time. This was very time and resource consuming and, also, a predefined use-case log in because relational database means predefined relations.

    This traditional workflow was a very complex tech stack. AEC data models means fast implementation and lean delivery. No need to use libraries, Revit, design automation, propellers and version, pass models. No need to large DB maintenance over time. Just put models in the [? IPS ?] app and go.

    I see that the model is user oriented. Graphical [INAUDIBLE] means predefined relations, but relations could also be created by user depending on their needs. It's very easy to apply variation of preconfigured data queries. We need other relations and/or data just create a new GraphQL query. And, finally, hopefully, in the near future, not in this slide, we will be able to provide custom property to the AEC data models back, so no need to write back in the original model and to retrieve geometric data for elements.

    The DBL integrates a wide range of data sources, both static and dynamic. The BIM models, so AEC data model, other CDE, classic data, involved in the project, obviously. Time series DB cloud like smart things and other custom solution and API services.

    All sources could be interrogated with GraphQL queries, which is also used for AEC data model to retrieve data for different application, so user and management, the tree viewer, the twin, the digital twin, and so on, providing granular data for every stakeholder involved in the process. At the core of the DBL solution is the AEC data model. [INAUDIBLE] common formatting and cloud-oriented data management, which improves data retrieval, speed, and accuracy.

    It uses GraphQL-based approach to link data points, providing users with the ability to query data on interrelated factors. And whatever the user is looking for, the tailored energy consumption reports or structural data or other data, the AEC data model ensure that the right data is delivered.

    Looking at it, this is the DBL platform roadmap for the BuildON project outlines, the future development phases. We started in the 2023. The DBL ideation, in the beginning of 2024, we integrated the AEC data model and complete the first architecture setup. Currently, we are working mainly on user interface testing and corrections.

    We will have the first technical release at the end of 2024, followed by the beta release in 2025. OK.

    GIOVANNI COVIELLO: Thank you.

    JACOPO CHIAPATTI: I give back.

    GIOVANNI COVIELLO: And, now, as a conclusion, I'm going to show how it works the digital building logbook with the integration of the AEC data model. We envisioned the digital building logbook more than just a repository. We designed as a range of application tools that is going to help the user to access and interact with the data they need about their buildings.

    For example, we identified a user and role management app that is going to control and set up the access rights-- access right for every user and which data they will be able to see or modify. A building data management, which is an interface that is going to be structured as a table format containing the key building elements and all the related documentation.

    In this way, the use of a consistent table format will ensure an easy and readable interface to quick access to data. A 3D BIM viewer because, of course, we have engineer and architect now working in the third dimension with the BIM models. And we want to integrate the viewer of this BIM models in order to make it easier, the asset localization, for example.

    An application that also we define called as a building data explorer. This is a tool powered by a large language model AI that is going to enable the user to search for element and extract quantitative information, for example, using the everyday language. And, finally, the digital twin dashboard, which is the application used to monitor the live building performances and forecast depending on the asset available and the sensor installed.

    This is the schema that is summarizing all the application tool together with the different data types category that we identified before, associated with the main users persona for each of them. Let's go now to see the actual platform and its functionalities. This is the interface for the home that a user will access.

    If we think about a property manager will have an interface where we'll see the location of the building, communication like the alert or reminder of the specific building, together with a member list. In the member list, they will be indicated all the people part of the building like owners or contractor or public authority, and also the list of all the companies involved in the building. In the company list will be indicated with a company card as well the information of the specific people from that company involved in the asset property and their access role.

    Here, instead, we can see the building data management section where, as we said before, is a table format interface. It is going to contain the minimum information required for each building. And there will be-- we will manage to extract from the BIM models when available. In this way, we are using the AEC data model to directly query the model and extract and visualize this information within this table format. In fact, this is an example of the AEC data model query integration that is extracting the project information.

    This is, again, a building data management area but also integrated with a 3D BIM viewer. We are visualizing the structure of the building divided by levels, units, and systems. We are able to identify the different building technology system within the-- contained within the asset, for example, a domestic hot water system.

    Explore the different equipment that are part of that specific technological system, and visualize the asset and their location within the building together with their PDF documentation, for example, like the instruction. And all of these data will be extracted with the digital-- with the AEC data model. This is in fact an example of a query that right now is extracting the levels of the building and creating the interface.

    This is instead the third application that we identify as a building data explorer. The building data explorer will use a simple search engine where, with the help of a large language model AI, we will translate the request in a natural language for a user, for example, a maintenance person to the AEC data model GraphQL language.

    In this way, someone will be able, for example, to, like in this example, to extract the maintenance of the specific equipment, mechanical equipments on a specific period of time, like the one that will be, they will require maintenance by next December. And this is the specific query translated that will identify all the mechanical equipment that has also the maintenance in that specific time frame.

    This is the list of the application tool that we identify, and we are going to integrate within the interface of the digital building logbook and dismissing the digital twin dashboard because we think that the digital twin dashboard will be directly linked to our second deliverable inside the BuildON project that was the digital twin level four.

    The digital building logbook in our vision will act and to be directly interconnected to the digital twin because it's going to feed and gather data into each other. They're going to feed and gather data into each other.

    As explained before, the logbook will play as a digital registry and data repository and is going to be a data feeding into the digital twin, which will run action like run checks, inspect, mapping the information together with the ilive IoT sensors, information data, and after running simulation like energy simulation, LCA, LCC, and prediction forecast.

    The result of this simulation will be after send back as insight for the user inside the digital building logbook, so into the digital twin dashboard that we are envisioning. We will perform the digital twin and this interface with the use of Tandem API.

    And now let's wrap the conclusion and the work-- during the development of the digital building logbook, thanks to the AEC data model, we are able to use the BIM model as primary source of truth. We are able to optimize the data storage and the DevOps because we are minimizing the implementation of different API endpoints.

    We are saving times for data retrieval because we are not spending time to extract, transform, or unload process data. And, also, we are able to make precise data retrieval for each user's persona. And this is possible only thanks to the AEC data model query structure. Thank you for watching the presentation.

    ______
    icon-svg-close-thick

    Cookie 首选项

    您的隐私对我们非常重要,为您提供出色的体验是我们的责任。为了帮助自定义信息和构建应用程序,我们会收集有关您如何使用此站点的数据。

    我们是否可以收集并使用您的数据?

    详细了解我们使用的第三方服务以及我们的隐私声明

    绝对必要 – 我们的网站正常运行并为您提供服务所必需的

    通过这些 Cookie,我们可以记录您的偏好或登录信息,响应您的请求或完成购物车中物品或服务的订购。

    改善您的体验 – 使我们能够为您展示与您相关的内容

    通过这些 Cookie,我们可以提供增强的功能和个性化服务。可能由我们或第三方提供商进行设置,我们会利用其服务为您提供定制的信息和体验。如果您不允许使用这些 Cookie,可能会无法使用某些或全部服务。

    定制您的广告 – 允许我们为您提供针对性的广告

    这些 Cookie 会根据您的活动和兴趣收集有关您的数据,以便向您显示相关广告并跟踪其效果。通过收集这些数据,我们可以更有针对性地向您显示与您的兴趣相关的广告。如果您不允许使用这些 Cookie,您看到的广告将缺乏针对性。

    icon-svg-close-thick

    第三方服务

    详细了解每个类别中我们所用的第三方服务,以及我们如何使用所收集的与您的网络活动相关的数据。

    icon-svg-hide-thick

    icon-svg-show-thick

    绝对必要 – 我们的网站正常运行并为您提供服务所必需的

    Qualtrics
    我们通过 Qualtrics 借助调查或联机表单获得您的反馈。您可能会被随机选定参与某项调查,或者您可以主动向我们提供反馈。填写调查之前,我们将收集数据以更好地了解您所执行的操作。这有助于我们解决您可能遇到的问题。. Qualtrics 隐私政策
    Akamai mPulse
    我们通过 Akamai mPulse 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Akamai mPulse 隐私政策
    Digital River
    我们通过 Digital River 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Digital River 隐私政策
    Dynatrace
    我们通过 Dynatrace 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Dynatrace 隐私政策
    Khoros
    我们通过 Khoros 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Khoros 隐私政策
    Launch Darkly
    我们通过 Launch Darkly 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Launch Darkly 隐私政策
    New Relic
    我们通过 New Relic 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. New Relic 隐私政策
    Salesforce Live Agent
    我们通过 Salesforce Live Agent 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Salesforce Live Agent 隐私政策
    Wistia
    我们通过 Wistia 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Wistia 隐私政策
    Tealium
    我们通过 Tealium 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Tealium 隐私政策
    Upsellit
    我们通过 Upsellit 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Upsellit 隐私政策
    CJ Affiliates
    我们通过 CJ Affiliates 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. CJ Affiliates 隐私政策
    Commission Factory
    我们通过 Commission Factory 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Commission Factory 隐私政策
    Google Analytics (Strictly Necessary)
    我们通过 Google Analytics (Strictly Necessary) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Strictly Necessary) 隐私政策
    Typepad Stats
    我们通过 Typepad Stats 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Typepad Stats 隐私政策
    Geo Targetly
    我们使用 Geo Targetly 将网站访问者引导至最合适的网页并/或根据他们的位置提供量身定制的内容。 Geo Targetly 使用网站访问者的 IP 地址确定访问者设备的大致位置。 这有助于确保访问者以其(最有可能的)本地语言浏览内容。Geo Targetly 隐私政策
    SpeedCurve
    我们使用 SpeedCurve 来监控和衡量您的网站体验的性能,具体因素为网页加载时间以及后续元素(如图像、脚本和文本)的响应能力。SpeedCurve 隐私政策
    Qualified
    Qualified is the Autodesk Live Chat agent platform. This platform provides services to allow our customers to communicate in real-time with Autodesk support. We may collect unique ID for specific browser sessions during a chat. Qualified Privacy Policy

    icon-svg-hide-thick

    icon-svg-show-thick

    改善您的体验 – 使我们能够为您展示与您相关的内容

    Google Optimize
    我们通过 Google Optimize 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Google Optimize 隐私政策
    ClickTale
    我们通过 ClickTale 更好地了解您可能会在站点的哪些方面遇到困难。我们通过会话记录来帮助了解您与站点的交互方式,包括页面上的各种元素。将隐藏可能会识别个人身份的信息,而不会收集此信息。. ClickTale 隐私政策
    OneSignal
    我们通过 OneSignal 在 OneSignal 提供支持的站点上投放数字广告。根据 OneSignal 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 OneSignal 收集的与您相关的数据相整合。我们利用发送给 OneSignal 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. OneSignal 隐私政策
    Optimizely
    我们通过 Optimizely 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Optimizely 隐私政策
    Amplitude
    我们通过 Amplitude 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Amplitude 隐私政策
    Snowplow
    我们通过 Snowplow 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Snowplow 隐私政策
    UserVoice
    我们通过 UserVoice 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. UserVoice 隐私政策
    Clearbit
    Clearbit 允许实时数据扩充,为客户提供个性化且相关的体验。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。Clearbit 隐私政策
    YouTube
    YouTube 是一个视频共享平台,允许用户在我们的网站上查看和共享嵌入视频。YouTube 提供关于视频性能的观看指标。 YouTube 隐私政策

    icon-svg-hide-thick

    icon-svg-show-thick

    定制您的广告 – 允许我们为您提供针对性的广告

    Adobe Analytics
    我们通过 Adobe Analytics 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Adobe Analytics 隐私政策
    Google Analytics (Web Analytics)
    我们通过 Google Analytics (Web Analytics) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Web Analytics) 隐私政策
    AdWords
    我们通过 AdWords 在 AdWords 提供支持的站点上投放数字广告。根据 AdWords 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AdWords 收集的与您相关的数据相整合。我们利用发送给 AdWords 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AdWords 隐私政策
    Marketo
    我们通过 Marketo 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。我们可能会将此数据与从其他信息源收集的数据相整合,以根据高级分析处理方法向您提供改进的销售体验或客户服务体验以及更相关的内容。. Marketo 隐私政策
    Doubleclick
    我们通过 Doubleclick 在 Doubleclick 提供支持的站点上投放数字广告。根据 Doubleclick 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Doubleclick 收集的与您相关的数据相整合。我们利用发送给 Doubleclick 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Doubleclick 隐私政策
    HubSpot
    我们通过 HubSpot 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。. HubSpot 隐私政策
    Twitter
    我们通过 Twitter 在 Twitter 提供支持的站点上投放数字广告。根据 Twitter 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Twitter 收集的与您相关的数据相整合。我们利用发送给 Twitter 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Twitter 隐私政策
    Facebook
    我们通过 Facebook 在 Facebook 提供支持的站点上投放数字广告。根据 Facebook 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Facebook 收集的与您相关的数据相整合。我们利用发送给 Facebook 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Facebook 隐私政策
    LinkedIn
    我们通过 LinkedIn 在 LinkedIn 提供支持的站点上投放数字广告。根据 LinkedIn 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 LinkedIn 收集的与您相关的数据相整合。我们利用发送给 LinkedIn 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. LinkedIn 隐私政策
    Yahoo! Japan
    我们通过 Yahoo! Japan 在 Yahoo! Japan 提供支持的站点上投放数字广告。根据 Yahoo! Japan 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Yahoo! Japan 收集的与您相关的数据相整合。我们利用发送给 Yahoo! Japan 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Yahoo! Japan 隐私政策
    Naver
    我们通过 Naver 在 Naver 提供支持的站点上投放数字广告。根据 Naver 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Naver 收集的与您相关的数据相整合。我们利用发送给 Naver 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Naver 隐私政策
    Quantcast
    我们通过 Quantcast 在 Quantcast 提供支持的站点上投放数字广告。根据 Quantcast 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Quantcast 收集的与您相关的数据相整合。我们利用发送给 Quantcast 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Quantcast 隐私政策
    Call Tracking
    我们通过 Call Tracking 为推广活动提供专属的电话号码。从而,使您可以更快地联系我们的支持人员并帮助我们更精确地评估我们的表现。我们可能会通过提供的电话号码收集与您在站点中的活动相关的数据。. Call Tracking 隐私政策
    Wunderkind
    我们通过 Wunderkind 在 Wunderkind 提供支持的站点上投放数字广告。根据 Wunderkind 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Wunderkind 收集的与您相关的数据相整合。我们利用发送给 Wunderkind 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Wunderkind 隐私政策
    ADC Media
    我们通过 ADC Media 在 ADC Media 提供支持的站点上投放数字广告。根据 ADC Media 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 ADC Media 收集的与您相关的数据相整合。我们利用发送给 ADC Media 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. ADC Media 隐私政策
    AgrantSEM
    我们通过 AgrantSEM 在 AgrantSEM 提供支持的站点上投放数字广告。根据 AgrantSEM 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AgrantSEM 收集的与您相关的数据相整合。我们利用发送给 AgrantSEM 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AgrantSEM 隐私政策
    Bidtellect
    我们通过 Bidtellect 在 Bidtellect 提供支持的站点上投放数字广告。根据 Bidtellect 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bidtellect 收集的与您相关的数据相整合。我们利用发送给 Bidtellect 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bidtellect 隐私政策
    Bing
    我们通过 Bing 在 Bing 提供支持的站点上投放数字广告。根据 Bing 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bing 收集的与您相关的数据相整合。我们利用发送给 Bing 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bing 隐私政策
    G2Crowd
    我们通过 G2Crowd 在 G2Crowd 提供支持的站点上投放数字广告。根据 G2Crowd 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 G2Crowd 收集的与您相关的数据相整合。我们利用发送给 G2Crowd 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. G2Crowd 隐私政策
    NMPI Display
    我们通过 NMPI Display 在 NMPI Display 提供支持的站点上投放数字广告。根据 NMPI Display 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 NMPI Display 收集的与您相关的数据相整合。我们利用发送给 NMPI Display 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. NMPI Display 隐私政策
    VK
    我们通过 VK 在 VK 提供支持的站点上投放数字广告。根据 VK 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 VK 收集的与您相关的数据相整合。我们利用发送给 VK 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. VK 隐私政策
    Adobe Target
    我们通过 Adobe Target 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Adobe Target 隐私政策
    Google Analytics (Advertising)
    我们通过 Google Analytics (Advertising) 在 Google Analytics (Advertising) 提供支持的站点上投放数字广告。根据 Google Analytics (Advertising) 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Google Analytics (Advertising) 收集的与您相关的数据相整合。我们利用发送给 Google Analytics (Advertising) 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Google Analytics (Advertising) 隐私政策
    Trendkite
    我们通过 Trendkite 在 Trendkite 提供支持的站点上投放数字广告。根据 Trendkite 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Trendkite 收集的与您相关的数据相整合。我们利用发送给 Trendkite 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Trendkite 隐私政策
    Hotjar
    我们通过 Hotjar 在 Hotjar 提供支持的站点上投放数字广告。根据 Hotjar 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Hotjar 收集的与您相关的数据相整合。我们利用发送给 Hotjar 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Hotjar 隐私政策
    6 Sense
    我们通过 6 Sense 在 6 Sense 提供支持的站点上投放数字广告。根据 6 Sense 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 6 Sense 收集的与您相关的数据相整合。我们利用发送给 6 Sense 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. 6 Sense 隐私政策
    Terminus
    我们通过 Terminus 在 Terminus 提供支持的站点上投放数字广告。根据 Terminus 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Terminus 收集的与您相关的数据相整合。我们利用发送给 Terminus 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Terminus 隐私政策
    StackAdapt
    我们通过 StackAdapt 在 StackAdapt 提供支持的站点上投放数字广告。根据 StackAdapt 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 StackAdapt 收集的与您相关的数据相整合。我们利用发送给 StackAdapt 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. StackAdapt 隐私政策
    The Trade Desk
    我们通过 The Trade Desk 在 The Trade Desk 提供支持的站点上投放数字广告。根据 The Trade Desk 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 The Trade Desk 收集的与您相关的数据相整合。我们利用发送给 The Trade Desk 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. The Trade Desk 隐私政策
    RollWorks
    We use RollWorks to deploy digital advertising on sites supported by RollWorks. Ads are based on both RollWorks data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that RollWorks has collected from you. We use the data that we provide to RollWorks to better customize your digital advertising experience and present you with more relevant ads. RollWorks Privacy Policy

    是否确定要简化联机体验?

    我们希望您能够从我们这里获得良好体验。对于上一屏幕中的类别,如果选择“是”,我们将收集并使用您的数据以自定义您的体验并为您构建更好的应用程序。您可以访问我们的“隐私声明”,根据需要更改您的设置。

    个性化您的体验,选择由您来做。

    我们重视隐私权。我们收集的数据可以帮助我们了解您对我们产品的使用情况、您可能感兴趣的信息以及我们可以在哪些方面做出改善以使您与 Autodesk 的沟通更为顺畅。

    我们是否可以收集并使用您的数据,从而为您打造个性化的体验?

    通过管理您在此站点的隐私设置来了解个性化体验的好处,或访问我们的隐私声明详细了解您的可用选项。