Article
Article
Article

Which Project Delivery Method Is Best for Your Project and Why

Share this Article

One of the first questions owners face at project onset is which project delivery method to use. Design-Bid-Build (DBB) is slowly becoming extinct, especially for large, complicated projects with challenging schedules. Construction Manager at Risk (CMAR) is a more attractive method, even though it doesn’t quite describe how we work. Design-Build (DB) is on the rise, but many owners still feel like they are paying a premium by preselecting the team. Lastly, Integrated Project Delivery (IPD) still leaves a lot to be desired, as most of the owners are still not willing to share the risk but expect the benefits. 

This article provides an overview of these methods, including contractual obligations and instruments of service and liability; collaboration and use of technology; roles and responsibilities; and budget and scheduling considerations. It provides a foundation for the roundtable discussion that considers the future of project delivery in AEC. 

Part 1: Overview of Project Delivery Methods

There are a lot of options for owners to choose from when it comes to project delivery and procurement methods. Ultimately, they determine how and when they spend their money. Every procurement method has pros and cons, and may be considered a viable option that suits the needs of any given project.

Want to share your knowledge?
Write an article for AU

A lot has been written about each and every one of the procurement methods. From official AIA contract documents and general conditions to various industry expert blogs, you will likely find similar appreciation for and criticism of each of the methods. What follows is not meant to be an exhaustive summary of each of the delivery methods, but a conversation starter focusing on some of the key highlights of each.

Design-Bid-Build 

Design-Bid-Build is perhaps one of the most traditional project delivery methods, used before the age of BIM and the tools and technologies commonly found on job sites today. It is potentially the simplest procurement method as it is very linear. Design is a distinctive phase and is completed to 100% before the projects are bid and awarded, followed by the construction phase.

DBB Contractual Agreements

  • Owner contracts with architect; architect contracts with consultants/engineers

  • Owner contracts with general contractor (GC) after 100% design is complete; GC collects bids from, and contracts with, subcontractors

DBB Benefits

  • Very simple for owners that do not have design/construction experience

  • Competitive cost nature: contractors are bidding against each other to win the project

  • Procurement method of choice for federal projects where three bids are a requirement

DBB Drawbacks

  • Slow project delivery: design needs to be 100% done before construction can begin

  • Lack of constructibility: project is strictly design intent until bid since the design is completed in a silo from construction

  • Lack of cost certainty during design and risk of project being over budget

  • Lack of design optimization with construction insights

  • Finger-pointing between designers and contractors during any conflicts

  • Guarded approach to conflicts and project changes: designers and contractors are on the opposite teams often working against each other, not together

  • Low cost transparency since most projects are lump-sum

  • High cost of non-optimal activities (RFIs, ASIs, rework, conflict resolution, change orders, etc.)

Construction Manager at Risk 

Construction Manager at Risk (CMAR) is a very popular type of a construction management project delivery method in which the construction manager is hired by the owner early during the design phase of the project and integrated as part of the project delivery team. The construction manager (CM) provides constructibility and cost insights as part of their preconstruction services. They typically on-board major trade subcontractors (mechanical, electrical, plumbing, structural) during the design process and involve them into varied forms of a “design assist” process with the design architects and engineers. The construction team is able to establish a Guaranteed Maximum Price (GMP) during the design phase, and start the construction process before the design is 100% complete.

CMAR Contractual Agreements

  • Owner contracts with architect; architect contracts with consultants

  • Owner contracts with CM during early design phase; CM selects major trade subcontractors, develops the GMP and starts construction prior to 100% design completion

CMAR Benefits

  • CM is at risk, so they have incentives to act at the owner’s interest and efficiently manage the cost and schedule

  • Construction can progress more rapidly and in parallel to the design process, resulting in faster speed to market and lower general conditions cost

  • Increased collaboration between the design and construction teams through design assist

CMAR Drawbacks

  • Since the GMP is established early in the process, there is no competitiveness in the process and the owner is not sure if they are getting the best price

  • If the project is at risk of going over budget, the CM will typically respond by trying to reduce scope and/or lower quality

  • There is a lot of overlap in responsibilities (and duplicated work) between designers and trade subcontractors, that the owner pays for

  • Potential for conflicts between design intent and constructibility since they are often occurring parallel to each other

Design-Build 

Contrary to the common belief that Design-Build (DB) is a fairly recent project delivery method due to the rapid increase in popularity over the past 15 years, Design-Build is a very old procurement method reaching back to one of the oldest forms of construction, the concept of master builder. There are many different forms of Design-Build approach, typically sorted into contractor-led or architect-led. Within those two distinct forms, the architect can either work for the contractor, be in a joint venture with the contractor, or be a full-service contractor providing design services as well as construction services.

DB Contractual Agreements

  • Owner enters into a single set of integrated contracts with the design-builder

DB Benefits

  • Single point of responsibility for both design and construction

  • Faster and more integrated design and construction

  • Reduced amount of coordination issues

  • Collaborative approach to project delivery and conflict resolution

  • Increased ability to control the budget

DB Drawbacks

  • Limits the Owner’s involvement in design – sacrifices in design quality/creativity

  • Contractors making design decisions that should be made by designers

  • Lack of competitive nature – owners not sure if they are getting the best price

  • Lack of checks and balances – potential for quality to suffer

  • Depends heavily on trust in the Design-Build contractor

Integrated Project Delivery 

Perhaps one of the most recent project delivery methods, Integrated Project Delivery (IPD) evolved over the last 20 years along with implementation of technology into the world of design and construction, as well as the constant strive to improve efficiency through lean construction. The objective of IPD is to involve all key participants in a collaborative environment, and leverage technology and innovation to increase productivity, reduce waste, avoid overruns, improve quality, and reduce conflicts between owners, architects, engineers, and contractors.

IPD Contractual Agreements

  • Typically, all major parties including owner, architect, engineers, contractor, and major trade subcontractors all enter into an agreement together with the intent on sharing risk and rewards

IPD Benefits

  • Tailored to take full advantage of BIM and VDC technology

  • When executed successfully, tremendous savings of cost and time

  • Improved construction quality

  • Significantly reduced amount of rework and conflicts

  • Collaborative resolution of conflicts since all parties suffer when there are outstanding conflicts

  • Project success depends on success of each and every party in the delivery team

IPD Drawbacks

  • Success heavily relies on trust, which is typically not the starting point

  • Team members are selected on qualifications, not cost

  • Lack of consistency in IPD contracts – almost every IPD contract is fairly unique

  • Owners are hesitant to participate in sharing the risk with the designer and contractors

  • Increased amount of coordination requires more labor than traditional delivery

  • Not as well suited for simple projects as for repetitive, large, complex projects

Part 2: Contractual Obligations, Instruments of Service and Liability

Even though there are a lot of similarities between contract documents and contractual obligations between owners, architects, engineers, contractors and subcontractors, there are also a lot of differences that stem from the very nature of each type of project delivery.

Design-Bid Build 

DBB is a very traditional delivery method with very clear and distinct obligations set forth by the AIA document A201, general conditions of the contract for construction. Architects and engineers are responsible for delivering construction documents (2D drawings) and specifications as basis for bidding the construction of the project. Means and methods strictly lie in the contractor’s scope of work, and so does the production of shop drawings and submittals. Architects and engineers of record are liable for the design of the project, and the contractors are liable for the construction of the projects. When conflicts arise, there is always finger-pointing on whether the conflict resulted from errors and omissions of the design team, or construction coordination by the construction team.

CMAR

Similarly to DBB, CMAR is fairly similar to DBB in terms of contractual obligations and liability. In some instances where the design assist (DA) process is more evolved, the DA subcontractor may actually finish the design and become the engineer of record (EOR) and assume liability for both the design and construction of the engineering systems. Due to the varying nature of CMAR contracts, the general conditions of the contract are often modified to reflect the nature of the specific project delivery approach. The instruments of Service are often the same as DBB, 2D construction documents and specifications, even though some project teams opt into sharing 3D design intent BIM models with heavy “not for construction” disclaimers to protect the liability of the design team.

Design-Build 

Since the design and construction teams are jointly liable for all aspects of the project, they work a lot more collaboratively together. The same entity provides both the design and construction of the project, allowing them to blur the lines between design and construction and achieve many efficiencies that way. They typically work collaboratively in 3D BIM models and produce 2D documentation only for the purpose of obtaining building permits and other necessary reviews by Authorities Having Jurisdiction (AHJs).

Integrated Project Delivery 

Similar to DB, the project team works collaboratively together and is jointly liable for all aspects of the project. Unlike DB, the project team includes the owner who shares in the risk and liability for the project as an equal part of the project delivery team. IPD lends itself to 3D BIM modeling and deep integration of technologies in project delivery. Instruments of service vary, but typically include various forms of 3D BIM models co-authored by the entire project team.

Part 3: Collaboration and Use of Technology

Each of the project delivery methods relies to varied extents on collaboration between owners, designers, and contractors, and leverages technology to different extents in order to successfully deliver the scope of work.

Design-Bid Build 

Use of technology in DBB can be described as siloed at best. There is typically little to no continuation of design technology efforts into construction. Design team chooses their document authoring platforms in a silo without any input or coordination with the contractors and vice versa. Because the instruments of service are still 2D drawings and written specifications, the design team is looking to produce the best set of 2D documents that will serve the project for bidding, and for protecting the design team from any downstream liability. As such, very little attention is given to accurate 3D modeling to allow time for robust 2D detailing and profitability.

Since the construction team only gets the 2D drawings and specifications as their deliverables (or sometimes lower quality 3D models that are specifically marked to be “not for construction"), they typically evaluate their technology approach after bidding, which may include robust VDC services like construction modeling and coordination, laser scanning, field layout, etc. Unfortunately, all of the 3D modeling has to start from scratch which is a tremendous work redo effort costing the project significant time and money.

CMAR

Unlike DBB, the use of technology in the CMAR procurement method is typically a bit more streamlined. Since the construction team is onboarded during the early design phase, there is a varied amount of technology coordination based on several factors including technical prowess of the project teams, levels of comfort and trust between the team members etc. The sliding scale on use of technology is vast, going from barely using technology at all and delivering the project similar to DBB to very technically savvy delivery teams working in near-IPD type setting, under CMAR contracts.

Though there still typically isn’t any 3D model co-authoring, a lot more attention is given to 3D design coordination reviews including trade subcontractors that provide input to the design team via regular design assist meetings. Unfortunately, since the instruments of service are still 2D, any construction modeling efforts typically start from scratch, but at least with some constructibility intelligence coming from the design phase. The level of construction phase technology use varies with the technical capabilities of the construction team, but typically leverages major VDC technologies especially on large and complex projects.

Design-Build 

Since the complete project liability lies completely with a single Design-Build entity, the use of technology is typically more widespread. The project team can collaboratively make decisions about platforms, tools, roles and responsibilities, and jointly author the instruments of service in whichever way they see fit. This is definitely more streamlined for true Design-Build firms than it is for joint ventures between designers and contractors, where trust and comfort level can still be a critical factor in the success rate of leveraging technology.

Integrated Project Delivery 

Ideally, since the success of any design or construction partner in an IPD depends on the success of the entire project, the use of technology should be carefully planned at project startup to make sure there are no downstream surprises in the overall project approach. However, one of the biggest drawbacks to IPD is that trust is earned over time. Since IPD is geared towards heavy use of design and construction technology at its core, new IPD teams typically experience an adjustment period as they learn the technical capabilities, strengths and weaknesses of the individual team members. If there are some early major challenges or gaps in the originally planned IPD delivery process, this can take a toll on the critical trust component and send the IPD Team into the blame-assessing mode, setting up the entire project for failure.

Part 4: Roles and Responsibilities

Who Is Doing What and Why

Even though the general roles of the owner, architect, engineer, contractor, and subcontractors are fairly consistent, there are very distinct differences in terms of actual responsibilities with regards to process, timing and deliverables between the different types of project delivery.

Design-Bid Build 

DBB is perhaps the simplest and most straightforward procurement method when it comes to roles and responsibilities. The design team is responsible for design and production of construction documents and specifications, review of submittals and shop drawings and other traditional construction administration tasks. Contractors bid the project, are responsible for the construction schedule, means, methods, shop drawings, and submittals. It is a fairly siloed approach to design and construction, but most certainly straightforward.

CMAR

There are a lot of different flavors of CMAR projects, which is where it can get very complicated and either help or hurt the project. Since the design and construction teams are a bit more integrated and they vary in levels of technical capabilities, typically the most technically capable team takes on more responsibilities, like 3D modeling and design/construction coordination, scanning, logistics and 4D model-based scheduling, 5D model-driven Quantity Take-Off (QTO), asset data tracking, design/construction issue tracking, reality capture integration, etc.

It is important to clearly define roles and responsibilities in an overall design/construction/lifecycle BIM execution plan, make sure that all parties are performing the tasks they are responsible for, and most importantly, staying in their lane. Otherwise, there may be parallel efforts occurring between the design and construction partners, without even knowing it is happening, which often leads to costly duplication errors and needs for rework that can derail the project schedule, and cost tremendous amounts of additional money.

Design-Build 

Even though one entity is responsible for both the design and construction of the project, it is equally important to set the clear expectations about roles and responsibilities at project inception. Designers are typically responsible for preliminary design and not all the way to 100% construction document level. When the design is developed enough to convey intent to the owner, the construction team takes over with constructibility and detailing.

Often, the design time, quality, and design transparency are considered the drawbacks to Design-Build, since the team is fairly quick to advance to construction in order to optimize the schedule and cost, and not devote enough time to design exploration and design detailing. In case of joint venture DB teams, setting clear role expectations and adhering to a realistic schedule is critical to project success. Otherwise, the team can resort to parallel efforts which may lead to costly design changes during the construction phase, which has tremendous negative impact on the project budget and schedule.

Integrated Project Delivery 

Roles and responsibilities are of utmost importance in IPD project. Typically, owner, architects, engineers, contractor, and subcontractors are all individual entities with very distinct project roles, and rely on each other to deliver their part accurately, on-time, and on-budget. Goal-setting, communication, and transparency are paramount to project success. Due to the integrated and collaborative nature of this type of project delivery, making certain there are no duplicated efforts and that every party “stays in their lane” is not only important to making sure the work get executed correctly, but also the key ingredient in building Trust between the project team members, which is the primary pre-requisite for IPD project success.

Part 5: Budget and Schedule Considerations

Each of the project delivery methods has very distinct pros and cons when project budget and schedule are considered.

Design-Bid-Build 

Most owners still believe that this is the most economical procurement method due to the competitive nature of the bidding process. Design fees are heavily considered as part of hiring the architects and engineers to provide their traditional (and considered lowest-cost) design and documentation services, and the contractors bid against each other to provide the lowest bid, and win the work. However, there are several inefficiencies with the DBB process that, when considered holistically, may tell a different true story about the total cost of DBB.

First, the delivery process is extended due to the linear nature since the design needs to be 100% completed before bidding the project and starting construction. This may result in revenue loss from slower speed to market. Additionally, since the construction process will likely take longer since the contractors are starting from scratch, the general conditions line item likely costs more. If the project bids over budget, there is a significant value engineering effort that needs to happen, which likely costs additional time and money, and sacrifices the project scope and/or quality.

DBB typically has more non-optimal activities like RFIs and ASIs which cost a lot of time and money to process, and even more money to resolve, often resulting in costly change orders. Because the contractors had to bid as lean as possible to win the project, they are often relying on finding items the design team may have missed on the documents, to request change orders that allow them to build profit back into the project. (There are several books that provide contractors with guidance on change orders.) This is not a collaborative team effort which causes delays and additional budget changes, which typically more than offsets any efficiencies from the lower design fees or the competitive bid process, which can often make this procurement method the most expensive in lieu of most economical.

CMAR

One of the biggest criticisms of CMAR is that the owner is preselecting the team based on qualifications and not based on cost. There is typically no competitive bidding for the major trades as they are locked into the contract early-on, and they work with the construction manager to fit the scope into the agreed-upon GMP. This may cause several issues, like CMs being very conservative while establishing the GMP, leaving the owners wondering if they are getting the best value for their money. Additionally, if there is any indication that the project may go over the agreed-upon GMP due to any unforeseen conditions (or even errors/work redo beyond the planned contingencies), the contractors typically advise towards either reduction in scope or quality.

When things go smoothly, CMAR can provide a great value to the owner and produce very successful project. Likewise, when there are problems, it may leave the owners wondering why they chose to go with this procurement method to begin with. One of the benefits of CMAR is certainly the potential for schedule acceleration compared to DBB. The project is typically executed in multiple bid packages in order to enable parallel design and construction process, as well as optimizing the critical path schedule by evaluating the long lead-time components and making sure there are no bottlenecks to slow down the construction process.

Design-Build 

Cost and time are big drivers of Design-Build projects. The premise is, since the design and construction is done by the same entity, the overall process can advance a lot more rapidly and thus take less time, and cost less money. Design is performed concurrently with construction and with strict budget in mind. Arguably one of the most economical ways to deliver projects, optimizing cost and time often sacrifices the design quality and exploration to fit the owner’s custom needs. Decisions need to be made rather quickly and any changes down the road are typically very costly and sometimes not even feasible due to the amount of cost/time impact, leaving the owner “stuck” with the decisions they made early in the project, when they may not have had all the facts they needed to make those decisions.

Integrated Project Delivery 

Even though IPD is geared towards leveraging technology and lean processes to reduce waste and improve efficiency, the amount of time spent communicating and collaborating between all of the different parties creates a very labor-intensive process. Design and construction optimization from the collaborative nature of this project delivery method is designed to offset the additional labor needed, and produce leaner and more efficient projects that are executed with ease. IPD typically delivers projects with less construction waste leveraging a much more coordinated approach, which should result in lower overall construction cost.

Even though advanced and costly technologies are an added cost compared to traditional projects, the time and budget efficiencies they create more than offset the associated hard and soft costs. When delivered successfully, IPD should produce some of the most cost effective and fastest projects, especially for very large, complex and repetitive project types.

Conclusion: Enhanced Delivery Method?

Given this brief overview of the most common project delivery methods, it is clear that there is no “winner” that will prevail over the others for all projects. Does this mean none of the project delivery methods are fully adequate to support how we can best deliver projects, or do we simply need to choose the delivery method that fits the best? Do we need a new project delivery method that would combine the best of all worlds?

Perhaps we are at the brink of developing new procurement methods. Maybe we should consider a "Buildable Design-Bid-Build” project delivery that would blend design intent with construction coordination, means, and methods and retain the competitive bid process, but enable utilization of BIM and VDC to the fullest extent, with little to no loss of project delivery intelligence and minimal work redo. A process that would natively enable precoordination and construction scheduling/logistics during the design phase, and bidding construction installation from shop-drawing-ready models versus 2D construction documents.

What would the contracts look like with this enhanced delivery? How about design fees? Roles and responsibilities? Liability? Rewards and penalties? How about deliverables – would we be delivering much more intuitive digital twins at the end of this enhanced delivery process? 

Watch the roundtable for the related discussion on these project delivery methods, technology-driven delivery, innovation, risks, and constraints on where our built environment industry is inevitably headed.

In his current role at Jacobs, Marin focuses on leveraging his extensive AEC industry experience to help project teams discern project technology and innovation constraints and opportunities. He is passionate about developing the most suitable project execution strategy that leverages advanced Virtual Design and Construction tools and workflows in innovative ways to help streamline the design/construction delivery, and achieve a digital handover of the built environment suitable for the owner’s asset lifecycle operation and management process. He focuses his leadership and advocacy for enhancing the built environment both internally at Jacobs to raise awareness as we Challenge Today and Reinvent Tomorrow, and externally with existing and potential / new clients.

______
icon-svg-close-thick

Cookie preferences

Your privacy is important to us and so is an optimal experience. To help us customize information and build applications, we collect data about your use of this site.

May we collect and use your data?

Learn more about the Third Party Services we use and our Privacy Statement.

Strictly necessary – required for our site to work and to provide services to you

These cookies allow us to record your preferences or login information, respond to your requests or fulfill items in your shopping cart.

Improve your experience – allows us to show you what is relevant to you

These cookies enable us to provide enhanced functionality and personalization. They may be set by us or by third party providers whose services we use to deliver information and experiences tailored to you. If you do not allow these cookies, some or all of these services may not be available for you.

Customize your advertising – permits us to offer targeted advertising to you

These cookies collect data about you based on your activities and interests in order to show you relevant ads and to track effectiveness. By collecting this data, the ads you see will be more tailored to your interests. If you do not allow these cookies, you will experience less targeted advertising.

icon-svg-close-thick

THIRD PARTY SERVICES

Learn more about the Third-Party Services we use in each category, and how we use the data we collect from you online.

icon-svg-hide-thick

icon-svg-show-thick

Strictly necessary – required for our site to work and to provide services to you

Qualtrics
We use Qualtrics to let you give us feedback via surveys or online forms. You may be randomly selected to participate in a survey, or you can actively decide to give us feedback. We collect data to better understand what actions you took before filling out a survey. This helps us troubleshoot issues you may have experienced. Qualtrics Privacy Policy
Akamai mPulse
We use Akamai mPulse to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, and your Autodesk ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. Akamai mPulse Privacy Policy
Digital River
We use Digital River to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, and your Autodesk ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. Digital River Privacy Policy
Dynatrace
We use Dynatrace to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, and your Autodesk ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. Dynatrace Privacy Policy
Khoros
We use Khoros to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, and your Autodesk ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. Khoros Privacy Policy
Launch Darkly
We use Launch Darkly to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, and your Autodesk ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. Launch Darkly Privacy Policy
New Relic
We use New Relic to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, and your Autodesk ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. New Relic Privacy Policy
Salesforce Live Agent
We use Salesforce Live Agent to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, and your Autodesk ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. Salesforce Live Agent Privacy Policy
Wistia
We use Wistia to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, and your Autodesk ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. Wistia Privacy Policy
Tealium
We use Tealium to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. Tealium Privacy Policy
Upsellit
We use Upsellit to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. Upsellit Privacy Policy
CJ Affiliates
We use CJ Affiliates to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. CJ Affiliates Privacy Policy
Commission Factory
We use Commission Factory to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. Commission Factory Privacy Policy
Google Analytics (Strictly Necessary)
We use Google Analytics (Strictly Necessary) to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, and your Autodesk ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. Google Analytics (Strictly Necessary) Privacy Policy
Typepad Stats
We use Typepad Stats to collect data about your behaviour on our sites. This may include pages you’ve visited. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our platform to provide the most relevant content. This allows us to enhance your overall user experience. Typepad Stats Privacy Policy
Geo Targetly
We use Geo Targetly to direct website visitors to the most appropriate web page and/or serve tailored content based on their location. Geo Targetly uses the IP address of a website visitor to determine the approximate location of the visitor’s device. This helps ensure that the visitor views content in their (most likely) local language.Geo Targetly Privacy Policy
SpeedCurve
We use SpeedCurve to monitor and measure the performance of your website experience by measuring web page load times as well as the responsiveness of subsequent elements such as images, scripts, and text.SpeedCurve Privacy Policy
Qualified
Qualified is the Autodesk Live Chat agent platform. This platform provides services to allow our customers to communicate in real-time with Autodesk support. We may collect unique ID for specific browser sessions during a chat. Qualified Privacy Policy

icon-svg-hide-thick

icon-svg-show-thick

Improve your experience – allows us to show you what is relevant to you

Google Optimize
We use Google Optimize to test new features on our sites and customize your experience of these features. To do this, we collect behavioral data while you’re on our sites. This data may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, your Autodesk ID, and others. You may experience a different version of our sites based on feature testing, or view personalized content based on your visitor attributes. Google Optimize Privacy Policy
ClickTale
We use ClickTale to better understand where you may encounter difficulties with our sites. We use session recording to help us see how you interact with our sites, including any elements on our pages. Your Personally Identifiable Information is masked and is not collected. ClickTale Privacy Policy
OneSignal
We use OneSignal to deploy digital advertising on sites supported by OneSignal. Ads are based on both OneSignal data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that OneSignal has collected from you. We use the data that we provide to OneSignal to better customize your digital advertising experience and present you with more relevant ads. OneSignal Privacy Policy
Optimizely
We use Optimizely to test new features on our sites and customize your experience of these features. To do this, we collect behavioral data while you’re on our sites. This data may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, your Autodesk ID, and others. You may experience a different version of our sites based on feature testing, or view personalized content based on your visitor attributes. Optimizely Privacy Policy
Amplitude
We use Amplitude to test new features on our sites and customize your experience of these features. To do this, we collect behavioral data while you’re on our sites. This data may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, your Autodesk ID, and others. You may experience a different version of our sites based on feature testing, or view personalized content based on your visitor attributes. Amplitude Privacy Policy
Snowplow
We use Snowplow to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, and your Autodesk ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. Snowplow Privacy Policy
UserVoice
We use UserVoice to collect data about your behaviour on our sites. This may include pages you’ve visited. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our platform to provide the most relevant content. This allows us to enhance your overall user experience. UserVoice Privacy Policy
Clearbit
Clearbit allows real-time data enrichment to provide a personalized and relevant experience to our customers. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID.Clearbit Privacy Policy
YouTube
YouTube is a video sharing platform which allows users to view and share embedded videos on our websites. YouTube provides viewership metrics on video performance. YouTube Privacy Policy

icon-svg-hide-thick

icon-svg-show-thick

Customize your advertising – permits us to offer targeted advertising to you

Adobe Analytics
We use Adobe Analytics to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, and your Autodesk ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. Adobe Analytics Privacy Policy
Google Analytics (Web Analytics)
We use Google Analytics (Web Analytics) to collect data about your behavior on our sites. This may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. We use this data to measure our site performance and evaluate the ease of your online experience, so we can enhance our features. We also use advanced analytics methods to optimize your experience with email, customer support, and sales. Google Analytics (Web Analytics) Privacy Policy
AdWords
We use AdWords to deploy digital advertising on sites supported by AdWords. Ads are based on both AdWords data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that AdWords has collected from you. We use the data that we provide to AdWords to better customize your digital advertising experience and present you with more relevant ads. AdWords Privacy Policy
Marketo
We use Marketo to send you more timely and relevant email content. To do this, we collect data about your online behavior and your interaction with the emails we send. Data collected may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, email open rates, links clicked, and others. We may combine this data with data collected from other sources to offer you improved sales or customer service experiences, as well as more relevant content based on advanced analytics processing. Marketo Privacy Policy
Doubleclick
We use Doubleclick to deploy digital advertising on sites supported by Doubleclick. Ads are based on both Doubleclick data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that Doubleclick has collected from you. We use the data that we provide to Doubleclick to better customize your digital advertising experience and present you with more relevant ads. Doubleclick Privacy Policy
HubSpot
We use HubSpot to send you more timely and relevant email content. To do this, we collect data about your online behavior and your interaction with the emails we send. Data collected may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, email open rates, links clicked, and others. HubSpot Privacy Policy
Twitter
We use Twitter to deploy digital advertising on sites supported by Twitter. Ads are based on both Twitter data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that Twitter has collected from you. We use the data that we provide to Twitter to better customize your digital advertising experience and present you with more relevant ads. Twitter Privacy Policy
Facebook
We use Facebook to deploy digital advertising on sites supported by Facebook. Ads are based on both Facebook data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that Facebook has collected from you. We use the data that we provide to Facebook to better customize your digital advertising experience and present you with more relevant ads. Facebook Privacy Policy
LinkedIn
We use LinkedIn to deploy digital advertising on sites supported by LinkedIn. Ads are based on both LinkedIn data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that LinkedIn has collected from you. We use the data that we provide to LinkedIn to better customize your digital advertising experience and present you with more relevant ads. LinkedIn Privacy Policy
Yahoo! Japan
We use Yahoo! Japan to deploy digital advertising on sites supported by Yahoo! Japan. Ads are based on both Yahoo! Japan data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that Yahoo! Japan has collected from you. We use the data that we provide to Yahoo! Japan to better customize your digital advertising experience and present you with more relevant ads. Yahoo! Japan Privacy Policy
Naver
We use Naver to deploy digital advertising on sites supported by Naver. Ads are based on both Naver data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that Naver has collected from you. We use the data that we provide to Naver to better customize your digital advertising experience and present you with more relevant ads. Naver Privacy Policy
Quantcast
We use Quantcast to deploy digital advertising on sites supported by Quantcast. Ads are based on both Quantcast data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that Quantcast has collected from you. We use the data that we provide to Quantcast to better customize your digital advertising experience and present you with more relevant ads. Quantcast Privacy Policy
Call Tracking
We use Call Tracking to provide customized phone numbers for our campaigns. This gives you faster access to our agents and helps us more accurately evaluate our performance. We may collect data about your behavior on our sites based on the phone number provided. Call Tracking Privacy Policy
Wunderkind
We use Wunderkind to deploy digital advertising on sites supported by Wunderkind. Ads are based on both Wunderkind data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that Wunderkind has collected from you. We use the data that we provide to Wunderkind to better customize your digital advertising experience and present you with more relevant ads. Wunderkind Privacy Policy
ADC Media
We use ADC Media to deploy digital advertising on sites supported by ADC Media. Ads are based on both ADC Media data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that ADC Media has collected from you. We use the data that we provide to ADC Media to better customize your digital advertising experience and present you with more relevant ads. ADC Media Privacy Policy
AgrantSEM
We use AgrantSEM to deploy digital advertising on sites supported by AgrantSEM. Ads are based on both AgrantSEM data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that AgrantSEM has collected from you. We use the data that we provide to AgrantSEM to better customize your digital advertising experience and present you with more relevant ads. AgrantSEM Privacy Policy
Bidtellect
We use Bidtellect to deploy digital advertising on sites supported by Bidtellect. Ads are based on both Bidtellect data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that Bidtellect has collected from you. We use the data that we provide to Bidtellect to better customize your digital advertising experience and present you with more relevant ads. Bidtellect Privacy Policy
Bing
We use Bing to deploy digital advertising on sites supported by Bing. Ads are based on both Bing data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that Bing has collected from you. We use the data that we provide to Bing to better customize your digital advertising experience and present you with more relevant ads. Bing Privacy Policy
G2Crowd
We use G2Crowd to deploy digital advertising on sites supported by G2Crowd. Ads are based on both G2Crowd data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that G2Crowd has collected from you. We use the data that we provide to G2Crowd to better customize your digital advertising experience and present you with more relevant ads. G2Crowd Privacy Policy
NMPI Display
We use NMPI Display to deploy digital advertising on sites supported by NMPI Display. Ads are based on both NMPI Display data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that NMPI Display has collected from you. We use the data that we provide to NMPI Display to better customize your digital advertising experience and present you with more relevant ads. NMPI Display Privacy Policy
VK
We use VK to deploy digital advertising on sites supported by VK. Ads are based on both VK data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that VK has collected from you. We use the data that we provide to VK to better customize your digital advertising experience and present you with more relevant ads. VK Privacy Policy
Adobe Target
We use Adobe Target to test new features on our sites and customize your experience of these features. To do this, we collect behavioral data while you’re on our sites. This data may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, your IP address or device ID, your Autodesk ID, and others. You may experience a different version of our sites based on feature testing, or view personalized content based on your visitor attributes. Adobe Target Privacy Policy
Google Analytics (Advertising)
We use Google Analytics (Advertising) to deploy digital advertising on sites supported by Google Analytics (Advertising). Ads are based on both Google Analytics (Advertising) data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that Google Analytics (Advertising) has collected from you. We use the data that we provide to Google Analytics (Advertising) to better customize your digital advertising experience and present you with more relevant ads. Google Analytics (Advertising) Privacy Policy
Trendkite
We use Trendkite to deploy digital advertising on sites supported by Trendkite. Ads are based on both Trendkite data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that Trendkite has collected from you. We use the data that we provide to Trendkite to better customize your digital advertising experience and present you with more relevant ads. Trendkite Privacy Policy
Hotjar
We use Hotjar to deploy digital advertising on sites supported by Hotjar. Ads are based on both Hotjar data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that Hotjar has collected from you. We use the data that we provide to Hotjar to better customize your digital advertising experience and present you with more relevant ads. Hotjar Privacy Policy
6 Sense
We use 6 Sense to deploy digital advertising on sites supported by 6 Sense. Ads are based on both 6 Sense data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that 6 Sense has collected from you. We use the data that we provide to 6 Sense to better customize your digital advertising experience and present you with more relevant ads. 6 Sense Privacy Policy
Terminus
We use Terminus to deploy digital advertising on sites supported by Terminus. Ads are based on both Terminus data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that Terminus has collected from you. We use the data that we provide to Terminus to better customize your digital advertising experience and present you with more relevant ads. Terminus Privacy Policy
StackAdapt
We use StackAdapt to deploy digital advertising on sites supported by StackAdapt. Ads are based on both StackAdapt data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that StackAdapt has collected from you. We use the data that we provide to StackAdapt to better customize your digital advertising experience and present you with more relevant ads. StackAdapt Privacy Policy
The Trade Desk
We use The Trade Desk to deploy digital advertising on sites supported by The Trade Desk. Ads are based on both The Trade Desk data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that The Trade Desk has collected from you. We use the data that we provide to The Trade Desk to better customize your digital advertising experience and present you with more relevant ads. The Trade Desk Privacy Policy
RollWorks
We use RollWorks to deploy digital advertising on sites supported by RollWorks. Ads are based on both RollWorks data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that RollWorks has collected from you. We use the data that we provide to RollWorks to better customize your digital advertising experience and present you with more relevant ads. RollWorks Privacy Policy

Are you sure you want a less customized experience?

We can access your data only if you select "yes" for the categories on the previous screen. This lets us tailor our marketing so that it's more relevant for you. You can change your settings at any time by visiting our privacy statement

Your experience. Your choice.

We care about your privacy. The data we collect helps us understand how you use our products, what information you might be interested in, and what we can improve to make your engagement with Autodesk more rewarding.

May we collect and use your data to tailor your experience?

Explore the benefits of a customized experience by managing your privacy settings for this site or visit our Privacy Statement to learn more about your options.