AU Class
AU Class
class - AU

Using Fusion 360 to Design Patient-Specific Prosthetic and Orthotic Devices

共享此课程
在视频、演示文稿幻灯片和讲义中搜索关键字:

说明

Nonprofit Victoria Hand Project (VHP) has a mission to provide low-cost orthotic and prosthetic (O&P) devices to resource-poor areas of the world. VHP’s in-country clinical partners previously used premade models to make custom O&P devices for 3D printing, but were limited in sizing and customizability. Many health-care providers have no experience using CAD tools, so creating custom devices in Fusion 360 software can be difficult. VHP created software that uses the Fusion 360 API to develop custom prosthetic arm sockets and orthotic braces for scoliosis. Health-care providers enter a patient’s anatomical measurements into the software, which are then custom-sized in a parametric Fusion 360 model. The software gives clinicians the ability to create patient-specific devices that fit more comfortably and function better. This case study presents how VHP created a UI and Fusion 360 add-in to enable nontechnical users to design and print custom O&P devices.

主要学习内容

  • Learn about Fusion 360 software’s use by health-care professionals in an orthotic and prosthetic context
  • Learn how to model designs parametrically with a user interface for quick and easy customization
  • Learn how to implement the Fusion 360 API to make the design process easier for users who have little to no CAD experience
  • Learn how to create workflows to generate user-specific devices using Fusion 360

讲师

  • Michael Peirone 的头像
    Michael Peirone
    Victoria Hand Project (VHP) is a Canadian non-profit organization with a mission to provide low-cost, 3D printed prosthetic and orthotic devices to remote and under-served areas of the world. VHP partners with local healthcare provider and technology experts in developing countries to manufacture and fit these devices using advanced manufacturing tools, such as 3D printing and 3D scanning.
Video Player is loading.
Current Time 0:00
Duration 29:34
Loaded: 0.56%
Stream Type LIVE
Remaining Time 29:34
 
1x
  • Chapters
  • descriptions off, selected
  • en (Main), selected
Transcript

MICHAEL PEIRONE: Hi, everyone. Thank you very much for attending my talk for Autodesk University 2021, titled Using Fusion 360 to Design Patient-Specific Prosthetic and Orthotic devices. My name is Michael Peirone, and I am the chief operating officer of the Victoria Hand Project. Today, I'm going to tell you a little bit about how the Victoria Hand Project uses Fusion 360 and the Fusion 360 API to develop our own software solutions to make custom prosthetic and orthotic devices.

During today's class, I will first talk a little bit about Victoria Hand Project's work in the field of prosthetics and orthotics and how we design some of our 3D printed prosthetic hands. Also talk about some of the issues that we ran into when designing these prosthetic and orthotic devices for mass customization. And then, I want to cover the solutions that we developed to help streamline our workflows to make the process of making these custom prosthetic and orthotic devices much easier. And as part of this, I will also be covering how we use the Fusion 360 API.

So there's four main learning objectives that I want to cover during today's class. I want to talk about how Fusion 360 can be used by healthcare professionals in a orthotic and prosthetic context and how they can use workflows in Fusion 360 to generate user-specific devices. I also want to talk about how we model designs parametrically and how we use a user interface to allow these clinicians to do quick and easy customization of the prosthetic and orthotic devices. And then finally, I want to talk about the Fusion 360 API and how we use it to create these workflows.

So first, I want to start talking a little bit about Victoria Hand Project's work in the non-profit space to cover the need for prosthetic care and why we are developing these solutions. So the World Health Organization and the International Society for prosthetics and orthotics estimates that 80% of amputees live in developing countries, but only 5% have access to prosthetic care. This means that there are millions of people around the world in need of care.

The healthcare industry in many of these developing countries don't receive the necessary support from their governments, and that means that many people just end up going without care. This happens for a variety of reasons, such as the high cost of prosthetic and orthotic devices, a scarcity of trained professionals to work with the patients, and a lack of infrastructure to actually produce the devices. This means that many of these people just end up living life without a prosthetic device.

North America, we have a very positive attitude towards limb loss and disability, but this isn't always the case in many developing countries. There's often a stigma associated with limb loss. And for some amputees or disabled individuals, it might be very difficult to gain or keep employment. It's going to lead to low self-esteem and social exclusion from the community.

There's also many daily hardships associated with limb loss and disability, such as difficulty with taking transportation, dressing, cooking, feeding themselves, personal hygiene. These are things that many of us just take for granted. So the Victoria Hand Project has a mission to provide low cost prosthetic care to amputees in developing countries and low income communities. We're also working on developing low-cost 3D printed back braces for individuals suffering from scoliosis.

We're currently operating in 10 countries around the world, as shown on the right. And in each of these countries, we partner with local healthcare professionals and technology experts. And we train them in how to use leading edge tools, such as 3D printing and 3D scanning, to actually produce these devices. This helps empower the partners that we work with and fosters a sense of pride within the community. It also lays the groundwork for sustainable ongoing care.

So this is Bin Amin. Unfortunately, he lost both of his hands and both of his feet in an accident when he was very young. We actually provided him with his own hand in February 2020, when we expanded to a new site in Kenya. This is actually the first time he'd ever written in his life. I was there when he was fit and I just remember how happy he was to receive the hand. He just wanted to play, show off to his mom. Just do things that every kid wants to do.

This is Ijabu. She lost her hand due to an infection, and she had to grow up learning how to go to school, go through her daily life with only one hand. And this is Jacob. He wanted to use the Victoria Hand for writing and at work.

So the Victoria Hand Project's primary focus is on the design and the development of the Victoria Hand. This is a 3D printed prosthetic hand that's specifically made for low-income communities. Has a number of unique features, I showed on the right hand side, which help people while they're at work, at school, or at home.

The whole system, including the hand, the wrist, the socket, and the harness is only 100 US dollars. This greatly reduces the cost of prosthetic care in developing countries. I should note that we also do not charge the patients for the device, due to the great need.

An integral part of the Victoria Hand system is the custom-made prosthetic arm socket. We wanted to develop a arm socket which is comfortable, but it also looks natural on the user. We want it to look-- or to be comfortable because if it's uncomfortable, the patient won't want to wear the device no matter how nice it is. We also want the socket to look very natural so the patient feels more comfortable when they're using the hand in public. And it helps empower them to become more independent in their daily lives.

The workflow for creating the Victoria Hand socket is simple, yet effective. First, the patient's limb is 3D scanned to generate a 3D mesh on the computer. Next, a premade mesh-- a premade socket is selected from based on the patient's anatomical dimensions. The 3D scan is aligned within the socket, and then it's cut away. This leaves a socket with the exact shape of the patient's limb.

Finally, the socket is 3D printed. This whole process could be done in one day by our partners, and it greatly reduces the time required for people to receive their prosthetic device.

So here's a quick video showing how we create these custom arm sockets in a program called Meshmixer. So first, the 3D scan of the patient's limb is loaded in, and then a socket is loaded in, which is selected from based on the user's measurements. The 3D scan will be aligned within the forearm socket. And if the socket is a little too small, it can be removed and a larger socket can be brought in.

It's very easy for the clinicians that we work with to use this program to navigate through 3D space and to align the 3D scan in the socket. They will align the 3D scan in the socket based on their clinical expertise and also the needs of the patient. The clinicians are also able to use a transparent view to see how the 3D scan fits into the socket. They want to make sure that the 3D scan doesn't interfere with any of the features within the socket.

And if they determine that the fit is good, they can perform something called a Boolean Difference, which will cut the shape of the person's limb, the 3D scan, out of the socket, leaving a cavity the exact shape of the user's limb. Finally, before they export the socket, they want to just use the smoothing brush so they can clean up some of the edges, make sure it's not sharp, and it's very comfortable on the user.

I just want to point out some of the features of the socket. There's some slots which are used for attaching the socket to the harness. And on the right hand here, right hand side, you could see the cable guide, which helps guide the cable from the prosthetic hand to the harness so the patient can use it.

So as we've seen in the video, there is a number of pre-made sockets, which are selected from based on the patient's anatomical dimensions. In the early days of the Victoria Hand Project, we designed the socket in a CAD program and we had to manually create each side of each size of socket ourselves. This meant that the patient's dimensions had to be entered into the equation manager, and then the socket is exported.

There's three primary measurements which are used in the socket. There is the wrist circumference, the forearm circumference, and the overall length of the socket. Using these three dimensions and expanding to accommodate various patient sizes, we created a library of thousands of different types of sockets.

The problem was that each of these sockets had to manually be created. This meant that one of our students would need to enter the dimensions into the equation manager, export the socket as an STL, and then they would enter the dimensions for the next socket, export it. This was a very time intensive and labor intensive process. We also avoided doing any updates to the design of the socket, because that would mean that we would need to create each socket again.

To overcome these bottlenecks, we redesigned the socket in Fusion 360. We found that using Fusion 360 gave us a lot more control over the design and allowed for a much more natural looking shape of socket. Using Fusion, we were also able to run a script which would automatically create each size of socket and export them.

This meant that we didn't need to manually enter the dimensions for each socket. It greatly reduced the time to create these batches of sockets. And we also didn't need to worry about updating the design of the socket, because we could just run the script again, export all the sockets, and it would be much easier.

So this process in Fusion 360, it worked well, but it also had its own limitations. We couldn't easily cover the entire range of socket sizes for all the patients. We were often asked by our partners if we could create a custom socket for a patient based on their dimensions, because they fell outside of the ranges of the sockets that we had made. For example, Angel in Nepal is very small, but Samer in Egypt is quite large.

So we could expand the range to fit people like Angel and Samer, but we found there's still people that fell outside this range. There are very tall people with very small, thin arms, and very short people with very wide arms.

We already had thousands of socket sizes and gigabytes of STL files, so when somebody had to find the size of socket that they wanted, they would have to go to online folders that are sorted by size, go through them, find the socket that they wanted, download it, try it out. If it didn't fit, they would have to find another size.

So this was a very time consuming process, and they were also finding the closest-fit socket, rather than something that is the exact size that the patient needs. So what we wanted to do was, we wanted to create a program which would allow the clinicians to create sockets to the exact size that they wanted.

At the same time, we also started working on a research project to make 3D printed back braces for people suffering from scoliosis. So the base shape of the brace is made by entering the patient's anatomical dimensions, and then there's also other adjustments that can be made to the brace.

So due to the variety of the sizes of different patients and all of the adjustments that can be made, it's supposed to be a very difficult problem. For the socket, there's three primary dimensions which are used to make the brace. But for the brace, there's more than 20 primary measurements. And then there's additional adjustments.

There's no feasible way that we could have premade off-the-shelf solutions like we did with the sockets. The library of different sizes of braces would just be way too large, and it would be way too difficult for the clinicians that we work with to find anything.

So we wanted to do was, we wanted to create a program which would allow the clinicians to design custom-made braces. So we wanted these software to be made using the patient's anatomical dimensions. We didn't want to have to rely on 3D scanning to do this though, because 3D scanners are very expensive and we don't have access to them in all the places that we work in.

We also wanted the Fusion program to allow for quick and easy adjustments to the model. It might not be that hard for an experienced CAD user to jump into Fusion, make different changes to the brace, but the people that we work with, the clinicians, they're not CAD users. And we didn't want to have to rely on them to learn CAD to carry through with this project.

It's also not a scalable solution for our engineering design team to be making one-off designs for our partners. We wanted these braces to be made with minimal input from the clinicians that we're working with. For many people in North America and many of the clinicians in North America, they have helpers in the workshop who can do most of the tedious labor.

But the clinicians that we work in developing countries don't always have somebody who can do this tedious labor. What we want to do is, we wanted to create tools which would allow the clinicians to speed up the process. And the tools would do the hard tedious work, allowing the clinicians to help more people.

Fortunately, we were able to get some help on this project from the Fusion team, thanks to the Autodesk Technology Impact Program. Three Autodesk employees, Brandon Cramer, Kevin Acker, and Melissa Kaner consulted us on the different tools that we could use and the design workflow that we could use to create these socket and back brace projects.

They also showed us how we could implement the Fusion API into our workflow, so we could create our own software and programs to create these devices. Their insight allowed us to greatly speed up our timeline, and it allowed us to reach our milestones much more quickly.

So for just a little bit of background on the Fusion API, it's an application programming interface, which means it's an intermediary between two programs. In this case, it works between a script that someone develops, and Fusion itself. The really great thing about the API is we'll automate features within Fusion, such as selecting a sketch to extrude by a certain amount.

It's also a very valuable tool for doing repetitive actions and tedious steps within the workflow. You can start API program and run through repetitive workflows much more quickly with minimal input from the user. It's also really great for non-technical users, because you're able to develop a user interface and a program, which will allow the user to create designs without actually needing to enter the Fusion design space.

So for technical users, people that have experience with CAD, it might not be that difficult to do many of these updates. But then, as I mentioned, the people that we work with are non-technical users. It's also really great because you can create parametric designs. So they have parameters that can be scaled depending on the user's input combined with the user interface, and makes it very quick and easy to adjust the size of the design.

In the next few steps, I'm going to show you some of the APIs that we developed for our socket and back brace programs. There's also a lot of great resources online on the Fusion site, such as code examples, syntax, and user manuals that you can check out to start to create your own.

So this is an image of the Socket Designer program that we created. We have it working with Fusion 360 and our own sort of software to create the sockets. It's an add-in, and we have a user interface that comes up over top, and it makes it very easy for the clinicians that we work with to create the sockets. So now, I'm going to show you a quick video of how a clinician would create the Socket

So within Fusion, along the top bar, there is the tools tab. And then under there, there's add-ins, where a user can select scripts and add-ins they have added, or go to the Fusion 360 app store to buy or download their own. So under the scripts and add-ins tabs, there's a number of pre-loaded scripts. Or you can go down to create to begin to create your own program. Here, I'm running the socket add in that we created. Now it's running in the background.

And then I'm able to start the program that we developed, and it comes up over top of Fusion. Here, the clinicians are able to select if they want to make a new socket or update an existing socket for a patient. And then they are able to select the type of hand model that they want and whether it's a left or right hand. And then this model will open up in Fusion 360 in the background.

So here, the clinician will enter the patient's dimensions into the fields. This will create the socket size, and these dimensions are taken from the patient when they first visit the clinic. If the dimensions that the clinician enters are outside of the recommended range, they will get a warning. But the clinician can also override this warning.

Here, the clinician is able to select if they want to add more space around the elbow, which is sometimes required for some patients. And then finally, they're able to review the dimensions and build the updated socket.

So this is the socket that we developed in Fusion 360. As I mentioned, it's a parametric model, so we'll scale based on the user's inputs. If the clinician is happy with the socket, they can build it, or they can go back to change some of the dimensions. So when they go to Export the socket, it will be saved as an STL onto their local device.

So we also developed a similar program for creating the orthotic back braces. Since this is a ongoing research project, I'm not able to show you a video of how it actually works, but it's very similar to the socket software. Here on this page shown on the right, the clinician will enter the patient's dimensions, and the base shape of the brace will be built. There's also additional pages where other measurements can be added, or adjustments can be done, such as twists, shifts, or bends.

So the really great thing about using the API is, we'll automate adding in features at the end of the workflow. For example, we add in holes into the brace, because users in the past using conventional braces have complained that they get very hot. So what we wanted to do was add a whole pattern throughout to help keep the brace cooler and allow it to be more comfortable.

So what a clinician will do is, they will select the density of holes that they want to add from a dropdown menu. And then there's pre-made sketches within the brace model. These sketches are then updated based on the clinician's input, and then the sketches are used to perform a cut-extrude through the brace. And this will cut all the holes throughout the entire brace.

This greatly reduces the time for actually adding in the holes. We previously had these holes built into the brace already, but each time that the clinician wanted to update the design or move to the next page, the entire brace would have to be rebuilt again. This was a very slow process. It could sometimes be 10 minutes between each page, and this is not something that a clinician wants to have to sit through.

The really great thing is, now with the API, the clinician can enter all the dimensions, do the adjustments that they want, enter the density of holes that they want to add, and then they can just press export and walk away. And the Fusion API will do all of the hard work behind the scenes.

So we've shared this program with some of our research collaborators so far, and they're very happy with it. They like how easy it is to create the braces, how nice Fusion 360 is for creating the shape of the brace that they want, and yeah. We look forward to continuing our work on this research project.

There's also other programs that we want to begin to develop using the Fusion API. So we want to be able to do the entire end-to-end workflow of creating the socket in Fusion 360, similar to what I showed in the video in Meshmixer earlier.

This means that they would be able to add the 3D scan in, align the 3D scan into the socket, which is built based on the patient's dimensions, and then perform the Boolean Difference to cut the 3D scan out of the socket, do some final touch ups, and export it. This would make it much easier for the clinician, because they wouldn't need to go through all the little steps in Meshmixer.

We also want to be able to create a transhumeral socket workflow. So a transhumanal socket, as shown on the right, is for people who are missing their arm above their elbow. And we are currently trying to do this in Meshmixer, but it's posing to be a very difficult program.

This is because the socket must be made using a scan of the patient's upper arm and their shoulder, and then using that scan to offset it and create a shell, which will go over top of the shoulder. And then it will help suspend the socket on the patient.

So this has posed to be a difficult problem, because it requires a lot of user input, and there's a lot of steps required. We want to be able to do this workflow in Fusion 360, even though there will still be some user input required from the clinicians. It will still help automate some of the steps in between, which will make it much nicer and easier for them.

Finally, we want to be able to begin implementing T-spline functionality into the brace program. So T-splines are an advanced surfacing tool which allow for very complex and organic shapes. The way that this is done is, a user will select the faces or the nodes on a quad mesh, and then they can push and pull these areas. And it allows for shapes that can't really be created easily by using surfacing or other sorts of tools in Fusion.

This will be very nice for the clinicians, because they would be able to go through the entire workflow and easily add adjustments that they can't normally do. So unfortunately, right now, the T-splines are not added into the API yet, but we hope that they will be in the near future.

So to summarize, the Victoria Hand Project designs and deploys low-cost prosthetic and orthotic devices. We previously made the sockets and back braces for mass customization using other CAD programs, but it posed to be very difficult, and we transferred the design over to Fusion 360. This worked well, but it still didn't allow for full customization, and it required a lot of user input in the CAD programs.

We also made libraries of different sizes of STLs of sockets, but it wasn't always able to fit the patient correctly or optimally. And then this also isn't a proper solution for creating something as complex as the back brace.

So what we did was, we used the Fusion 360 API to create our own user interface and design software, which would allow clinicians to go through the steps of creating the sockets and the back braces themselves without needing to actually jump into the programs. We're also able to automate some of the features of the workflow, which makes it much easier for the clinicians and helps reduce the time required from them.

I would also like to highlight the work of some of the other team members that worked on this. So Dr. Nick Dechev first started Victoria Hand project as a research project out of his lab, and now it's grown into the company. It's working in 10 countries around the world. Dr. Dechev provided his extensive Python knowledge to help get the team started on this project.

And then Kelly Knights, she is a biomedical systems designer with us, and she taught herself Python so she could help create some of the user interfaces and some of the background backend functionality in the socket program. And then Derek Bell is one of the-- he was the primary software developer on this project. He did most of the work in the API and developing a lot of backend functionality of the brace program and the socket programs.

So thank you very much for listening to my presentation. If you'd like to learn more about the Victoria Hand Project's work, you can visit our website, or some of our social media pages, as shown here. If you have any specific questions about some of the workflows or anything that we did, you can also reach out to us through the contact page on our website.

So thank you very much. And I will also be taking the Q&A after the live-- or after the Autodesk University session. Thank you.

______
icon-svg-close-thick

Cookie 首选项

您的隐私对我们非常重要,为您提供出色的体验是我们的责任。为了帮助自定义信息和构建应用程序,我们会收集有关您如何使用此站点的数据。

我们是否可以收集并使用您的数据?

详细了解我们使用的第三方服务以及我们的隐私声明

绝对必要 – 我们的网站正常运行并为您提供服务所必需的

通过这些 Cookie,我们可以记录您的偏好或登录信息,响应您的请求或完成购物车中物品或服务的订购。

改善您的体验 – 使我们能够为您展示与您相关的内容

通过这些 Cookie,我们可以提供增强的功能和个性化服务。可能由我们或第三方提供商进行设置,我们会利用其服务为您提供定制的信息和体验。如果您不允许使用这些 Cookie,可能会无法使用某些或全部服务。

定制您的广告 – 允许我们为您提供针对性的广告

这些 Cookie 会根据您的活动和兴趣收集有关您的数据,以便向您显示相关广告并跟踪其效果。通过收集这些数据,我们可以更有针对性地向您显示与您的兴趣相关的广告。如果您不允许使用这些 Cookie,您看到的广告将缺乏针对性。

icon-svg-close-thick

第三方服务

详细了解每个类别中我们所用的第三方服务,以及我们如何使用所收集的与您的网络活动相关的数据。

icon-svg-hide-thick

icon-svg-show-thick

绝对必要 – 我们的网站正常运行并为您提供服务所必需的

Qualtrics
我们通过 Qualtrics 借助调查或联机表单获得您的反馈。您可能会被随机选定参与某项调查,或者您可以主动向我们提供反馈。填写调查之前,我们将收集数据以更好地了解您所执行的操作。这有助于我们解决您可能遇到的问题。. Qualtrics 隐私政策
Akamai mPulse
我们通过 Akamai mPulse 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Akamai mPulse 隐私政策
Digital River
我们通过 Digital River 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Digital River 隐私政策
Dynatrace
我们通过 Dynatrace 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Dynatrace 隐私政策
Khoros
我们通过 Khoros 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Khoros 隐私政策
Launch Darkly
我们通过 Launch Darkly 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Launch Darkly 隐私政策
New Relic
我们通过 New Relic 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. New Relic 隐私政策
Salesforce Live Agent
我们通过 Salesforce Live Agent 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Salesforce Live Agent 隐私政策
Wistia
我们通过 Wistia 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Wistia 隐私政策
Tealium
我们通过 Tealium 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Tealium 隐私政策
Upsellit
我们通过 Upsellit 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Upsellit 隐私政策
CJ Affiliates
我们通过 CJ Affiliates 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. CJ Affiliates 隐私政策
Commission Factory
我们通过 Commission Factory 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Commission Factory 隐私政策
Google Analytics (Strictly Necessary)
我们通过 Google Analytics (Strictly Necessary) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Strictly Necessary) 隐私政策
Typepad Stats
我们通过 Typepad Stats 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Typepad Stats 隐私政策
Geo Targetly
我们使用 Geo Targetly 将网站访问者引导至最合适的网页并/或根据他们的位置提供量身定制的内容。 Geo Targetly 使用网站访问者的 IP 地址确定访问者设备的大致位置。 这有助于确保访问者以其(最有可能的)本地语言浏览内容。Geo Targetly 隐私政策
SpeedCurve
我们使用 SpeedCurve 来监控和衡量您的网站体验的性能,具体因素为网页加载时间以及后续元素(如图像、脚本和文本)的响应能力。SpeedCurve 隐私政策
Qualified
Qualified is the Autodesk Live Chat agent platform. This platform provides services to allow our customers to communicate in real-time with Autodesk support. We may collect unique ID for specific browser sessions during a chat. Qualified Privacy Policy

icon-svg-hide-thick

icon-svg-show-thick

改善您的体验 – 使我们能够为您展示与您相关的内容

Google Optimize
我们通过 Google Optimize 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Google Optimize 隐私政策
ClickTale
我们通过 ClickTale 更好地了解您可能会在站点的哪些方面遇到困难。我们通过会话记录来帮助了解您与站点的交互方式,包括页面上的各种元素。将隐藏可能会识别个人身份的信息,而不会收集此信息。. ClickTale 隐私政策
OneSignal
我们通过 OneSignal 在 OneSignal 提供支持的站点上投放数字广告。根据 OneSignal 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 OneSignal 收集的与您相关的数据相整合。我们利用发送给 OneSignal 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. OneSignal 隐私政策
Optimizely
我们通过 Optimizely 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Optimizely 隐私政策
Amplitude
我们通过 Amplitude 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Amplitude 隐私政策
Snowplow
我们通过 Snowplow 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Snowplow 隐私政策
UserVoice
我们通过 UserVoice 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. UserVoice 隐私政策
Clearbit
Clearbit 允许实时数据扩充,为客户提供个性化且相关的体验。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。Clearbit 隐私政策
YouTube
YouTube 是一个视频共享平台,允许用户在我们的网站上查看和共享嵌入视频。YouTube 提供关于视频性能的观看指标。 YouTube 隐私政策

icon-svg-hide-thick

icon-svg-show-thick

定制您的广告 – 允许我们为您提供针对性的广告

Adobe Analytics
我们通过 Adobe Analytics 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Adobe Analytics 隐私政策
Google Analytics (Web Analytics)
我们通过 Google Analytics (Web Analytics) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Web Analytics) 隐私政策
AdWords
我们通过 AdWords 在 AdWords 提供支持的站点上投放数字广告。根据 AdWords 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AdWords 收集的与您相关的数据相整合。我们利用发送给 AdWords 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AdWords 隐私政策
Marketo
我们通过 Marketo 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。我们可能会将此数据与从其他信息源收集的数据相整合,以根据高级分析处理方法向您提供改进的销售体验或客户服务体验以及更相关的内容。. Marketo 隐私政策
Doubleclick
我们通过 Doubleclick 在 Doubleclick 提供支持的站点上投放数字广告。根据 Doubleclick 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Doubleclick 收集的与您相关的数据相整合。我们利用发送给 Doubleclick 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Doubleclick 隐私政策
HubSpot
我们通过 HubSpot 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。. HubSpot 隐私政策
Twitter
我们通过 Twitter 在 Twitter 提供支持的站点上投放数字广告。根据 Twitter 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Twitter 收集的与您相关的数据相整合。我们利用发送给 Twitter 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Twitter 隐私政策
Facebook
我们通过 Facebook 在 Facebook 提供支持的站点上投放数字广告。根据 Facebook 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Facebook 收集的与您相关的数据相整合。我们利用发送给 Facebook 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Facebook 隐私政策
LinkedIn
我们通过 LinkedIn 在 LinkedIn 提供支持的站点上投放数字广告。根据 LinkedIn 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 LinkedIn 收集的与您相关的数据相整合。我们利用发送给 LinkedIn 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. LinkedIn 隐私政策
Yahoo! Japan
我们通过 Yahoo! Japan 在 Yahoo! Japan 提供支持的站点上投放数字广告。根据 Yahoo! Japan 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Yahoo! Japan 收集的与您相关的数据相整合。我们利用发送给 Yahoo! Japan 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Yahoo! Japan 隐私政策
Naver
我们通过 Naver 在 Naver 提供支持的站点上投放数字广告。根据 Naver 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Naver 收集的与您相关的数据相整合。我们利用发送给 Naver 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Naver 隐私政策
Quantcast
我们通过 Quantcast 在 Quantcast 提供支持的站点上投放数字广告。根据 Quantcast 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Quantcast 收集的与您相关的数据相整合。我们利用发送给 Quantcast 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Quantcast 隐私政策
Call Tracking
我们通过 Call Tracking 为推广活动提供专属的电话号码。从而,使您可以更快地联系我们的支持人员并帮助我们更精确地评估我们的表现。我们可能会通过提供的电话号码收集与您在站点中的活动相关的数据。. Call Tracking 隐私政策
Wunderkind
我们通过 Wunderkind 在 Wunderkind 提供支持的站点上投放数字广告。根据 Wunderkind 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Wunderkind 收集的与您相关的数据相整合。我们利用发送给 Wunderkind 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Wunderkind 隐私政策
ADC Media
我们通过 ADC Media 在 ADC Media 提供支持的站点上投放数字广告。根据 ADC Media 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 ADC Media 收集的与您相关的数据相整合。我们利用发送给 ADC Media 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. ADC Media 隐私政策
AgrantSEM
我们通过 AgrantSEM 在 AgrantSEM 提供支持的站点上投放数字广告。根据 AgrantSEM 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AgrantSEM 收集的与您相关的数据相整合。我们利用发送给 AgrantSEM 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AgrantSEM 隐私政策
Bidtellect
我们通过 Bidtellect 在 Bidtellect 提供支持的站点上投放数字广告。根据 Bidtellect 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bidtellect 收集的与您相关的数据相整合。我们利用发送给 Bidtellect 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bidtellect 隐私政策
Bing
我们通过 Bing 在 Bing 提供支持的站点上投放数字广告。根据 Bing 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bing 收集的与您相关的数据相整合。我们利用发送给 Bing 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bing 隐私政策
G2Crowd
我们通过 G2Crowd 在 G2Crowd 提供支持的站点上投放数字广告。根据 G2Crowd 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 G2Crowd 收集的与您相关的数据相整合。我们利用发送给 G2Crowd 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. G2Crowd 隐私政策
NMPI Display
我们通过 NMPI Display 在 NMPI Display 提供支持的站点上投放数字广告。根据 NMPI Display 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 NMPI Display 收集的与您相关的数据相整合。我们利用发送给 NMPI Display 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. NMPI Display 隐私政策
VK
我们通过 VK 在 VK 提供支持的站点上投放数字广告。根据 VK 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 VK 收集的与您相关的数据相整合。我们利用发送给 VK 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. VK 隐私政策
Adobe Target
我们通过 Adobe Target 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Adobe Target 隐私政策
Google Analytics (Advertising)
我们通过 Google Analytics (Advertising) 在 Google Analytics (Advertising) 提供支持的站点上投放数字广告。根据 Google Analytics (Advertising) 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Google Analytics (Advertising) 收集的与您相关的数据相整合。我们利用发送给 Google Analytics (Advertising) 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Google Analytics (Advertising) 隐私政策
Trendkite
我们通过 Trendkite 在 Trendkite 提供支持的站点上投放数字广告。根据 Trendkite 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Trendkite 收集的与您相关的数据相整合。我们利用发送给 Trendkite 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Trendkite 隐私政策
Hotjar
我们通过 Hotjar 在 Hotjar 提供支持的站点上投放数字广告。根据 Hotjar 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Hotjar 收集的与您相关的数据相整合。我们利用发送给 Hotjar 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Hotjar 隐私政策
6 Sense
我们通过 6 Sense 在 6 Sense 提供支持的站点上投放数字广告。根据 6 Sense 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 6 Sense 收集的与您相关的数据相整合。我们利用发送给 6 Sense 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. 6 Sense 隐私政策
Terminus
我们通过 Terminus 在 Terminus 提供支持的站点上投放数字广告。根据 Terminus 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Terminus 收集的与您相关的数据相整合。我们利用发送给 Terminus 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Terminus 隐私政策
StackAdapt
我们通过 StackAdapt 在 StackAdapt 提供支持的站点上投放数字广告。根据 StackAdapt 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 StackAdapt 收集的与您相关的数据相整合。我们利用发送给 StackAdapt 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. StackAdapt 隐私政策
The Trade Desk
我们通过 The Trade Desk 在 The Trade Desk 提供支持的站点上投放数字广告。根据 The Trade Desk 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 The Trade Desk 收集的与您相关的数据相整合。我们利用发送给 The Trade Desk 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. The Trade Desk 隐私政策
RollWorks
We use RollWorks to deploy digital advertising on sites supported by RollWorks. Ads are based on both RollWorks data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that RollWorks has collected from you. We use the data that we provide to RollWorks to better customize your digital advertising experience and present you with more relevant ads. RollWorks Privacy Policy

是否确定要简化联机体验?

我们希望您能够从我们这里获得良好体验。对于上一屏幕中的类别,如果选择“是”,我们将收集并使用您的数据以自定义您的体验并为您构建更好的应用程序。您可以访问我们的“隐私声明”,根据需要更改您的设置。

个性化您的体验,选择由您来做。

我们重视隐私权。我们收集的数据可以帮助我们了解您对我们产品的使用情况、您可能感兴趣的信息以及我们可以在哪些方面做出改善以使您与 Autodesk 的沟通更为顺畅。

我们是否可以收集并使用您的数据,从而为您打造个性化的体验?

通过管理您在此站点的隐私设置来了解个性化体验的好处,或访问我们的隐私声明详细了解您的可用选项。